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In this communication we will consider the potential of some general classes of nonlinear lattice models to
support bright discrete compact breather solutiGm@npactlets We analyze the conditions for which such
solutions are possible and classify the models as belonging in three general categories: a class with no compact
breather solutions, one with one-parameter families of solutions, and a class with “isolated” so(ugqnso
free parametejs In the latter two cases we construct the solutions and analyze their linear stability. The
drastically different stability features of these solutions in comparison with their smoothly decaying counter-
parts are discussed. Stable breather solutions with compact support are identified in the one-parameter families
of solutions, while the corresponding solutions found in the zero-parameter families are always found to be
unstable.
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[. INTRODUCTION breather$, are of particular interest due to their ability to
localize energy. As a result they have been theoretically pro-
The fact that nonlinearity can lead to the compression oposed as the relevant mechanism for many physical phenom-
wave packets is well known. When the action of the nonlin-ena. Already a number of review papers have appepgted
earity is balanced by that of dispersion, which tends tathat summarize these exciting recent developments.
spread out a pulse, stable localized pulses, named solitons ~ On the other hand, a class of continuum solitary waves
solitary waves more generajlgre created1]. This phenom- recently discovered is the one of solutions with compact sup-
enon is observed not only in continuum models, but also irport often referred to asompactong8]. These solutions,
discrete systems. As was first reported[#], and subse- contrary to what is the case for regular localized modes, have
quently studied by many authof8] the balance between nonzero values only in a neighborhood of the real line and
nonlinearity and dispersion leads to the creationlatfice  are strictly zero everywhere else. In particular, in many cases
envelope solitonsThese entities, however, appear when theof interest they behave like a power of a trigonometric func-
nonlinearity is small enough: then the amplitude plays thetion inside their domain of nonzero values. This clearly con-
role of the small parameter of the problem. Envelope solitonsgrasts with the exponential localization properties of regular
can be mobile and extend over tens or even hundreds dEM’'s and of envelope solitons.
sites. The region of localization decreases when the ampli- A question that then naturally arises concerns whether dis-
tude of the excitation increases. When the inten@igy, the  creteness can preserve solutions with compact support. In
square of the amplitudeof the excitation is still small, but particular, it is of interest to examine whether a different
the amplitude of the soliton is already comparable to unityclass of breathers with compact support can be present in
(in dimensionless uniis moving solitary waves which have discrete setups. Only a few authors have considered this
a higher degree of localization compared with the envelopeuestion to our knowledge. [[®], for Klein-Gordon chains,
solitons[4] can be obtained. These are described by the disa compacton solution was found for the continuum analog of
crete Hirota equation. If the amplitude of a single site be-the equation and quasicompactification of the breather solu-
comes large enough, such that linear intersite interactions at@n was observed for the genuinely discrete problem, but the
much weaker than nonlinear self-action, strongly localizechumerical experiments were not conclusive. More recently,
excitations(i.e., localized on very few site¢zan exist5,6]. some case examples of discrete compactly supported breath-
These are callethtrinsic localized modefLM’s) and in the  ers were considered in Fermi-Pasta-UI&F®U) chains[10].
last decade they have received a large amount of attentiofor defocusing nonlinearities, in discrete nonlinear Schro
Like envelope solitons, ILM’s appear as generic, robust sodinger (DNLS) type contexts the recent work ¢f1] dem-
lutions of nonlinear lattice equations. In addition, theseonstrated the existence of such compact breathers for a spe-
modes, which are exponentially localized in space and temeial class of models. But a more systematic understanding of
porally periodic(which is why they are also callediscrete  the nature and classes of possible solutions and the condi-
tions for their existence and stability is still lacking. Further-
more, we should note that for some classes of continuum
*Electronic address: kevrekid@math.umass.edu type models, all compacton solutions have been argued to be
TElectronic address: konotop@cii.fc.ul.pt stable[12].
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From the above exposition, it can be clearly seen that a=|y|%y (in the case of the regular DNLS equatipf]) and
more careful examination of the possibility of formation of f(x,y,z)=|y|?(x+z) for the well-known integrable variant
discrete compact breathers would clearly be desirable. Wef the DNLS equation, namely the Ablowitz-Ladik NLS
will hereafter call such solutions compactlets to highlight (AL-NLS) [14].
their genuinely discrete naturesee below In exploring For monochromatic solutions of the formy,(t)
these topics, we will essentially follow a reverse engineering= exp(—iwt)u,, we obtain the stationary problem
approach. That is to say that we will, in a form of experi-
mental mathematics, consider a general class of models with- ~ @Up T (Ups1 T Uq—1=2U0) = f(Uy—1,Up Ups1). (2
out focusing concretely on its physical motivation. This is an

