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Path-integral study of a two-dimensional Lennard-Jones glass
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The glass transition in a quantum Lennard-Jones mixture is investigated by constant-volume path-integral
simulations. Particles are assumed to be distinguishable, and the strength of quantum effects is varied by
changingZ from zero(the classical cageo one (corresponding to a highly quantum-mechanical regime
Quantum delocalization and zero point energy drastically reduce the sensitivity of structural and thermody-
namic properties to the glass transition. Nevertheless, the glass transition tempEyatanebe determined by
analyzing the phase space mobility of path-integral centroids. At constant volumg, thiethe simulated
model increases monotonically with increasifigLow temperature tunneling centers are identified, and the
guantum versus thermal character of each center is analyzed. The relation between these centers and soft
quasilocalized harmonic vibrations is investigated. Periodic minimizations of the potential energy with respect
to the positions of the particles are performed to determine the inherent structure of classical and quantum
glassy samples. The geometries corresponding to these energy minima are found to be qualitatively similar in
all cases. Systematic comparisons for ordered and disordered structures, harmonic and anharmonic dynamics,
classical and quantum systems show that disorder, anharmonicity, and quantum effects are closely interlinked.
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[. INTRODUCTION time evolution generated by Newton’s equations of motion
does not correspond to the true system dynamics, and there-
Computer simulation nowadays plays an ever increasindore MD should be considered simply as a way to explore the
role in the investigation of simple glasses, partly because thpotential energy landscape visited by the amorphous system.
recent, astonishing surge of computer power has dramaticalljunneling modes can be identified by observing the thermal
expanded the reach of simulation methods, and, more impogctivated oscillations of the system between two or more
tantly, because new ideas and paradigms are emerging froquasidegenerate configurations. In previous studies based on
the concerted effort of several computational groupg]. In this method, quantum tunneling has been investigatpds-
recent years the discussion has been focused on two majtariori, either by a semiclassical WKB analysis of the poten-
topics: (i) the nature of the glass transitip8]; (ii) the inves- tial energy profile connecting the minima identified in the
tigation of the low-energy excitation typical of glasddd,  simulation[8,9], or using phenomenological models for the
i.e., the soft quasilocalized modes giving rise to the Bosordouble well potential giving rise to the two-level system, and
peak at~10 K, and the two-level systems responsible forfitted to simulation results for two-dimensior(@D) [10] and
the linear term in the specific heat atl K [5]. Atomistic 3D [11] samples.
simulations, in particular, have helped in the identification of The self-consistent inclusion of anharmonicity and quan-
the structural features associated with those low-energy exum effects in models of amorphous solids at low tempera-
citations: low frequency quasilocalized vibrational statesture would provide a more complete and realistic description
have been identified and characterized in several stlilies of these systems, and could reveal new and unexpected fea-
and their role in the glass transition has been investigated tures. As a first step towards this goal, we perform a path-
In most of these studies, often based on idealized interatomiategral (PI) simulation of a model Lennard-Jones glass in
potentials (Lennard-Jones or repulsive soft spherean  2D. The particles are assumed to be distinguishable and of
amorphous sample is prepared by quenching a liquid systemgual mass, and the strength of quantum effects is measured
by classical molecular dynami¢siD) or Monte Carlo(MC) by the value of Planck’s constarit, which is varied from
simulation. Two approaches have been used to analyze timero (the classical limit to one (corresponding to a highly
dynamical properties of the resulting amorphous syst@m: quantum-mechanical regime, as it will be apparent from the
the computation and diagonalization of the dynamical matrixesults discussed in the following sectidig]).
and(ii) the analysis of trajectories generated by classical MD We restrict ourselves to two-dimensional systems because
at low temperature. Quantum-mechanical effects are easilhe results for the quasilocalized tunneling modes and for the
accounted for by the first method, and soft quasilocalizegystem configurations are easier to analyze and to display in
states can be identified by their low frequency and limitedgraphical form. In analogy with what is done in classical
spatial extension. This approach, however, is limited to harMD, we prepare the system in the liquid state, and progres-
monic properties, although anharmonic contributions can bsively quench it down to very low temperature. As described
partially included by a variant of this methdide., the quasi- in detail below, most of our computations concern a binary
harmonic approximation On the other hand, classical MD mixture that is known to remain homogeneous and disor-
treats harmonic and anharmonic effects on the same footinglered under all annealing cycles achievable by computer
The drawback of this method is that, at low temperature, thsimulation.
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transition in a quantum-mechanical systeii); the compari- quantum-mechanical thermal bath may be different, and it is
(iii ) the identification and characterization of low-energy ex-in particular, is enhanced by the experimental preparation of
tions, and the appropriate comparison with experimenta$ffects are expected to play a significant role.
adopted in experimentshe glass transition is where the vis-
viscosity would require exceedingly long simulation times ﬂ) 12_
r r

heat anomaligsor structural propertiegthe splitting of the

In quantum-mechanical simulations, all these criteria loser,,= (o111 0755)/2 [16]. All the other parameter§i.e., €;;
most computational approaches for quantum systems hindees1, e,,=1, andM =1. This implicitly defines our unit of
point energy conceal the typical signatures of the glass tranyith number concentrationsx;=N;/N=0.8, and x,
less possible to determine the glass transition temperature vious studies have shown that systems with this Hamiltonian
in phase space. The characteristic regimes of liquidlike moand Ref[18]). All computations are done for systems whose
are still recognizable in the behavior of quantum systemsgyr samples enables us to explore the intermediate range
(that remains unaltered over a wide range of simulation timextensive simulations with the Pl method.

