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Different approach for evaluating dissipation in macroscopic quantum tunneling
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The problem of evaluating dissipative effects in macroscopic quantum tunneling is re-examined for the case
of Josephson junctions, with the adoption of an alternative way with respect to several previously proposed
and, in some cases, contradictory approaches. The system, which consists of a junction coupled to a transmis-
sion line, is analyzed both analytically and numerically. A test of the theoretical model, as compared to the
experimental results available, is performed in accordance with a criterion based on a shortening of the
traversal time.
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[. INTRODUCTION rable to those obtained by using different, more sophisticated
(i.e., requiring functional integrationgrocedures. A result
In several aspects, the motion of a particle undergoingf this type was anticipated in R€D].

quantum tunneling—one of the more nonclassical predic- The present work is organized as follows. First, we
tions of quantum mechanics—has long been an open protpresent a short review of the main contributions for evaluat-
lem. Today, the focus of much tunneling research is on deing the dissipative effects, mainly for the case of a Josephson
termining the degree to which this quantum concept can b#nction. In Sec. Il, using a different procedure, we recon-
extended to the macroscopic woflt]]. This leads to a need Sider the problem of a Josephson junction coupled to a trans-
to include, within a quantum framework, the effect of the mission line, which controls the dissipative effects. Last, in
dissipation, which is more or less always present in macroSec. lll, on the basis of experimental results available up
scopic systems. Within this context, the Josephson effect igntil now a test of the model is performed according to a
one of the most suitable for observing phenomena such d¥Ww criterion.

macroscopic quantum tunneliylQT), macroscopic quan-  The issues of the principal approaches to the problem are
tum coherencéMQC), and energy level quantizatiggLQ)  Summarized in Table I. The results in poi@—where 7 is
[2]. the friction coefficient,w. is the cutoff frequency of the

The evaluation of dissipative effects in MQT and MQC is phonon-bath, 75 is the bounce duration, andg is its
a formidable task, and since the 1980s many efforts hav@mplitude—are direct consequences of the Feynman ap-
been devoted to dealing with it. A relatively recent work on proach[10] as derived by Sethr{d 1], and by Bruinsma and
this topic [3] reopened a question already debafdéfiand  Per Bak[12], the latter having been obtained in the short-
only apparently fully understoo@5]. In fact, it might be time limit, which is the opposite of the one of interest to us.
argued that dissipation always suppresses tunneling becaugéthin both limits, w.7g<1 and o.7g>1, these give a
it induces an additional positive Euclidean action. Howevernegative variation of the action, which would produce an
this is not necessarily true since, in some approaches, trfenhancement of the decay rate. However, as previously an-
tunneling effect depends considerably on the choice of courticipated, it is commonly believed that a friction coefficient
terterms. Again, in Ref[3] the possibility that dissipation in the motion(even if classically forbiddgnmust produce a
enhances the tunneling rate is demonstrated, as opposedgappression of the tunneling. As previously mentioned, this
the generally accepted tender{®y7]. apparent contradiction was resolved by introducing a coun-

Subsequently, however, this problem was redimensionederterm that neutralizes the variation in the local potential in
demonstrating that whether or not this counterterm should btéhe Lagrangian of the tunneling system coupled to the pho-
included essentially depends on the problem concefed non bath. This produced the results in pdiny, results which
In other words, depending on the model used, the inclusioare at least qualitatively confirmed by the other approaches
of the counterterm may be compulsory. Since an attempt if5]. The approaches in points) and (d), while producing
being made to avoid microscopic analysis, due to its intrinsignore suitable results for applications, always rest on the
complexity, the counterterm is found to be very naturalsame assumption of renormalizing the local potential by se-
within the context of more phenomenological approachedecting an appropriate counterterm. The variation in the nu-
[6]. merical coefficient multiplyingzx3 in point (c) is due to

However, in accepting this point of view it is possible to different values of the ratiag / 7, of the bounce durationg
follow different approaches in which this problem does notto the durationr, of a single kink{13]. The result in pointd)
arise. For example, we can adopt a procedure that is mainlig considered to be the most appropriate for interpreting a
based on an evaluation of the energy lost by the system whileariety of systemg6].
tunneling. In this way, we can obtain results that are compa- The approach in poire) is said to be phenomenological,
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TABLE I. Different approaches for evaluating the dissipative action-variation for the bounce trajectory of
a Josephson junction.

