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Different approach for evaluating dissipation in macroscopic quantum tunneling
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The problem of evaluating dissipative effects in macroscopic quantum tunneling is re-examined for the case
of Josephson junctions, with the adoption of an alternative way with respect to several previously proposed
and, in some cases, contradictory approaches. The system, which consists of a junction coupled to a transmis-
sion line, is analyzed both analytically and numerically. A test of the theoretical model, as compared to the
experimental results available, is performed in accordance with a criterion based on a shortening of the
traversal time.
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I. INTRODUCTION

In several aspects, the motion of a particle undergo
quantum tunneling—one of the more nonclassical pred
tions of quantum mechanics—has long been an open p
lem. Today, the focus of much tunneling research is on
termining the degree to which this quantum concept can
extended to the macroscopic world@1#. This leads to a need
to include, within a quantum framework, the effect of t
dissipation, which is more or less always present in mac
scopic systems. Within this context, the Josephson effec
one of the most suitable for observing phenomena suc
macroscopic quantum tunneling~MQT!, macroscopic quan
tum coherence~MQC!, and energy level quantization~ELQ!
@2#.

The evaluation of dissipative effects in MQT and MQC
a formidable task, and since the 1980s many efforts h
been devoted to dealing with it. A relatively recent work
this topic @3# reopened a question already debated@4# and
only apparently fully understood@5#. In fact, it might be
argued that dissipation always suppresses tunneling bec
it induces an additional positive Euclidean action. Howev
this is not necessarily true since, in some approaches,
tunneling effect depends considerably on the choice of co
terterms. Again, in Ref.@3# the possibility that dissipation
enhances the tunneling rate is demonstrated, as oppos
the generally accepted tendency@6,7#.

Subsequently, however, this problem was redimension
demonstrating that whether or not this counterterm should
included essentially depends on the problem concerned@8#.
In other words, depending on the model used, the inclus
of the counterterm may be compulsory. Since an attemp
being made to avoid microscopic analysis, due to its intrin
complexity, the counterterm is found to be very natu
within the context of more phenomenological approac
@6#.

However, in accepting this point of view it is possible
follow different approaches in which this problem does n
arise. For example, we can adopt a procedure that is ma
based on an evaluation of the energy lost by the system w
tunneling. In this way, we can obtain results that are com
1063-651X/2002/65~6!/066616~7!/$20.00 65 0666
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rable to those obtained by using different, more sophistica
~i.e., requiring functional integrations! procedures. A result
of this type was anticipated in Ref.@9#.

The present work is organized as follows. First, w
present a short review of the main contributions for evalu
ing the dissipative effects, mainly for the case of a Joseph
junction. In Sec. II, using a different procedure, we reco
sider the problem of a Josephson junction coupled to a tra
mission line, which controls the dissipative effects. Last,
Sec. III, on the basis of experimental results available
until now a test of the model is performed according to
new criterion.

The issues of the principal approaches to the problem
summarized in Table I. The results in point~a!—whereh is
the friction coefficient,vc is the cutoff frequency of the
phonon-bath,tB is the bounce duration, andxB is its
amplitude—are direct consequences of the Feynman
proach@10# as derived by Sethna@11#, and by Bruinsma and
Per Bak@12#, the latter having been obtained in the sho
time limit, which is the opposite of the one of interest to u
Within both limits, vctB!1 and vctB@1, these give a
negative variation of the action, which would produce
enhancement of the decay rate. However, as previously
ticipated, it is commonly believed that a friction coefficie
in the motion~even if classically forbidden! must produce a
suppression of the tunneling. As previously mentioned, t
apparent contradiction was resolved by introducing a co
terterm that neutralizes the variation in the local potentia
the Lagrangian of the tunneling system coupled to the p
non bath. This produced the results in point~b!, results which
are at least qualitatively confirmed by the other approac
@5#. The approaches in points~c! and ~d!, while producing
more suitable results for applications, always rest on
same assumption of renormalizing the local potential by
lecting an appropriate counterterm. The variation in the
merical coefficient multiplyinghxB

2 in point ~c! is due to
different values of the ratiotB /tk of the bounce durationtB
to the durationtk of a single kink@13#. The result in point~d!
is considered to be the most appropriate for interpretin
variety of systems@6#.

