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Reference-wave solutions for the high-frequency field in random media
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Ray trajectories, as has been shown in the recently formulated stochastic geometrical theory of diffraction,
play an important role in determining the propagation properties of high-frequency wave fields and their
statistical measures in complicated random environments. The field at the observer can be presented as the
superposition of a variety of field species arriving at the observer along multiple ray trajectories resulting from
boundaries and scattering centers embedded into the random medium. In such situations the intensity products
from which the average intensity measures can be constructed and which, in general, are presented as even
products of the total field, will contain sums of products of mixed field species arriving along different ray
trajectories. For computations of the statistical measures of the field it is desirable, therefore, to possess a
solution for the high-frequency field propagating along an isolated ray trajectory. The main concern of this
work is the construction of high-frequency asymptotic propagators, relating the values of the random field and
its statistical measures at some observation plane to their s@aotel or virtual distributions at the initial
plane. For this reason a reference-wave method was developed to obtain an approximate solution of the
parabolic wave equation in a homogeneous background random medium.
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[. INTRODUCTION cal treatment is required. Investigations of the field structure
in complicated environments becomes especially important
Wave propagation taking place either in the natural enviin the modeling of modern mobile and satellite communica-
ronments or in the artificial structures is usually accompation channels operating in the millimeter wave range. The
nied by random phenomena caused by the fluctuations of therescriptions of how to incorporate all these effects into sto-
medium’s parameters. While such problems arise in varioushastic propagation are given in a stochastic geometrical
areas of physics, the most appreciable theoretical and expetheory of diffraction(SGTD) [4,5] which has been especially
mental achievements have been made in the case of continformulated in order to deal with such types of phenomena.
ously fluctuating media when the medium’s fluctuations carThe SGTD is based on the localization concept according to
be considered as large-scale compared to the radiation wavehich the high-frequency fields are concentrated along the
length. These achievements have been stimulated by they trajectories specified by the deterministic GTD, and,
practical importance of such topics as laser beam propagahkerefore, can be transported along these trajectories by tak-
tion in a turbulent atmosphere and acoustic wave propagang account of the effect of random inhomogeneities on their
tion in a fluctuating underwater sound channel. At thephase and the amplitude. As in the deterministic GTD, the
present time the subject is supported by a wide theoreticdleld at the observer can comprise a number of field species
background that includes sophisticated analytical and nuarriving along different ray trajectories resulting from the
merical methods described and summarized in a number a&flection, refraction, andor) diffraction of the local plane-
monographgwe mention only a few of theril—3]). In the  wave fields by boundaries, inhomogeneities, éomil scatter-
line-of-sight case when the radiation from the source aping centerd6,7]. As in the line-of-sight case the statistical
proaches the observer along a straight (iorea single curved  properties of the observed intensity patterns can be derived
ray in the case of an inhomogeneous background mediunfrom the analysis of the statistical intensity moments. How-
the problem can be described by studying the propagation aver because of the multipath arrival, the expressions for the
the statistical moments of the field. The most important aréntensity moments, being even order products of the total
the second-order moment related to the coherence propertiéield at the observer, will contain odd products of the sepa-
and average intensity of the field and the fourth-order morate ray-field species. Moreover, the radiation portions propa-
ment related to the correlation properties of the field intengating along different rays can traverse the same spatial re-
sity. gions, which requires consideration of their correlation.
An increase in the propagation ranges and the need t®herefore, it would be useful to possess a field solution that
operate with fields having greater spatial and angular extentsccounts for the information accumulated by the propagating
require that the complexity of the propagating environmentsield along its propagation path. The derivation of such a
and the resulting multipath effects induced by the scatteringolution is one of the main concerns of this work. Our solu-
of the field by boundaries and scattering centers to be adion strategy is based on the development of a reference
counted for. The locations of such obstacles can be eithewave methodRWM). The methodology is based on defining
deterministic or random. In the latter case additional statistia paired field measure as a product of an unknown field
propagating in a disturbed medium and its a complex conju-
gate component propagating in a medium without random
*Email address: mazar@eesrv.bgu.ac.il FAX: 972-8-6472949; fluctuations. The solution of the deterministic equation can
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be usually obtained by conventional methods. Defining
paired field measures and extensions to higher dimensiona
spaces is stimulated by the advantages that they open in an:
lyzing field structure. In particular, this allows us to deal
simultaneously with location in a configuration space to-
gether with defining the ray slope and the spectral properties,
of the radiation. In addition, performing a proper scaling e
gives us the ability to emphasize “slow” and “fast” vari- . —]
ables and to define expansion parameters with the subse
guent application of sophisticated asymptotic techniques
[8—11]. Once a solution of the equation for the paired field
measure is obtained, the solution of the unknown field can be
easily extracted from the paired solution in an explicit form
if one knows the solution of the deterministic component.
The reference-wave method has already been applied suc
cessfully to the parabolic-type equatigri].

