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Artificial neural networks for automation of Rutherford backscattering spectroscopy experiments
and data analysis
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We present an algorithm based on artificial neural networks able to determine optimized experimental
conditions for Rutherford backscattering measurements of Ge-implanted Si. The algorithm can be implemented
for any other element implanted into a lighter substrate. It is foreseeable that the method developed in this work
can be applied to still many other systems. The algorithm presented is a push-button black box, and does not
require any human intervention. It is thus suited for automated control of an experimental setup, given an
interface to the relevant hardware. Once the experimental conditions are optimized, the algorithm analyzes the
final data obtained, and determines the desired parameters. The method is thus also suited for automated
analysis of the data. The algorithm presented can be easily extended to other ion beam analysis techniques.
Finally, it is suggested how the artificial neural networks required for automated control and analysis of
experiments could be automatically generated. This would be suited for automated generation of the required
computer code. Thus could RBS be done without experimentalists, data analysts, or programmers, with only
technicians to keep the machines running.
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I. INTRODUCTION

Rutherford backscattering~RBS! is a standard techniqu
to study the elemental composition and depth profile
samples, and as such it is widely used@1#. It belongs to the
cluster of techniques known as ion beam analysis~IBA !. One
of the advantages of RBS is that it is based on Newton
physics, and hence it is fully quantitative without the need
recur to external standards. In fact, it is often used to c
brate standards for other techniques@2–4#.

Given a known elemental depth profile, it is easy to c
culate the corresponding RBS spectrum for given experim
tal conditions. The inverse problem is, however, consid
ably more complex. Until recently, data analysis was do
either manually for simple cases, or with the aid of intera
tive computer programs as reviewed in, e.g., Ref.@5#. The
analyst would input a given depth profile, let the progra
calculate the spectrum, compare it to the data, and ite
until sufficiently good agreement was found. It was the a
lyst’s task to decide what agreement was sufficiently goo

A computer program, calledNDF, for automated data
analysis has been presented@6#. It is based on the simulate
annealing algorithm@7,8#, and requires the user to input th
data, the experimental conditions, and the elements pre
with the analysis being done automatically without user

*Author to whom correspondence should be addressed. Electr
address: nunoni@itn.pt
1063-651X/2002/65~6!/066703~12!/$20.00 65 0667
f

n
o
i-

-
n-
r-
e
-

te
-

.

nt,
-

terference. This code, being general, is not optimized for
given system, and in complex cases it can take a long tim
run.

We presented recently an artificial neural network~ANN!
to analyze data from a specific simple system, namely
implanted Si@9#. We also presented ANNs for more comple
systems, such as Er-implanted sapphire~bielemental sub-
strate! @10#, and elastic backscattering of Ni-Ta-C thin film
deposited on Si@11#. The advantage of ANNs is that, whil
each one is dedicated to a single system, they are optim
for that system, and the analysis is instantaneous, wh
opens the door to analysis of large batches of samples
RBS and other IBA techniques, something that is curren
not done due to the inefficiency in the data analysis.

However, the experimental conditions must often be op
mized for each given sample.NDF, like other codes presente
in the literature~a review of existing codes can be found
Ref. @5#!, is not able to perform this task. Analysis of larg
batches of samples would require the presence of a sk
experimentalist, which again is inefficient and costly.

The purpose of this work is to present an algorithm, ba
on ANNs, which is able, for a given system, namely, G
implanted Si, to optimize the experimental conditions f
each sample, and then analyze the final spectrum collec
The algorithm is easily extendable to other systems. O
this algorithm is implemented in a code connected to
experimental setup with automated sample loading, this
lead to the performance of RBS experiments entirely with
the assistance of humans.
ic
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II. ARTIFICIAL NEURAL NETWORKS

A. Basic principles

ANNs can, in principle, approximate an arbitrary u
known function@12#. An ANN consists of an array of inpu
nodes connected to an array of output nodes through suc
sive layers of intermediate nodes. Each connection betw
nodes has a weight, initially random, which is adjusted d
ing a training process. The output of each node of a spe
layer is a function, usually a sigmoid, of the sum on t
weighted signals coming from the previous layer. Hence,
given inputs~for instance, RBS spectral data and the cor
sponding experimental parameters!, the outputs~for instance,
the dose and depth of a given implant! are directly calcu-
lated.

To train the network we chose the backpropagation al
rithm @12#. A large number of examples, called the traini
set, for which the outputs are known are consecutively p
sented to the input layer and propagated to the output la
For each example in succession, the corresponding outpuyn

is compared with the evaluated outputon and the error is
computed. The weights of the last layer are adjusted in o
to reduce the error corresponding to each output node.
adjusting process is then backpropagated through the su
sive layers. Several iterations are performed, each itera
consisting of presenting to the ANN the whole training se

The results provided by the ANN so obtained are th
compared with known examples not used in the traini
called the test set. The training process is stopped whe
minimum error is found for the test set. The ANN can th
be used to evaluate examples for which the parameter
interest~the outputs! are unknown. The error should be abo
the same as for the test set.