The approach in point~e! is said to be phenomenologica
©2002 The American Physical Society16-1
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TABLE I. Different approaches for evaluating the dissipative action-variation for the bounce trajecto
a Josephson junction.

Variation of the actionDS References

~a!Path-integrals 2(h/4p)xB
2@vc

2tB
22O(vc

3tB
3)#, vctB!1 @11,12#

2(h/p)xB
2@vctB2 ln(vctB)2const#, vctB@1 @10,11#

~b!Path-integrals with (h/p)xB
2@vctB2O(vc

2tB
2)#, vctB!1 @5#

renormalized potential (h/p)lnuvctBuxB
21const,vctB@1 @5#

~c!Alternative formula for~b! (h/p)@3/21 ln(tB /tk)#xB
2.(0.4820.83)hxB

2 @13#

vctB@1, with tB /tk5123
~d! Caldeira Leggett analysis (h/2)*2`

` uvuuj(v)u2dv.0.465hxB
2 @6#

with counterterm
~e!Phenomenological analysis h*2`

` dt*2`
t dt8@ ẋ(t8)#2.0.87hxB

2 @9,15#

~f! Distributed load *2`
` H(v)uj(v)u2dv, H(v)5huvutanh(uvut0) @16,18#

~open transmission line!
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since it is derived by simply evaluating the energy lost d
ing tunneling. In fact, no energy is lost in the tunneling pr
cess if the particle is isolated from its environment, wher
coupling to the environment means that the particle lo
energy while tunneling@14#. This can be seen either as pr
ducing a loss of energy@9# or as an increase in the potenti
of the barrier, which is given byh*2`

t uẋuẋdt8 @15#. Then, by
integrating again over time, we obtain the result in point~e!,
which is comparable with the ones in points~c! and~d!. It is
noteworthy that the range of the numerical factor of the li
its in point ~c! has values that are practically coincident w
the numerical factors of the limits in points~d! and ~e!.
Therefore, all of these treatments are really comparable.

Last, a completely different treatment is the one in po
~f!. Developed by Chakravarty and Schmid@16#, it was al-
most ignored in subsequent literature@17#, but recently reex-
amined@18#. The peculiarity of this approach consists of t
incorporation of a distributed circuit model—a transmissi
line that determines the dissipative effects—within t
bounce formalism. The results obtained therein confirm th
of different approaches, but avoid anyad hocassumptions.
The approaches in points~e! and ~f! lead to very similar
results, as can be seen below, devoting our analysis
better understanding of this similarity.

II. AN ALTERNATIVE WAY OF DETERMINING
DISSIPATIVE EFFECTS

First, let us consider the circuit arrangement of Fig. 1~a!,
where a Josephson junction is coupled to an open trans
sion line of indefinite lengthz. Let us denote the inductanc
and the capacitance per unity length byl andc, respectively.
Thus, the characteristic impedance of the line~assuming the
electrical loss to be negligible! is Z05( l /c)1/2, and the wave
velocity is v5( lc)21/2. With z8 being the spatial coordinat
andt being the imaginary time, the Euclidean Lagrangian
the line can be expressed as

L~z,t!5E
0

z

@ 1
2 l I 2~z8,t!1 1

2 cV2~z8,t!#dz8, ~1!
06661
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where the currentI (z8,t) and the voltageV(z8,t) are related
by V(z8,t)5Z0I (z8,t). By substituting in Eq.~1! and
changing the variable according todz85vdt8, we obtain

L~z,t!5E
0

z

cV2~z8,t!dz8

5E
0

t

cV2~t8!vdt8

5E
0

t

Z0
21V2~t8!dt8, ~2!

and the relative action (DS) will be obtained by a further
integration in time. The action of the junction alone will b
denoted bySJ , and is given by

SJ5E dtL@f~t!#, ~3!

where w(t) is the Cooper-pair phase-difference across
junction. By assuming that the internal dissipation of t
junction is negligible,w(t) is given by@5#

w~t!5wBsech2S Vt

2 D , ~4!

FIG. 1. Josephson junction coupled to an open transmission
~a!, wherel andc represent the inductance and the capacitance
unit length. In~b!, the junction is coupled to an artificial line con
sisting ofN cells of T type, terminated with the impedanceZT .
6-2
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DIFFERENT APPROACH FOR EVALUATING . . . PHYSICAL REVIEW E65 066616
where wB is the bounce amplitude, andV is the angular
frequency of small oscillations inside the potential well. D
sipative effects are attributed only to the transmission li
but the bounce trajectory~4! is assumed to be unchange
@19#. Since the line and the junction are coupled atz850, the
second Josephson equation must haveV(z850,t)
5(F0/2p)ẇ(t), whereF0 is the flux quantum. Therefore
Eq. ~2! simply becomes

