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Artificial neural networks for automation of Rutherford backscattering spectroscopy experiments
and data analysis
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We present an algorithm based on artificial neural networks able to determine optimized experimental
conditions for Rutherford backscattering measurements of Ge-implanted Si. The algorithm can be implemented
for any other element implanted into a lighter substrate. It is foreseeable that the method developed in this work
can be applied to still many other systems. The algorithm presented is a push-button black box, and does not
require any human intervention. It is thus suited for automated control of an experimental setup, given an
interface to the relevant hardware. Once the experimental conditions are optimized, the algorithm analyzes the
final data obtained, and determines the desired parameters. The method is thus also suited for automated
analysis of the data. The algorithm presented can be easily extended to other ion beam analysis techniques.
Finally, it is suggested how the artificial neural networks required for automated control and analysis of
experiments could be automatically generated. This would be suited for automated generation of the required
computer code. Thus could RBS be done without experimentalists, data analysts, or programmers, with only
technicians to keep the machines running.
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[. INTRODUCTION terference. This code, being general, is not optimized for any
given system, and in complex cases it can take a long time to

Rutherford backscatterinRBS) is a standard technique
to study the elemental composition and depth profile o

samples, and as such it is widely ugad It belongs to the ¢, analyze data from a specific simple system, namely Ge-
cluster of techniques known as ion beam analfi§ig\.). One implanted S{9]. We also presented ANNs for more complex
of the advantages of RBS is that it is based on Newtonia@ystemsy such as Er-implanted sapphioéelemental sub-
physics, and hence it is fully quantitative without the need tostratg [10], and elastic backscattering of Ni-Ta-C thin films
recur to external standards. In fact, it is often used to calideposited on Sj11]. The advantage of ANNSs is that, while
brate standards for other techniqu@s-4]. each one is dedicated to a single system, they are optimized

Given a known elemental depth profile, it is easy to cal-for that system, and the analysis is instantaneous, which
culate the corresponding RBS spectrum for given experimenspens the door to analysis of large batches of samples with
tal conditions. The inverse problem is, however, considerRBS and other IBA techniques, something that is currently
ably more complex. Until recently, data analysis was donenot done due to the inefficiency in the data analysis.
either manually for simple cases, or with the aid of interac- However, the experimental conditions must often be opti-
tive computer programs as reviewed in, e.g., R6f. The  mized for each given sampleDF, like other codes presented
analyst would input a given depth profile, let the programin the literature(a review of existing codes can be found in
calculate the spectrum, compare it to the data, and iteratRef.[5]), is not able to perform this task. Analysis of large
until sufficiently good agreement was found. It was the anabatches of samples would require the presence of a skilled
lyst's task to decide what agreement was sufficiently good. experimentalist, which again is inefficient and costly.

A computer program, calledpr, for automated data The purpose of this work is to present an algorithm, based
analysis has been presen{&d. It is based on the simulated on ANNs, which is able, for a given system, namely, Ge-
annealing algorithni7,8], and requires the user to input the implanted Si, to optimize the experimental conditions for
data, the experimental conditions, and the elements presemtach sample, and then analyze the final spectrum collected.
with the analysis being done automatically without user in-The algorithm is easily extendable to other systems. Once

this algorithm is implemented in a code connected to an

experimental setup with automated sample loading, this will

* Author to whom correspondence should be addressed. Electronlead to the performance of RBS experiments entirely without
address: nunoni@itn.pt the assistance of humans.

un.
We presented recently an artificial neural netw@iIN)
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II. ARTIFICIAL NEURAL NETWORKS to some extent must bad hoc This is defined for each
spectrum as a weight of belonging to each class, that is,
membership probabilities. When one needs to decide in a
ANNs can, in principle, approximate an arbitrary un- clear-cut way to which class a given spectrum belongs, we
known function[12]. An ANN consists of an array of input take it to be the class with the largest membership probabil-
nodes connected to an array of output nodes through succegy,
sive layers of intermediate nodes. Each connection between e considered that a pure clgds spectrum is one where
nodes has a weight, initially random, which is adjusted durno superposition exists and the statistical error at the Ge peak
ing a training process. The output of each node of a specifis smaller than 3%. A pure clag8) spectrum is defined as
layer is a function, usually a sigmoid, of the sum on thehaving the Ge peak in a channel smaller than the Si edge,
weighted signals coming from the previous layer. Hence, fowith a Ge dose larger thanx310*® Ge/cnt. A pure clasg3)
given inputs(for instance, RBS spectral data and the corre-spectrum requires signal separation and a statistical error in
sponding experimental parametetsie outputgfor instance, the Ge peak larger than 12%.
the dose and depth of a given implamtre directly calcu- Simultaneous membership of clasgé$ and (2) occurs
lated. when the Ge peak is in a channel larger than the Si edge
To train the network we chose the backpropagation algochannel, but with some degree of superposition between the
rithm [12]. A large number of examples, called the training tWO signals. We define the degree of overlap to be the frac-
set, for which the outputs are known are consecutively preUO” of S_| counts relative to Ge counts in the region of the Ge
sented to the input layer and propagated to the output IayeP.eak- It_|s 1 when.there are at least as many Si counts as Ge
For each example in succession, the corresponding owtput counts in that region. The clag2) weight is the degree of
is compared with the evaluated outpuyt and the error is over_lap. o
. . . Simultaneous membership in class&sand(3) was con-
computed. The weights of the last layer are adjusted in order. ) >
: Sidered to exist for a statistical error at the Ge peak between
to reduce the error corresponding to each output node. Th