Thousands of training data are often required, and it is
feasible to collect so many RBS spectra. We hence used
structed spectra to train the ANNs used in this work. T
means that, although the generated data were as realis
feasible, in principle the ANN error for real data will in
crease slightly. We previously described the algorithm u
to generate realistic RBS spectra@9#.

B. Definition of spectral classes

In our previous work three distinct classes of spectra w
identified @9#. They were~1! spectra with well separated S
and Ge signals and a large Ge peak compared to the b
ground; ~2! spectra with superimposed Si and Ge signa
and ~3! spectra with separated Si and Ge signals, but wit
very small Ge peak. Spectra belonging to classes~2! and~3!
are difficult to analyze, involving an error larger than that f
spectra belonging to class~1!.

The distinction between classes is not always clear, du
different reasons. There may be partial superposition
tween the Si and Ge signals. While the statistical error on
Ge peak is a measure of how small the peak is, it is
possible to define an exact threshold separating classe~1!
and ~3!. Furthermore, a spectrum with superimposed sign
can also have a very small Ge peak. That is to say, there m
be a certain fuzziness in the definition of the classes, wh
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to some extent must bead hoc. This is defined for each
spectrum as a weight of belonging to each class, that
membership probabilities. When one needs to decide i
clear-cut way to which class a given spectrum belongs,
take it to be the class with the largest membership proba
ity.

We considered that a pure class~1! spectrum is one where
no superposition exists and the statistical error at the Ge p
is smaller than 3%. A pure class~2! spectrum is defined a
having the Ge peak in a channel smaller than the Si ed
with a Ge dose larger than 331015 Ge/cm2. A pure class~3!
spectrum requires signal separation and a statistical erro
the Ge peak larger than 12%.

Simultaneous membership of classes~1! and ~2! occurs
when the Ge peak is in a channel larger than the Si e
channel, but with some degree of superposition between
two signals. We define the degree of overlap to be the fr
tion of Si counts relative to Ge counts in the region of the
peak. It is 1 when there are at least as many Si counts a
counts in that region. The class~2! weight is the degree o
overlap.

Simultaneous membership in classes~1! and~3! was con-
sidered to exist for a statistical error at the Ge peak betw
3% and 12%. The class~3! weight is larger for larger errors
The class~1! and class~3! weights were defined to be equ
for an error of 7.5%.

When the Si and Ge peaks are superimposed but the
dose is smaller than 331015 Ge/cm2, there is overlap be-
tween classes~2! and ~3!. The class~2! membership prob-
ability is 1 for that value of the dose, and 0.6 for
31015 Ge/cm2, which is the minimum Ge dose value con
sidered in the class~2! data set.

A spectrum with low Ge dose and partial signal superp
sition will belong, with a certain probability, to all thre
classes.

For each class we generated 5000 spectra to build
training set and 1000 for the test set. The three training
test sets together constituted the training and test sets fo
classification ANN. One should note that the ANNs dev
oped for each class should be able to analyze correctly
der cases, that is a spectrum belonging 50% to class~1! and
50% to class~3! should be correctly analyzed by the ANN
developed either for class~1! or for class~3!. In order to
ensure this, each training and test set included border ca
for instance, the training and test sets for class~1! included
spectra with class~2! and class~3! weights up to 0.5.

The distribution of the depth and dose in the training a
test sets are given in Fig. 1 for the three classes. It is c
that there is extensive superposition in the range convere
each of the classes. The minimum dose for class~2! was cut
at 131015 Ge/cm2, as it was considered that a spectrum w
superimposed signals and an even smaller dose is impos
to analyze. Even for doses smaller than around
31016 Ge/cm2, the task is considerably difficult.

The spectra were calculated for a very broad range
realistic experimental conditions@9#. The beam was4He,
with energy between 1 and 2 MeV, scattered at an an
between 130° and 180° and detected with a resolution
tween 11 and 40 keV full width at half maximum~FWHM!.
3-2
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The normal of the sample was tilted at an angle betw
230° and 30° with the direction of incidence. The collect
charge~beam fluence! was between 0.2 and 250mC for a
solid angle of 1 msr. We added the contribution of pu
pileup to the theoretical spectra@13#, as well as Poisson nois
in order to simulate experimental data as closely as poss

C. ANNs for calculation of implant parameters and for
classification

We developed four different ANNs: one for each cla
dedicated to determining the implanted dose and depth,
one to classify the spectra. They were all multilayer perc
tions ~MLP!, trained with backpropagation@14#.