L~t!5S F0

2p D 2 1

Z0
E

0

t

@ẇ~t8!#2dt8, ~5!

a result that strictly resembles the first integral~in dt8) in
point ~e! by identifying (F0/2p)2Z0

21 with h, andẇ(t) with

ẋ(t). There is, however, some significant difference betwe
the two results since in point~e! the variablet runs from2`
to 1`, whereas in the present caset5z/v runs from 0 to
1` ~or from 2` to 0!. Analogously, and coherently with
this constraint, the integration in Eq.~3! will also be limited
in the same time interval for a correct consideration of
relative importance. Therefore, it seems that the action i
gral for the line should be evaluated as

DS5S F0

2p D 2 1

Z0
E

2`

0

dtE
2`

t

@ẇ~t8!#2dt8, ~6!

which gives a result of just half of that in point~e!, namely,
0.436hwB

2 . Note that once the substitutionẋdt5dx is made,
Eq. ~6!, or, better, its equivalent expressionDS

5h*2`
0 dt*2`

t dt8@ ẋ(t8)#2, becomes DS5h*0
xdx8/

ẋ(x8)*0
x8ẋ(x9)dx9, which is exactly equal to Eq.~11! in Ref.

@9#, x being the spatial coordinate in the barrier. In our ca
the spatial coordinate is, from the beginning,z8, which runs
from zero to an indefinite lengthz→` of the transmission
line. In both cases, however, the action integralDS can be
expressed by means ofẋ(t)→ẇ(t), and by considering only
a half-bounce trajectory, since in real tunneling proces
only a half bounce is actually traveled by the particle.
terms of probability, which is the square of the absolu
value of amplitude, the calculation requires consideration
the complete bounce@20#. A consideration of the complet
bounce trajectory within our framework, i.e., from Eq.~1! to
Eq. ~6!, naturally rests on the assumption of a symme
transmission line, as in Ref.@16#, that is, with z8 running
from 2z to 1z ~see Fig. 2!. Consequently, the time variabl
runs from 2` to 1`, and DS is twice that of Eq.~6!,
namely, 0.872hwB

2 . Adopting a symmetric line is rather un
natural, and a suitable geometry for measurements con
of a junction coupled to a single transmission line. Cons
ering a pair of parallel transmission lines merely reduces
situation to the case of only one, with a characteristic imp
anceZ0/2 @18#.

In order to test the worth of the result expressed by
~6!, we have reexamined the problem on the basis of
alternative approach. We followed a procedure that is h
way between the one adopted by Chakravarty and Sch
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point ~f! in Table I, and that of Widom and Clark@21#. As
previously anticipated, the advantages of such a proced
lie in demonstrating how to incorporate a distributed,
lumped, circuit model in bounce formalism in order to ca
culate the tunneling rate from the zero-voltage state. T
way we avoid anyad hocassumptions, as well as delica
boundary conditions that are inherent in the approach
point ~f! @18#.

For this purpose, we have considered the circuit arran
ment of Fig. 1~b! with a Josephson junction coupled to a
artificial transmission line consisting of a numberN of cells
with inductanceL and capacitanceC. This arrangement can
either be terminated with an impedanceZT equal to the char-
acteristic oneZ05AL/C, or opened (ZT5`), similarly to
the previously adopted case of Fig. 1~a!. Analogously, the
wave velocity isv5(LC)21/2 and the delay is given byt0

5NALC. These relations hold true if the angular frequen
v is sufficiently lower than the cutoff one atvc52/ALC.