S : % and 12%. The clag8) weight is larger for larger errors.
adjusting process is then backpropagated through the SUCCeS o class1) and clasg3) weights were defined to be equal
sive layers. Several iterations are performed, each iterati

R
2 . o r an error of 7.5%.
consisting of presenting to the ANN the whole training set. When the Si and Ge peaks are superimposed but the Ge

The results provided by the ANN so obtained are thendose is smaller than 310° Ge/cn?, there is overlap be-

gglrlr;%a:ﬁg ;gg? sﬁ?o¥2eeégmﬂes Pocz:teg:eig Isrt]otheecgri\llﬂler:r? tween classe€2) and (3). The class(2) membership prob-
- o ap bp é%ility is 1 for that value of the dose, and 0.6 for 1
minimum error is found for the test set. The ANN can then 5 S -
. 10™ Ge/cnt, which is the minimum Ge dose value con-
be used to evaluate examples for which the parameters éfldered in the clas) data set
interest(the outputsare unknown. The error should be about - ) L
A spectrum with low Ge dose and partial signal superpo-
the same as for the test set.

Thousands of training data are often required, and it is noi:ggge\g'” belong, with a certain probability, to all three

feasible to collect so many RBS spectra. We hence used con- For each class we generated 5000 spectra to build the

structed spectra to train the ANNs used in this work. This, _. - .

means that, although the generated data were as realistic tézéunlng set and 1000 fqr the test se_t. _The three training and
X . S . €st sets together constituted the training and test sets for the

feasible, in principle the ANN error for real data will in-

crease sliah . . . &Iassification ANN. One should note that the ANNs devel-
ghtly. We previously described the algorithm use
to generate realistic RBS specii. oped for each qlass should be able to analyze correctly bor-
der cases, that is a spectrum belonging 50% to cBsand
50% to clasg3) should be correctly analyzed by the ANNs
developed either for clasd) or for class(3). In order to
In our previous work three distinct classes of spectra wer@nsure this, each training and test set included border cases,
identified [9]. They were(1) spectra with well separated Si for instance, the training and test sets for cléssincluded
and Ge signals and a large Ge peak compared to the backpectra with clas$2) and clasg3) weights up to 0.5.
ground; (2) spectra with superimposed Si and Ge signals; The distribution of the depth and dose in the training and
and(3) spectra with separated Si and Ge signals, but with dest sets are given in Fig. 1 for the three classes. It is clear
very small Ge peak. Spectra belonging to clag@esnd(3)  that there is extensive superposition in the range convered by
are difficult to analyze, involving an error larger than that for each of the classes. The minimum dose for cl@svas cut
spectra belonging to clags). at 1x 10™ Ge/cnf?, as it was considered that a spectrum with
The distinction between classes is not always clear, due tsuperimposed signals and an even smaller dose is impossible
different reasons. There may be partial superposition beto analyze. Even for doses smaller than around 1
tween the Si and Ge signals. While the statistical error on the 10'® Ge/cn?, the task is considerably difficult.
Ge peak is a measure of how small the peak is, it is not The spectra were calculated for a very broad range of
possible to define an exact threshold separating claddes realistic experimental conditiong®]. The beam wasHe,
and(3). Furthermore, a spectrum with superimposed signalsvith energy between 1 and 2 MeV, scattered at an angle
can also have a very small Ge peak. That is to say, there mubetween 130° and 180° and detected with a resolution be-
be a certain fuzziness in the definition of the classes, whiclween 11 and 40 keV full width at half maximu(GWHM).