The individual class ANNs, called (ANN)i for class~1!,
all had the same architecture, previously optimized for
problem, consisting of three hidden layers, with 100, 80, a
50 nodes. The optimization procedure has been previo
described@9#. The inputs are the yieldx of 128 channels,
normalized to the charge–solid-angle productC, the beam
energyE and energy resolution, the angle of incidenceu inc ,
the scattering angleascatt, and the pulse pileup factor. Th
outputsyn are the implanted dose and depth, to be compa
with the evaluated outputon . The figure of merit to be mini-
mized was the mean square error,

E5
1

2 (
n51

N

~yn2on!2. ~1!

For class~3! the errors were consistently very high, due
the fact that the Ge peak is almost unnoticeable as the d
are very small for that class, so that relative errors are v
high. In order to enhance performance we decided to ap
the following transformation:

FIG. 1. Distribution of implanted~a! dose and~b! depth in the
generated data.
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ln x1a
, ~2!

wherea is a small number~we useda55!. This transforma-
tion has the advantage of eliminating the unimportant sig
from the Si background and enhance the yield from the
peak.

The inputs of the classification network, that we nam
ANNC, were the same as those of ANN1 and ANN2 . W
chose the 1-of-c coding scheme@15#, and therefore there ar
three outputs, one for each class. We used a unipolar ac
tion function.

Concerning the error function, it is known that the me
square error~mse! is not the most appropriate for classific
tion. It is derived from the maximum likehood assumption
Gaussian distributed target data@16#. However, the 1-of-c
coding scheme is binary and hence far from having a Ga
ian distribution. A better alternative is to use a cross-entro
error function such as@12#

E52(
n

@ tn ln yn1~12tn!ln~12yn!#, ~3!

wheretn are the target values~0 or 1 for pure-class spectr
that is belonging to a single class! andyn the actual outputs
of the network. By using a sigmoid for the output activatio
function, the error term applied to the output layer is just

dn5~yn2tn!2, ~4!

which is equal to the sum of squares error with a line
output activation function.

The advantage of using cross entropy is that it perfor
better than the sum of squares error function, especi
when estimating small membership probabilities. Since
used the logistic activation function for the outputs, we c
interpret their values as probabilities of the presence of
corresponding classes@17#.

In classification problems we can interpret the role of t
hidden layers to be the determination of the weights for
last layer so that an optimum discrimination of the classes
input vectors is achieved in the last layer by means o
linear transformation. Minimizing the error of this linear di
criminate requires that the input data undergo a nonlin
transformation into the space spanned by the activation
the hidden units in such a way as to maximize a given d
criminant function. It is thus desirable that the ANN shou
have at least two hidden layers in order to discriminate a
trary complex decision regions.

We tested the performance of several architectures. Th
with a single hidden layer performed very poorly, while i
creasing from two to three hidden layers improved the er
considerably. An increase to four hidden layers did not le
to a further decrease of the error, and introduces unneces
complexity.

The ANNC chosen had thus three hidden layers w
about 25 000 weights. This confirms our previous findin
where we found that, for RBS, given a certain number
weights it is preferable to have a MLP with multiple hidde
3-3
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TABLE I. Summary of the actions taken by the feedback algorithmsF1, F2, andF3 corre-
sponding to classes~1!, ~2!, and~3!. Emin. no. superp.is the minimum beam energy~between 1 and 2
MeV! for which there is no signal superposition.

Algorithm E u inc ascatt C

F1 0°
If partial

Superposition

2.25Fold

If low statistics

F2 2 MeV
~Third step!

0°
~First step!

180°
~Second step!

F3 1.1Emin. no. superp.

If C.300mC msr
4Fold
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layers in a triangular shape than a single one. Although
hidden layers should be sufficient, when enough training d
are available as is the case, the inclusion of more hid
layers may achieve better results at the cost of a slower tr
ing and local minimum trapping.

III. THE FEEDBACK ALGORITHM

A. Basic principles

One can devise an algorithm to obtain optimal or ne
optimal experimental conditions to determine any giv
property that one wishes to derive from RBS data from a
given system~in the present case, implanted Ge dose a
depth in Si!. Such an algorithm could be based on ANN
one could examine the results for the test set, and use p
cipal component analysis or clustering algorithms@18# to
determine the set of experimental conditions~more accu-
rately, a space of experimental conditions! that leads to the
smallest error in the determination of the property of intere

However, for the simple system studied in this work, it
possible to define a set of heuristic rules derived from ph
cal principles to determine the optimal experimental con
tions for each of the classes defined. This is the method u
here, and it could also be used for any system compose
an element implanted into a substrate made of lighter
ments only.