For our glasses, although the classical and quantumyith the phase space integration for a classical systeM of
This becomes evident when we quench various configura-

V(ryg, oo feps ooy - - o INP)

radial distribution function or the structure factoof the
are practically indistinguishable in all cases, whereas the

The computational results provide a solid ground to ad-expected to behave classically at all but the lowest tempera-
dress three problemsi) the characterization of the glass tures. However, their interaction with a classical or a
son of the amorphous structure for classical and quantunprecisely this difference that is investigated in our study.
mechanical systems evolving under the same Hamiltonian; The interest in this kind of problems, and in our 2D study
citations. quenched noble gas films on a cold substfafs, at tem-

The identification of the glass transition by MD simula- Peratureda fraction of a °K) such that quantum-mechanical
measurements, is still the subject of active investigation even
in the case of classical systems. The standard definition| THE MODEL AND THE COMPUTATIONAL METHOD
cosity coefficient reaches 10 P) cannot be extended to ~ We study a binary mixture of particles interacting via a
computer experiments because the evaluation of such a higiennard-JoneslLJ) potential

\6
[13]. Alternative criteria have been proposed, based on either vi (1) =4¢; ﬂ)
thermodynamic propertieghe appearance of broad specific '
second neighbors’ peak in the radial distribution function,where the indexeg,j refer to the particle specigd and 2,
and the growth of a prepeak in the structure factor which differ for the LJ diameter onlyo,,=1.507;, with
(partially or entirely their ability to identify the glass tran- and the particle massl) are the same for the two species.
sition. In the first instance, the imaginary-time formulation of Reduced units are used throughout the paper by seitjng
the determination of dynamical properties such as diffusiontime asr=o;\VM/ey;.
or viscosity. In addition, quantum delocalization and zero e consider a system dfi=N;+N,=1000 particles,
sition, which otherwise appear in the structural and thermo=N,/N=0.2. Two-dimensional periodic boundary condi-
dynamic properties. DeSpite these difficulties, it is neverthetions are app"ed, assuming a square unit cell of &idere-
of quantum systems by a detailed analysis of the mobility oand composition do not crystallize during classical MD
quantum pathsmore precisely, of quantum paths’ centrgids sjmulations of ordinary lengtlisee, for instance, Ref17]
bility. at high temperature, act.ivz_ated discrete jum.ps at intergensity p=N/L2=0.952 is equal to the density of the sys-
mediate temperature, and solidlike glassy behavior atTow tems investigated in Ref17]. In 2D, the size Kl=1000) of
although quantitative estimates for the diffusion coefficientorder (beyond the third nearest neighbors’ shedith little
cannot be obtained. This separation of dynamical regimemfluence of finite size effects, and at the same time it allows
scales provides the most effective approach for identifying  The path-integral simulation is performed by exploiting
the glass transition. the well known isomorphism of the quantum trace operation
mecha.nical trajeCtOI’ieS of the particles diﬁer, the Und.erlyin%ycnc po'ymers of |engtrp, moving on the potentia| energy
potential energy valleys are, to a large extent, equivalenigyrface[19—21],
tions, selected from either classical or quantum trajectories,
and analyze the average structural propertmsch as the
N P
static geometries corresponding to the potential energy =2 E (a(T)(ri'j—ri,jﬂ)2
minima[14]. We find that these average structural properties
N
. . 1

same functions computed at nonzero temperature during T k(|rij_rkj|)), 2)
classical and quantum simulations are, as expected, markedly P o '

different.
A similar analysis of potential energy minima is used towith r; p,,=r;; and
identify tunneling centers, and to investigate the interplay of
guantum and thermal effects on their dynamics. It is worth PM
pointing out that the tunneling modes themselves are charac- a(T)= ——. 3)
terized by low excitation energies, and therefore they are 20282
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In these equation® is the order of the path-integral discreti- runs, the relative difference betwed@nand Ty is always
zation in imaginary timeB=1/kgT is the inverse tempera- smaller than 1%. However, we noticed that several average
ture in energy unitskg is Boltzmann’s constaptand# is  quantities(such as the quantum-mechanical kinetic and po-
used here as a free parameter measuring the strength of quaential energy, the imaginary-time correlation functions,)etc.
tum effects. The set of coordinatés ; . k=1,N}, at fixedj,  are very sensitive to even small deviationsTgfp from T.
represents the system configuration at the imaginary time For this reason, we numerically compute the derivative of
=i(Bj/P). Following standard naming conventions, this setéach guantum-mechanical average with respecyig at
of coordinates is also named anaginary-time slicewhile ~ fixed a(T) andP, and correct the simulation results by lin-
the positionr,; of particle k at the imaginary-time slicg ~ €arly extrapolating td'yp=T. o
identifies abead We limit ourselves to this so-callgatimi- As mentioned in the introduction, in order to discriminate
tive algorithmbecause of its simplicity, and because, despitédo€tween harmonic and anharmonic effects, we analyze the
its relatively low efficiency, we could simulate all conditions Vibrational properties of our systems in the harmonic ap-
of interest for our study with an affordable computational Proximation. To this aim, local minima of the system poten-
effort. tial energy are found by quenched MR8]. Then, the sec-
We sample the phase space of this system by[@® in ~ ond derivatives of the energy with respect to the particle
the microcanonical ensemble by using the velocity VerletPositions are computed by a finite differences scheme, and
algorithm[23]. The mass of the beads is setMdP, in such  the corresponding dynamical matrix is diagonalized to pro-
a way that the total mass of each po|ymer representing on@de vibrational Eigenvalues and eigenStateS. At the denSity

particle is always equal to one. of our simulations f=0.952), the particles mainly sample
The discretization of the path integrals is performed withthe repulsive part of the LJ potential, giving rise to stiff
the constraint vibrational modes that, in turn, greatly enhance the strength
of quantum effects.
PM The interpretation of our simulation results concerning
%272- 4 anharmonic dynamics is eased by considering the so-called

centroid molecular dynamig€MD, introduced in Ref[29]

We verify that this choice, which fixes the temperature de-2Nd reviewed in Ref[30]), although we did not use this

pendence oP, provides a reasonably well converged repre-method in our study. Incthe CMD approach, the basic vari-
sentation of the total enerd@4], while, at the same time, it ables are the centroid&®;",i=1N} of the paths representing
is not so large to cause severe ergodicity probl¢a@j. In  €ach particle,
particular, we verify that external perturbations applied to P
selected degrees of freedom are equilibrated well withth 10 _czl -