Analogously to Eq.~1!, the Euclidean Lagrangian of th
line was expressed as@22#

FIG. 2. Sketch of the voltage pulseV(t,z8)}ẇ(t) traveling
along a transmission line with characteristic impedanceZ05V/I . In
~a!, we have the bounce trajectoryw(t) centered att50. In ~b!, the
pulse is given as a function of time atz850. In ~c!, the pulse, which
travels in the direction of increasingz8, is represented as a functio
of the spatial coordinatez8 at different instantst0 ,t1 ,t2. For a
given coordinate~eg., z850), the pulse values subsequent tot
50 correspond to the points marked in~b!, which are situated in
the domain of negative times. Analogously, for a pulse traveling
the opposite direction, it is necessary to consider the domain
positive times.
6-3
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TABLE II. The currentsI i and the voltagesVi of the Lagrangian~7! can be determined as the imagina
frequencys5 iv, and for a given excitationV0, by solving a system ofN algebraic equations whose coe
ficients are listed below. For open lines, the last coefficient ofVN becomes zero.

V0 I 1 V1 I 2 V2 I 3 V3 . . . I N21 VN21 I N VN

1 sL/2 1 0 0 0 0 . . . . . . . . . . . . . . .
0 1 2sC 21 0 0 0 . . . . . . . . . . . . . . .
0 0 1 2sL 21 0 0 . . . . . . . . . . . . . . .
0 0 0 1 2sC 21 0 . . . . . . . . . . . . . . .
0 0 0 0 1 2sL 21 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . 1 2sC 21 0
0 . . . . . . . . . . . . . . . . . . . . . 0 1 2sL/2 21
0 . . . . . . . . . . . . . . . . . . . . . 0 0 1 2AC/L
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L~N,t!5
1

4
LI 1

2~t!1
1

4
LI N

2 ~t!1 (
i 52

N21
1

2
LI i

2~t!

1 (
i 51

N21
1

2
CVi

2~t!1t0VN~t!I N~t!, ~7!

whereI i andVi are, respectively, the current and the volta
of the different cells. These can be obtained, for a giv
excitationV0(t), by solving a system of differential equa
tions. However, since ourV0 is obtained in an imaginary
time variable~bounce formalism!, it is convenient to solve
our circuit problem in imaginary frequencies; that is, acco
ing to a Laplace-transform analysis that works in a tempo
semispace and fits well into our problem. This simplifies
procedure enormously, since the problem is reduced to s
ing a system of algebraic equations~see Table II!. In this
way, the Lagrangian of Eq.~7! becomes a function of fre
quencyv, that is,L( iv,t0), and the action of the line can b
evaluated as@16,18#

DS~V,t0!5E
2`

`

dvF~v,t0!uj~v!u2, ~8!

whereF(v,t0)5v2L( iv,t0), andj(v) is the Fourier trans-
form of the trajectoryw(t) of Eq. ~4!, defined as in Ref.@5#,
namely,

j~v!5wB

2A2

VAp
S pv

V D csechS pv

V D . ~9!

By taking into account thatuV(v)u5(F0/2p)vj(v), and
that @(F0)/2p#25hZ0, Eq. ~8! becomes

DS~V,t0!5S 2A2

VAp
D 2

hwB
2Z0E

2`

`

dv v2L~ iv,t0!

3S pv

V D 2

csech2S pv

V D . ~10!
06661
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Since the trajectory is a function ofV, which determines its
duration,DS also turns out to be a function ofV, in addition
to t0, which is a measure of the virtual length of the artifici
line.

Notwithstanding the relative simplicity of this procedu
with respect to evaluating functional integrations, the resu
could easily be obtained simply by means of numeri
analysis. Several computations have been performed,
some results are shown in the form of continuous lines
Figs. 3 and 4, as functions ofV and in units ofhwB

2 . They
refer to an artificial line composed ofN cells withL50.1 and
C50.2 so that the cutoff frequencyvc is above 14, andN
ranges from 2 to 20. Therefore, the delayt0 varies in the
0.28–2.8 range. The curves in Fig. 3 were obtained with
artificial line terminated with the characteristic impedan
Z050.707, while the curves in Fig. 4 refer to the open ar
ficial line, ZT5`. In both figures, our results are superim
posed on a family of curves~dashed lines! that represents the
results of the model in point~f! of Table I for several values
of the same parametert0. In the case of Fig. 3, they ar
properly divided by 2 since the formula in point~f! refers to
two open parallel transmission lines@16#. We note that while
the two approaches tend to be comparable within the limi
large values ofV, there is a disagreement of roughly a fact
of 2 within the opposite limit of small values ofV. This
means that, for a long pulse duration~or short line!, our
results tend to be twice those of Ref.@16#. The results of Fig.
4 are superimposed on a family of curves, as given dire
by the formula in point~f! ~without dividing by two!. In this
case we note that while in the largeV limit, our results,
situated at best within;0.4–0.6,hwB