A. Basic principles

B. Definition of spectral classes
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250 %0 T T T T T T T T 5 1
9200 ® ] x= Inx+a’ @
2 5
<1507 g i wherea is a small numbefwe useda=5). This transforma-
3100 . tion has the advantage of eliminating the unimportant signal
= 5o ) ] from the Si background and enhance the yield from the Ge
z ; peak.
0t P e The inputs of the classification network, that we name
o 1 2 tr?(m‘éat /Csmz) 6 7 ANNC, were the same as those of ANN1 and ANN2. We
200 p, e - chose the 1-ot coding schem¢l5], and therefore there are
] @ 1 three outputs, one for each class. We used a unipolar activa-

- tion function.
o Concerning the error function, it is known that the mean
. square errofmse is not the most appropriate for classifica-
""; tion. It is derived from the maximum likehood assumption of
Gaussian distributed target ddth6]. However, the 1-of

1 coding scheme is binary and hence far from having a Gauss-

Number of cases

0 T T ian distribution. A better alternative is to use a cross-entropy
0.1 1 10 100 1000 .
Dose (10" at/om?) error function such agl2]
FIG. 1. Distribution of implanteda) dose andb) depth in the __ n n _in N
generated data. E zn: [t Iny "+ (1—=tT)In(1—y")], (©)

The normal of the sample was tilted at an angle betweel{'heret” are the target value® or 1 fonr pure-class spectra
—30° and 30° with the direction of incidence. The collectedth@t is belonging to a single clasandy" the actual outputs
charge(beam fluencewas between 0.2 and 250C for a ?f th? netvr\]/ork. By using a sl!g:jnmd :}m the outlput activation
solid angle of 1 msr. We added the contribution of pulse unction, the error term applied to the output layer is just
pileup to the theoretical spectra3], as well as Poisson noise S"=(y"—t"?, (4)

in order to simulate experimental data as closely as possible.

which is equal to the sum of squares error with a linear
C. ANNSs for calculation of implant parameters and for output activation function.

classification The advantage of using cross entropy is that it performs

We developed four different ANNs: one for each class,better than the sum of squares error function, especially

dedicated to determining the implanted dose and depth, an\'(sfhen estimating small membership probabilities. Since we

one to classify the spectra. They were all multilayer percep_ysed the logistic activation function for the outputs, we can

{ons (MLP) rained wih backpropagatictd] ntepret helf values as probabiltes o the presence of the

In classification problems we can interpret the role of the

50 nodes. The optimization procedure has been previousw‘

described[9]. The inputs are the yielat of 128 channels, put vectors is achieved in the last layer by means of a

lized to the ch lid | dastthe b linear transformation. Minimizing the error of this linear dis-
norma :Eze do €c argel—tg,m ;ﬁnge pl)ro fGI; 'de €am  criminate requires that the input data undergo a nonlinear
energyE and energy resolution, the angle of incidertGg, transformation into the space spanned by the activations of
the scattering anglezscatt, and the pulse pileup factor. The awe hidden units in such a way as to maximize a given dis-
outputsy, are the implanted dose and depth, to be comparefjyinant function. It is thus desirable that the ANN should

with tdhe evaI#ated output, . The figure of merit to be mini- 46 4t least two hidden layers in order to discriminate arbi-
mized was the mean square error, trary complex decision regions.

1 N We tested the performance of several architectures. Those
E=_ E (y,—0p)2. (1) with a single hidden layer performed very poorly, while in-
247=1 creasing from two to three hidden layers improved the error

considerably. An increase to four hidden layers did not lead
to a further decrease of the error, and introduces unnecessary
For clasq3) the errors were consistently very high, due to complexity.
the fact that the Ge peak is almost unnoticeable as the doses The ANNC chosen had thus three hidden layers with
are very small for that class, so that relative errors are vergbout 25000 weights. This confirms our previous findings
high. In order to enhance performance we decided to applwhere we found that, for RBS, given a certain number of
the following transformation: weights it is preferable to have a MLP with multiple hidden
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TABLE |I. Summary of the actions taken by the feedback algoritfiis F2, andF3 corre-
sponding to classed), (2), and(3). Epin. no. superpis the minimum beam energypetween 1 and 2
MeV) for which there is no signal superposition.

Algorithm E Oinc Uscatt C
F1 0° 225 o4
If partial If low statistics
Superposition
F2 2 MeV 0° 180°
(Third step (First step (Second step
F3 1~1Emin. no. superp. 4'Fold

If C>300uC msr

layers in a triangular shape than a single one. Although twatatistics requires only increasing the beam fluence, that is,
hidden layers should be sufficient, when enough training dateneasuring for a longer time. In the algorithm developed, the

are available as is the case, the inclusion of more hidderasier alternatives are adopted first, and other options are
layers may achieve better results at the cost of a slower traireonsidered only when that is not enough to obtain the desired

ing and local minimum trapping. effect.
The actions taken by the feedback algorithm for each of
IIl. THE FEEDBACK ALGORITHM the classes are summarized in Table I.
A. Basic principles B. Class(1)