roach often in continuum i f com ns . .
€£23?.a;er2,t3ve uviiﬁdstud;joa tbeljnuchms<'§lrjlg1 gjst%mcc:)f pD?\ICE% fétnce _setup of th.e class of Eq) .anc.j(2), we argue thg tit
type equationgi.e., discrete Schiinger type equations with 1S crucial to consider the, _,th site (if u, #0) for which
a nonlinear term and Sharing the monochromatic gauge ”{he field is exactly zero. It is obvious that for existence of a
variance of the regular NLS equatiofior rather general Ccompactlet one must requirg0,0,0)=0 in Eq. (2). This
classes of nonlinearities. indicates that the solutions considered herein will be particu-

Our presentation will be structured as follows. In Sec. II,1ar to discrete system@ience the name compactlets
we will present the classes of models of interest and analyti- The equation for the sita=nq—1, for whichu, _;=0,
cally obtain some relevant conclusions on the existence oill read
breather solutions with compact support. We will also cat-
egorize general nonlinearities on the basis of this analysis. In Un, = f(Un,,0,0). )
Sec. Ill, we will numerically construct such compactlet so- . o o o
lutions and analyze their linear stability and dynamics. Fi-Even though this equation is rather trivial to obtain, it has

nally, in Sec. IV, we will summarize our findings and con- Significant implications that we should now examine. First,
clude. this equation suggests that it is impossible to support bright

compactlets for an on-site substrate potential of the form
* H . .
Il. ANALYTICAL CONSIDERATIONS V(u,,uy) (the.astensk d(.ano'ges complex conjugatioRor
such a potential Eq3) will directly yield un0=0 and all

To identify compactly supported breather solutions in the

consider will be of the form DNLS equation willnot support such compactly supported
. structures. But it is easy to observe that neither will the AL-
in=—=Aothn+F (1,00 ¥ns ), (1) NLS equation, given its form df One then wonders whether

) ] there are generalized forms bthat could satisfy this equa-
whereA,¢n=C(¥n+1+ ¥n—1—24n) is the discrete Laplac-  jon with solutions other than,, =0. A general class of such
ian, C is a real constanfthe so-called coupling constant nonlinearities is 0

and the nonlinearity of a rather general type is restricted by

the Symmetryf('pnflv'pna¢n+l):f(¢n+1v‘pn=‘/’nfl) and f(x,y,z)=g(|y|2)(x+z) (4)

by the phase invariance that f(exp(At)u,_ 4,

expiAt)u,,expfAt)u,. 1) =expiAt)f(u,_1,Uy,U,01) (A be-  for which g(0)+#0. A simple but rather general example of

ing rea). that form is given by
Notice that we will consider only nearest neighbor inter-
actions in this work. Furthermore, we consider nonlinearities A+Bs¢
that are symmetric with respect to their inclusion of the left 9(s)= A+CS ®)

and right neighbors. This is, of course, not necessary for our

general consideration, but considerably simplifies the expott should be observed here that for the purposeg of Eq.
sition as we need to treat only one “end” of the compactly (5) it is important that the constant factors in the numerator
supported breather structure in what follows. and the denominator are the safaed different from zerp
_The approximation of the nearest neighbors allows us tvotice that if that is not so then E¢B) still yields u, =0.
introduce a definition of arN-site compacton as a lattice \1qre generally, forf's which are linear in their inclusion of