The optimal experimental conditions are different for ea
class. Hence three different feedback algorithms are im
mented, one for each class. We call themF1, F2, andF3 for
classes~1!, ~2!, and~3!. ANNC gives as output, membersh
probabilities for each class. In the general case, the th
weights are nonzero. The spectrum is thus sent to all
feedback algorithms. Each one will return different su
gested modified values for the experimental conditions.
average, weighed by the class membership probabilitie
then taken to obtain the new experimental parameters. A
spectrum is measured for those parameters, leading to
next iteration.

Finally, one should note that it is experimentally easier
change some parameters than others. For instance, cha
the beam energy can be a complicated process. Changin
scattering angle requires having a movable detector, whic
not always available. On the other hand, changing the a
of incidence is normally trivial as the samples are alm
always located on a goniometer. And increasing the collec
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statistics requires only increasing the beam fluence, tha
measuring for a longer time. In the algorithm developed,
easier alternatives are adopted first, and other options
considered only when that is not enough to obtain the des
effect.

The actions taken by the feedback algorithm for each
the classes are summarized in Table I.

B. Class„1…

For class~1!, no optimization is normally required, as
corresponds to those spectra for which the analysis erro
smallest. In this case, algorithmF1 should introduce no
changes in the experimental conditions. However, the de
tion of the classes is fuzzy, and there may be some pa
superposition, or the statistics may be relatively low. In t
first case, algorithmF1 will set the suggested angle of inc
dence to normal incidence, which leads to a better sig
separation: u inc(F1,partial superposition)50°. The algo-
rithm F1 will not try to change other experimental cond
tions such as the beam energy or the scattering angle bec
those parameters are more complicated to change, an
principle a change in the angle of incidence should be
most cases, enough to solve partial signal superposition

When the counting statistics are relatively low, algorith
F1 will try to reduce the statistical error by 50%. As th
statistical error is proportional to the square root of the yie
this corresponds to a suggested increase in the charge–s
angle productC of Cnew(F1,low statistics)52.25Cold(F1).

The question arises as to how the feedback algorit
knows whether there is signal superposition or not, or w
the counting statistics in the Ge signal is. This cannot
determined accurately unless the Ge dose and depth
known exactly, which, obviously, they are not. The altern
tive is to calculate a spectrum for the dose and depth de
mined by ANN1~or by ANN2 and ANN3 for algorithmsF2
andF3, respectively!, and evaluate signal superposition a
counting statistics for that spectrum. This procedure is
good as ANN1, that is, if the error in the ANN1 calculation
small, then the procedure is valid.

C. Class„2…

For class~2!, the problem is to separate the signals, th
is, the energy difference between the Ge peak and the e
of the Si signal should become larger than zero and as la
3-4
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as possible. This energy difference depends, on one han
the depth of the Ge implant, which cannot be changed.
the other hand, it depends on the analyzing beam energy
on the scattering angle via the kinematic factor, that is,
ratio between the beam energy before and after scatte
and on the angle of incidence via the length of the beam p
inside the sample@19#.

In simple terms, the signal separation is better for hig
beam energy, angle of scattering close to 180°, and ang
incidence 0°~normal incidence!. However, the beam energ
cannot be increased indefinitely, first because of the m
mum energy accessible with a given accelerator, and sec
because above a given threshold~which is element depen
dent!, nuclear reactions distort the signal. We limit the e
ergy range to the commonly used 1–2 MeV.

Algorithm F2 will changeu inc , ascatt, andE in succes-
sive iterations. However, if the angle of incidence is close
0° ~smaller than 7.5°! to start with, thenascatt will be
changed in the first iteration. Similarly, ifascatt is close to
180° ~larger than 165°!, E will be increased already in th
first iteration. The maximum value allowed forE is 2 MeV,
the maximum value used to construct the training and
sets.

D. Class„3…

For class~3!, the aim is to increase the counting statisti
This can be achieved in two ways. One is to measure fo
longer time, which is limited by the amount of time on
reasonably accepts to measure one single sample. The
is to decrease the beam energy, as the Rutherford cross
tion is proportional to 1/E2 @19#.

Algorithm F3 will try to double the counting statistics
Cnew(F3)54Cold(F3). This is, however, limited to a maxi
mum value of the charge–solid-angle product of 3
mC msr, the maximum value used to construct the train
and test sets, and a large value in RBS. If that limit
reached after a given number of iterations, theF3 algorithm
06670
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will try to decrease the beam energyE. However, a very
small beam energy could lead to signal superposition. He
the algorithm checks what the minimum beam energy is t
does not lead to beam superposition~once again, for the
currently determined Ge depth!, and returns as a suggeste
new value a beam energy 10% larger than that.