(_)nel can de_wse aln a'ggf'Fhm to oztam opt|mal ornear gqy class(1), no optimization is normally required, as it
optimal experimental conditions to determine any given.,eqnonds to those spectra for which the analysis error is
property that one wishes to derive from RBS data from anyg, a5t 1 this case, algorithfAl should introduce no

given system(in the present case, implanted Ge dose an hanges in the experimental conditions. However, the defini-

depth in SJ. Such an algorithm could be based on ANNS.:tion of the classes is fuzzy, and there may be some partial

one could examine the results for the test set, and use prlr%’uperposition, or the statistics may be relatively low. In the

glptal cpmp%nent tan?lysm or Cluftfrmgdil_gomhmﬂ 0 firgt case, algorithnfr1 will set the suggested angle of inci-
etermine the set of experimental conditiofisore accu-  yonce 1o’ normal incidence, which leads to a better signal

rately, a space of experimental conditipiisat leads to the separation: 6, (F1,partial superposition) 0°. The algo-

smallest error in the determination of the property of 'ntereStrithm F1 will not try to change other experimental condi-

However, for the simple system studied in this work, it 'S tions such as the beam energy or the scattering angle because

p035|k_JIe fo define a set pf heurlstlc_rules denv_ed from phys.'fhose parameters are more complicated to change, and in
cal principles to determine the optimal experimental condi-

tions for each of the classes defined. This is the method US%mmple a change in the angle of incidence should be, in

here. and it could also be used for anv svstem composed o ost cases, enough to solve partial signal superposition.
! ) ; y sy mp When the counting statistics are relatively low, algorithm
an element implanted into a substrate made of lighter ele:

F1 will try to reduce the statistical error by 50%. As the
ments only.

statistical error is proportional to the square root of the yield,

Cla-srgeSgggaiﬁé%eg?;fg?etaltﬁzggg&s ergeo(:iﬁ?;in;gri?napﬁg-his corresponds to a suggested increase in the charge—solid-
mented, one for each class. We call thedy F2, andF3 for angle product of Crey(F1,low statisticsy: 2. 25 qig(F1).

i . The question arises as to how the feedback algorithm
classes_(_l)_, (2), and(3). ANNC gives as output, membership knows whether there is signal superposition or not, or what
probabilities for each class. In the general case, the thre

Weiahts are nonzero. The spectrum is thus sent to all tht%e counting statistics in the Ge signal is. This cannot be
9 . ' P . : etermined accurately unless the Ge dose and depth are
feedback algorithms. Each one will return different sug-y

ested modified values for the experimental conditions. A nown exactly, which, obviously, they are not. The alterna-
gvera e weighed by the class mgmbershi robabilitiés ri}ive is to calculate a spectrum for the dose and depth deter-
ge, weighed by . PP ' Bhined by ANNZ(or by ANN2 and ANNS3 for algorithmé 2
then taken to obtain the new experimental parameters. A new : . .
. . andF 3, respectively, and evaluate signal superposition and
spectrum is measured for those parameters, leading to the = L ) |
. . counting statistics for that spectrum. This procedure is as
next iteration. d as ANNL1. that is. if th in the ANN1 calculation i
Finally, one should note that it is experimentally easier 1gd200 as ; thatis, it the error in the calculation is
’ . small, then the procedure is valid.
change some parameters than others. For instance, changing
the beam energy can be a complicated process. Changing the
scattering angle requires having a movable detector, which is C. Class(2)
not always available. On the other hand, changing the angle For class(2), the problem is to separate the signals, that
of incidence is normally trivial as the samples are almosis, the energy difference between the Ge peak and the edge

always located on a goniometer. And increasing the collectedf the Si signal should become larger than zero and as large
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as possible. This energy difference depends, on one hand, on TABLE II. Results of the classification ANN for the spectra
the depth of the Ge implant, which cannot be changed. Olefore optimization of the experimental conditions.

the other hand, it depends on the analyzing beam energy arnd
on the scattering angle via the kinematic factor, that is, the Real

ratio between the beam energy before and after scattering, ANNC @ 2 (©)
_anql on the angle of incidence via the length of the beam path (1) 91.7 5.9 24
inside the sampl€19]. @ 27 90 73
In simple terms, the signal separation is better for higher ' ' i
! (3) 1.6 33.1 65.3

beam energy, angle of scattering close to 180°, and angle of

incidence 0°(normal incidencg However, the beam energy

cannot be increased indefinitely, first because of the maxi-

mum energy accessible with a given accelerator, and secoYll try to decrease the beam energy However, a very

because above a given threshawhich is element depen- small beam energy could lead to signal superposition. Hence,

dend, nuclear reactions distort the signal. We limit the en-the algorithm checks what the minimum beam energy is that

ergy range to the commonly used 1-2 MeV. does not lead to beam superpositi@nce again, for the
Algorithm F2 will change 6inc, @scar» @NdE in succes- currently determined Ge depthand returns as a suggested

sive iterations. However, if the angle of incidence is close tonew value a beam energy 10% larger than that.

