
PHYSICAL REVIEW E, VOLUME 65, 066613
Partial-differential-equation-based approach to classical phase-space deformations
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This paper presents a partial-differential-equation-based approach to finding an optimal canonical basis with
which to represent a nearly integrable Hamiltonian. The idea behind the method is to continuously deform the
initial canonical basis in such a way that the dependence of the Hamiltonian on the canonical position of the
final basis is minimized. The final basis incorporates as much of the classical dynamics as possible into an
integrable Hamiltonian, leaving a much smaller nonintegrable component than in the initial representation.
With this approach it is also possible to construct the semiclassical wave functions corresponding to the final
canonical basis. This optimized basis is potentially useful in quantum calculations, both as a way to minimize
the required size of basis sets, and as a way to provide physical insight by isolating those effects resulting from
integrable dynamics.
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I. INTRODUCTION

Suppose we are given a nearly integrable Hamilton
H(q,p), where (q,p) represents some canonical represen
tion of phase space~not necessarily ordinary position an
momentum!. We wish to find another canonical represen
tion (Q,P) in which H is as close as possible to being int
grable. Our motivation for this is twofold, and is connect
to semiclassical quantum mechanics. First of all, from
purely numerical perspective, a representation in whichH is
as close as possible to being integrable leads to an optim
semiclassical basis with which to perform quantum calcu
tions. The reason for this is that we can associate withP a
quantum state uP&. If we write H(Q,P)5H (0)(P)
1H (1)(Q,P), then it is clear thatH (0) is diagonal in the
$uP&% basis, so that onlyH (1) is available to couple the vari
ous basis states. The coupling is given semiclassically by@1#,

^P8uĤ (1)uP&5H (P82P)/2p\
(1) S P1P8

2 D , ~1!

where H (P82P)/2p\
(1)

„(P1P8)/2… is the (P82P)/2p\ Fourier
component at (P1P8)/2 of H (1). A representation in which
H (1) is as small as possible will minimize the couplings
the corresponding$uP&% basis, and thus will minimize the
size of the basis required to perform a given calculation
some desired accuracy.

Secondly, a canonical representation in whichH is as
close as possible to being integrable provides physical
sight. By incorporating as much of the classical dynamics
possible into an integrable Hamiltonian, this optimal cano
cal representation can help to isolate those classical
quantum effects resulting from integrable dynamics fro
those that do not. Thus this representation can isolate no
tegrable quantum and classical effects such as dynam
tunneling and Arnol’d diffusion, respectively. Furthermor
we can also visualize the quantum manifestation of the in
grable classical dynamics via the semiclassical prescrip
for constructing a wave function. Given the generating fu
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tion S(q,P) from the initial basis (q,p) to the final basis
(Q,P), we have, up to normalization,

^quP&5Udet
]2S

]q]PU
1/2

exp@ iS/\#, ~2!

where det(]2S/]q]P) is the well-known Van Vleck determi-
nant.

In the case of action-angle variables, the optimized rep
sentation of a nearly integrable Hamiltonian is termed
intrinsic resonance representation~IRR!, a term coined by
Carioli, Heller, and Moller~CHM! @2,3#. In 1997 they pub-
lished a paper detailing an algorithm for the construction
such a representation. The idea behind the CHM algorithm
to eliminate all the nonresonant terms of the Hamiltonian
an appropriate canonical transformation. This canon
transformation is obtained via a modified Chapman, Garr
and Miller method@2–4#, which is essentially a Newton
Raphson scheme to find the invariant tori with a desired
of actions for a nearly integrable system. The remain
resonant and near-resonant terms are then reexpressed
new basis. It is impossible to reduce the angle depende
any further, since this would result in the formation of res
nance zones, which prevents a global action-angle desc
tion of the Hamiltonian.

In 2001 Tannenbaum and Heller published an alterna
algorithm for finding the IRR basis@2#. The method intro-
duced is a partial-differential-equation-~PDE!-based ap-
proach which continuously deforms the initial action-ang
basis in such a way that the angle dependence of the Ha
tonian is continuously reduced. It amounts to a gradie
descent algorithm in the limit of a first-order perturbatio
and was therefore called the GDA method. Formally,
method does not distinguish between resonant, nearly r
nant, and nonresonant terms, that is, the evolution is
formed on the entire Hamiltonian without any terms n
glected. However, the evolution is such that the mo
nonresonant a term, the more strongly it is affected by
evolution. Thus, the nonresonant terms of the Hamilton
are essentially removed, the nearly resonant terms are
duced somewhat, while the resonant terms are essent
©2002 The American Physical Society13-1
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unaffected. In Ref.@2#, the GDA method was used to sem
classically find the eigenvalues of systems with two, fo
and six degrees of freedom, using greatly reduced basis

The GDA method circumvents two main drawbacks of t
CHM method. First, the CHM method requires ana priori
decision as to which terms are resonant and nonreson
This leads to an ambiguity in the case of near-resonance
could happen that a given term in the Hamiltonian must
considered resonant in order to get the Newton-Raph
scheme to converge. This leads to a somewhat artificial
off criterion, since a nearly resonant Fourier compon
should in principle still be reduced as much as possible,
though not necessarily completely. Thus, unless the Ha
tonian has a few exact or near-resonances, it is not clear
the CHM method will give the optimized torus basis.