Variation of the actioM S References
(a)Path-integrals — (plam)xE[ wiri— O(wird)], w.rp<1 [11,12
— (9l m)X3[ 0 — IN(we7s) —consi, werg>1 [10,17
(b)Path-integrals with (9l m)XE[ wmg— O(0273)], weTg<l (5]
renormalized potential (7! 7)In|weeX3+const, weg> 1 [5]
(c)Alternative formula for(b) (nl m)[ 312+ In(75/7) E=(0.48— 0.83)7x3 [13]
w.tg>1, with 75/7,=1-3
(d) Caldeira Leggett analysis (712)7 | 0| é(w)|*dw=0.4657x3 [6]
with counterterm
(e)Phenomenological analysis nffxdrfixdr’[k(r’)]zz0.877;x§ [9,15]
(f) Distributed load I H(w)|é()|?do, H(w)=7|o|tanh{o| ) [16,18

(open transmission line

since it is derived by simply evaluating the energy lost dur-where the current(z’, 7) and the voltag&/(z',7) are related

ing tunneling. In fact, no energy is lost in the tunneling pro-by V(z',7)=Zyl(z',7). By substituting in Eg.(1) and

cess if the particle is isolated from its environment, whereashanging the variable according ¢@’ =vd7’, we obtain

coupling to the environment means that the particle loses ,

energy while tunneling14]. This can be seen either as pro- C(Z’T):f cVi(z',rdz

ducing a loss of energh®] or as an increase in the potential 0

of the barrier, which is given by /" |x|xd7’ [15]. Then, by ;

integrating again over time, we obtain the result in péept =J’ cV2(7" )vd7’

which is comparable with the ones in poiries and(d). It is 0

noteworthy that the range of the numerical factor of the lim- T

its in point(c) has values that are practically coincident with =f Zo'VA(7)dr, (2

the numerical factors of the limits in pointsl) and (e). 0

Therefore, all of these treatments are rea”y Comparable. and the relative actionMS) will be obtained by a further
Last, a completely different treatment is the one in pointintegration in time. The action of the junction alone will be

(f). Developed by Chakravarty and Schnjith], it was al-  denoted byS;, and is given by

most ignored in subsequent literatlifi€’], but recently reex-

gmmed[lS_]. The pec;uhgnty of thls approach consists Qf t_he Sff drL[ ()], ®)

incorporation of a distributed circuit model—a transmission

line that determines the dissipative effects—within the

bounce formalism. The results obtained therein confirm thos

of different approaches, but avoid aag hocassumptions.

The approaches in point®) and (f) lead to very similar

where ¢(7) is the Cooper-pair phase-difference across the
function. By assuming that the internal dissipation of the
junction is negligible,(7) is given by[5]

results, as can be seen below, devoting our analysis to a B 7 Qr
better understanding of this similarity. ¢(7) = ppsectt| —-|, 4
|
: f'YY.V'\ : ......
Il. AN ALTERNATIVE WAY OF DETERMINING P 3)
DISSIPATIVE EFFECTS RS
First, let us consider the circuit arrangement of Figg) 1 unit .;ngt,; 7

where a Josephson junction is coupled to an open transmis
sion line of indefinite lengtfz. Let us denote the inductance
and the capacitance per unity lengthlbgndc, respectively.
Thus, the characteristic impedance of the ljassuming the
electrical loss to be negligiblés Z,= (I/c)?, and the wave
velocity isv = (Ic) "Y2 With z’ being the spatial coordinate
and 7 being the imaginary time, the Euclidean Lagrangian of
the line can be expressed as