excitation S“.Ch tha, ;=0 for j<—1 and j=N and i o nearest neighbors, it should be true té@)=1. In that
Un0+j¢0 forj=0,1,... N—-1. case, Eq(3) becomes an identity and hence no constraints
We will setC=1 and vary the frequency of the exci- are imposed on the selection of the compactlet parameters by
tation (one can easily show that one of these two quantitieghis equation. This is crucial and will be contrasted with the
can always be scaled to a unit valu€inally, an important class of models given below.
observation concerns the signs of the linear and nonlinear The conditiong(0)=1 requires the absence of linear dis-
terms in the right hand side of E¢l). The opposite signs persion. Indeed, let us consider the weakly nonlinear limit
denote that we will have in mind defocusing nonlinearitieswhereg(uﬁ)~1+g’(0)uﬁ. Then model4) can be rewritten
for the creation of bright compactlet solutions. It should alsoas (w—2)=g’'(0)u,(uU,_1+ U, 7). A direct consequence of
be noted that the prototypical functional forms that one hashis formula is that in the small amplitude limit compactlets
in mind when writing the generalized E@l) are f(x,y,2) can be either one site or two site. The one-site compactlet
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represents a trivial case. To consider the case of a two-site (3) Finally, the class of solutions with no free parameters,
compactlet we observe that for the fi$tom the lef) ex-  where Eq.(3) determinesunO and the remaining set dfl
cited siteny we have —2)=g'(0)un U, +1. Then, con-  equations will determine the ordinateshf-1 sites and the
sidering the siteng+1 we obtain g’(O)un0+1un0+2=(w frequency of the compactly supportddtsite breather. The
~2)—~g'(0)Up U +1=0, i€, Uy .,=0. The provided models of Eqgs.(6) and (7) belong to this category foA

analysis led us to the conjecture that for existence of an’ 1AI t all of the ab its h b btained b
M-site compactlet wittM =3 there exists a threshold ampli- most all ot (n€ above results have been oblained by a

tude. We will give numerical evidence in support of this careful c0n5|der_at|on of Ed3).
conjecture in Sec. Ill. Now, let us give some case examples.

For linear coupling of the nonlinear term with its nearest For nttl)rllmearmesb of ﬂl:'et form O;)E(EA')'I\/TN a one—5|lt|e
neighbors(i.e., for f's linearly dependent ox,z), Eq. (3) compactietu,, can be arbitrary an@ = 2. viore generally

can only amount to an identity when looking for solutions for f satisfying identically Eq.(3), un, is arbitrary andw

with compact support. However, it is not necessaryffs ~ =2+f(0u, ,0)/u, . In the same case, for two-site bright
depenq linearly on X.2). An example of this type can be compactlets of the form ¢, =exp(—iwt)
found in[11,19 with X(. .. ,0Up,Un 0, .. .), Uy Will be arbitrary andw=1
) - 5 +9(|Un0|2) for g of Eq. (5), while for generalf’'s w=1
(l//n+l+ lr//n) libn+l |‘/"n+l| f 0)/ Finall f h H — i
f(l!/n—l.l//n,ébn+1)=A—2+77lr//n—2 + (uno,uno, )uno. inally, for three sitesy,=exp(—iwt)
1|4 1+ hnal X(...,0lg,U7,Up,0, . ..), therelevant equations become
+(N+1—n—
(n+1—n—-1n), (6) F(Ug Uy o) — 2Ug
) ) w—2= , 9
where the last parenthesis denotes the same expression but ug
with the relevant change of indices. An alternative example
of this type discussed ifl1,16 reads f(uq,ug,0)—uy
w—2=—""""—". (10)
2 2\ % 2 Uo
(l//n+1+‘r//n)'//n+1 1_|‘//n+l|

(a1, %0 ns1)=A + i

1+ 2 "+ 2 We give the above equations to demonstrate the point that
|1 |4l . . . e .

the equations will result in solvability conditions for each
+(n+1—-n—1n). (7)  site in terms ofup,.