Second, the CHM method requires the numerical eva
tion of multidimensional integrals, and the numerical inv
sion of a nonlinear angle map at every iteration step. Furt
more, every iteration step also requires the numer
solution of a system of linear equations. These numer
calculations slow the algorithm down. In contrast, the n
merical calculations required by the GDA method are mu
simpler, so we believe that the GDA method is faster than
CHM approach~although in fairness it should be added th
no direct speed comparisons have been made to date!.

Despite its advantages, the GDA method, as describe
Ref. @2#, does not give the overall generating functio
S(q,P) transforming from the initial (q,p) basis to the final
(Q,P) basis. Thus, in Ref.@2#, we could compute the energ
spectrum arising from an optimized invariant torus basis,
not the corresponding semiclassical wave functions exis
on the IRR tori.

This paper is a continuation of the work presented in R
@2#, and it has several purposes: First, the presentation o
method given in Ref.@2# has been greatly simplified. Sec
ondly, and more importantly, the method has been exten
to include the determination of the overall generating fu
tion S(q,P). This provides a powerful visualization too
which allows one to actually construct the semiclassi
wave functions associated with the optimized canonical
sis. Thus, while the full method will be developed in th
paper, the numerical examples focus on the overall gene
ing function S(q,P). As mentioned before, numerical ex
amples dealing with the Hamiltonian directly may be fou
in Ref. @2#.

This paper is organized as follows. In Sec. II we obta
the generic evolution equations for the Hamiltonian and
overall generating function, starting from an arbitrary c
nonical basis (q,p). In Sec. III we consider the case of
nearly integrable Hamiltonian, and obtain the specific fo
our evolution is to take if we want to optimize the canonic
basis used to represent the Hamiltonian. A similar, yet m
detailed, derivation may be found in Ref.@2#. In Sec. IV we
consider the first-order limit of our PDE approach. We obt
a generalized first-order classical perturbation theory wh
coincides with standard perturbation theory in an appropr
limit, obtained by taking the evolution parameter to infini
However, the advantage of our first-order formula is tha
remains convergent for all finite values of the evolution p
06661
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rameter, only possibly diverging as a result of near re
nances in the limit to infinity. Section V tests theSevolution
equation with a numerical example. We continue in Sec.
by applying theS evolution equation to actually construc
and visualize some semiclassical wave functions associ
with optimized canonical bases. Finally, we conclude in S
VII with a summary of our results and a discussion of futu
research plans.

II. THE EVOLUTION EQUATIONS

In this section we shall obtain the basic evolution equ
tions for the HamiltonianH and the overall generating func
tion S. The idea is as follows. We start with an initial set
canonical coordinates (q,p), which denote any global repre
sentation of phase space, and do not necessarily refer t
dinary position and momentum, respectively.~Nonglobal
representations can also work, as long as we remain
within the region of phase space they describe. An exam
of this is action-angle variables for a system that can dis
ciate. Action-angle variables should work as a valid rep
sentation as long as we remain well below any dissocia
threshold.! We continuously deform this system via a seri
of infinitesimal generating functions. The result is that o
canonical representation is evolving with respect to so
parametert, and is denoted by (Qt ,Pt) at parameter valuet.
For convenience, we will call our parametert the ‘‘time,’’
although it should be understood that it does not repres
time in the ordinary sense, but is rather a homotopy para
eter. As our canonical pair evolves, the functional dep
dence ofH on the canonical pair changes. In addition, t
overall generating functionS(q,P;t) connecting the initial
(q,p) to the current (Qt ,Pt) evolves as well.

Consider an arbitrary set of canonical coordinates.
time t, we are at system (Qt ,Pt). At time t1dt, we are at
system (Qt1dt ,Pt1dt). These are connected by an infin
tesimal generating function F(Qt ,Pt1dt ;t)5Qt•Pt1dt
1dtG(Qt ,Pt1dt ;t). Therefore,

Qt1dt5Qt1dt“PG~Qt ,Pt1dt ;t !, ~3!

Pt5Pt1dt1dt“QG~Qt ,Pt1dt ;t !. ~4!

These equations are just Hamilton’s equations of motion
the dynamics governed byG, which plays the formal role of
a Hamiltonian in this case. The functional dependence oH
therefore evolves according to

]H

]t
1$H,G%50. ~5!

This equation is simply a statement thatH is invariant under
the canonical transformation induced byF(dH/dt50),
which follows from the fact thatF is a time-independen
canonical transformation@5#.

For what follows in this paper it will prove convenient t
represent the dynamics in Fourier space. To this end, ass
that H is periodic in eachQi with periodLi . Then we shall
chooseG to also be periodic in eachQi with period Li .
3-2
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Define V5L1•••LD , and let V denote an arbitrary
D-dimensional box of side lengthsL1 , . . . ,LD . Then,

H~Q,P;t !5
1

V (
k

Hk~P;t !e2p ik•Q, ~6!

where

Hk~P;t ![E
V

dQH~Q,P;t !e22p ik•Q, ~7!

and similarly forG(Q,P;t). Our componentwise evolution i
then

]Hk

]t
52p i

1

V (
k8

$~k8•“PHk2k8!Gk8

2@~k2k8!•“PGk8#Hk2k8%. ~8!