! : RP=% > 1ij, (6)
MD steps, i.e., a time much shorter than the length of our P =
runs(all beyond 3< 10° steps. The relatively stiff harmonic
potential in Eq.[2], however, limits the value of our time together with the corresponding conjugate momeiRe,i
step tost=1.2x10 37. This is the time step used in all our =1,N}. An approximate and yet reliable formulation for the
simulations, including the classical ones. Each system i§me evolution of these variables is
simulated at values of temperature in the intervalTI<12

and corresponding to integ@rvalues. RC_Q_iC )
The quantum-mechanical average total energy is evalu- VI
ated as detailed in Reff25]. The kinetic energ¥y , in par-
ticular, is evaluated using the virial estimaf@6,27], QC=FC, (8)
EK:ﬂjL _ whereF{ is the force on the particleaveraged on all paths
2p 2P whose centroid is fixed &’ . In the CMD framework, the
N expression for the diffusion coefficient involves only the po-
N P D viIrij =i sition vectors of the centroids,
k=1
X 2 E ~ '(ri,p_rk,p) ) 1 1 N
Lt i D=———lims > (|RS(t+ty)—RS(tg)[2) 9)
2d Nt_mct = i 0 i \t0 ’

©)

which is known to be the least affected by fluctuationswhered is the dimensionality of the system and the average
among all simple estimators that can be derived from thés over different initial timest,. This simple quantum-

partition function of the system. classical correspondence is due to the fact that diffusion is
The usage of MD to compute quantum-mechanical prop+elated to the zero-frequency limit of dynamical correlation
erties is justified only if the simulation temperatufgp, functions, and behaves classically provided that quantum

defined by the average kinetic energy along the MD trajecfluctuations are accounted for in the computation of the
tory, is close to the temperatuiieentering the definition of forces(see Ref[30] for more details These formal relations
the coupling paramete®(T) [see Eq.(3)]. In each of our are supported by explicit simulation results showing that

066704-3



P. BALLONE AND B. MONTANARI PHYSICAL REVIEW E 65 066704

classical and quantum systems evolving on the same potemide a comparison for the quantum-mechanical study, we
tial energy surface have a quantitatively different but quali-first perform a classical MD simulation, corresponding to
tatively similar diffusion behavior. #2=0, whose results are discussed in the following section.
One can think of the centroid trajectories generated in oulThe results of additional computations done #dr=1/6 and
PI-MD simulations as intermediate between those computed/4 display the same qualitative features of simulations at
in CMD and the classical ones. On the one hand, since eadkigher#?, and therefore they are not discussed in detail here.
bead has mashl/P, it is easy to verify that along our tra- All these values of#? correspond to highly quantum-
jectories the centroid coordinates and momenta satisfy thmechanical systems, as will be apparent from the results re-
equations ported below. An independent measure of the strength of
c quantum-mechanical effects is provided by the dimension-
Rc:Q_i (10 less de Boer parameteér=7/o\Me that, for instance for
M rare gas atoms, assumes values frdm 0.427 for He toA
=0.01 for Xe. In our simulations, this parameters varies
and from A=1 for 4°=1 to A=0.41 for #2=1/6. However,
N because we usk as an independent variable and we choose
c 1 N v k(|rij =il 1) M, o, ande as basic units, our simulations do not correspond
PEE ari; ’ exactly to any real rare gas system at the physical valde of

and, therefore, the force driving the evolution (@f in our
simulations is not equal t5ic- Ill. CLASSICAL SIMULATION

On the other hand, because the ratio between the mass of oyr simulations for the classical case are similar to those

t_he centroids and that of_the beadsﬂ'%l, the.time_evolu— ~ reported in Ref[17], and consist of a MD quench from the
tion of our samples consists of rapid fluctuations in the disfjyid to the glass phase. Our equilibration and statistics runs
crete paths superimposed to the slow motion of the centroidgye shorter than those of Ré17], for consistency with the
These rapid fluctuations provide at least part of the forcguantum-mechanical computations, which are computation-
averaging implied in the definition of the"’s, although an ally more expensive.
exact correspondence betwe@fi andFE is obtained only in A liquid sample is equilibrated af=6 during 2x 1C°
the P— o limit. time steps(corresponding to 24Qf), statistics is accumu-
This argument, which relies on the same adiabatic printated over a second run of equal length and then the system
ciple exploited by other simulation techniquggl], is used  Kinetic energy is discontinuously reduced by an amount cor-
in Sec. IV to discuss qualitatively the diffusive behavior of responding taAT=0.25. A similar equilibration/quench se-
our systems in terms of the centroid trajectories given by ougjuence is repeated several times, until the system redches
PI-MD simulations. In particular, we shall distinguish three =0.5.
different regimes(i) a high temperature range, in which cen-  Inspection of snapshots for the low temperature structure
troids move continuously in a liquidlike fashiofij) an in-  shows that the system is in a clearly recognizable microcrys-
termediate regime, in which centroids perform discretetalline state, with the majority componeftype 1 particles
jumps that result in a slow diffusion of the system in phaseforming crystallized grains delimited by elongated islands of
space;j(iii) a low temperature range, in which centroids aretype 2 particlegsee Fig. 1. Disorder arises at the boundary
localized in space, sometimes oscillating among nearly desf the two components and disrupts the long range transla-
generate and spatially contiguous potential energy minimational and orientational order.
We emphasize that, even for very large value®pthe ap- The internal energy) (averaged over the statistics runs of

proximate relation betwee@" andFC underlying our analy-  2400r) is an almost linear function of. To emphasize non-
sis does not imply that our path-integral dynamics apdinear contributions, we fit the low temperature region of
proaches the true dynamics, since, in the CMD methodY(T) (T<1.5) with a linear function[U;;,(T)=a+bT],
simulation time is not equivalent to real time. An approxi- and we report the differencel(T) —U,;,(T) in Fig. 2a).
mate correspondendeorrect up to ordefi?) can be estab- The potential energy contributic(atJ to the constant volume
lished only for harmonic modes, and the rescaling factoispecific heat is computed by projectibif T) on orthogonal
connecting simulation time to real time depends explicitly onpolynomials, and then differentiating the polynomial fit with
the frequency of the mode to which it is applig@0]. For  respect tol. The results are shown in Fig(l. Both U(T)
this reason, no quantitative estimate of the diffusion coeffi-—U,;,(T) and C,lf(T) display a broad anomaly in the tem-
cient is obtained from our PI-MD simulations. perature range  T<4. The analysis of MD trajectories at