) i . More generally, following what is known for regular
In both models the factoh in front of the first fraction was | mrs from [5,6], there will be two main types of discrete

absent i 15,146. Its role in our exposition will be evident in compactlet, one that is centered on a site-N and one that

what_follow_s. N _ is centered between siteg=N+1/2 (the subscriptc for

It is straightforward to see that in this case B8 will  centey In the former case, the central site equation will read
(generically at leastno longer be an identity. On the con-
fcrary, it will be an equation thgt determmago. In par_tlcular ~ f(Un_1,Uy,Un_1)— 2UN_1
in the case of both models discussed above,(Eqyields w—2= ™ ; (11)

1 . L
2_ while in the latter it will be
|un0| _A_l, (8)

, ] , f(un—1,Un,Un) — (Uy—1 T Uy)
which reveals that compactlet solutions will be present only w—2= U : (12
for A>1. In contrast to the case of E@t), here we do not N
have a linear limit. , Similar considerations/calculations can be used for the
_ In view of the above results, we can classify general nonoqels in which the coupling to the nearest neighbors is
linear lattice equations of the form of E(l) as follows. nonlinear as in Eqg6) and(7) above. In the latter case, for

(1) The class of equations with no compactlet solutions. Agyample, in the case of a two-site compactlet of the form
subset of this set is the one with on-site nonlinearitias W =expiwt)( Ou. U0 ), the frequency is
n -+ ,0Un,Up 0, ),

cluding the DNLS equatioras well as the set of linear near- .
est neighbor couplings such thdix,0,z) # (x+ z) (including given by
the AL-NLS equation

(2) The class of models with one-parameter families of 0o—1=2+—, (13
compactlets: since E¢3) becomes an identity, in the case of A
an M-site compactlet there will always bd —1 equations
for M unknowns M — 1 site ordinates and the frequency of
the compactly supported breathérhese will generically ad-
mit one-parameter families of solutions. The nonlinearity of
Eq. (4) belongs to this type if§(0)=1. in the two models, respectively.

2—A
w—1=2+ e (14

066614-3



P. G. KEVREKIDIS AND V. V. KONOTOP PHYSICAL REVIEW E55 066614

L
42 44 46 48 50 52 54 56 58 60

42 a4 46 48 50 52 54 56 58 60 2 15 1 —05
n T

FIG. 1. The left panel shows a one-site discrete compactiet2, Up,=5. Unless otherwise stated, the results gffu,|?) =1/(1
+|u,|?). The right panel shows the two-site solutiand its linear stabilityfor »=1.038 and.1n0=5. The linear stability analysis shows
the complex planeN; ,\;). The subscripts denote the real and imaginary parts of the eigenfrequeBayce there are no eigenfrequencies
with nonzero imaginary part, the configuration will be stable.

Finally, a note of caution is in order. The technique of parameter families of solutions, as they can exist for any
continuation of ILM’s from the anticontinuum limit7,17] given amplitude. In Fig. 1 these results are illustrated by
has been very popular for ILM’s in recent years. In particu-direct numerical computation of the solutions and their sta-
lar, in many casesgsee, e.g.[18]) the fact that ILM’s are  bility.
very strongly localized for weak couplings between the non- In order to studyM-site compactlets withM=3 (M
linear oscillators has been exploited in considering them as-2N or M=2N—-1), we prescribeiy for the class of equa-
consisting of only a few sites and studying their stability andtions with one free parameter. Fore= N, we use the appro-
dynamics in this few degree of freedom approximation.priate equation of Eqg11) and(12), depending on whether
There should be no confusion between such modes and thee are interested on a mode centered on a site or centered
ones presented herein. In our work, the modes are exact sbetween sites, and solve the resultifhg equations for
lutions of the stationary equations of interest and there is na,, ... ,uy_; and . We then form the full solutionby
approximation or weak coupling limit. Furthermore, the symmetrizing the solution fon>N) and perform linear sta-
modes considered here are distinctively different from regubility analysis. In particular, iff is given by Eq.(4), then
lar ILM’s. The latter plotted on a semilogarithmic scale for using i, = exp(—iwt)(U®+euY), we obtain the linearization
NLS type equations can be clearly seen to have an exponegquation foru!®
tial tail. On the contrary, the classes of discrete breathers
considered here have strictly zero ordinates beyond the re-
gion of their support. iuM=—wu®—A,uB+g([u@2) UL, +ud)

+g'(JuP) (U +uly
IIl. NUMERICAL RESULTS ), (1)« ©O) (1)
X (uy’uy " +Huy 7 uy). (15
We now turn to numerical experiments to investigate
compactlet solutions and their stability. In particular, in order It is a direct consequence of this equation th)z#)
to create these modes, we solve E2), but not for an infi-  «exp(\.t) where\.==*(w—2) for all n<ny andn>n,
nite lattice. We rather solve it only for the sites +M —1; these represent stable excitations and the respective