Note that the evolution preserves the integration limits of
original system. Thus the topology of the original pha
space is preserved.

It should be mentioned that degrees of freedom for wh
Li is finite can be treated in an action-angle formalism
which Li51, while degrees of freedom for whichLi5`
have their corresponding Fourier sums replaced by integ

Finally, the evolution of the generating functionS(q,P;t)
is given by the Hamilton-Jacobi PDE@5–7#

]S

]t
5GS ]S

]P
,P;t D . ~9!

III. CHOOSING G

We want an approach that minimizes the dependenceH
onQ. The condition thatH be independent ofQ is equivalent
to the vanishing of the nonzero Fourier componentsHk(P;t).
We therefore seek to minimize the dependence ofH on Q by
choosingG in such a way that theuHk(P;t)u are continu-
ously decreasing for allkÞ0.

At some time t, we can write H(Q,P;t)5H (0)(P;t)
1H (1)(Q,P;t). The idea is thatH (0) contains the piece of the
Hamiltonian that is dependent only onP, andH (1) contains
the remainder. Then,

]H

]t
5“PH (0)

•“QG2$H (1),G%. ~10!

In the limit of a first-order perturbation on an integrab
Hamiltonian, the relevant equation is

]H

]t
5“PH (0)

•“QG. ~11!

In Fourier space, this becomes

]Hk

]t
52p i ~k•“PH (0)!Gk . ~12!
06661
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Following a similar derivation to the one in Ref.@2#, it may
be shown that, in the first-order limit, the gradient-desc
prescription for minimizinguHku25HkH̄k ,kÞ0, is to set
Gk52p i (k•“PH (0))Hk . Then in the first-order limit we ob-
tain that ]HkH̄k /]t528p2(k•“PH (0))2HkH̄k , which is
clearly negative. For stronger perturbations, this is no lon
the gradient-descent prescription. However, for nearly in
grable systems~the ones of interest to us in this paper! the
perturbation should still be sufficiently weak that the abo
choice forGk will shrink theHkH̄k ,kÞ0. Therefore, we take
Gk52p i (k•“PH (0))Hk , which gives

G~Q,P;t !5“PH (0)
•“QH5“PH (0)

•“QH (1). ~13!

Note that the Fourier expansion ofG involves terms of the
form k•“PH (0). A k for which k•“PH (0)50 is a general-
ized resonance atP. The integrability ofH (0) is destroyed by
the resonant terms inH (1). It should also be pointed out her
thatG has units of@energy#2/@action#5@power#, and sot has
units of @ time#2.

Our evolution does not formally distinguish between res
nances, near-resonances, and nonresonances. The evo
is done on the entire Hamiltonian without any terms n
glected. However, the closer a term is to being resonant,
smaller the corresponding Fourier component ofG, and so
the less that term is affected by the evolution.

In the first-order limit,H (0)(P;t) differs from H (0)(P;0)
by a correction that is at most first order inH (1). Therefore,
if we useH (0)(P;0) instead ofH (0)(P;t) in our prescription
for choosingG in Eq. ~13!, we get a discrepancy of at mos
second order inH (1), so that the two formulations ar
equivalent to first order. Since our prescription for choos
G was derived from the first-order limit of the evolution o
H, we see that it is equivalent to useH (0)(P;0) or H (0)(P;t)
in Eq. ~13!. Finally, ourt50 Hamiltonian is usually given as
H(q,p)5H0(p)1V(q,p), whereH0 is the zeroth-order, in-
tegrable Hamiltonian, andV is the perturbation. We can
extract the k50 Fourier component of V, writing
V(q,p)5V0(p)1Ṽ(q,p). Then H(Q,P;0)5H0(P)1V0(P)
1Ṽ(Q,P), so that H (0)(P;0)5H0(P)1V0(P), and
H (1)(Q,P;0)5Ṽ(Q,P). Therefore, note that in the first-orde
limit it is equivalent to useH (0)(P;0) or H0(P) in the pre-
scription for choosingG. Once again, this means that it
equivalent to useH (0)(P;0) or H0(P). In what follows
H (0)(P;t), H (0)(P;0), and H0(P) will all be denoted by
H (0), or H (0)(P). When required, we will specify to which
H (0) we are referring. Very often, one of the three choic
will result in a formulation of the PDEs that is considerab
simpler to implement than the others. For example, in R
@2# we used theH (0)(P;t) formulation to evolve the Fourie
components ofH, but neglected terms involving second d
rivatives inP, because they were considered small enough
be unimportant. Thus we solved an approximate system
PDEs instead of the full, exact set. However, had we inst
used theH0(P) formulation, then the resulting evolutio
would have required only first derivatives inP, so with slight
modification the system of approximate PDEs solved in R
@2# would have become exact.
3-3
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We conclude this section by deriving the PDE govern
the evolution ofS, given our prescription for choosingG. We
have

]S

]t
~q,P;t !5G„Q~q,P;t !,P;t…

5“PH (0)
•“QH~Q~q,P;t !,P;t !. ~14!