L2 L2 L2 L2 L2 L2

cell —

FIG. 1. Josephson junction coupled to an open transmission line
, (a), wherel andc represent the inductance and the capacitance per
L(z,7)= J [IN%(Z',7)+icVA(Z',7)]dZ, (1) u.nit. length. In(b), the junction i§ coupleq to an.artificial line con-
0 sisting ofN cells of T type, terminated with the impedanie .
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where ¢g is the bounce amplitude, and is the angular

frequency of small oscillations inside the potential well. Dis- gz}
sipative effects are attributed only to the transmission line, o(t) a)
but the bounce trajector#4) is assumed to be unchanged
[19]. Since the line and the junction are coupled’at 0, the
second Josephson equation must haxgz'=0,7) 0 T

=(<I>0/27-r)£p(r), where®,, is the flux quantum. Therefore,
Eq. (2) simply becomes

(I)O 2 (. IN12H ! .
£=|52] 5| Tetrar, ® oo
277 ZO 0 =0 b)
a result that strictly resembles the first integfial d7’) in T, Ty Ty T
point (e) by identifying (®o/27)%Z, * with 7, ande(7) with \/
x(7). There is, however, some significant difference between

the two results since in poirié) the variabler runs from—o
to +, whereas in the present case z/v runs from 0 to
+oo (or from — to 0). Analogously, and coherently with
this constraint, the integration in E(B) will also be limited
in the same time interval for a correct consideration of the
relative importance. Therefore, it seems that the action inte-
gral for the line should be evaluated as

AS (DozlfodfT"Zd' 6

- 277 ZO o T 700[()0(7-)] T, ()

. ) . . . FIG. 2. Sketch of the voltage pulsé(r,z')=¢(7) traveling
which gives a result of just half of that in poif#), namely, along a transmission line with characteristic impedaznge V/I. In

2 . ' _ .
0.436n¢5 - Note that once the SUb_StItUtI(miT— dx is made, (a), we have the bounce trajectogy 7) centered at=0. In (b), the
Eq. (6), or, better, its equivalent expressiodS  pulse is given as a function of time t=0. In (c), the pulse, which
= nfgwdezde’[X( T’)]Z' becomes AS= nfédx’/ travels in the direction of increasirg], is represented as a function

)'((Xl)fé’)'((xu)dxn, which is exactly equal to Eq11) in Ref. of the spatial coordinate’ at different instantsrq,7,,7,. For a

[9], x being the spatial coordinate in the barrier. In our casedVe" coordinate(eg,, z'=0), the pulse values subsequent 40
the spatial coordinate is, from the beginnizg, which runs =0 correspond to the points marked i, which are situated in

f indefinite | n f th L the domain of negative times. Analogously, for a pulse traveling in
_rom zero to an indefinite lengtha— oo _O t_ e transmission the opposite direction, it is necessary to consider the domain of
line. In both cases, however, the action integk& can be

) ' positive times.
expressed by means »f7)— ¢(7), and by considering only
a half-bounce trajectory, since in real tunneling processepoint (f) in Table I, and that of Widom and Clafk1]. As
only a half bounce is actually traveled by the particle. Inpreviously anticipated, the advantages of such a procedure
terms of probability, which is the square of the absolutelie in demonstrating how to incorporate a distributed, or
value of amplitude, the calculation requires consideration ofumped, circuit model in bounce formalism in order to cal-
the complete bounci0]. A consideration of the complete culate the tunneling rate from the zero-voltage state. This
bounce trajectory within our framework, i.e., from Ef) to ~ way we avoid anyad hocassumptions, as well as delicate
Eq. (6), naturally rests on the assumption of a symmetricboundary conditions that are inherent in the approach of
transmission line, as in Ref16], that is, withz’ running  point (f) [18].
from —z to +z (see Fig. 2 Consequently, the time variable For this purpose, we have considered the circuit arrange-
runs from —« to +%, and AS is twice that of Eq.(6), = ment of Fig. 1b) with a Josephson junction coupled to an
namely, O.872,7<p§. Adopting a symmetric line is rather un- artificial transmission line consisting of a numh¢mof cells
natural, and a suitable geometry for measurements consisgdth inductancel. and capacitanc€. This arrangement can
of a junction coupled to a single transmission line. Consid-€ither be terminated with an impedari¢gequal to the char-
ering a pair of parallel transmission lines merely reduces th@cteristic oneZ,= JL/C, or opened Z;=), similarly to
situation to the case of only one, with a characteristic impedthe previously adopted case of Figial Analogously, the
anceZy/2 [18]. wave velocity isv=(LC) Y2 and the delay is given by,