=1,... N, when the discrete compact breather is centeregair of eigenfrequencies will be present in the stability analy-
either at siten=N [the case of a (R— 1)-site compactldtor  sis of any such compactlet. This also means that one can
atn=N+ 1/2 (the case of a R-site compactlet restrict consideration to excitations of merely the sites that

While studying the stability of aM-site compactlet it is are “participating” in the original discrete compactly sup-
natural to consider perturbations of the whole chain. In whaported breather. Another general statement about the stability
follows, however, we show that the small excitations of theanalysis of a compactlet is that due to the phase invariance
sites which initially had zero displacements can be decoutof the classes of models considered heme will necessar-
pled from the excitations of their neighbors. This immedi-ily have two zero eigenvalues.
ately leads us to the conclusion that one-site and two-site Let us now consider in more detail the stability of a three-
compactlets are stable for the class of models with onesite compactlet (..,0uq,Uq,Up,0,...), situated on the
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FIG. 2. Stabldleft panel$ and unstabléright panel$ three-sitgtop panelgand four-sitgbottom panelssolutions. For the top left panel
w=0.6677 ancuno=5, while for the top rightw=1.4323 and.1n0=l.3. For thebottom leftw=0.4739 and.ln0=5, while for the bottom
right ®=0.9996 and1n0:7. The linear stability analysis in the case of the left panel indicates stability, whereas the imaginary eigenfre-
quencies in the case of the right panel show that the latter configurations are unstable.

sitesn=—1,0, 1. To this end, we rewrite EGL5) in terms  +w; ,wj*fw]-} Then, seeking solutions proportional
of the renormalized displacements.;=u;u’Y) and w, to exp{\t’), where t'=(w—2)t, we obtain the
=uoué: eigenfrequencies

|W11:W07Wi1+a0(wt1+wil)! (16) )\(JP)ZO, )\(j'): + /;1_23.0, )\&Z)zi \/47_2a0_4a1
: (19
iWOZ _W0+%(W1+W_l)+2a1(WO+W6), (17)

where the overdot stands for the derivative with respect td hese need to be multiplied bhy—2 to be converted into
(w—2)t and eigenfrequencies of the original eigenvalue problem of Eg.

(15). Considering the whole chain one has to add to
2 TN obtain the complete set of eigenfrequencies.
_9 (uj)uouy _9 (u)ug (18) It follows from Eqgs.(18) and(19) that three-site compact-
! w—2 g(ué)f 1 lets can be stable or unstable, depending on the ordinates of
the sites. This conclusion has also been confirmed numeri-
wherej=0,1. cally (see, e.g., the two top panels of Fig. 2
is positive for a decaying functiog(x). One can now con- In a more general case, using§11)=an exp(—iAt)
sider the eigenfunction transformatiofw; ,w;}—{w;} +b,exp(i\*t), we obtain an eigenvalue problem for
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FIG. 3. The figure shows more exotic but highly unstable compactlet configurations. The left panel shows a compacile0With7
andun0:4.5. One carmbserve two complex eigenfrequency quartets due to the presence of two oscillatory instabilities. The relevant quartet
eigenfrequencies hava (\;)=(*=0.7289£0.0965) and X,,\;)=(*0.3800;+-0.1139).Another elaborate spatial structure is shown
in the right panel withw=2.7279 andJn0=6. The relevant quartet of eigenfrequenciesNs,X;)=(*=0.6379+0.0337).

{\{a,,b}}, which is subsequently solved numerically to particularly so for compactlets involving five or more sites.
identify the stability of the configurations. In the computa- For three and four sites, we were able to identify both stable
tions presented here, and unstable solutions depending on the values of the ordi-
nates. This is also not common to DNLS type equati@is
least in 1+1 dimensions For instance, a single pulselike
9(|un|?) = . (20) ILM is always stable if it is centered on a site and always
" 1+|up|? unstable if centered between sites. This conclusion does not
depend on the ordinates of the mode’s lattice sites. Further-
was used, but the main conclusions were also verifiedyfor more, the spectrum of the compactlets does not include the
=(1—|un®/(1+]uy?. spectrum of the background state on which they exist. This is