Disturbed ray

Reference ray

A 4

IIl. THE REFERENCE-WAVE SOLUTION FIG. 1. Transformation to reference and displacement coordi-

The starting point of our analysis is the scalar Helmholtz"ates. Ea(?).

equation for the time-harmonic field(R):
which is solved with the initial condition:

V2U(R)+k?N?(R)U(R)=0. (1)
HereR measures the location in three-dimensional space and 91(11,00|r10,070) = 811~ T10). (33
can be represented in different curvilinear coordinate sys-
tems,N(R) =1+ n(R) is the refractive index of the medium, Since Eq.(3) contains a random function(r,o), its solu-
which consists of a unit background part and a weak randorfions will be also random functions. Originally the develop-
partn(R), (In(R)|<1). ment of solutions of the SGTD propagators was closely re-
As mentioned above, propagation of high-frequency timejated to the paired field measures. The fact that the
harmonic signals in spatially inhomogeneous media takeBropagation of these measures is described in an extended
place along the geometrical ray trajectories representing thepace allowed us to emphasize “slow” and “fast” variables
paths of energy flux transfer. Our concern is to construct avith the possibility of applying sophisticated multiscale
solution for the high-frequency random field, which is sup-asymptotic technique$8—11]. Here, we suggest the applica-
posed to contain information about the medium refractivetion of similar methods in order to extract the solution for the
index along the propagation path. In this work we restrictrandom field itself. In parallel to the propagation in a random
ourselves to a homogeneous background random mediufiedium, we consider also the propagation of a deterministic
and base our solution on the parabolic approximation along wave in a medium in the absence of the refractive index
straight background ray thereby extracting from the highfluctuations. This is described by the equation:
frequency field the main phase variation along some refer-
ence ray pathl-3]:

U(r,o)=u(r,o)expiko). (2

Here the propagation of the random parabolic wave ampli-
tudeu(r,o) is described in a ray-centered coordinate system
R={r,o}, where the two-dimensional radius-vectomea-
sures the location in a rectangular coordinate system perpen, ]
dicular to the straight reference ray and the coordinate
measures the range along that rdgr definition of such
coordinate system see, for example, Réfd. and [5] and
also one of the ray trajectories in Figs. 1 andQubstituting

Eq. (2) into Eqg. (1) and neglecting the “slow” range deriva-
tives, we arrive at the parabolic equation for the propagator
of the reduced wave amplitude:

v

991(r1,0r10,00) i
90 :ﬂvrzlgl(rlya'“loﬂo)

FIG. 2. Transformation to center of mass and difference coordi-
+ikn(rl,U)gl(r1,0'|rlo,0'0), (3) nates, Eq(25)
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(1o, 0 i ing angle. To obtain an approximate solution, generally, we
2( 2 ) 2 i -
oo 2k VrUa(12,0), Ua(ra,00) =Uo(rp). (4)  can employ the multiscale expansion procedure as developed
on the previous works and applied to similar equations with
Defining a product distipct “fast” and"‘slow” variables. Instead of performing
scaling of the variables, we will perform here a formal ex-
D(rqy,rp,0)=04(r1,0|r19,00)U5(r2,0), (5)  pansion into powers of inverse wave numker.