Now, we know that

H~Q,P;t !5H~q,p;0!

5H„q,~]S/]q!~q,P;t !;0….

From ]/]Q5(]2S/]P]q)21]/]q we obtain

]S

]t
5

]H (0)

]P
•S ]2S

]P]qD 21 ]H~q,]S/]q;0!

]q U
P

, ~15!

where

]H~q,]S/]q;0!

]q U
P

5
]H

]q UpS q,
]S

]q
;0D

1
]2S

]q2

]H

]pU
q

S q,
]S

]q
;0D . ~16!

Note that, sinceH(q,p;0) is simply our initial Hamiltonian,
we do not need the evolution ofH in order to get the evolu-
tion of S.

The numerical evolution ofS is described in Appendix A.
The numerical evolution ofH in the case of action-angl
variables is discussed at length in Ref.@2#. Since the case fo
arbitrary canonical pairs is handled similarly, we do not g
numerical details for theH evolution in this paper.

IV. THE FIRST-ORDER LIMIT

From our choice ofG in the previous section, it follows
that in the limit of a first-order perturbation on an integrab
Hamiltonian

]Hk

]t
524p2~k•“PH (0)!2Hk . ~17!

Our first-order solution yields Hk(P;t)
5Hk(P;0)exp@24p2(k•“PH (0))2t#. Note that the more
nonresonant a term is the faster the exponential decay
particular, resonances are not affected at all. It may also
noted that the first-order evolution equation amounts to r
ning the Hamiltonian through a heat equation.

We now turn to the evolution ofS in the first-order limit.
To this end, writeS(q,P;t)5q•P1G̃(q,P;t). In what fol-
lows we shall work to first order inG̃ andH (1). Then,

]H

]q U
p
S q,

]S

]q
;0D5

]H

]q
~q,P;0!1

]2H

]P]q
~q,P;0!

]G̃

]q
~18!
06661
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]2S

]q2

]H

]p U
q

S q,
]S

]q
;0D5

]2G̃

]q2

]H

]pU
q

S q,P1
]G̃

]q
;0D

5
]2G̃

]q2

]H

]P
~q,P;0!. ~19!

Now, H(q,p;0)5H (0)(p;0)1H (1)(q,p;0). Then
(]H/]q)(q,P;0)5(]H (1)/]q)(q,P;0). To first order,
(]2H/]P]q)(q,P;0)]G̃/]q 5 (]2H (1)/]P]q)(q,P;0)]G̃/]q
50. Finally, to first order, (]2G̃/]q2)(]H/]P)uq(q,P;0)
5(]2G̃/]q2)(]H (0)/]P)(P;0). Since each of these terms
first order in eitherH (1) or G̃, in the first-order limit we take
(]2S/]P]q)2151. Putting everything together gives us o
first-order equation

]G̃

]t
5

]H (0)

]P
•S ]H (1)

]q
1

]2G̃

]q2

]H (0)

]P D . ~20!

In Fourier space, this becomes

]G̃k

]t
52p i ~k•“PH (0)!Hk

(1)

24p2~k•“PH (0)!2G̃k . ~21!

SinceG̃k(P;0)50 ; k, we obtain

G̃k~P;t !5
iH k

(1)

2p~k•“PH (0)!
~12e24p2(k•“PH(0))2t!. ~22!

Note that G̃k(P;t)50 for all resonant terms. This can b
seen by looking at the original ordinary differential equ
tion from which the solution is derived, or equivalently b
noting that limk•“PH(0)→0$12exp@24p2(k•“PH (0))2t#%/

(k•“PH (0))50. We can write

G̃~q,P;t !5
1

V

i

2p (
kÞ0

Hk
(1)

k•“PH (0)

3~12e24p2(k•“PH(0))2t!e2p ik•q . ~23!

This series is convergent, because the exponential term
vents resonances and near-resonances in the denomi
from causing the series to diverge. We can lett→` to get the
first-order perturbation theory result

G̃~q,P;`!5
1

V

i

2p (
kÞ0

Hk
(1)

k•“PH (0)
e2p ik•q, ~24!

where the sum is over all nonresonantk. Note, however, that
the convergence of the various Fourier components to t
t→` limits is not uniform, because the time constant for t
exponential term is proportional to 1/(k•“PH (0))2. This goes
to infinity ask approaches a resonance. The above equa
3-4
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must be solved for finitet, and then thet→` limit must be
taken. This prevents any ambiguities inG̃ @6#.

We should point out that we have not derived a first-or
classical perturbation theory that is necessarily converg
The standard first-order formula is obtained by taking tht
→` limit of our expression, and as can be clearly seen
presence of near-resonances can result in a divergent s
However, the advantage of our formula is that, for all finitet,
the near-resonances are attenuated by the exponential te
such a way that the series does converge. Thus, this me
does not require anya priori removal of terms that are as
signed as ‘‘resonant.’’ Rather, all terms may be included
the first-order expression, andt may be chosen to be as larg
as possible without any Fourier term exceeding some cu
criterion. In this way, the nonresonant Fourier terms will e
sentially have their standard first-order values, while
more nearly resonant terms will still have a non-negligib
exponential term present which keeps the overall series
vergent. The corresponding nonresonant Fourier terms in
Hamiltonian will then have been essentially removed, wh
the more nearly resonant terms will have been reduced so
what, but not completely.