E. Estimation of implanted dose and depth

When none of the feedback algorithms is able to sugg
changed values for the experimental parameters~or when the
change is smaller than given thresholds!, it is considered that
the final optimal experimental conditions have been fou
Note, however, that only feedback algorithms for ANNs w
weight larger than 0.1 are considered. For instance, if
weight of ANN2 is 0.05, it is not considered relevant to t
spectrum at hand and algorithmF2 is ignored.

A final spectrum is calculated for the optimal experime
tal conditions, and analyzed by ANNC to classify it, and
ANN1, ANN2, and ANN3 to determine the implanted do
and depth. The final values are obtained by weighting
individual ANN values by the belonging weights to the thi
power. The weights as such are not used to reduce the e
suppose a given spectrum has a small weight for class~2!,
but ANN2 calculates a depth overestimated by a very la
factor ~which it always does for small real depths!. This
would lead to a very large error in the final weight-averag

TABLE II. Results of the classification ANN for the spectr
before optimization of the experimental conditions.

Real
ANNC ~1! ~2! ~3!

~1! 91.7 5.9 2.4
~2! 2.7 90.0 7.3
~3! 1.6 33.1 65.3
-

FIG. 2. Distribution of the ex-
perimental parameters of class~1!
spectra before and after optimiza
tion.
3-5
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depth. By using the weights to the third power, this probl
is avoided.

The depth and dose estimated by the ANN cluster are t
used as an initial guess in an automated fit with the c
NDF, which then provides final values for the implante
depth and dose. Note, however, thatNDF does not constrain
the Ge profile to any given shape, and the final profile m
deviate significantly from Gaussian. In this case, the val
determined withNDF may have a large error. This proble
could be easily solved by introducing a small change inNDF,
forcing the fitted profiles to be Gaussian. In any case, asNDF

performs a least-squares fit starting in the values given by
ANN, it will always improve the results. One can thus com
bine the automation features of ANNs with the accuracy
NDF.

IV. RESULTS AND DISCUSSION

A. Classification

We applied the algorithms developed to 3000 simula
spectra, 1000 of each class, constructed in the same way
within the same parameter space, as the training and test
The results of the classification ANN are shown in Table
The easiest spectra to classify are those of class~1!, where
ANNC correctly classifies 91.7% of the spectra. Of the 5.9
that are wrongly assigned to class~2!, inspection of the spec
tra reveals that most have partially superimposed Ge an
signals, with a nonzero class~2! membership probability. In
a similar way, most of the 2.4% wrongly assigned to class~3!
have nonzero class~3! weight, that is, they have relativel
poor statistics.

The performance of ANNC is also very good for class~2!,
with 90% of the spectra being correctly classified. 2.7% a
7.3% are classified as belonging to classes~1! and ~3!, re-
spectively. Most of those that are classified as class~3! have
relatively low doses, and the Ge peak is barely visible on
of the Si signal. In class~3! spectra with very low doses, th
Ge peak~which in that case is not on top of the Si signal b
separated! is also barely visible, that is, low dose class~2!
and ~3! spectra look rather similar, and hence most of
class~2! classification errors correspond to spectra assig
as class~3!. One should note that, if the dose distribution
class~2! allowed for doses as low as those of class~3!, the
classification error would be still larger.

The performance of ANNC is considerably worse f
class~3!, reflecting the fact that very small dose values le
to Ge peaks that are almost invisible, that is, almost imp
sible to analyze no matter what the method employed. O
65.3% of the spectra are correctly classified, with 33.1%

TABLE III. Results of the classification ANN for the spectr
after optimization of the experimental conditions.

Real
ANNC ~1! ~2! ~3!

~1! 98.9 1.1 0
~2! 30.8 65.2 4.0
~3! 62.6 7.5 29.9
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ing incorrectly classified as class~2!, although in most case
with relatively high class~3! weight, for the reason pointed
out above. The reason why there are more class~3! spectra
being classified as class~2! than class~2! spectra being clas
sified as class~3! is that there are more class~3! than class
~2! spectra prone to misclassification, that is, with very sm
or almost invisible Ge signal.

B. Class„1…

Class~1! spectra are not expected to need any optimi
tion of the experimental conditions, aside occasional sm
increases of the collected charge or setting the angle of i
dence to 0°. The distribution of the experimental parame
before and after optimization is shown in Fig. 2, confirmi
that expectation. After optimization, the number of spec
wrongly identified as class~2! or ~3! decreases from 8.3% to
1.1%, as shown in Table II and Table III.