In particular, as a result of the numerical computations forin sharp contrast with the well-known results for regular
the one-parameter families of compact discrete breathers, itM’s. In particular, in the case of a DNLS equation in 1
was found that four-site compactlets, similarly to three-site+ 1 dimensions, the standing wave pulselike solutions of the
ones, can be either stable or unstalslee, e.g., the two bot- focusing case, or the kinklike solutions of the defocusing
tom panels of Fig. 2 However, gradually, as the size of the case(dark solitary waves encompass the so-called phonon
configurations grows, the range of stability of multi-site con-band or continuous spectrum. The continuous spectrum con-
figurations is quite small and most configurations found forsists of the extended wave excitations permissible by the
N=3 (i.e., with five or more site@swere most often unstable uniform steady state on which the ILM exists. This continu-
in the cases examined; however, some stable configuratiorsis spectrum alongside the point spectrum of localiz€q (
were found, for instance from the concatenation of smalleeigenfunctions constitutes the full linearization spectrum.
stable(e.qg., three-sitebuilding blocks. An example of more However, this is not true for the compactlets. In the latter
exotic (but unstablg compactlets is shown in Fig. 3. Shown case, the decouplingsee aboveof perturbations along the
also are the corresponding instabilities, which do not alwaysompactlet sites and those along the rest of the lattice sites
stem from imaginary eigenfrequencies but can also be oscikssentially causes the “collapse” of the continuous spectrum
latory, giving rise to Hamiltonian Hopf bifurcatiorid 9]. to a single eigenfrequency\ (). Finally, oscillatory insta-

A significant difference should be highlighted betweenbilities do occur for bright compactlets as they do for their
these solutions and the ones known for regular DNLS typeegular ILM counterparts, provided that phase differences
equations. For the latter, the site-centered mideis well  appear in the coherent structuee, e.g.[20)).
known to be stable, while the intersite-centeféd mode is The time evolution of compactlet instabilities was probed
known to be unstablésee, e.g.[7]). In the case of compact- by means of numerical time integratiomsing explicit fourth
lets, both solutions appear to be stable. This seems to be and eighth order Runge-Kutta integrafor$ was found that
partial agreement with the conclusiong 2] about different  in the case of three or four sites where there are structurally
classes of compactons being stable. On the other hand, in tlsémilar configurations which are stable, the compactlet
discrete case, contrary to the continuum observatiof$Z)f  would not be structurally destroyed but would rather oscil-
for a larger number of sites, most solutions are unstabldate and thus approach such stable configurations. Highly
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FIG. 4. The time evolution of the configuration of the right panel in Fig. 3. The top left and right panels show the time evolution of the
two central-most sites of the compactlet. The two bottom panels show the snapshots of the spatial profile of the configurai¢that
initial condition of the exact compactlet plus a small perturbation along the unstable eigendjractiom left panel and the configuration
att=200 (right pane). t=200 was the duration of this simulation, but we also performed numerical experiments € 2@60, observing
that the compactlet gradually breaks up into smaller stable engireslominantly single site compactlet# is interesting to note that no
visible signs of extended wave radiation traveling toward the boundaries have been observed in these runs.

unstable configurations with a large number of sites wer@mbserved in Fig. 5 and are naturally reflected in the depen-
found to be destroyed. Such an example occurs in the case dénce of the frequency of the compactlet on its amplitude
the oscillatory instability of one of the structures shown in[see Eq(11)]: it has two “jumps” atu(}) andu{® .
Fig. 3. The oscillatory instabilitjbeing manifested in a quar- Finally, from the class of models with no free parameters,
tet of eigenfrequencies =(+0.6379;-0.0337) is seen to the model of Eq(6) was examined and since the lineariza-
destroy the discrete compactlet through oscillations of intion problem is extremely tedious, for simplicity the case
creasing amplitude in Fig. 4. It is, however, noteworthy, thatwith »=0 was considered. However, in the latter case all the
no significant extended wave radiation appears to be presesblutions identified were found to be unstatdad hence are
in the simulation. not shown. Some intuition about this instabilitfeven