V. A NUMERICAL EXAMPLE

We chose to test theS evolution numerically on the two
dimensional Pullen-Edmonds Hamiltonian@8#, given by

H~x,y,px ,py!5
px

21py
2

2
1

1

2
~vx

2x21vy
2y2!1ex2y2.

~25!

This was the two-dimensional system studied numerically
Ref. @2# in testing the GDA method. The results there we
compared with those obtained in Ref.@3# using the CHM
method. However, while in Ref.@2# the evolution was done
on H in the context of obtaining a semiclassical quantu
spectrum, in this case it is the PDE forS that is being tested

We setvx5vy51. The t50 canonical representation
simply the harmonic oscillator action-angle basis, denoted
(ux ,uy ,Jx ,Jy). The arbitraryt canonical representation i
denoted by (fx ,fy ,I x ,I y), so that S5S(ux ,uy ,I x ,I y ;t),
with Jx5]S/]ux and Jy5]S/]uy . The transformation to
the harmonic representation is obtained by settingx
5AJx /p cos 2pux , px52AJx /p sin 2pux , and similarly for
y,py . The result is

H~ux ,uy ,Jx ,Jy!5
1

2p
~Jx1Jy!1

eJxJy

4p2
$11cos 4pux

1cos 4puy1 1
2 @cos 4p~ux1uy!

1cos 4p~ux2uy!#%. ~26!

The only nonvanishing Fourier components are6(2,0),
6(0,2),6(2,2), and 6(2,22). Note in particular that
6(2,22) is a resonance.

Of the three prescriptions for choosingG, the simplest
one to use is H (0)5H05(1/2p)(1,1)•(I x ,I y), so that
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“PH (0) is taken to be (1/2p)(1,1). In addition, for this
Hamiltonian it is readily verified that

]H

]q U
p
S q,

]S

]q
;0D52

e

p

]S

]ux

]S

]uy
$sin 4pux

1 1
2 @sin 4p~ux1uy!

1sin 4p~ux2uy!#,sin 4puy

1 1
2 @sin 4p~ux1uy!2sin 4p~ux2uy!#%

~27!

and

]H

]p U
q

5
1

2p
~1,1!1

e

4p2
$11cos 4pux1cos 4puy

1 1
2 @cos 4p~ux1uy!1cos 4p~ux2uy!#%

3S ]S

]uy
,

]S

]ux
D . ~28!

We substitute into Eq.~16! and then into Eq.~15! to get the
PDE for S.

We sete50.05, andI x5I y59p. This corresponds to a
torus with zeroth-order energyE59 at t50. The system is
nearly integrable in this regime@3#, yet a study of the semi-
classically obtained energy spectrum@2,3# shows clear dif-
ferences from first-order perturbation theory. We theref
test our PDE beyond the first-order limit with this examp

We set N520, DX50.1, DT50.034, andGDSZ59,
which allowed us to propagate the PDE out to a time
0.306~the meaning of these parameters is given in Appen
A!. The rate of change ofSon the grid reaches a minimum a
this point @which was determined by trackingA^(]S/]t)2&
on the grid#, so the evolution was stopped here. Because
PDE approach is only the gradient-descent prescription
the first-order limit, for finite perturbations there is no reas
to expect the evolution to reach steady state. We discuss
issue further in Appendix C.

Figures 1~a!–1~d! show the results of the evolution a
times t50.0, 0.1, 0.2, and 0.3. It should be noted th
we are not plottingS in these graphs. Rather, we plo
H(ux ,uy ,]S/]ux ,]S/]uy). There are two reasons for this
First, because we are working in the weakly perturb
though still beyond first-order, regime,S remains fairly
close to the identity transformation. The effect o
H(ux ,uy ,]S/]ux ,]S/]uy), however, is dramatic, and so it i
much more convenient to represent the evolution ofS in this
indirect fashion. Second, even if the perturbation were su
ciently strong to significantly deformS, the only way to de-
termine if the deformation ofS is correct is to look at its
effect onH.

Using the formula derived in Appendix B, it is
readily shown that the first-order solution t
H(ux ,uy ,]S/]ux ,]S/]uy) is
3-5
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HS ux ,uy ,
]S

]ux
,
]S

]uy
D5

1

2p
~ I x1I y!1

eI xI y

4p2
$11e24t

3~cos 4pux1cos 4puy!

1 1
2 @cos 4p~ux2uy!

1e216t cos 4p~ux1uy!#%. ~29!

While the perturbation is sufficiently strong that there a
clear differences from first-order perturbation theory, the p
turbation is still sufficiently weak that the first-order resu
provides a qualitative and semiquantitative picture of h
the evolution should proceed. Lettingt→`, we see that the
long-time limit of the evolution gives

HS ux ,uy ,
]S

]ux
,
]S

]uy
D U

t5`

5
1

2p
~ I x1I y!