In order to analyze the interplay of temperature, quantunseveral temperatures allows us to relate this anomaly to the
effects and disorder on the behavior of our system, we studiieat release due to the formation of crystalline islands of
a sequence of systems of increasing quantum-mechanicslpe 1 particles. In other words, the transition displayed by
character, obtained by progressively switchihgn. In the  the model has a weak first order character, due to the partial
units specified above, we considéf=1/3, 1/2, and 1 freezing of type 1 particles, limited by the presence of the
(equivalently, we could think of systems with decreasing parminority (type 2 patrticles. In this respect, the results for
ticle mass and studied at constant value:di32]). To pro- U(T) and forCt’(T) are somewhat different from the stan-
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FIG. 1. Typical low temperature configuration found in the clas- T/&qq
sical simulation. Gray and black circles represent the particles of ) ] )
type 1 and 2, respectively. FIG. 2. Thermodynamic properties of the classical=(Q)

model. (a) Average potential energy per partidleas a function of

dard i f the al . in which th ific h Lemperature'l’. A linear term has been subtracted to emphasize non-
ard picture of the glass tranSItlon’ in which the specific Cinear contributions(b) Potential energy contribution to the con-
changes abruptly but continuously from a low value below,

. . . . stant volume specific heat as a functionTof
Tg to a high value abové (see, for instance, Fig. 1 in Ref.

[1)). _ ~distribution function, for instance, progressively develops the
The diffusion coefficient, as a function @f computed in  typical features often associated with amorphous systems
our simulations agrees well with the one reported in Refgpjit second peak and a succession of less well defined os-

[17], thus confirming that our shorter runs are nonethelesgjjjations at intermediate distandesver the range  T<3.
sufficient to describe the system behavior at a satisfactorypege features are only slightly enhanced by decreasing the

level of accuracy. The analysis of trajectories shows that, agmperature ta=1.75, and remain nearly unchanged upon
expected, the smaller particléype 1) diffuse systematically  quenching to lower temperatures.

faster than 2the larger ones. The qualitative behavior of ag a further comparison for our PI results, we carry out
|ri(t)—ri(0)|* (wherei is a generic particle in the systém ¢|assical simulations for aaveragemonocomponent system

however, is similar for the two species. F&F3, for in-  jith the same number of particlé and with a LJ diameter
stance,|r;(t)—r;(0)|? displays a smooth and nearly mono- o defined by

tonic dependence upon time, whereas fst P< 3 diffusion
takes place by discontinuous, thermally activated jumps. N(;Z:ngiju Nza'g_
During our standard run@xtending over 2406 no diffu-
sion is detected for either species & 1.75. Longer runs This choice fixes the area covered by the particles of the
(~12000r) atT=1.5 revealed a handful of localized jumps, monocomponent system to be equal to that of the binary
that, however, do not appear to give rise to connected trajeanixture [33]. On cooling this system from higil we ob-
tories extending over long distances. These observations aerve, as expected, a clear first order crystallization transition
low us to locate the glass transition temperaturd @t2.  atT=9.3. The large difference between this temperature and
This estimate ofT; depends on the time scale of our MD T, of the two-component system is a measure of the drastic
observationsind could, in principle, change slightly towards disruption of long range order and loWwmobility, due to the
lower temperatures by considering much longer MD runssize asymmetry between type 1 and type 2 particles.
However, we verified that the dependenceTlgfon the ob- In order to further analyze the effects of disorder we first
servation time scale is relatively weak. For instance, quenchperform a careful optimization of the loW structure of both
ing the system at twice the cooling rate does not change thine mixture and theaverage monocomponent system by
results forU(T) significantly for both the lowT structure  quenched MO 28], so as to minimize the potential energy.
and the temperature dependence of the diffusion coefficien§ubsequently, we determine the harmonic vibrational prop-
thus leaving our estimate fdr, also unchanged. erties via the method briefly described in Sec. Il. The com-
Our identification ofT is supported by the analysis of the parison of the results for the mixture and the crystalline
radial distribution function and structure factor. The radialmonocomponent system shows that, as expected, the disor-
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FIG. 3. Vibrational density of states from harmonic analysis for 0.03 ' ‘ '
the classical case. Full line, two component glassy mixture; dashed 0 30 60 90 120
line, crystalline monocomponent system with same packing as the
mixture (see Sec. I Inset: participation ratigor for each har- ) ) ) ]
monic mode(small values ofr identify localized modes FIG._ 4. _Tlme-dependent Lindemann indéxas a function of

averaging time for three temperatures afid=1.

dered mixture displays an excess density of states at low

t/1

frequency, and a long tail at high ener¢see Fig. 3. The 1 > V(R —(Rij)?
participation ratiopr, which measures the number of par- o= N_p < (Rij) ' (12)
ticles involved in each of the harmonic modé®l], shows

that this high energy tail is due to highly localized mOdeSWhereRij is the distance between the centroids for particles
(see the inset of Fig.)3Furthermore, a few of the low en- ; andj, andN

. g p IS the number of pairs included in the sum. In
ergy modes are localizegh(<0.2) [35]. The analysis of the computations, we restrict the sum to pairs of type 1 par-

corresponding eigenvectors shows that these modes concgffles that, at the time origin of each trajectory, are within a
compact clusters of particles at the interface between type d,ioff distance of 1.5,,. Previous studies used the Linde-

grains and type 2 particles. For these modes, only the pagyann index to locate phase boundaries in problematic cases,

ticles of ty.pe 1 move significantly. The relatlon.betweeninduding finite[36] and quantuni37] systems. This index is

these localized soft modes and quantum-mechanical tunn€fe|| defined only when diffusion is strictly zero, and in this

ing centers will be discussed in Sec. VII. case it assumes a valief the order of a few percenthat
depends ol and# [38].