2 , are sensibly lower
than the limiting value of the other model, in the smallV
~capacitive! limit they tend to be in rather good agreemen
Under these circumstances, it seems that none of the repo
models in Table I has to be considered as definitive; inste
the situation seems to be a little more complicated depend
also on the region (V,t0) of the parameters that we ar
considering.

For a better comparison, it is instructive to report in t
same diagram~see Fig. 5! the numerical results alread
shown in Figs. 3 and 4. What clearly emerges is that, wit
the limit of high-frequencyV, and for a sufficient numberN
6-4
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DIFFERENT APPROACH FOR EVALUATING . . . PHYSICAL REVIEW E65 066616
of cells, the results for an open line (ZT5`) tend to con-
verge on those for a terminated line (ZT5Z0) @23#. The
asymptotic value ofDS, in units ofhwB

2 , is situated around
0.38, a value slightly less than half of the prediction in po
~e! of Table I, or by Eq.~6!, that is, 0.436. This confirms th
correctness of Eq.~6!, which gives an upper limit for nu-
merical evaluations in the case of a terminated line. In t
way, all of our results turn out to be situated in a relative
small interval, with an acceptable spreading of values@24#.
This confirms the worth of our analysis, which leads, in
rather simple way, to results comparable with the ones
tained by using more complicated and~in some cases! dis-
putable fashions.

III. COMPARISON OF THE THEORETICAL
PREDICTIONS WITH THE EXPERIMENTS

Now we wish to test the aforesaid theoretical resu
against the available experimental results. The latter ma
refer to the determination of the semiclassical traversal t
of the barrier, which is obtained by measuring the dep
dence of the zero-voltage-state lifetime either on the b
current or on the load of the junction@25#. Traversal time

FIG. 3. Increase of the actionDS in units of hwB
2 ~continuous

lines! as a function of the angular frequencyV of the bounce tra-
jectory, computed for different values of the delayt0 of the artificial
line consisting ofN52220 cells, terminated withZT5Z0. The
dashed curves represent the results of the formula in point~f! of
Table I, divided by two. The agreement is acceptable only in
largeV limit.
06661
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results can be used, in turn, for evaluating the dissipa
effects as follows.

The semiclassical traversal time of a particle of massm
and energyE, through a potential barrierV(x), is given by
@26#

t5S m

2 D 1/2E
a

b dx

@V~x!2E#1/2
, ~11!

where a and b are the turning points atV(x)5E. In the
presence of dissipative effects, the potentialV(x) is aug-
mented by an amountW(x)5h*0

xuẋ8udx8, which is the
equivalent of Eq.~5!. The traversal time is thus shortened b
an amount given by

Dt5t2t85S m

2 D 1/2S E
a

b dx

@V~x!2E#1/2

2E
a8

b8 dx

@V~x!1W~x!2E#1/2D , ~12!

where a8 and b8 are the modified turning points atV(x)
1W(x)5E. Equation~12! can be evaluated by a perturb
tive expansion that holds forW(x)!V(x)2E, and the ratio
Dt/t can be expressed as

e

FIG. 4. The same as Fig. 3, but in the case of the same artifi
open line (ZT5`). The dashed curves represent the results as g
by the complete formula in point~f! of Table I. The agreement is
acceptable here in the smallV limit.
6-5



io

n

c-
he

nd
.
ns

the

e
us

ut
ver,
o

a
nt

ic

is

he
l-

ri-
ith

1

nic
e

able

bly

s of
s

the
l
ted
in

lue.
pre-
u-
s of
es-

to
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Dt/t.K W~t!

2@V~x!2E#L , ~13!

where ^ & means an average over the barrier extens
Within the limit of Vmax(x)@E, Eq. ~13! can be further sim-
plified by taking into account thatW(x)52/5hVxB

2 f (x),
where f (x) is a function whose maximum value atx5xB

holds 2/3@18#, Vmax5VS0/3.6, whereS05(4/15)mVxB
2 is

the half-bounce action in the absence of dissipation@5#. We
therefore obtain the approximate relation

Dt/t.0.7
hxB

2

S0
f ~x!'