1
eI xI y

4p2
@11 1

2 cos 4p~ux2uy!#.

~30!

This is plotted for our specific set of parameters in Fig.
Note that the numerical evolution does indeed deformS in

FIG. 1. Plot ofH(ux ,uy ,]S/]ux ,]S/]uy) at various times for
the Pullen-Edmonds Hamiltonian~arbitrary units!. ~a! t50.0, ~b! t
50.1, ~c! t50.2, and~d! t50.3.

FIG. 2. Plot of H(ux ,uy ,]S/]ux ,]S/]uy) for the Pullen-
Edmonds Hamiltonian fort5` in the first-order limit ~arbitrary
units!.
06661
r-
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such a way that the graphs in Figs. 1~a!–1~d! evolve to look
like the graph in Fig. 2. Without the (2,22) resonance,H is
integrable at this energy@3#, so it is possible to transform to
a basis in whichH depends only on (I x ,I y). Instead, the
evolution eliminates as much of the nonresonant behavio
possible, but the resonant angle dependence arising from
(2,22) term remains. In Figs. 3~a!–3~d! we present the re-
sults of the evolution on the Hamiltonian obtained by remo
ing the (2,22) resonance from the Pullen-Edmonds ter
We changedDT to 0.033 andGDSZto 11. All other param-
eters are otherwise unchanged. In this case, the evolu
should flattenH, and as Figs. 3~a!–3~d! confirm, this is ex-
actly what happens.

VI. CONSTRUCTION OF SEMICLASSICAL
WAVE FUNCTIONS

We applied this PDE-based approach to construct o
mized semiclassical wave functions for Gaussian bump
tentials. Thus, we considered a Hamiltonian of the form

H~x,y,px ,py!5
px

21py
2

2
1l exp@2~ax212cxy1by2!#.

~31!

We considered two different potentials. For potential I, w
took l151,a5b51,c50. For potential II, we tookl2
51,a5b53,c52. This corresponds to the potenti
exp@2(x215y2)#, with thexy axis rotated clockwise by 45°

The S evolution was solved forPx51.5,Py50.0, corre-
sponding to a particle momentum of (1.5,0.0) far away fro
the potential. Thus, the particle energy is above the bu
height for both potentials. We worked on the spatial g
@24,4#3@24,4# with a step size of 0.2. We used a mome
tum step size of 0.05. Starting at timet50, we propagated
out to t50.2 for potential I andt50.15 for potential II using
a time step of 0.01. In both cases, the rate of change ofSon

FIG. 3. Plot ofH(ux ,uy ,]S/]ux ,]S/]uy) at various times for
the Pullen-Edmonds Hamiltonian with the (2,22) resonance re-
moved ~arbitrary units!. ~a! t50.0, ~b! t50.1, ~c! t50.2, and~d!
t50.3.
3-6
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the grid was at least 50% smaller at the end of the evolu
than at the beginning. Our choice forG was still able to
optimize the canonical basis for this Hamiltonian, ev
though it was obtained based on first-order consideratio
and we were at an energy only slightly above the barrier

Figures 4~a! and 4~b! plot H(x,y,]S/]x,]S/]y) for the
two potentials at the start of their respective evolutions.
to the kinetic energy term (Px

21Py
2)/2, these graphs show th

shape of the Gaussian bumps for potentials I and II, resp
tively. Figures 5~a! and 5~b! are probability density plots o
the corresponding wave functions. White regions corresp
to enhanced probability density, while dark regions cor
spond to depleted probability density. In both cases,
maximum probability density change from the backgrou
value of 1 is from 20% to 30%. Note how the wave functio
reveal some of the underlying classical dynamics. For
symmetric Gaussian bump of potential I, classical trajec
ries are deflected around the bump. Thus, there should
depletion of probability in the center of the bump, and
enhancement in the region around the bump. As Fig. 5~a!
illustrates, this is exactly what happens. A similar situat
occurs in Fig. 5~b!, corresponding to potential II. This time

FIG. 4. Plot ofH(x,y,]S/]x,]S/]y) at t50 for potentials I and
II ~arbitrary units!. ~a! Potential I and~b! potential II.
06661
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however, the distribution is angled somewhat along the
rection of the potential, which should be expected classica

The one feature that may not be physically intuitive is t
symmetry of the probability distribution. It may be show
@6# that the overall generating function for these potentials
not unique, but depends on the choice of boundary con
tions at infinity. Our implementation of the PDE forSselects
the boundary condition corresponding to a momentum fi
which angles the trajectories slightly inward atx52`, so
that the momentum field curves in as trajectories appro
the bump, and then curves away as trajectories are defle

FIG. 5. Probability density plots of the semiclassical wave fun
tions generated from the evolutions on potentials I and II~arbitrary
units!. ~a! The wave function for potential I and~b! the wave func-
tion for potential II.
3-7
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by the bump. While future work would attempt to allow fo
different boundary conditions numerically, we have fou
the current implementation of the PDE forS to be the most
stable.