As soon as the diffusion sets in, the average distance be-
tween pairs of particles is no longer well defined, and the

. e » value of 5 depends on the time span over which averages are
The identification of the glass transition for the quantum'computed. We exploit this qualitative difference in the time

mechanical model represents a major challenge for our P(!Iependence ob to magnify the effect of diffusion, and to
simulations since, a% increases, thermodynamic, structural, analyze the mobility of our systems in phase space. In par-

and dynamical properties become either too insensitive to icjar, we define a time-dependent version of the Lindemann
or too difficult to compute quantitatively, hence making the,qex as

determination ofT ; far more problematic than in the classi-

IV. THE GLASS TRANSITION IN THE
QUANTUM-MECHANICAL MODEL

cal case. 1 V(R —(Rij)§
The most effective criterion that we found for our inves- o(t)= N, 2:] (R ' (13
tigation is based on the analysis of the diffusive behavior of P !

the particle centroids, and relies on the approximatevhere the variable labeling (R}), and (R;;); means that
classical-quantum correspondence discussed in Sec. Il. B#iese averages are estimated over trajectories of length
cause of computational convenience, we do not discuss th@ot of §(t) for different values ofT and7 reveals three
diffusion coefficient directly, instead we use a closely relateddifferent behaviorga representative example féf=1 is
guantity, called the Lindemann index, defined as shown in Fig. 4, analogous to those discussed in Sec. Il and
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FIG. 5. Long time variation of the Lindemann indéxsee texk 10 dﬂﬁr“‘u
as a function ofT. Filled circles, classical simulationzg=0); B EE,:F'B 7]
empty squares;®=1/3; filled squaresf?=1/2; empty circlesf? Uagd"’
=1. The lines only provide a guide to the eye. o2
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already observed in the classical simulations. At low tem- 0 2 4 6 ) 10
perature, where the system is solidliké(t) converges T/e
11

quickly to its equilibrium value. At high temperatui@t)

grows §teadi|y in time, with an apparent te_ndency t? saturate g g Average total energy per particle as a function of
to a limit close to 1/2. We also observe an intermediate ranggumperature. Filled circlesi?=1; empty circles,i2=1/2; filled

of temperatures in whiclé(t) grows slowly by nearly dis-  gquaress?=1/3: empty squares, classical simulatioh=0.
continuous steps due to the jumplike motion of single par-
ticles or small clusters. We identify the first regime with a gnq 1, respectively. The determination of these temperatures
solidiike (glass phase, and the other two with the fluid js sypported by detailed analysis of trajectories and(o}.
phase, Qscnmmatmg further, on .the _ba$|s of t.he d'ﬁUS'O”NonetheIess, these valuesTof should be considered only as
mechanism, between a free flowing liquid at higrand a  4pproximate, because of the several simplifications and as-
highly viscous liquid at intermediat€ [39]. The boundaries  gymptions made in connecting MD trajectories to real time
between the different regimes can be easily located by comyjtfysijon. Moreover, we estimate the contribution to the un-
puting the difference od(t) at two timest, andty, selected  certainty onT,, due to statistical errors and discrete sam-
in such a way that dt; the indexd has already settled to its pling of the temperatures around the glass point, ta\fig
equilibrium value in the solidlike phase, whitg is signifi- 57
cantly larger thart, (we choose, for instance; =120 and Similar results, but with larger uncertaintig$0], are ob-
t,=240). By comparison with the ful(t) curves, we then (ained by computing the mean square displacemigft(t)
verify that &(t,) — &(t;) is zero, to within the error bar —RC(0)[2) for centroids.
(~4x107%), in the solidlike phase, small but unambigu-  \ve emphasize that the observed increasd pfvith in-
ously greater than zero (810 °< §(t,) — 8(t1)<10 ) in creasing# depends on the anharmonic part of the model
the intermediate region, and fairly large- (0" ?) in the lig-  potential used in the present simulations, and there is no
uidlike phase. reason to expect that it is a general result. Moreover, the
Since our analysis is based on the time dependend of choice of theNVT ensemble for our simulations implies that,
we have to rely on the approximate description of centroidhy changing?, we are comparing systems at different values
mobility given by our MD simulations. However, the picture of pressure, which presumably increase with increading
just described remains unchanged and unambiguous overbacause of the enhancement of the zero point motion. This
wide range of choices far; andt, and, therefore, the con- observation, together with the high sensitivity Ty to pres-
clusions do not depend crucially on the precise corresponsure, suggests that performing the simulation inN#RT en-
dence between simulation time and real time. In other wordssemble might provide qualitatively different results.
the three different regimes can be interpreted in terms of the
connectivity of the potential energy landscape as seen by V. THERMAL PROPERTIES OF THE
particles at the typical energy set by the choicelTaind#: QUANTUM-MECHANICAL MODEL
the system is locked into a single potential energy valley in
the solidlike phase, it can migrate between valleys via acti- As already anticipated, thermodynamic properties do not
vated jumps in an intermediate phase, and it can move comprovide a sensitive probe of the glass transition for the
tinuously in the equilibrium liquid phase. guantum-mechanical systems considered in our simulations.
The results fork?=0, 1/3, 1/2, and 1 are displayed in This can be seen in Fig. 6, where the average total energy per
Fig. 5. It is apparent that mobility decreases with increasingparticle E is reported as a function df. The corresponding
#2, rising our estimate folly from Ty=2 for the classical specific heat, computed by differentiating an orthogonal
case (i*=0), to T;=2.25, 2.66, and 3.25 fo¥?=1/3, 1/2,  polynomial interpolation forE(T), is shown in Fig. 7. A
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FIG. 7. Specific heat as a function of temperature for the
quantum-mechanical systems. Full link?=1; dashed line:?
=1/2; dashed-dotted lind;,2=1/3.

FIG. 9. Specific heat as a function of temperature, compared
with its harmonic part, for two representative quantum systems.
Full line, path-integral results foi2=1: dotted line, harmonic ap-

) ) proximation for22=1; dashed line, path-integral results fbf
careful analysis of these curves, even guided by the determi 1/3. dashed-dotted line, harmonic approximation#8e= 1/3.

nation of T4 obtained in Sec. IV, does not allow us to identify
any anomaly that could be clearly attributed to the glassio The sensitivity oCUU(T)—CK(T) to T, may be under-

transition. Only a separate analysis of the kine®;Y and  sto0d in terms of the particles localization corresponding to
potential energy €,) contributions to the constant volume the glass transition, which causes a slight increase of the
specific heaC, highlights a broad feature that could be re- kinetic energy, and it occurs only when this effect is over-
lated to the glass transition. In the classical C@%T) is compensated by a corresponding drop in the potential
constant and the differenc’(T) — CX(T) assumes exactly energy.