) . ~ The common way of solving E(8) is to transform the
and using the standard procedure, we arrive at the equatiGinction I1(,q, 0| #,0y,00) from the domain described by

for & the »-q coordinates to the phase-spaeg. The function
AD(ry,1y,0) i , , II(v,p,0|vy,pg,00) is defined as a spectral transform:
90 =ﬂ(vrl_vr2)q)(r1'r2'0') B ‘2 )
+ikn(ry,a)D(ry,Fp,0), 6) (v,p,a|vy,po,00)= o f j_wdqd%
D(ry,rp,00)= 6(r1—riUzo(ra). (6a) XT1(v,9,0(¥5,00,070)
Defining the product(r,,r,,o) in Eq. (5) allows to em- xexp{—ik[p-d—po-Gol}. (9)

phasize the phase differences between the desired solution ) ) .
for gy(ry,00/r10,0) and the reference wave,(r,,o). As Applying this transform to Eq(8), we obtain equation for
will be shown later, the propagation of the reference wave id1(»,p,o|vy,po,00):

not necessarily carried along the deterministic ray trajecto- .

ries. It can be carried also along the random rays determined  JI1(»,p,o| vy, py.00) _

by the random medium. In order to emphasize “slow” and e +p-V,(v,p,0|vy,p,00)

“fast” variables in Eq.(6), we introduce new transverse co-
ordinates(see Fig. 1

i _
—ikn| v+ K VP,U)H(V,p,0'|v0,p0,0'o)

g=rz, Co=rz0, (7a)
ikp? —
v=r,1—1I5, Vo=Tr10"TI20, (7b) :TH(V,p,0'|V0,p0,0'o). (10)

whereq is the coordinate of an undisturbed reference ray, ) ) ) )

while the difference vector coordinate describes the dis-  Expanding the functiom[v+(i/k)V,,o] into powers of
turbed ray displacement with respect to the reference ray ~ We obtain for the main order the following equation:
trajectory. We note that the transformations in Ef). are

nonsymmetric with the respect to the original coordinates (v, p,o|vy,pg,00) —

andr,. This asymmetry allows to preserve the phase infor- oo +p-V, I (w,p,0]v0,p0,00)
mation caused by the changes in the refractive index along o

the propagation path. Applying these transformations leads +V,,n(v,(r)~V,,H(v,p,a|vo,p0,ao)

to the following equation for the  function

P 2
H(Vvq=0-|VO1q010-0):CD(V+q7q10-|VO+q01qOIO-O): = Ikp T

TH(VaPaU|VO’pOaUO)
(?H(V1q70'|1’01q0,0'0) I _
y. = Vo Voll(v.q,0]v0,00,00) +ikn(w,a)(v,p,a|v,po.00).- (12)

We note that Eq(11) is a nonhomogeneous partial differen-
tial equation. In the homogeneous case, i.e., when the right
hand side is equal to zero, this equation is similar to the
+ikn(v+q,0) transport equation for the Wigner function in the geometric
) approximation.

The easiest way of solving Eq1l) is by choosing the
with the source condition reference source as a plane wave. Such a choice leads to the
following source condition fof11):

i
— ﬂVSH(V,Q,O’|V0,Q0aUO)

XI1(v,q,0|v,90,00),

I1(v,0,00| ¥9,00,00) = 8(v+0q—wy— o) Uo(Q). (8a)

— 2
To justify our approximations, we emphasize the explicit 1(.p.olv0.p0.00) = (27/K)°3(p=po)
dependence of the refractive indeXr,o)="%(r//,cl/), xexplikpy- (v—wp)}. (12
where / is a characteristic spatial scale of the medium’s
fluctuations(it can be associated with the correlation length Equation(11) is a first-order partial differential equation and
Such scaling allows us to introduce a small expansion pacan be solved by the method of characteristics. The charac-
rameters = 1/(k/"), which is of the order of a single scatter- teristic equations are given by the following system:
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dv k|2 o .
do P v(o)=v, (13 g(r,a'|r0,a'o)=<z) Jjwdpexp{lkpf(ao)- r
o ik (o
d _ _ o 2
£=V,,n(v,(r), p(a_):p, (14) jaodgpf(f) o ]eX[{ 2 Joodgpf(g))
dIl  ikp? Xexqikjlrdfﬁ(rf(z),g)] (19
E=Tpﬁ+ikn(u,a)ﬁ. (15) 7