0° (smaller than 7.5°to start with, thenag; Will be

changed in the first iteration. Similarly, ., iS close to E. Estimation of implanted dose and depth

%Es? it(elz?z:\gt]i?);.tr?hne 152;55:?;;1?3?0?:3 %I:?Sagylv:r;\},he When none of the feedback algorithms is able to suggest

the maximum value used to construct the training and tesqhangeq values for the e_xperlmental pafammeWhe” the
sets. change is smaller than given threshg)dsis considered that

the final optimal experimental conditions have been found.
D. Class(3) Note, however, that only feedback algorithms for ANNs with
' weight larger than 0.1 are considered. For instance, if the

For clasq3), the aim is to increase the counting statistics.weight of ANN2 is 0.05, it is not considered relevant to the
This can be achieved in two ways. One is to measure for gpectrum at hand and algorithR® is ignored.
longer time, which is limited by the amount of time one A final spectrum is calculated for the optimal experimen-
reasonably accepts to measure one single sample. The othat conditions, and analyzed by ANNC to classify it, and by
is to decrease the beam energy, as the Rutherford cross s&&NN1, ANN2, and ANN3 to determine the implanted dose
tion is proportional to B2 [19]. and depth. The final values are obtained by weighting the

Algorithm F3 will try to double the counting statistics: individual ANN values by the belonging weights to the third
Chen(F3)=4C,4(F3). This is, however, limited to a maxi- power. The weights as such are not used to reduce the error:
mum value of the charge—solid-angle product of 350suppose a given spectrum has a small weight for qiass
©C msr, the maximum value used to construct the trainindout ANN2 calculates a depth overestimated by a very large
and test sets, and a large value in RBS. If that limit isfactor (which it always does for small real depthsShis
reached after a given number of iterations, B& algorithm  would lead to a very large error in the final weight-averaged
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TABLE IIl. Results of the classification ANN for the spectra ing incorrectly classified as cla§g), although in most cases

after optimization of the experimental conditions. with relatively high clasg3) weight, for the reason pointed
out above. The reason why there are more c{@8sspectra

Real being classified as cla%) than clasg2) spectra being clas-
ANNC (] (] 3 sified as clas$3) is that there are more clag3) than class

(2) spectra prone to misclassification, that is, with very small

@ 98.9 11 0 or almost invisible Ge signal.
(2 30.8 65.2 4.0
3) 62.6 7.5 29.9

B. Class(1)

Class(1) spectra are not expected to need any optimiza-
depth. By using the weights to the third power, this problemtion of the experimental conditions, aside occasional small
is avoided. increases of the collected charge or setting the angle of inci-

The depth and dose estimated by the ANN cluster are theflence to 0°. The distribution of the experimental parameters
used as an initial guess in an automated fit with the cod®efore and after optimization is shown in Fig. 2, confirming
NDF, which then provides final values for the implanted that expectation. After optimization, the number of spectra
depth and dose. Note, however, thatr does not constrain Wrongly identified as clas&) or (3) decreases from 8.3% to
the Ge profile to any given shape, and the final profile mayl.1%, as shown in Table Il and Table III.
deviate significantly from Gaussian. In this case, the values The average and standard deviation of the ratio between
determined withhDF may have a large error. This problem the determined depth and dose val(eith the ANN for the
could be easily solved by introducing a small changens, initial and optimized experimental conditions and hyr),
forcing the fitted profiles to be Gaussian. In any casejcas ~ and the real values, are shown in Table IV. The depth and
performs a least-squares fit starting in the values given by thdose values determined are
ANN, it will always improve the results. One can thus com- 3
E:;S the automation features of ANNs with the accuracy of (ANN>X=21 W,ANN; 5)

IV. RESULTS AND DISCUSSION T
10000 o *
A. Classification E
We applied the algorithms developed to 3000 simulated
spectra, 1000 of each class, constructed in the same way, an,amoo‘g
within the same parameter space, as the training and test sete ]

The results of the classification ANN are shown in Table II. 3 ]
The easiest spectra to classify are those of classwhere & 100';
ANNC correctly classifies 91.7% of the spectra. Of the 5.9% %

that are wrongly assigned to clag, inspection of the spec- & 10_'

tra reveals that most have partially superimposed Ge and S

signals, with a nonzero clagg) membership probability. In

a similar way, most of the 2.4% wrongly assigned to cl&s

have nonzero clas&) weight, that is, they have relatively 100000 4 '

poor statistics.
The performance of ANNC is also very good for clé8g 10000 -

with 90% of the spectra being correctly classified. 2.7% and E

7.3% are classified as belonging to clasébsand (3), re- % ]
spectively. Most of those that are classified as c(8s$ave 31000 3
relatively low doses, and the Ge peak is barely visible on top © ;

of the Si signal. In clas§3) spectra with very low doses, the B 100;
Ge peakwhich in that case is not on top of the Si signal but 3
separatedis also barely visible, that is, low dose clagy