the same shape &, of Fig. 2(b). In the quantum case, asin  To investigate the relation of disorder, anharmonicity and
the classical limit, this difference displays a broad pe&se thermodynamic properties, we select approximately 50 con-
Fig. 8 that could be considered analogous to the specifidigurations, at random, from the quantum-mechanical trajec-
heat anomaly in Fig.(®). The peak moves continuously and tories atT<Ty, we minimize their potential energy with
monotonically towards higher temperatures with increasingespect to the particle coordinates, and compute harmonic
#2, following the same qualitative trend dg. Provided that vibrational frequencies and eigenvectors. The structural and
we disregard the secondary peaksGJf(T)—CKX(T) for T  dynamical features characterizing the so obtained minima are
<2, probably due to enhanced numerical noise in the fit, idiscussed in the following sections, whereas here we focus
becomes clear that the loWedge of the major peak corre- on thermodynamic properties computed within the harmonic

sponds well to our estimates @f, based on the Lindemann approximation. Although the minima afat least slightly
different from each other from the structural point of view,

045 they provide similar results for the thermodynamic proper-
' o ' ' ties, and therefore we choose to discuss the data concerning
a single minimum for each value d@f?, without averaging
o 0.1 . over different structures. Both the total energy and the spe-
] cific heat computed in the harmonic approximation differ
~ 005 | significantly from their PI counterparts, hence indicating the
g presence of strong anharmonic effects for these systems. In
= particular, forh?=1/3, 1/2, and 1, the total energy calculated
£ oo within the harmonic approximation is significantly larger
than the PI results over the entire temperature range covered
-0.05 by our simulations. The harmonic approximation overesti-

T/eqy

mates the Pl data also f@, at low and highT, while the
ordering is reversed at intermediate temperat(ses Fig. 9.
The discrepancy at low, in particular, could highlight an

FIG. 8. Difference between the potential and the kinetic contri-important link between quantum effects and anharmonicity.
butions to the constant volume specific heat as a function of temZ€ro point motion rises the energy of the particles well above

perature. Full linef?=1; dashed linet?=1/2; dashed-dotted line,
#2=1/3; dotted linei2=0 (classical limi}.

the potential energy minimum, hence enhancing the effect of
anharmonic terms already at loWw For our potential, this
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apparently reduces the spectral weight of low-energy excita- 3 . .
tions, thus reducing the low temperature specific heat. The
observed effect could also be interpreted in terms of(¢xe
pected pressure increase with increasifagwhich is due to
anharmonic effects. For instance, the bulk modulus of a LJ
systems is known to increase sharply with increasing pres- 1
sure[27] and this, in turn, rises the energy of the acoustic

modes responsible for the low temperature specific heat.

The expected close relation between anharmonicity and 0
disorder is demonstrated by a similar comparison of the spe-
cific heat for the monocomponent system described in Sec.
[ll, which crystallizes during our quenches even in the
guantum-mechanical cases. For these systems, the harmonic
and PI estimates of the specific heat agree very well over a
wide range of temperatures, and a Debye interpolation for
the 2D phonons, resulting in

g, (1)

2 rep/T  x3e
C,(T)=4kg f dx, (14)

0o (e5=1)? 5

5

where®p, is the Debye temperature, provides a very good fit

of both for the values of? considered in our study. 1
For the two-component case, the Debye interpolation pro-

vides a far less accurate fit of the PI data. In all cases, be-

cause of the rather extreme choice of the value# %fthe 0

best fit of the simulation data leads to very high value®gf 0 2 4 6

(0p~30 ath?=1/3, and®p~50 atA#?=1 for the binary r/oy

mixture, and the corresponding values for the monocompo-

nent system are-10% highe). The increase o) with FIG. 10. Radial distribution functiog,4(r) for type 1 particles

increasingfi, once again, is probably related to the increasingcomputed at three different values #f Full line, T=2; dashed

pressure due to anharmonicity and enhanced zero point méne, T=6.

tion, which stiffen acoustic waves in the system.

is to superimpose a low- fuzziness to particle configura-
VI. STRUCTURAL PROPERTIES tions that are, to a large extent, equivalent to the classical
ones. This is verified again by selecting configurations from
For#?=1/3, 1/2, and 1, quantum delocalization broadenseither classical or quantum trajectories, and minimizing their
and smooths significantly the first three peaks of the radiapotential energy by quenched MD. The underlying minimum
distribution functiong(r) at all temperature$<6. As are- energy geometries determined in this way are all qualita-
sult, the characteristic features gfr) (split second peak, a tively similar, with only small quantitative differences dis-
shoulder in the first peak, ejcseen in the classical simula- cussed in Sec. VII. The radial distribution functions relative
tion at low T, and often associated with the glass transitionto the minimum energy structures originated from quantum
are lost for the quantum systems. Moreover, as expected, theajectories are indistinguishable from their classical
already moderate temperature dependence of the gigspy (quenchedl counterparts and, in particular, they all display
is further reduced by the zero point motion, which makesthe characteristic features of glasses. Moreover, the average
g(r) nearly independent df and liquidlike over an extended size and shape of type 1 microcrystals and type 2 elongated
range of conditions. Both effects contribute to render thdslands are the same in the classical and quantum cases.
glass transition practically undetectable on the basis of struc- Unfortunately, the emergence of glassy features in the ra-
tural properties alone, at least for the choice of parameterdial distribution function of the quenched quantum configu-
used in our simulations. These results are illustrated in Figrations cannot be used to determifig because similar ge-
10, which shows the radial distribution functi@n,(r) for  ometries andg(r) or S(k) are obtained by quenching
type 1 particled41], computed aff=2 andT=6, for the  configurations from temperatures aboWg.
classical case#?=0) and for two quantum sample{ A different strategy for identifying structural signatures of
=1/3 and#2=1). The qualitative features apparent in this T, is suggested by the close relation between the glass tran-
figure are reflected in similar trends for the structure factorsition and the phase space mobility of path centroids dis-
S(k), whose peaks are also broadened and smoothed in goussed in Sec. IV. We verify that, for quantum samples, the
ing from the classical to the quantum cases. radial distribution function of centroidé&a quantity that is
Despite the major broadening and the loss of characterigeadily available in simulation, but not in experimentm-
tic features ing(r) and S(k), a detailed analysis of simula- dergoes the characteristic structural changes associated with
tion snapshots shows that the major role of quantum effectdhe glass transition at temperatures that correspond well to
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the T, estimated in Sec. IV for the same valuesidf These [
changes, however, take place less suddenly than the chan(> O
in the time dependence of the Lindemann ratio, and the cor O
responding determination df, is affected by larger uncer-
tainties. The analysis of the centroid radial distribution func- :) O ' .
tions, therefore, provides only a secondary diagnostic tool
that can be used to verify values Bf determined with more