VII. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a PDE-based, phase-space defo
tion approach to optimize the canonical basis with which
globally represent a nearly integrable Hamiltonian. Beca
this method reduces to a gradient-descent approach for
mizing the canonical basis in the first-order limit, it wa
called the GDA method in Ref.@2#, where it was initially
applied to determine the eigenenergies of systems with t
four, and six degrees of freedom. The GDA method is co
patible with any canonical representation of phase space,
allows the construction and visualization of the semiclass
wave functions corresponding to the optimized canonical
sis for the given Hamiltonian.

As was mentioned in the Introduction, the motivation f
this work is derived from semiclassical quantum mechan
In light of the results for theH evolution in Ref.@2#, this
method may be useful in understanding vibrational dynam
in polyatomic molecules. It may also be useful as a way
construct distorted-wave basis sets for scattering calc
tions, and hence may find application in mesoscopic phys
It should be noted in this regard that this PDE-based
proach contains other methods as subcases. For examp
Ref. @9#, Maitra and Heller used one-dimensional WK
wave functions as a distorted-wave basis for comput
above-barrier reflection coefficients. It may be shown@6# that
for all above-barrier energies our PDE method has a uni
steady state which exactly coincides with the on
dimensional WKB wave functions for all above-barrier en
gies, so that the Maitra-Heller method is contained within
GDA method. In their paper, Maitra and Heller raised t
issue of generalizing their technique to higher dimensio
and to action-angle systems. Our PDE-based approach i
actly this generalization@11–31#.

At this point, we have not yet applied the GDA method
actual systems. The main difficulty in dealing with vibr
tional calculations for polyatomics is that it is currently d
ficult to obtain accurate vibrational potential energy surfac
even for few-atom polyatomics. However, it would be use
to apply the GDA method to actual systems at some point
addition, while we wrote in the Introduction that we belie
the GDA approach is significantly faster than previous
nonical basis optimization algorithms~at least for theH evo-
lution!, we also wrote that in fairness no speed comparis
have been made to date. Thus, another potentially us
study would be to compare the GDA method with the va
ous other methods on the market.

To conclude, we should add that Heller has often ma
the comparison between the separatrix region generated
local potential bump in one dimension to the resonance z
structure in a Poincare´ surface of section of a nearly inte
grable Hamiltonian@9,10#. Indeed, Heller regards the abov
barrier reflection problem as a prototype for the more co
plicated case of dynamical tunneling between invariant
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facilitated by resonance zones. Because both types of
tems can be treated within the same PDE-based appro
they are, in fact, formally equivalent phenomena.
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APPENDIX A: NUMERICAL PROPAGATION OF S

If H is given analytically, then the derivatives ofH can
also be determined analytically. Therefore, it can be s
from Eqs.~15! and ~16! that the numerical propagation ofS
only requires the numerical evaluation of the partial deriv
tives of S. This is done using centered differences.

At time t50, S is simply the identity transformation, s
that S(q,P;0)5q•P. Thus,S is not periodic in eachqi with
period Li . Define Ln5(n1L1 , . . . ,nDLD), and note, how-
ever, thatS(q1Ln ,P;0)5P•Ln1S(q,P;0). We claim that
this property is preserved by the evolution. We shall assu
this for what follows, and then prove it at the end of th
section. Thus, althoughS is not periodic in theqi ’s, we still
need only trackS for q in a D-dimensional box of side
lengthsL1 , . . . ,LD .

The q grid is given by $(n1L1 /N, . . . ,nDLD /N)uni
50, . . . ,N21%, giving ND grid points. We track allP on a
grid of canonical momenta about some central momen
P0, where our grid consists of all canonical momentaPk
5P01DXk, with k5(k1 , . . . ,kD) satisfying uk1u1 . . .
1ukDu<GDSZ. Let us denote this set byV(P0 ,GDSZ).
Since our evolution involves a first derivative inP of S, we
cannot compute]S/]t at the boundary of theP grid. The
result is that we can only propagate onV(P0 ,GDSZ21), so
that at each iteration the value ofGDSZshrinks by 1. This
collapsing boundary method is described in further detai
Ref. @2#, since it also arises naturally in the numerical imp
mentation of theH evolution. The absence of any bounda
condition for theP grid is due to the fact that there ar
simply no physically natural boundary conditions to impos
This is in contrast to the heat equation, for example, wh
fixing the temperature at the boundary is physically realiz
by immersing the system in a constant temperature bath

Once]S/]t has been evaluated on all possible grid poin
the propagation by some time stepDT is done using the
explicit Euler method, which means that we setS(q,Pk ;t
1DT)5S(q,Pk ;t)1DT(]S/]t)(q,Pk ;t).

Finally, suppose we are considering a system with
bound degrees of freedom, that is, some of theLi50. Then
we track thoseqiP$qi06nDun50, . . . ,Ni%. At each time
step, we can only compute]S/]t up to n5Ni21, so that
after each time step we shrink our set ofqi by decreasingNi
3-8
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by 1. While in this case it may be possible to impose m
natural boundary conditions on the system, in practice i
numerically most stable to have a free boundary, as is d
with the P grid.