Yie

and (3) spectra look rather similar, and hence most of the 10'5 3
class(2) classification errors correspond to spectra assigned ]
as clasg3). One should note that, if the dose distribution of 1 ———— Tt ]
class(2) allowed for doses as low as those of clé3f the 0 20 40 60 80 100 120
classification error would be still larger. Channel

The performance of ANNC is considerably worse for
class(3), reflecting the fact that very small dose values lead FIG. 3. Class(1) spectra.(a) Spectrum was initially wrongly
to Ge peaks that are almost invisible, that is, almost imposclassified as clas®). (b) Spectrum was initially correctly classified
sible to analyze no matter what the method employed. Onlws class(1). In both cases the feedback algorithm increased the
65.3% of the spectra are correctly classified, with 33.1% besolid-angle—charge product to improve the statistics.
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TABLE IV. Average and standard deviatiggiven in parenthesgsf the ratio between the depth and dose
values determined with the ANN for the initial and optimized experimental conditions and by NDF, for all

classes.
(ANNC); : Correct (ANNC) : Wrong

Real class Final class Analysis Depth Dose Depth Dose
(1) (1) (ANN); 1.0313) 0.8714) 1.07111) 1.0912)
(ANN) 1.01(12 0.8514) 0.994) 0.81(10)

NDF 1.002) 0.992) 1.001) 1.001)

) 1) (ANN); 1.0913 1.1739) 0.6635) 0.5347)
(ANN) 0.9913) 0.87(11) 0.7236) 0.5535)

NDF 1.001) 0.983) 1.005) 0.9317)

(2) or (3) (ANN); 0.9811) 1.0856) 0.3714) 0.1417)

(ANN) ¢ 0.9806) 1.2251) 0.7333 0.9499

NDF 0.973) 0.9615) 0.9613) 0.8824)
(3) Q) (ANN); 1.2765) 1.5671) 5.805.69 17.1(15.2)
(ANN) 1.0854) 1.0846) 1.3580) 1.3947)

NDF 1.0531) 0.9324) 1.0525) 0.9418)
(2) or (3) (ANN); 1.3771) 2.47(1.34 8.948.21) 33.221.0
(ANN) 2.1001.9) 3.574.75 4.41(5.06) 7.649.55

NDF 1.2782) 0.9425) 2.673.00 1.0351)

where thew; are the normalized weights to the third power, mostly class(3) is at 7.5%. The feedback algorithm cor-

and x={i,f} stands for initial and final valuegefore and rectly decided this level was still too high and correspond-

after optimization. ingly increased the solid-angle—charge product, reaching a
We show the values separately for the cases in which thénal statistical error of 3%.

ANNC initially (that is, for the initial experimental condi-

tions) correctly and incorrectly identified the spectrum as be- C. Class(2)
longing to clasg1). We call the initial and fina(before and Class(2) cases are expected to undergo major changes of
after optimization classification (ANNC) and (ANNC), all the experimental conditions, except for the collected

respectively. The initial and final determined dose and deptieharge, which is expected to change only slightly. The dis-
values are called (ANN)and (ANN);, respectively. Further, tribution of the experimental parameters before and after op-
we considered in the table only those cases in which the findimization is shown in Fig. 4, confirming that expectation.
spectrum(after optimization of the experimental parameters _ As shown in Table Il and Table Ill, the feedback algo-
was classified as clags) by the ANNC. This is of course the fithm is able to increase the number of spectra classified as

vast majority, with only 11 spectra being classified as clas§/@ssS(1) from 2.7% to 30.8%. This number seems to be
(2) or (3), as shown in Table Iil. small; however, there are samples for which it is impossible

The optimization does not lead to improvements, while{ﬁ se;))(aramantf:ta IGe ﬁgﬁlk rl:rorrjr;?ei&tﬁlgnal, nsvrqnittfhr Vm"’}t
NDF is able to retrieve the correct values with high precision. € experimental o ons. s IS the case when the

T P, . planted depth is very large. The exact depth depends on the
This is true also for the spectra that were initially misclassi Ge dose and signal shape, and on the energy resolution

fied, the reason being that, as discussed above, most of thoﬁg\NHM) of the detected system. The most favorable case
cases have nonzero weights for clas@wr (3), and hence ¢, \yhich separation is easiest, is that of no energy disper-