In order to test the worth of the result expressed by Eq=N\/LC. These relations hold true if the angular frequency
(6), we have reexamined the problem on the basis of am is sufficiently lower than the cutoff one at.=2/\/LC.
alternative approach. We followed a procedure that is half- Analogously to Eq(1), the Euclidean Lagrangian of the
way between the one adopted by Chakravarty and Schmidine was expressed §22]
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TABLE II. The currentsl; and the voltage¥; of the Lagrangiar{7) can be determined as the imaginary
frequencys=iw, and for a given excitatioV,, by solving a system o algebraic equations whose coef-
ficients are listed below. For open lines, the last coefficier¥ gbecomes zero.

Vo Iy Vi I2 Va I3 Vs oo - Ve In Vi
1 sL/2 1 0 0 0 0
0 1 —-sC -1 0 0 0
0 0 1 —sL -1 0 0
0 0 0 1 —-sC -1 0
0 0 0 0 1 -sL -1
0 1 —-sC -1 0
0 0 1 —-sL/2 -1
0 0 0 1 —+/C/L
1 1 N-1 Since the trajectory is a function i, which determines its
E(N,T)=ZLI§(7—)+ ZL|,2\‘(T)+ > ELI?( 7) duration,AS also turns out to be a function 6F, in addition
=2 to 7o, which is a measure of the virtual length of the artificial
N-1 line.
+ 21 ECViZ(r)+ ToVN(T) IN(T), (7) Notwithstanding the relative simplicity of this procedure

with respect to evaluating functional integrations, the results
could easily be obtained simply by means of numerical

wherel; andV; are, respectively, the current and the voltageanalysis. Several computations have been performed, and
of the different cells. These can be obtained, for a giversome results are shown in the form of continuous lines in
excitationVy(7), by solving a system of differential equa- Figs. 3 and 4, as functions ¢ and in units OfngozB. They
tions. However, since ouY, is obtained in an imaginary- refer to an artificial line composed dfcells withL=0.1 and
time variable(bounce formalism it is convenient to solve C=0.2 so that the cutoff frequenay, is above 14, andN

our circuit problem in imaginary frequencies; that is, accord-ranges from 2 to 20. Therefore, the delay varies in the

ing to a Laplace-transform analysis that works in a temporaf.28-2.8 range. The curves in Fig. 3 were obtained with the
semispace and fits well into our problem. This simplifies theartificial line terminated with the characteristic impedance
procedure enormously, since the problem is reduced to solvz,=0.707, while the curves in Fig. 4 refer to the open arti-
ing a system of algebraic equatiofsee Table Ii. In this  ficial line, Zr=%. In both figures, our results are superim-
way, the Lagrangian of Ed(7) becomes a function of fre- posed on a family of curveglashed linesthat represents the
quencyw, thatis,L(i w, 7o), and the action of the line can be results of the model in poir(f) of Table | for several values
evaluated a$16,18 of the same parametet,. In the case of Fig. 3, they are

properly divided by 2 since the formula in poif} refers to
two open parallel transmission lingE6]. We note that while

AS(Q,79)= j_ dwF(w,)|é(w)|?, (8)  the two approaches tend to be comparable within the limit of

large values of}, there is a disagreement of roughly a factor
of 2 within the opposite limit of small values d. This

WhereF(w.To)%wZE(iw,TO). andé(w) is the Fourier trans-  means that, for a long pulse duratigar short ling, our
form of the trajectoryp(7) of Eqg. (4), defined as in Ref5],  results tend to be twice those of REES]. The results of Fig.

namely,

4 are superimposed on a family of curves, as given directly
by the formula in poin{f) (without dividing by twg. In this
2 (mo) Wm) case we note that while in the larde limit, our results,
csec

Q

q (99  situated at best within-0.4-0.6,7¢3, are sensibly lower

than the limiting value of the other model, in the sm@all
(capacitive limit they tend to be in rather good agreement.