The average and standard deviation of the ratio betw
the determined depth and dose values~with the ANN for the
initial and optimized experimental conditions and byNDF!,
and the real values, are shown in Table IV. The depth
dose values determined are

~ANN!x5(
i 51

3

wiANN i , ~5!

FIG. 3. Class~1! spectra.~a! Spectrum was initially wrongly
classified as class~3!. ~b! Spectrum was initially correctly classifie
as class~1!. In both cases the feedback algorithm increased
solid-angle–charge product to improve the statistics.
3-6
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TABLE IV. Average and standard deviation~given in parentheses! of the ratio between the depth and do
values determined with the ANN for the initial and optimized experimental conditions and by NDF, fo
classes.

Real class Final class Analysis

(ANNC) i : Correct (ANNC)i : Wrong

Depth Dose Depth Dose

~1! ~1! (ANN) i 1.03~13! 0.87~14! 1.07~11! 1.08~12!

(ANN) f 1.01~12! 0.85~14! 0.98~4! 0.81~10!

NDF 1.00~2! 0.99~2! 1.00~1! 1.00~1!

~2! ~1! (ANN) i 1.08~13! 1.17~38! 0.66~35! 0.53~47!

(ANN) f 0.98~3! 0.87~11! 0.72~36! 0.55~35!

NDF 1.00~1! 0.98~3! 1.00~5! 0.93~17!

~2! or ~3! (ANN) i 0.98~11! 1.08~56! 0.37~14! 0.14~17!

(ANN) f 0.98~06! 1.22~51! 0.73~33! 0.94~99!

NDF 0.97~3! 0.96~15! 0.96~13! 0.88~24!

~3! ~1! (ANN) i 1.27~65! 1.56~71! 5.80~5.69! 17.1~15.1!
(ANN) f 1.08~54! 1.08~46! 1.35~80! 1.39~47!

NDF 1.05~31! 0.93~24! 1.05~25! 0.94~18!

~2! or ~3! (ANN) i 1.37~71! 2.47~1.34! 8.94~8.21! 33.2~21.0!
(ANN) f 2.10~1.91! 3.57~4.75! 4.41~5.06! 7.64~9.55!

NDF 1.27~82! 0.94~25! 2.67~3.00! 1.03~51!
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where thewi are the normalized weights to the third powe
and x[$ i , f % stands for initial and final values~before and
after optimization!.

We show the values separately for the cases in which
ANNC initially ~that is, for the initial experimental condi
tions! correctly and incorrectly identified the spectrum as b
longing to class~1!. We call the initial and final~before and
after optimization! classification (ANNC)i and (ANNC)f ,
respectively. The initial and final determined dose and de
values are called (ANN)i and (ANN)f , respectively. Further
we considered in the table only those cases in which the fi
spectrum~after optimization of the experimental paramete!
was classified as class~1! by the ANNC. This is of course the
vast majority, with only 11 spectra being classified as cl
~2! or ~3!, as shown in Table III.

The optimization does not lead to improvements, wh
NDF is able to retrieve the correct values with high precisio
This is true also for the spectra that were initially misclas
fied, the reason being that, as discussed above, most of t
cases have nonzero weights for classes~2! or ~3!, and hence
ANN2 and ANN3 are able to analyze them correctly.

A class~1! spectrum that was initially wrongly classifie
as class~3! is shown in Fig. 3~a!. The correct class weight
were~0.77, 0, 0.23!, and the initial classification, for a solid
angle–charge product of 30.1mC msr, was~0.28, 0, 0.71!.
The statistical error at the Ge peak is 5%. In a first step
solid-angle–charge product was increased to 104.9mC msr,
corresponding to a statistical error in the Ge peak of 2.5
which led ANNC to correctly classify the spectrum as cla
~1!. As the statistical error was still too high, the feedba
algorithm increased further the solid-angle–charge prod
obtaining a final statistical error of 1.5%.

A class~1! spectrum that was initially correctly classifie
is shown in Figure 3~b!. The initial statistical error was 7.4%
@remember that the transition between mostly class~1! to
06670
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mostly class~3! is at 7.5%#. The feedback algorithm cor
rectly decided this level was still too high and correspon
ingly increased the solid-angle–charge product, reachin
final statistical error of 3%.