ANNZ and ANN3 are able to analyze them correctly. gjon and a delta-shaped small Ge dose. In that case, the
A class(1) spectrum that was initially wrongly classified aximum depth for which the signals can be separated is
as clasg3) is shown in Fig. 8a). The correct class weights 4 4x 108 atoms/crR. For a finite FWHM and a Gaussian-
Were(0.77, O, 023, and the initial C|aSSificati0n, for a solid- Shaped imp'ant, that number can be as low as 3
angle—charge product of 304C msr, was(0.28, 0, 0.7L  x 10'® atoms/cri. The vast majority of the spectra that re-
The statistical error at the Ge peak is 5%. In a first step thenain classified as clag®) after optimization have a depth
solid-angle—charge product was increased to 1@£9Insr,  |arger than X 10*® atoms/cm, and indeed belong to class
corresponding to a statistical error in the Ge peak of 2.5%¢2).
which led ANNC to correctly classify the spectrum as class The average and standard deviation of the ratio between
(1). As the statistical error was still too high, the feedbackthe determined depth and dose val(eih the ANN for the
algorithm increased further the solid-angle—charge producinitial and optimized experimental conditions and RyF),
obtaining a final statistical error of 1.5%. and the real values, are shown in Table IV. We show the
A class(1) spectrum that was initially correctly classified values separately for correct and incorrect initial classifica-
is shown in Figure @). The initial statistical error was 7.4% tion. Further, we also separate those cases in which the final
[remember that the transition between mostly clébsto  class wag1), and those in which the final spectrum remains
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class(2) (the majority or even class3) (a very small num-  sponding weightwv, dominate and (ANN); uses mostly

ber. ANNL.
We shall now analyze in detail the different possibilities  For the (ANNC) wrong classification and final clags),
presented in Table IV. the optimization leads to modest improvements only, with

For cases that were initially well classified by ANNC as the (ANN); results being rather poor. This is due to a mis-
belonging to clas$2) [i.e., (ANNC), correct classificatioy  classification problem, as shown in Fig. 5. The average depth
and for which the final spectrum was cla&s, there is a and dose are skewed to small values by a few cases that
difference in the values of (ANN)and (ANN) . This is  remain clas$2) after optimization but are wrongly classified
because (ANN) uses mostly ANN2(because the corre- as clasg(1) due to the relatively small doses. In almost alll

w0l @ Al e A e 7
< R ;/ "_/
< - “ =
- il #
o 103 7 .
) o
Y . o
g 4. 1 4
a 1
L §"
0.1 . T T T - T T T - T T T
01 1 10 100 0.1 1 10 100 0.1 1 10 100
Dose (10" at./cm’) - Dose (10" at./em’) Dose (10" at./em’)
51 «
() (d) U] ¥
o 4- 4
£
< ,
® 37 o a . ]
".29 5 w!/f ",./
= 2] o, il e
3 - i
[SEEE
0 e —_— , . . . . . . . - . . . . .
0 1 2 3 4 50 1 2 3 4 .50 1 2 3 4 5

Depth (10" at./cm?) Depth (10 at./cm?) Depth (10" at./cm’)

FIG. 5. ANN andnDF results for clas$2) spectra initially wrongly classified as cla€b or (3) and with final classificatiofl). (a) and
(b), initial ANN values.(c) and(d), final ANN values.(e) and(f), NDF values.
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100000 ST T——T—————T————— depth and dose values, albeit with a larger average error than
i when the initial classification was correct.
For the (ANNC) correct classification and final cla&?)

10000-5 or (3) [almost all the cases are clags], the results are also
- 1 good. They become very poor only when (ANN@ incor-
E 1000 - rect, since a classification error, when the spectra are already
3 E difficult to analyze to start with, makes the task even more
A 100 4 difficult. NDF can nevertheless provide a reasonable approxi-
% mation to the correct depth and dose values.
< 1 ] We show in Fig. 6a) a typical example of a clasg)

0 -

spectrum that the feedback algorithm is able to lead into
class(1), with a large and separated Ge peak. In Fip) 6he
initial spectrum was wrongly classified as belonging to class
(3), with weights (0, 0.45, 0.55. In the first iteration the
charge was duly increased, but the angle of incidence also
became closer to normal incidend®°), which led the
weights to(0, 0.84, 0.16. Further optimization resulted in
the final spectrum with a completely separated Ge peak, with
a statistical error of 4.5%. Note that for the initial charge
value, the error would have bedfor the same Ge peak
separation11.6%, which justifies the initial ambiguous clas-
sification.

Yield (10° counts)

D. Class(3)

0 —— \ ;
0 20 40 60 80 1(',0 150 the collected charge, which should increase in order to im-

Class(3) cases are expected to undergo major changes in

prove statistics, and the other experimental conditions should
change only little. The distribution of the experimental pa-
FIG. 6. Class(2) spectra.(a) Spectrum was initially correctly rameters before and after optimization is shown in Fig. 7,
classified as clas®). (b) Spectrum was initially wrongly classified confirming that expectation.
as clasg3). In both cases the final class(i¥). The average and standard deviation of the ratio between
the determined depth and dose valgeih the ANN for the
those cases, ANNC passed through an intermediate phaggtial and optimized experimental conditions and kyF),
during optimization where the spectra were classified as clasand the real values, are shown in Table IV. We show the
(3), then increased the charge, and finally misclassified themmalues separately for correct and incorrect initial classifica-
as clasq1). NDF was nevertheless able to derive the correcttion. Further, we also separate those cases in which the final
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class wag1) from those in which the final spectrum remains