We will now prove thatS(q1Ln ,P;t)5P•Ln1S(q,P;t).
To do this, we make the key assumption that the numer
propagation outlined above converges to the exact solu
of the PDE in the limit of the time and spatial steps a
proaching 0. Specifically, given some timeT.0 to which
we wish to propagate the PDE, we divide the time grid in
step sizes of lengthDT5T/N, whereN is an integer that we
let go to `. At someq,P, we constructS(q,P;t) by con-
structing Sn(q,P)[S(q,P;nDT), where n50, . . . ,N, and
for tP@0,T# we defineS(q,P;t) to be the linear interpolation
of „S0(q,P), . . . ,SN(q,P)… on @0,T#. Clearly, if we can show
that Sn(q1Ln ,P)5P•Ln1Sn(q,P), then by interpolation
our claim holds; tP@0,T#. We prove this by induction.

By definition, Sn(q1Ln ,P)5P•Ln1Sn(q,P) for n50,
so assume the result holds for somen>0. To prove that it
holds forn11, we may note that

Sn11~q1Ln ,P!5Sn~q1Ln ,P!1
]S

]t
~q1Ln ,P;nDT!DT

5P•Ln1Sn~q,P!

1
]S

]t
~q1Ln ,P;nDT!DT. ~A1!

Now, from Sn(q1Ln ,P)5P•Ln1Sn(q,P) we obtain that
(]S/]P)(q1Ln ,P;nDT)5Ln1(]S/]P)(q,P;nDT), so the
periodicity of G then implies that (]S/]t)(q1Ln ,P;nDT)
5(]S/]t)(q,P;nDT). Then Eq.~A1! becomes

Sn11~q1Ln ,P!5P•Ln1Sn~q,P!1
]S

]t
~q,P;nDT!DT

5P•Ln1Sn11~q,P!, ~A2!

thereby completing the induction step, and proving o
claim.

APPENDIX B: AN ADDITIONAL FIRST-ORDER RESULT

In this section we derive the first-order result f
H(q,]S/]q;0). Following the procedure in Sec. IV, we writ
S5q•P1G̃(q,P;t). We also write H(q,p;0)5H (0)(p;0)
1H (1)(q,p;0). Using p5]S/]q5P1“qG̃(q,P;t), we get
to first order that

H~q,p;0!5H (0)~P;0!1“PH (0)~P;0!•“qG̃~q,P;t !

1H (1)~q,P;0!. ~B1!

For simplicity, we assume thatG was chosen using
H (0)(P)5H (0)(P;0). As mentioned before, in the first-orde
limit all three prescriptions for choosingG are equivalent.
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Using the other two prescriptions will lead to at mo
second-order corrections in our final result. From Eq.~23!
we get that

“PH (0)
•“qG̃~q,P;t !52

1

V (
kÞ0

Hk
(1)

3~12e24p2(k•“PH(0))2t!e2p ik•q

52H (1)1
1

V (
kÞ0

Hk
(1)

3e24p2(k•“PH(0))2te2p ik•q, ~B2!

and so we obtain

HS q,
]S

]q
~q,P;t !;0D5H (0)~P;0!1

1

V (
kÞ0

Hk
(1)~P;0!

3e24p2(k•“PH(0))2te2p ik•q. ~B3!

APPENDIX C: PROPAGATION TIME

Recall from Eq.~12! that the first-order expression for th
evolution ofH in Fourier space is

]Hk

]t
52p i ~k•“PH (0)!Gk . ~C1!

This equation was then used to obtain the gradient-des
prescription for choosingG in the first-order limit. For weak
perturbations, this prescription no longer coincides with
gradient-descent approach, but should still shrink the n
zero Fourier components ofH. This will occur as long as the
right side of Eq.~C1! @or Eq. ~12!# is sufficiently dominant
compared to the remaining terms in the full PDE forH. Note
then that for resonances and near-resonances this cond
does not hold. However, for sufficiently nonresonant ter
this condition does hold. Thus, in general, for a weak per
bation, our PDE-based approach starts out by decreasing
more nonresonant terms ofH. TheQ dependence ofH starts
decreasing, and so the rate of change ofS decreases as we
as the evolution proceeds. Eventually, the sufficiently n
resonant terms ofH are reduced to a point where highe
order terms become important, so that our first-ord
gradient-descent prescription for choosingG will no longer
work to reduce theQ dependence ofH. The rate of change
of S then begins to increase after this point, and eventu
the PDE becomes numerically unstable. By tracki
A^(]S/]t)2& on the grid, it is possible to stop the evolutio
where the rate of change ofS reaches its minimum, and
consequently where the canonical basis has been optim

Of course, the weaker the perturbation, the closer a gi
k must be to a resonance for our choice ofG to no longer
work to reduce the correspondingHk . Furthermore, the
weaker the perturbation, the longer it is possible to propag
the PDE beforeA^(]S/]t)2& reaches its minimum, and th
more closely this minimum will correspond to a steady sta
It would be interesting to develop a simple criterion to es
mate at what time this minimum occurs, and how far aw
the system is from steady state at the minimum.
3-9
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