C. Class„2…

Class~2! cases are expected to undergo major change
all the experimental conditions, except for the collect
charge, which is expected to change only slightly. The d
tribution of the experimental parameters before and after
timization is shown in Fig. 4, confirming that expectation

As shown in Table II and Table III, the feedback alg
rithm is able to increase the number of spectra classified
class ~1! from 2.7% to 30.8%. This number seems to
small; however, there are samples for which it is impossi
to separate the Ge peak from the Si signal, no matter w
the experimental conditions. This is the case when the
planted depth is very large. The exact depth depends on
Ge dose and signal shape, and on the energy resolu
~FWHM! of the detected system. The most favorable ca
for which separation is easiest, is that of no energy disp
sion and a delta-shaped small Ge dose. In that case,
maximum depth for which the signals can be separate
4.431018 atoms/cm2. For a finite FWHM and a Gaussian
shaped implant, that number can be as low as
31018 atoms/cm2. The vast majority of the spectra that re
main classified as class~2! after optimization have a dept
larger than 331018 atoms/cm2, and indeed belong to clas
~2!.

The average and standard deviation of the ratio betw
the determined depth and dose values~with the ANN for the
initial and optimized experimental conditions and byNDF!,
and the real values, are shown in Table IV. We show
values separately for correct and incorrect initial classifi
tion. Further, we also separate those cases in which the
class was~1!, and those in which the final spectrum remai
3-7
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FIG. 4. Distribution of the ex-
perimental parameters of class~2!
spectra before and after optimiza
tion.
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class~2! ~the majority! or even class~3! ~a very small num-
ber!.

We shall now analyze in detail the different possibiliti
presented in Table IV.

For cases that were initially well classified by ANNC
belonging to class~2! @i.e., (ANNC)i correct classification#,
and for which the final spectrum was class~1!, there is a
difference in the values of (ANN)i and (ANN)f . This is
because (ANN)i uses mostly ANN2~because the corre
06670
sponding weightw2 dominates!, and (ANN)f uses mostly
ANN1.

For the (ANNC)i wrong classification and final class~1!,
the optimization leads to modest improvements only, w
the (ANN)f results being rather poor. This is due to a m
classification problem, as shown in Fig. 5. The average de
and dose are skewed to small values by a few cases
remain class~2! after optimization but are wrongly classifie
as class~1! due to the relatively small doses. In almost a
FIG. 5. ANN andNDF results for class~2! spectra initially wrongly classified as class~1! or ~3! and with final classification~1!. ~a! and
~b!, initial ANN values.~c! and ~d!, final ANN values.~e! and ~f!, NDF values.
3-8
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ARTIFICIAL NEURAL NETWORKS FOR AUTOMATION . . . PHYSICAL REVIEW E65 066703
those cases, ANNC passed through an intermediate p
during optimization where the spectra were classified as c
~3!, then increased the charge, and finally misclassified th
as class~1!. NDF was nevertheless able to derive the corr

FIG. 6. Class~2! spectra.~a! Spectrum was initially correctly
classified as class~2!. ~b! Spectrum was initially wrongly classified
as class~3!. In both cases the final class is~1!.
06670
se
ss
m
t

depth and dose values, albeit with a larger average error
when the initial classification was correct.

For the (ANNC)i correct classification and final class~2!
or ~3! @almost all the cases are class~2!#, the results are also
good. They become very poor only when (ANNC)i is incor-
rect, since a classification error, when the spectra are alre
difficult to analyze to start with, makes the task even mo
difficult. NDF can nevertheless provide a reasonable appr
mation to the correct depth and dose values.

We show in Fig. 6~a! a typical example of a class~2!
spectrum that the feedback algorithm is able to lead i
class~1!, with a large and separated Ge peak. In Fig. 6~b! the
initial spectrum was wrongly classified as belonging to cla
~3!, with weights ~0, 0.45, 0.55!. In the first iteration the
charge was duly increased, but the angle of incidence
became closer to normal incidence~0°!, which led the
weights to~0, 0.84, 0.16!. Further optimization resulted in
the final spectrum with a completely separated Ge peak, w
a statistical error of 4.5%. Note that for the initial char
value, the error would have been~for the same Ge peak
separation! 11.6%, which justifies the initial ambiguous cla
sification.

D. Class„3…

Class~3! cases are expected to undergo major change
the collected charge, which should increase in order to
prove statistics, and the other experimental conditions sho
change only little. The distribution of the experimental p
rameters before and after optimization is shown in Fig.
confirming that expectation.

The average and standard deviation of the ratio betw
the determined depth and dose values~with the ANN for the
initial and optimized experimental conditions and byNDF!,
and the real values, are shown in Table IV. We show
values separately for correct and incorrect initial classifi
tion. Further, we also separate those cases in which the
-

FIG. 7. Distribution of the ex-
perimental parameters of class~3!
spectra before and after optimiza
tion.
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FIG. 8. ANN andNDF results for class~3! spectra initially wrongly classified as class~1! or ~2! and with final classification~1!. ~a! and
~b!, initial ANN values.~c! and ~d!, final ANN values.~e! and ~f!, NDF values.
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class was~1! from those in which the final spectrum remai
class~3! or even class~2!.