with

Solving Egs.(13) and (14) we obtain the characteristics -
v:({) and p¢({) as functions of the range coordinate rf(g)zr—f déps(§). (20
where the boundary valuasand p are specified at the ob- T

servation planer. Actually, when the boundary conditions . ) )
for » and p are determined at the observation plane we carEguation(20) represents the desired reference-wave solution.
expressw () by For its application in practical cases one has to develop a

procedure for the averaging of the quantities in the integrand.
” Analyzing Egs.(19) and (20) we note that, in general, the
,,f(g):,,_f dép(&). (16) expression for the field propagator is not symmetric with
¢ respect to the andr, coordinates. The solutions of the char-
acteristic equations require the boundary conditiongddo
Using these solutions in E415) leads to be set at the range plame Since, in principle, both coordi-
natesr andr, have to appear in Eq19) symmetrically, we
= can write an equivalent expression for the field propagator
11(v.p.o]v5.p0,00) when the characteristic equations are solved subject to the

=T (w(00),ps(00),T0| 0, P0. 00) boundary conditions at the, plane, replacing Eq20) by

ik (o ¢
xexp{E f dz p$<z:>) r()=ro+ f dé py(£). (21)
a9 a0
% ik ”d =l |7 , _ and thep integration to the integration oveg. The expres-
exp{l LO gn( v L dépi(£) g)] sion for the field propagator can be simplified in some cases.

17 Specifying the boundary values fof({) and p¢({) at the
observer and solving the characteristic equations for the av-

. . ) L erage values, we obtain straight ray trajectories:
Applying the inverse transform to Eql7) with the initial g g y i

condition(8a), and performing the integration with respect to HO=r+p(c—0), pi=p, (22)
the py variable, we obtain
which can be used in Eq19), leading to the approximate

I1(v,q,0|vy,0,00) solution for the field propagator:
k \? o ) k \2 o
“\2m f Jiwdpex kpi(oo)-| v g(r,o ro:Uo):(z j Jixdpexriikp'(r—ro)]
o . 2 _
—f déps(§)—wg ] Xexp{——lkp S UO)+ik
o0 2
) ik (o ) -
xexp{ik[p-q—ps(o0) - Gol}ex gfgodépf(f) xf d¢ n(r-l—p(o-—{),g)}. 23
()'0
xexp{ ikfadg’ﬁ( v— fadg pf(§)§> ] (18)  The expression in Eq23) is equal to the phase approxima-
o0 ¢ tion of the Huygens-Kirchoff MethofiL3]. This solution has

been obtained phenomenologically, and, as is well known,
Finally, we setg=0, q,=0, »=r, andyy=ry. According to  has limited applicability in the analysis of higher-order cor-
the definitions (7), the reference plane wave propagatesrelation measures. In order to make more suitable approxi-
along a straight line connecting=0 and g,=0. Then, ex- mations, we propose that some of the deficiencies of these
tracting the unit value plane-wave solution, we arrive at thephenomenological solutions arise because of the violation of
expression for the field propagator: the uncertainty principle, when in the straight ray trajectories
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neously in the same range plane.
In order to include such an uncertainty in the description
of the high-frequency propagation process there is a need for ( s({) )
-n

the slope and the position of the ray are stated simulta- o
xexp{ik f d¢g

n( pf(é)_l— #!g)

the choice of a proper pair of coordinates related to the spa- pr({)— T,§
tial location and to the slope of geometrical ray trajectories.

The above quantities can be introduced analytically into the

field measures only if one considers a higher dimensionaﬁ’f(g) ands;({) are solutions of the following characteristic

space. For that reason, we define a paired field measureequatlons that can be easily obtained from E8) and(14)

called a two-point functiof TPPH (See the Appendjx

] . (30

S S I _ 31
I'(p,s,o)=u| p+ E’”)U*(p_i"’ ) (24) do P (313

where dp

3= Von(p.o), (310
It o o5

do_ " (319

are transverse sum and difference coordingies Fig. 2 T

The TPF propagator is a product of field propagators derived

n Eq. (20 O {V, (Vn(po)- I [Vin(po)s).  (31d
do  2WVp p(p,o)- pn(p, o ]}

_ S Y x
92(p.s,0|Po. S0, 70) = 9| P+ 5:0|Pot 5.00/97( P Taking into account the symmetry relations, we note that the