. 2\2
§(w)—<PBQ—\/;

By taking into account thatV(w)|=(®q/2m)wé(w), and  Under these circumstances, it seems that none of the reported
that[(®o)/27]°= 5Z,, Eq. (8) becomes models in Table | has to be considered as definitive; instead,

AS(Q,TO)=(

the situation seems to be a little more complicated depending
2.2 2 . also on _the region (§,7y) of the parameters that we are
_) ﬂﬁpézof dow w?L(iw, ) considering. _ - _ _
Q\/; — For a better comparison, it is instructive to report in the
5 same diagram(see Fig. % the numerical results already
ﬂ) csecﬁ<ﬂ> (10) shown in Figs. 3 and 4. What clearly emerges is that, within

X
Q Q the limit of high-frequency?, and for a sufficient numbex
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0.5

AS/n(pS

0.4

0.3 4

0.2 +

0.1 +

FIG. 3. Increase of the actiofS in units of n(pé (continuous FIG. 4. The same as Fig. 3, but in the case of the same atrtificial
lines) as a function of the angular frequenfy of the bounce tra- open line Z1==). The dashed curves represent the results as given
jectory, computed for different values of the delgyof the artificial by the complete formula in poir(f) of Table I. The agreement is
line consisting ofN=2—20 cells, terminated wittZ;=Z,. The  acceptable here in the sm&ll limit.
dashed curves represent the results of the formula in gbirdf
Table I, divided by two. The agreement is acceptable only in theresults can be used, in turn, for evaluating the dissipative
large Q) limit. effects as follows.

The semiclassical traversal time of a particle of mass
of cells, the results for an open lin&{=<) tend to con- and energyE, through a potential barriev(x), is given by
verge on those for a terminated lin@{(=2Z,) [23]. The [26]
asymptotic value ofAS, in units of 7]<sz, is situated around
0.38, a value slightly less than half of the prediction in point _(m 1/2J'b dx 11
(e) of Table I, or by Eq(6), that is, 0.436. This confirms the Y a[V(x)— E]l/2’ (12)
correctness of Eq(6), which gives an upper limit for nu-
merical evaluations in the case of a terminated line. In thisyhere a and b are the turning points a¥(x)=E. In the
way, all of our results turn out to be situated in a relativelypresence of dissipative effects, the potentigk) is aug-
small interval, with an acceptable spreading of valL®&§. mented by an amountV(x)= nféb(r'dxr, which is the

This confirms the worth of our analysis, which leads, in agq iyalent of Eq(5). The traversal time is thus shortened by
rather simple way, to results comparable with the ones ob;

t gi b
tained by using more complicated afid some casesdis- an amount given by

putable fashions. m\2[ b dx
AT:T_T':(—) f _
2 a[V(x)—E]¥2
Ill. COMPARISON OF THE THEORETICAL
PREDICTIONS WITH THE EXPERIMENTS Jb, dx
: . . - : (12
Now we wish to test the aforesaid theoretical results a’ [V(x)+W(x)—E]Y?

against the available experimental results. The latter mainly

refer to the determination of the semiclassical traversal timavherea’ and b’ are the modified turning points af(x)

of the barrier, which is obtained by measuring the depen-W(x)=E. Equation(12) can be evaluated by a perturba-
dence of the zero-voltage-state lifetime either on the biagive expansion that holds fal(x)<V(x)—E, and the ratio
current or on the load of the junctid25]. Traversal time Ar/7 can be expressed as
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results of the numerical analysis, which asymptotically tend
to ~0.38;7<sz (see Fig. 5, lower the numerical factor in Eq.
(15) to ~0.95. However, due to the several approximations
adopted in deriving Eq(15), we consider this correction to
have less importance. We are now in a position to test the
predictions of the theoretical model.