For the (ANNC)i correct classification and final class~1!,
the improvement in the results is basically due to the tra
tion from the ANN values being initially mainly calculate
with ANN3, which is not very precise since it is the harde
class to analyze by any means, and the final ones ma
with ANN1.

For the (ANNC)i wrong classification and final class~1!,
the initial results are extremely bad, and optimization lea
to dramatic improvements. This is due to the cases that
initially misclassified as class~2!, with consequent large val
ues of the dose and depth as can be seen in Fig. 8.

For the (ANNC)i correct classification and final class~2!
or ~3!, the feedback procedure actually leads to worse res
The reason is that while it was impossible to lead the initia
class~3! spectra into class~1!, the change in experimenta
conditions led several of the spectra closer to class~2!. While
a decrease of beam energyE0 leads to improved statistics,
also brings the Ge and Si signals closer together.NDF was
nevertheless able to find reasonable values for the depth
dose, albeit with a rather large error. For the (ANNC)i wrong
classification, the results are bad, as the initial wrong cla
fication leads to essentially wrong actions being taken by
feedback algorithm, for spectra that are extremely difficult
analyze to start with.

We show in Figure 9~a! a case in which the initial weight
are ~0, 0.36, 0.64!, that is, the initial classification was co
rect. The statistical error in the Ge peak is 10.8%. Af
increasing the collected charge and reducing the beam
ergy, the class weights are~0.87, 0, 0.13! corresponding to
class~1!, for a statistical error of 3.2%.
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n- FIG. 9. Class~3! spectra. In both cases the spectrum was in
tially correctly classified as class~3!. The final class is~a! class~1!,
and ~b! class~3!.
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On the contrary, the feedback algorithm could not lead
spectrum shown in Fig. 9~b! into class~1!, even increasing
the collected charge to the maximum allowed value and
creasing the beam energy until the Ge peak is very clos
the Si signal. The reason is threefold:~a! the implanted dose
is very low at 0.331015 atoms/cm2; ~b! the pileup back-
ground is high; and~c!, the implanted depth is relativel
large at 132031015 atoms/cm2, which prevents the feedbac
algorithm from decreasing the beam energy further, fo
shallower depth the signal separation would be larger, giv
more room for further beam energy decreases.

V. CONCLUSIONS

We presented an algorithm based on artificial neural n
works able to determine optimized experimental conditio
for RBS measurements of Ge-implanted Si. The algorit
can be implemented for any other element implanted int
lighter substrate. We have previously shown that ANNs
successful in analyzing data from more complex syste
such as multielemental thin films@11# or implants of any
element into a multielemental substrate@20#. It is hence fore-
seeable that the method developed in this work can be
tended to many other systems.

The algorithm presented is a push-button black box,
does not require any intervention from humans. It is th
suited for unsupervised automated control of an experime
setup, given an interface to the relevant hardware. The p
ence of an experimentalist during the measurements is h
no longer required.

Once the experimental conditions are optimized, the al
rithm analyzes the final data obtained, and outputs the
evant desired parameters in a nearly instantaneous wa
opposed to codes that are interactive or that take some
~often long! to run. It is thus suited for unsupervised on-lin
automatic analysis of the data. A trained physicist or d
analyst is hence also no longer required.

For each new system to be analyzed, the required AN
must be developed and created, which involves a great
of work by computer programmers with knowledge of IBA
.
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This could, however, be circumvented if an automatic pro
dure to generate the required neural networks can be dev
The following scheme is such a procedure.

Suppose that a large batch of samples is to be analy
For the first sample, a spectrum would be measured w
standard experimental conditions, and then automatic
analyzed withNDF. The depth profile determined withNDF

may be inaccurate if no previous knowledge of the samp
is available. However, a number of different depth profile
all random variations of the derived one, could be autom
cally created. For each such profile, a number of theoret
spectra with different experimental conditions can be gen
ated.

In this way, training and test sets can be automatica
generated for an ANN dedicated to any given problem. T
outputs of the ANN will be the required parameters. The
can be, for instance, the implanted depth and dose of a g
ion in a given target, or the thickness and composition o
thin film. If one wishes to automatically optimize the expe
ment, the experimental conditions can be taken as those
lead to the smallest ANN error for the parameters of intere

Note that these ANNs would have been created in a fu
automatic process. They can be used to reanalyze all
spectra previously measured, optimize the experimental c
ditions and measure them again if necessary, and then
over the whole process for the following samples.

We suggest that all the steps involved can be made a
matically. Once the original computer program is writte
computer programmers will also no longer be required. Th
could RBS be done without experimentalists, data analy
or programmers, with only technicians to keep the machi
running.
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