accurate methods. O O

VII. LOW-ENERGY LOCALIZED EXCITATIONS
AND TUNNELING CENTERS O

Low-energy excitations represent one of the most charac) O
teristic properties of glasses, giving rise to equally universal®
features in their specific heat. At temperatures~dfO K, a
characteristic peak in the temperature dependence of the spi
cific heat (the so-called Boson pepks attributed to soft
quasilocalized harmonic vibrations. At very low tempera-
tures (T~1 K) the specific heat of glasses displays an
anomalous linear dependence on temperature, which is assi
ciated to tunneling centefswo-level systems, TLS[42]. It
is generally accepted that these two types of excitations art
closely connected, and this point of view is the basis for the
so-called soft potential modg#3], which provides a unified
description of both the low+10 K) and very low(~1 K)
temperature universal properties of glasses.

Computer simulation has already been used to identify
TLS in amorphous samples produced by classical MD or MC
[8—11]. For a variety of simple model potentials, the TLS
found by simulation appear to be due to the oscillation of g 11, Upper panels: same portion of the system geometries
localized clusterscontaining up to 20-50 particlebetween  cqrresponding to potential energy minima found by quenching con-
local energy minima that are almost degenerate and close Fgurations at the same MD time and separategl®in imaginary
space. time. Bottom panel: superposition of the two panels above. The

Despite these recent major advances in our understandingiginal configurations have been selected on a trajectofly=at
and visualization of TLS, several features of these centers ahd7?=1. Gray and black circles represent the particles of type 1
still unknown. A basic unsolved issue, for instance, concernand 2, respectively.
the relative role of quantum tunneling and thermal oscilla-
tions in TLS. each of these particles changes by an amount of the order of

In our simulations the evolution between the configura-¢-,, i.e., well outside the uncertainties due to the energy
tions in which our system is found is due both to thermal andninimization routine. However, the energy difference among
quantum fluctuations. The thermal fluctuations are reflecteghese minima is very small\E<0.01), and also the barrier
mainly in the real-time evolution of the system, while quan-(g;~0.02-0.03) is two orders of magnitude lower than both
tum fluctuations give rise to structural changes among differthe zero point energy of our particles7et=1 and the(clas-
ent imaginary-time slices at the same real time. Thereforesicab thermal energy aT,. Therefore, we do not consider
we can decouple these two effects, to an extent, by compathese minima as belonging to tunneling centers, rather we
ing configurations at different imaginary timés., different  associate all of them to a unique broad energy basin.

j) but same real time, or different real time but same imagi- More interesting are pairs of energy minima that differ in
nary time. _ S _ the position of a localized cluster made-efl5—20 particles.

In our simulations, we identify tunneling centers by These energy minima are still nearly degenerate, but the po-
quenching configur:itions seParated by regular feskry  tential energy barrier separating them is no longer negligible
127) or imaginary(att=0 andt = 8/2) time intervals, along (Eg~0.1Tg). The majority of these pairgsee Fig. 11 for a
trajectories at temperaturds<T so that diffusion is negli- representative exampleesult repeatedly from quenches of
gible. We discuss, in particular, the results fot=1, ob-  configurations at the same real time and different imaginary
tained by analyzing trajectories dti=1 and T=1.5. All  times. We attribute the observed oscillations within these
guenches produce energy minima that differ by at least a feypairs to quantum tunneling. A few additional pairs are found
details in the system configuration. In most cases, the differby quenching configurations separated by 12 real time
ence is due to a few~10) isolated particles located at the but at equal imaginary time. We attribute the observed cross-
boundary between microcrystals of type 1 particles and typéng between these pairs to thermal oscillations.

2 elongated clusters. For different minima, the position of As expected, the identification of single events as
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quantum systems, for which the zero point motion rises the
FIG. 12. Particle displacemetrepresented by the arroptor a  energy of the system well above the potential energy minima

soft quasilocalized mode belonging to the vibrational spectrum otisited by the system at low.

one of the minima in Fig. 11. Gray and black circles represent the In our case, the imaginary-time correlation functions

particles of type 1 and 2, respectively. [such asC(t)=(1/N)(Zi|r;(t)—r;(0)|?)], often used in PI

quantum-mechanical tunneling events or as thermal oscillaStUdies to characterize thermal and dynamical properties of

tions is not completely unambiguous, since at afy 0 quantum systemésee Ref[20]), do not provide new infor-

quantum and thermal fluctuations are necessarily botr[pation relevant~for the glass transition. At all temperatures,
present. Therefore, even for the events that we identify afor instance,C(t) displays the usual shapsee Fig. 13
thermal, the isomerization does not take place exactly at theypical of systems with strong anharmonic effects or with
same real time for every imaginary time S“ce, and, Con_disorder induced localization. With ianeaSiﬁgthe ampli-
versely, quantum events require a short but nonvanishing reéifdes of quantum fluctuations are, as expected, progressively
time to take place. The distinction, therefore, relies mainlyreduced. A plot ofC(t=i3/2) as a function ofT (see Fig.
on the different time scale for the transformation in real andl4) displays a change in slope at a temperafiied.5 (sig-
imaginary time: thermal events occur for all the imaginary-nificantly higher thanTg) which, for our systems, corre-
time slices within a few simulation steps, while quantum
tunneling is identified by structural differences among differ- 0.06
ent imaginary-time slices that persist for long simulation
times. More extensive simulations are underway to provide ¢
statistically significant classification of energy minima pairs
for a wider range of temperatures afdl _ 005 _
The localized clusters involved in either the quantum tun-”b”
neling or the thermal oscillations are similar in size, shape ~
and location(at microcrystal boundari¢s$o those supporting < ® o
the low-energy quasilocalized modes found by harmonic = g4 o
analysis for the classical samplese Sec. Il It is impor-
tant to remark, however, that the clusters identified by PI
simulation and by harmonic analysis amet the same. We
verify this point by computing the harmonic frequencies and
eigenvectors for each of the minima found in the tunneling
analysis. We find that each of the harmonic spectra contain
at least a few low-energy quasilocalized mod#ésstrated in T/€q
Fig. 12 completely analogous to those found in the classical
case. However, in all cases, the particles that participate sig- FIG. 14. Temperature dependence of the imaginary-time corre-
nificantly in the tunneling process are not those showing aation functionC(t) at imaginary timet=ig/2 for type 1 (filled
significant displacement in the quasilocalized harmonicircles and type 2empty circle$ particles in a system at=1 and
modes. This difference underlines tfexpectedl major role  corresponding td?=1. The lines refer to linear fits of the data for
of anharmonic effects in the low-energy dynamics of ourT=<2, and have been added to provide a guide to the eye.