functionsp;(¢) ands;({) can be the solutions of the charac-
teristic equations solved subject to the boundary conditions
either at the range plane or . It was shown previously
that the uncertainty relations play an important role in deriv-
We substitute the expressidg0) for g into Eq. (26), and  ing the approximate solutions of TRE4]. To account for the
introduce two new coordinate functions, which are linearray uncertainty, we define the Wigner distribution function
combinations ofv;; and v,

k\2( (=
r +r W(P,P,U)Z(—) dsl'(p,s,0)expikp-s),
p(o="1ET2E @ a0, @2 2m ”

S
2

S

Po= 500 (26)

O

(32)
and linear combinationg;; andpy, of the spectral variables and ambiguity function
appearing in each product term:

_ PO+ pia(§) A(f/,s,cr)=fJldpf(p,s,cr)eXp(—ikn-p). (33

pi(0) — 5 7:(8) = ps1(L) — pr2( D).

(28) | the source condition is defined by the Wigner distribution,
the TPF at the observer is obtained by the following propa-

Performing the change of variables according to . .
gation relation:

=t s (29 -
5 17 P2, F(p,s,a)=Jf_ dpodpeW(Po,po,00)

we obtain explicitly

ng(p,3,0’|po,po,0’0), (34)
k\4 ®
a(p,S,o|pg, S, 00) = Z) ff dpdn where the propagata,, is defined by
K\2( (=

xexplikng(-)-[ps(-)—pol} gw(P:S.o|po.po.00) = z) J J_wdso
Xexp[ikfgdgm(g)pf(g)] X ga(P.s,0]Po, S0, o) explikpo- So)

7o (35
xexplikp(-)-[si()—sl} and in an explicit form can be presented as
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a(p,S,a|Po.Po.00) We note .that the propagatayy, relates two differ_ent.

. configuration-spectral spaces. For the further approximation
|k j f‘” dodnS(on— we replace the ray trajectories in EQL by their average
27 I (po=pi(0)) values. The resulting solutions are straight trajectories. Using

them in Eq.(38) and performing inverse transforms we ar-
xexplikpr () - s(+)} rive at the result derived by the multiscale expansion proce-
” dure[8,9]:
xexp ikg(-)-|p— | d -
p{ 7 () [p LO ¢ps() po” 9(p.5. 0100550, 0)

o k 2 *
XeXp{ikfvodfﬂf(g)'Pf(g)} = 5) f~"f_wdpodnexp{ikn[p—po—po

(e ) X(o—op)]texplikpy- (s—p)
Xexp{lkJ dgn(pf(§)+sf(2§ ¢ ( o) Itexplikpy- (s— )}
7o (e s n({—o)
X ex |kf dIn| pt+po({—0p)+ =+ —F5—,¢
$(4) a0 2 2
—-n pf(Z)—T,§ . (36)
s n({-o)
-n P+Po(§—00)—§——2 Lt (40)

The presence of thé function in the integrand of E(q.36)
states a requirement that the boundary condition for the slop?he ray uncertainty in the propagata@8) and (39)

" is ac-
p has to be set at the initial plarg. Therefore, at the same

-~ counted for by considering different phase-space configura-
X X ) fions in the source and observation planes. We emphasize,
pi(¢), and the solution for they({) trajectory subject 10 pawever, that even if the trajectories in E89) are replaced
these boundary conditions is expressed g by the straight rays, these are not the same rays. The slope of
; the rays from the source is different to the ray slopes ap-
_ _ proaching the observer. For example, the radiation emanating
PO =Pot Lop(t)dt’ P(70)=Po- S from the source coordinaf® along the rays centered around
the slopep, creates at the observation plane the distribution
In the case when the Wigner distribution at the source plangharacterized by transverse separasaneated by indepen-
creates the ambiguity function at the observation plane, théent rays having slope differenceg Physically, this ap-

propagation relation is given by proximation accounts for the scattering of the propagating
rays.
A(ﬂysﬂf):f fﬁwdpodPoW(Po'Poﬂo) ll. SUMMARY AND DISCUSSION
In this paper, we have formulated a reference-wave
XQWA(TI,S,0'|DO1P010'0)1 (38) p p

method applied to solve the parabolic-type wave equation.
Using this method we presented solutions for the propagator
governing the transport of the high-frequency field along a
properly chosen deterministic ray trajectory in a randomly
perturbed medium. We restricted ourselves to a medium hav-

with the propagator obtained by applying to E6) the
spectral transform over thevariable:

Iwa(7,5,9|Po.Po, o) ing a homogeneous background profile, but the extension to
K\ 4 " an arbitrary background case seems to be straightforward.

= _) f f dpdndé(po— pi( o)) The desired field solution in the general case is presented as

2 — a spectral integral over various spectral contributions propa-

gating along random ray trajectories. Approximating these

trajectories by average trajectories leads to the well-known
o phase approximation of the Huygens-Kirchoff method. Fur-

P—f dé“Pf(é“)—po” ther, we used our solution in the construction of the paired
70 field measures associated with the coherence functions of the

X o(mi(0) — mexpikpr(-) - s(-)}

xexp{iknf('y

o field. We have shown that uncertainty considerations play an
><exp{ ikj d(ﬂf(()'ﬂf(()] important role in the construction of the statistical propaga-
70 tion characteristics. In order to account for the uncertainty in
(e si({) the high-frequency propagation there is a need to choose a
xexp{ ka dgin| v () + T’§> proper pair of coordinates related to the spatial location and
()'0

to the slope of geometrical ray trajectories. The above quan-
si(0) tities can be introduced into the propagation process analyti-
— n( vi({)— T{)H (39 cally only by considering a higher dimensional space, which

066617-6



REFERENCE-WAVE SOLUTIONS FOR THE HIGH .. PHYSICAL REVIEW E 65 066617

allows us to transfer it to mixed configuration-phase-space v+ v,

guantities. As a starting point we defined a paired field mea- P=—%— STwm—, (A3)

sure called the two-point random function and its spectral

transforms known as Wigner and ambiguity functions. Weand the slopes

have shown that the ray uncertainty can be retained even

while replacing the multiple trajectories by straight ray tra- pLtpo

jectories if one considers propagation between different =% N=P1 P2

configuration-spectral spaces. In this case our result leads to

solutions that correctly represent intensity correlation charTaking the sum and difference A1) and(A2) according to

acteristics. The result, as is shown, is equal to that obtaineth3), we obtain equations fgu ands:

by the two-scale expansion method. These propagators were

extensively applied for construction of various statistical mo- @ _ (A5)

ments and calculations of the statistical characteristics of do P

high-frequency fields propagating in random med@a The

fact that these propagators preserve the random information dp

accumulated along the propagation paths, makes them suit- do

able also for the analysis of the intensity enhancement and

localization effect$8,9,14.

The further extension of the solutions presented in this

work would be the development of an averaging procedure

and construction of the statistical measures directly from the ds

solutions of the propagating field itself, and not from the do " (A7)

paired products. This will allow us to solve a number of

problems not accessible before, among them analysis of the dy
do

(Ad)

. (AB)

field localization effects, obtaining expressions for the mul-

tifrequency coherence functions and performing the analysis
of pulsed signal propagation. First results in this direction

have already been obtaingt2].

S
n p+§,0' +n (A8)

S
pP— E o | |.
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APPENDIX: RAY-TRACING EQUATIONS dp (A9)
— . . _ prpiant 2 A9
Here we will derive the ray-tracing equations for the vari- do
able p and s defined by Eqgs(31) of the main text. Let us q
rewrite the ray—tracm_g Eq$13) and(14) for the coordinates ap =V n(p,0), (A10)
v, and the slopep,, i=1, 2: do
n_ (A1) 9 _ All
do =Pi % =mn ( )
dpi dng | 2
%—V,,in(vi ,O). (A2) %=E{Vp.[Vpn(p,a).s]+[Vpn(p,o)s]}, (A12)
Next we define new sum and difference coordinates which represent Eq$319—(31d of the main text.
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