class(3) or even clas$2). ]
For the (ANNC) correct classification and final cla€b, 100000
the improvement in the results is basically due to the transi ]
tion from the ANN values being initially mainly calculated 10000 4
with ANNS3, which is not very precise since it is the hardest g
class to analyze by any means, and the final ones mainl 31000 4
with ANNL. ksJ 3
For the (ANNC) wrong classification and final clag$), T 100 -
the initial results are extremely bad, and optimization lead: ;!-j
to dramatic improvements. This is due to the cases that ai 10 4
initially misclassified as clas®), with consequent large val-
ues of the dose and depth as can be seen in Fig. 8. 3
For the (ANNC) correct classification and final cla&?) 13
or (3), the feedback procedure actually leads to worse result: 199000 -
The reason is that while it was impossible to lead the initially
class(3) spectra into class$l), the change in experimental 10000
conditions led several of the spectra closer to c{@ssWhile >
a decrease of beam energy leads to improved statistics, it § ]
also brings the Ge and Si signals closer together was 810001?
nevertheless able to find reasonable values for the depth ar =
dose, albeit with a rather large error. For the (ANN@jong % 100
classification, the results are bad, as the initial wrong classi > 1
fication leads to essentially wrong actions being taken by th 10 4
feedback algorithm, for spectra that are extremely difficult ta
analyze to start with. 1 — 1 , R4
We show in Figure @) a case in which the initial weights 0 20 40 60 80 100 120
are (0, 0.36, 0.64 that is, the initial classification was cor- Channel

rect. The statistical error in the Ge peak is 10.8%. After
increasing the collected charge and reducing the beam en- FIG. 9. Class(3) spectra. In both cases the spectrum was ini-

ergy, the class weights af@.87, 0, 0.13 corresponding to tially correctly classified as clag8). The final class iga) class(1),
class(1), for a statistical error of 3.2%. and (b) class(3).
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On the contrary, the feedback algorithm could not lead theél'his could, however, be circumvented if an automatic proce-
spectrum shown in Fig.(B) into class(1), even increasing dure to generate the required neural networks can be devised.
the collected charge to the maximum allowed value and defhe following scheme is such a procedure.
creasing the beam energy until the Ge peak is very close to Suppose that a large batch of samples is to be analyzed.
the Si signal. The reason is threefo(d) the implanted dose For the first sample, a spectrum would be measured with
is very low at 0.% 10" atoms/cmi; (b) the pileup back- standard experimental conditions, and then automatically
ground is high; andc), the implanted depth is relatively analyzed withnDF. The depth profile determined withDF
large at 1326 10> atoms/cm, which prevents the feedback may be inaccurate if no previous knowledge of the samples
algorithm from decreasing the beam energy further, for ds available. However, a number of different depth profiles,
shallower depth the signal separation would be larger, givingll random variations of the derived one, could be automati-

more room for further beam energy decreases. cally created. For each such profile, a number of theoretical
spectra with different experimental conditions can be gener-
V. CONCLUSIONS ated.

In this way, training and test sets can be automatically
We presented an algorithm based on artificial neural netyenerated for an ANN dedicated to any given problem. The
works able to determine optimized experimental conditiongytputs of the ANN will be the required parameters. These
for RBS measurements of Ge-implanted Si. The algorithmzan pe, for instance, the implanted depth and dose of a given
can be implemented for any other element implanted into gon in a given target, or the thickness and composition of a
lighter substrate. We have previously shown that ANNS arghin film. If one wishes to automatically optimize the experi-
successful in analyzing data from more complex systemsment, the experimental conditions can be taken as those that
such as multielemental thin filmisl1] or implants of any |ead to the smallest ANN error for the parameters of interest.

element into a multielemental substrém]. Itis hence fore- Note that these ANNs would have been created in a fully
seeable that the method developed in this work can be egutomatic process. They can be used to reanalyze all the
tended to many other systems. spectra previously measured, optimize the experimental con-

The algorithm presented is a push-button black box, angjitions and measure them again if necessary, and then take
does not require any intervention from humans. It is thuspyer the whole process for the following samples.
suited for unsupervised automated control of an experimental \yg suggest that all the steps involved can be made auto-
setup, given an interface to the relevant hardware. The presnatically. Once the original computer program is written,
ence of an experimentalist during the measurements is henggmputer programmers will also no longer be required. Thus
no longer reqwred. N o could RBS be done without experimentalists, data analysts,
Once the experimental conditions are optimized, the algopr programmers, with only technicians to keep the machines
rithm analyzes the final data obtained, and outputs the relynning.
evant desired parameters in a nearly instantaneous way, as
opposed to codes that are interactive or that take some time

(often long to run. It is thus suited for unsupervised on-line ACKNOWLEDGMENTS
automatic analysis of the data. A trained physicist or data
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