The paper by Voss and WelpB7] allows for a direct test
of Eq. (15) since it explicitly supplies the ratid S/S, in the
form 8A/7.2Q, whereA is a parameter determined by the
fitting of the experimental data of the transition rate versus
the bias current. The best fit was obtainedAer 4.5, which,
in Eq. (15), would correspond to a numerical factor of about
3.33, which appears to be a disproportionate value. However,
again in Ref[27], a value ofA=1.5 was also considered to
be plausiblgdepending on a different choice of resistai;e
hence of coefficien@Q). Under this assumption, we obtain a
numerical factor of 1.11, which is in excellent agreement
with the theoretical prediction.

Another result is offered in the paper by Estetel.[28].
By assuming their passage time as tunneling time
=78 ps, to be compared with the half period in harmonic
approximation 7=m7/{)=85 ps, we obtainA7/7=7/85
=8%. Considering that, in this cas®=0ORC;=7.2 (Q
=3.7x10'° s71, R=720Q),C;=2.7 pF), in Eq.(15) we ob-
tain a value of 0.575 for the numerical coefficient, which is

FIG. 5. Comparison of the numerical results of Fig. 3, relative toconsiderably lower than the prediction of E¢5). However,

terminated artificial lines of several lengtlisontinuous curves
and the results of Fig. 4, relative to open lin@ashed curves
The horizontal line situated at 0.46(;‘»% corresponds to Eq6).

13

AT/7'2< W) >,

2[V(x)—E]

where () means an average over the barrier extension.
Within the limit of V,,,{(X)>E, Eg. (13) can be further sim-

plified by taking into account thaW(x)=2/5an§f(x),
where f(x) is a function whose maximum value atXxg
holds 2/3[18], Viax=Q2Sy/3.6, whereSy= (4/15)mQx3 is
the half-bounce action in the absence of dissipajtgnWe
therefore obtain the approximate relation

"X

A7l 7=0.7—F(X) 243
T/ T= g(X)f\«gg

by taking 0.7 (x) =0.31, whereA S=0.4367¢3 , as given by
Eq. (6). For our purposes, it is convenient to rewrite Etg)
in a different form. Using the substitutionsm
—Cy(Py/27)? and p— R (P y/27)>—R andC, being the
shunting resistance and capacity of the
respectively—the total action becomé&s=Sy+ AS=Sy(1
+1.640RGC;).
Therefore, Eq(14) can be put in the form

(14

A7 1.15+0.25

g 15)

by considering that in the low temperature lirtthe result of
Ref.[28] refers to a temperature value sufficiently below the
crossover temperatur@ better determination of the tunnel-
ing time is given by r,=3.600=97 ps[25], we obtain
A7/7=19/97=19.6%. This value corresponds to a numeri-
cal factor of 1.41, which is in rather good agreement with
Eq. (15).
Finally, in Ref.[29] we determined a traversal time of 91
ps for a similar junction withQ=QORC;=11, where()=2
x 10 s71, C;=6.6 pF, andR=85(), according to Ref.
[30]. This time is shorter than the one predicted in harmonic
approximation113 pg, and is preferred in this case since the
temperature was not low enough, but rather was comparable
with the crossover temperature. Therefore, we have
=113-91=22 ps andA 7/7=19%, which, in Eq(15), cor-
responds to a numerical factor of 2.1, which is considerably
higher than the prediction. A reduction in time 6f19% is
presumably a little exaggerated. By considering the curves of
the potential barrier for different friction coefficient values
[25], we arrive at the conclusion thAtr/ 7 should be around
10%, a value that lowers the numerical factors in @¢) to
~1, and is hence in agreement with the test prediction.

We can therefore conclude that, although not rigorous, the

junction,criterion expressed by Ed15) represents a very practical

way of predicting and testing dissipative effects associated
with MQT in Josephson junctions. As for the uncertainty in
the numerical factor in Eq(15), the experimental results
available are not sufficient enough to select an exact value.
Further experimental work needs to be devoted to more pre-
cise testing of this numerical factor. However, if more accu-
rate results become available, testing directly on the basis of

whereQ=QRC;, and the uncertainty in the numerical fac- Eq. (12), rather than by means of the approximate expres-
tor roughly accounts for the approximations involved. Thesions(13) and(15), would be preferable.
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