CGip

0.03 L ‘
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sponds to the change from jumplike mobility to liquidlike however, is less accurate than the estimate via the phase
diffusion. More systematic studies using different potentialsspace mobility because structural changes develop more
are required to verify whether this correlation has a generagradually over a temperature interval of widdT ~0.5.
validity. The identification ofT ; allows us to relate the glass tran-
sition to an excess in the potential energy contributio€ o
with respect to the corresponding kinetic energy part. This
anomaly can be interpreted in terms of the interplay between
The glass transition in a quantum-mechanical LJ mixturehe kinetic energy cost and the potential energy gain due to
in two dimensions has been investigated by path-integrahe localization of the particles dyy. In this respect, quan-
MD simulations. All particles have mass equal to one, theytum systems differ significantly from classical systems, for
are assumed to be distinguishable, and the strength of quawhich the only two quantities competing at the glass point
tum effects is measured by the paramefiérthat, in our  are the potential energy and the entropy.
study, takes the values(he classical limit, 1/3, 1/2, and 1. The particle dynamics in the glass phase has been inves-
For all simulationsT is initially set to a high value, so that tigated by identifying the different minima in the potential
the system clearly is in the liquid state, and then progresenergy surface visited by the systemTat T,. We observe
sively decreased until nearly zero. The analysis of configuoscillations between degenerate pairs of minima, which dif-
rations, diffusion coefficient, and thermal and structuralfer in the configuration of localized clusters made of
properties(i.e., radial distribution function and structure fac- ~15-20 particles. The crossing between different minima
tor) shows that the classical sample undergoes a glass tragccurs predominantly as a function of imaginary time at
sition atT,=2. The determination oT; for the quantum- fixed real(MD) time. We interpret these oscillations as quan-
mechanical samples is far more difficult. The path-integratum tunneling. In a few cases, we observe thermally acti-
scheme provides only imaginary-time correlation functionsyvated oscillations between minima occurring nearly simulta-
whose analytic continuation to real time, required to computeéeously for all theP imaginary time replicas of the system.
dynamical coefficient, is known to be severely ill condi- The harmonic spectrum for each of the potential energy
tioned [44]. Concerning the thermodynamic properties, minima identified from either classical or quantum trajecto-
quantum delocalization and zero point energy prevent thé&ies contains a few {£5-10) soft quasilocalized modes,
appearance of the diagnostic features that, in classical syghich involve clusters of particles very similar to those giv-
tems, identify the glass point. We rely instead on the analysi#g rise to the thermal or quantum oscillations described
of phase space mobility for path centroids that, with decreasabove. However, we verified that the clusters involved in
ing temperature, reveals three different reginigsa fast and  these soft quasilocalized harmonic modes are different from
continuous flow at higf; (i) discrete jumps at intermediate those causing tunneling. This difference is somewhat unex-
temperatures, andii) localized oscillations at lowl. We  pected since, in classical systems, soft quasilocalized modes
interpret these regimes in terms of connectivity of the potenand thermal tunneling centers usually involve the same
tial energy valleys visited by the system, and we associatgroups of particles. This different behavior can be under-
the first regime with a liquid at equilibrium, the second with stood in terms of the high zero point energy of our systems
a sluggish liquid state, and the third with a solidlike glass(partly due to their high densitywhich rises the energy of
phase. The temperature separation of the three phases dBe particles well beyond the potential energy minima and
pends only very weakly on the time scale of the observationamplifies anharmonic effects. Consequently, the harmonic
and therefore we identify the glass transition with the transi-analysis in the characterization of the I6vdynamics of
tion between the last two regimes. The estimafgdis 2, ~ quantum systems becomes less relevant.
2.25, 2.66, and 3.25 fdt>=0, 1/3, 1/2, and 1, respectively, The identification of tunneling centers and the analysis of
i.e., T4 increases monotonically with. This trend is due to  their quantum versus thermal character, together with the de-
the dominant anharmonic contributions of our potentialtermination of the glass transition temperatdigfor quan-
model, and could be different for other types of interparticletum systems, are the major results of our study. We stress
interactions. Moreover, the sensitivity @f, to pressure sug- that, in order to amplify all the differences with respect to the
gests that the results could be quantitatively and even qualFlassical picture, we selected parameters corresponding to
tatively different by simulating the glass transition in the strong quantum effects. Further computations with different
NPT ensemble rather than in théVT ensemble adopted in parameters and different potenti@5] are required to simu-
our study. Nevertheless, the analysis of centroid trajectoriekite more realistic models of glasses that can be compared
discussed above would still provide a method to determin&vith experimental results.
Ty

VIIl. SUMMARY AND CONCLUDING REMARKS

The close connection between path centroid dynamics and
glass transition is reflected in the fact that the radial distri-
bution function and structure factéor centroids(both easily The work presented in this paper began when both of us
computed in simulations, but not measured in experimentswere at the Institut fu Festkaoperforschung(IFF), Fors-
develop additional features at,. For quantum systems, chungszentrumJich, Germany. We thank Dr. R. H. Schober
therefore, structural functions of the centroids play the saméor a critical reading of the manuscript, and for making us
role asg(r) and S(k) of particles in classical systems. The aware of several important papers and previous findings re-
determination ofT, via the centroids structural features, lated to this work.
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