2

3

DS

S0
~14!

by taking 0.7f (x)50.31, whereDS50.436hwB
2 , as given by

Eq. ~6!. For our purposes, it is convenient to rewrite Eq.~14!
in a different form. Using the substitutionsm
→CJ(F0/2p)2 andh→R21(F0/2p)2—R andCJ being the
shunting resistance and capacity of the junctio
respectively—the total action becomesS5S01DS5S0(1
11.64/VRCJ).

Therefore, Eq.~14! can be put in the form

Dt

t
'

1.1560.25

Q
, ~15!

whereQ5VRCJ , and the uncertainty in the numerical fa
tor roughly accounts for the approximations involved. T

FIG. 5. Comparison of the numerical results of Fig. 3, relative
terminated artificial lines of several lengths~continuous curves!,
and the results of Fig. 4, relative to open lines~dashed curves!.
The horizontal line situated at 0.436hwB

2 corresponds to Eq.~6!.
06661
n.

,

results of the numerical analysis, which asymptotically te
to ;0.38hwB

2 ~see Fig. 5!, lower the numerical factor in Eq
~15! to ;0.95. However, due to the several approximatio
adopted in deriving Eq.~15!, we consider this correction to
have less importance. We are now in a position to test
predictions of the theoretical model.

The paper by Voss and Webb@27# allows for a direct test
of Eq. ~15! since it explicitly supplies the ratioDS/S0 in the
form 8A/7.2Q, whereA is a parameter determined by th
fitting of the experimental data of the transition rate vers
the bias current. The best fit was obtained forA.4.5, which,
in Eq. ~15!, would correspond to a numerical factor of abo
3.33, which appears to be a disproportionate value. Howe
again in Ref.@27#, a value ofA.1.5 was also considered t
be plausible~depending on a different choice of resistanceR,
hence of coefficientQ). Under this assumption, we obtain
numerical factor of 1.11, which is in excellent agreeme
with the theoretical prediction.

Another result is offered in the paper by Esteveet al. @28#.
By assuming their passage time as tunneling timet t
578 ps, to be compared with the half period in harmon
approximation t5p/V585 ps, we obtain Dt/t57/85
.8%. Considering that, in this case,Q5VRCJ57.2 (V
53.731010 s21,R572V,CJ52.7 pF), in Eq.~15! we ob-
tain a value of 0.575 for the numerical coefficient, which
considerably lower than the prediction of Eq.~15!. However,
by considering that in the low temperature limit~the result of
Ref. @28# refers to a temperature value sufficiently below t
crossover temperature! a better determination of the tunne
ing time is given byt t53.6/V597 ps @25#, we obtain
Dt/t519/97519.6%. This value corresponds to a nume
cal factor of 1.41, which is in rather good agreement w
Eq. ~15!.

Finally, in Ref.@29# we determined a traversal time of 9
ps for a similar junction withQ5VRCJ511, whereV52
31010 s21, CJ56.6 pF, andR585V, according to Ref.
@30#. This time is shorter than the one predicted in harmo
approximation~113 ps!, and is preferred in this case since th
temperature was not low enough, but rather was compar
with the crossover temperature. Therefore, we haveDt
5113291522 ps andDt/t.19%, which, in Eq.~15!, cor-
responds to a numerical factor of 2.1, which is considera
higher than the prediction. A reduction in time of;19% is
presumably a little exaggerated. By considering the curve
the potential barrier for different friction coefficient value
@25#, we arrive at the conclusion thatDt/t should be around
10%, a value that lowers the numerical factors in Eq.~15! to
;1, and is hence in agreement with the test prediction.

We can therefore conclude that, although not rigorous,
criterion expressed by Eq.~15! represents a very practica
way of predicting and testing dissipative effects associa
with MQT in Josephson junctions. As for the uncertainty
the numerical factor in Eq.~15!, the experimental results
available are not sufficient enough to select an exact va
Further experimental work needs to be devoted to more
cise testing of this numerical factor. However, if more acc
rate results become available, testing directly on the basi
Eq. ~12!, rather than by means of the approximate expr
sions~13! and ~15!, would be preferable.
6-6
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