To complete the consideration of one-parameter familieshough this is not a prodfmay be obtained on the basis of
of compactlets we display in Fig. 5 the dependence of theéack of free parameters in the configuration. Once a pertur-
displacements of the side atoms of a five-site compactlet vebation is performed there is no other configuration of this
sus the displacement of the middle atéwhich determines type to reshape int@.e., no other “fixed point,” in the space
the amplitude of the compactjetit was conjectured in the of configurations, of the same type in the vicinity of the
previous section that the amplitude of the five-site compacteriginal solution and hence imaybe more natural to expect
let has an existence threshold;,; namely, atu3=u§ﬁ) in this case that the configuration will be destroyed.
~ 3.73 the displacement of the first atom becomes identically
zero (also the second atom’s displacement “jumps” to a
lower valug. At this amplitude value the five-site compactlet
degenerates into a three-site compactlet. That is to say, for |n this work we have discussed the possibility of forma-
lower amplitude values only three sites have nonvanishingion of Compacﬂy Supported' breathing in time coherent
ordinates and hence five-site compactlets can exist only fogtryctures in discrete models with nearest neighbor interac-
uz>u(y) . Subsequent decrease of the central site amplitudgons (both linear and nonlinear The compactlet solutions
results, foruz=u?>~1, in the transformation of the three- considered here are genuinely discrete and have no con-
site compactlet into a one-site ofend thus three-site com- tinuum analog. A number of conclusions have been inferred
pactlets will exist foru3>u§ﬁ)). These transitions can be from the equation for the first site beyond the compactly

IV. DISCUSSION
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FIG. 5. The top panel of the figure shows for a five-site compactlet the dependence of the frequency as a function of the displacement
of the middle(i.e., n=3) site. The middle panel shows the dependence of the firsugites a function ofuz, and the bottom panel the
dependence dfi, on uz. Notice, as we proceed from the right of the figure toward the left, the very clear transition from a five-site to a
three-site compactlet a13:u£%)w3.73, and the less abrupt but also discernible transition from the three-site compactlet to a one-site
compactlet foru;=u'?~1 (see also text

supported solution. On the basis of this equation, we havéhem concerns whether experimentally realizable physical
provided a general classification of models to ones that carmodels containing such modes can be identified and conse-
not support compactlets, ones that have one-parameter fanguently whether such solutions can be observed. In elucidat-
lies of such solutions, and ones that have zero-parametémng some of the aspects of the nonlinearities permitting such
families (i.e., isolated solutionsof that form. Many of the solutions, we hope it will become easier to answer this ques-
well-known models such as the DNLS and AL-NLS equa-tion in the near future. Furthermore, understanding more de-
tions belong in the first class. We also specified and studiethils about the point spectrum of such compactlets may prove
examples of the latter two categories. We analyzed the derery significant in identifying their stability picture and un-
tails of such compactlet solutions and calculated them exveiling their characteristics. Additional future directions in-
plicitly in simple casegqof few lattice sites We then pro- volve the interaction of such coherent structures and their
ceeded to construct such solutions numerically. While in theharacteristics of motion in the discrete setup., whether
case of no free parameter models we found even the simpletey shed radiation waves or noResearch work in these
compactlets to be unstable, in the case of one free parametareas is currently in progress and will be reported in future
the single-site and two-site compactlets were always stabl@ublications.
It was found that for larger numbers of sites in these compact
Qiscrete breathers, they will be mostly unstablg, even though ACKNOWLEDGMENTS
in some casesgespecially for three- and four-site compact-
lets) stable such solutions exist. We have conjectured that the V.V.K. acknowledges support from FEDER, the Program
one-parameter family of compactlets possesses a threshdRRAXIS XXI, Grant No. /P/Fis/10279/1998, and the Euro-
amplitude below which aiN-site (N>2) compactlet cannot pean grant COSYC No. HPRN-CT-2000-00158. P.G.K.
exist. Numerical evidence in support of this conjecture forgratefully acknowledges Philip Rosenau for stimulating dis-
the cases oN=3 andN=5 has been provided. cussions and for useful references to earlier works on com-
Naturally, as this type of discrete breather is only startingoactons for continuum models. He also acknowledges partial
to be explored, there are many questions that merit considsupport from the University of Massachusetts through a Fac-
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