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Partial-differential-equation-based approach to classical phase-space deformations
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This paper presents a partial-differential-equation-based approach to finding an optimal canonical basis with
which to represent a nearly integrable Hamiltonian. The idea behind the method is to continuously deform the
initial canonical basis in such a way that the dependence of the Hamiltonian on the canonical position of the
final basis is minimized. The final basis incorporates as much of the classical dynamics as possible into an
integrable Hamiltonian, leaving a much smaller nonintegrable component than in the initial representation.
With this approach it is also possible to construct the semiclassical wave functions corresponding to the final
canonical basis. This optimized basis is potentially useful in quantum calculations, both as a way to minimize
the required size of basis sets, and as a way to provide physical insight by isolating those effects resulting from
integrable dynamics.
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. INTRODUCTION tion S(q,P) from the initial basis ¢,p) to the final basis
(Q,P), we have, up to normalization,
Suppose we are given a nearly integrable Hamiltonian
H(q,p), where @,p) represents some canonical representa-
tion of phase spacénot necessarily ordinary position and (qlPy=
momentum. We wish to find another canonical representa-
tion (Q,P) in which H is as close as possible to being inte- where det¢?S/dqdP) is the well-known Van Vleck determi-
grable. Our motivation for this is twofold, and is connectednant.
to semiclassical quantum mechanics. First of all, from a In the case of action-angle variables, the optimized repre-
purely numerical perspective, a representation in whicis  sentation of a nearly integrable Hamiltonian is termed an
as close as possible to being integrable leads to an optimizegtrinsic resonance representatidiRR), a term coined by
semiclassical basis with which to perform quantum calculaCarioli, Heller, and Moller(CHM) [2,3]. In 1997 they pub-
tions. The reason for this is that we can associate Rith  lished a paper detailing an algorithm for the construction of
quantum state [P). If we write H(Q,P)=H(P)  such a representation. The idea behind the CHM algorithm is
+H®(Q,P), then it is clear thaH(® is diagonal in the to eliminate all the nonresonant terms of the Hamiltonian via
{|P)} basis, so that onl{4?) is available to couple the vari- an appropriate canonical transformation. This canonical
ous basis states. The coupling is given semiclassicalljlhy transformation is obtained via a modified Chapman, Garrett,
and Miller method[2—4], which is essentially a Newton-
, Raphson scheme to find the invariant tori with a desired set
(P’|I:|(1)|P>=H(l) (P+P ) 1) of actions for a nearly integrable system. The remaini_ng
(P'=P)2mt| 2 | resonant and near-resonant terms are then reexpressed in the
new basis. It is impossible to reduce the angle dependence
" _ _ any further, since this would result in the formation of reso-
whereH pi _p . (P+P')/2) is the (P’ —P)/2n#i Fourier  nance zones, which prevents a global action-angle descrip-
component at P+ P’)/2 of H). A representation in which tion of the Hamiltonian.
H® is as small as possible will minimize the couplings in  In 2001 Tannenbaum and Heller published an alternative
the correspondindg|P)} basis, and thus will minimize the algorithm for finding the IRR basif2]. The method intro-
size of the basis required to perform a given calculation taduced is a partial-differential-equatioPDE)-based ap-
some desired accuracy. proach which continuously deforms the initial action-angle
Secondly, a canonical representation in whidhis as  basis in such a way that the angle dependence of the Hamil-
close as possible to being integrable provides physical intonian is continuously reduced. It amounts to a gradient-
sight. By incorporating as much of the classical dynamics aslescent algorithm in the limit of a first-order perturbation,
possible into an integrable Hamiltonian, this optimal canoni-and was therefore called the GDA method. Formally, the
cal representation can help to isolate those classical amtiethod does not distinguish between resonant, nearly reso-
guantum effects resulting from integrable dynamics fromnant, and nonresonant terms, that is, the evolution is per-
those that do not. Thus this representation can isolate nonirfiermed on the entire Hamiltonian without any terms ne-
tegrable quantum and classical effects such as dynamicglected. However, the evolution is such that the more
tunneling and Arnol'd diffusion, respectively. Furthermore, nonresonant a term, the more strongly it is affected by the
we can also visualize the quantum manifestation of the inteevolution. Thus, the nonresonant terms of the Hamiltonian
grable classical dynamics via the semiclassical prescriptioare essentially removed, the nearly resonant terms are re-
for constructing a wave function. Given the generating func-duced somewhat, while the resonant terms are essentially
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unaffected. In Ref[2], the GDA method was used to semi- rameter, only possibly diverging as a result of near reso-

classically find the eigenvalues of systems with two, four,nances in the limit to infinity. Section V tests tBeevolution

and six degrees of freedom, using greatly reduced basis segquation with a numerical example. We continue in Sec. VI
The GDA method circumvents two main drawbacks of theby applying theS evolution equation to actually construct

CHM method. First, the CHM method requires arpriori and visualize some semiclassical wave functions associated

decision as to which terms are resonant and nonresonarith optimized canonical bases. Finally, we conclude in Sec.

This leads to an ambiguity in the case of near-resonances. Wl with a summary of our results and a discussion of future

could happen that a given term in the Hamiltonian must bé€search plans.

considered resonant in order to get the Newton-Raphson

scheme to converge. This leads to a somewhat artificial cut- Il. THE EVOLUTION EQUATIONS

off criterion, since a nearly resonant Fourier component . . . . .

should in principle still be reduced as much as possible, al- In this section we shall obtain the basic evolution equa-

though not necessarily completely. Thus, unless the HamilgOnS for the HamiltoniarH and the overall generating func-

tonian has a few exact or near-resonances, it is not clear thdP" S The idea is as follows. We start with an initial set of
the CHM method will give the optimized torus basis. canonical coordinates(p), which denote any global repre-

Second, the CHM method requires the numerical eva|ua§entation of phase space, and do not necessarily refer to or-

tion of multidimensional integrals, and the numerical inver-dinary position and momentum, respective{jonglobal

sion of a nonlinear angle map at every iteration step. FurthefSPresentations can also work, as long as we remain well
more, every iteration step also requires the numericalVithin the region of phase space they describe. An example

solution of a system of linear equations. These numericaf! this is action-angle variables for a system that can disso-

calculations slow the algorithm down. In contrast, the nu-ciate. Action-angle variables should work as a valid repre-

merical calculations required by the GDA method are muctpeNtation as long as we remain well below any dissociation

simpler, so we believe that the GDA method is faster than théhrgshqld) We contlnuot_Jst defo_rm this system via a series

CHM approachalthough in fairness it should be added thatOf |nf|r_1|te5|mal generating functlor_ws. Th_e result is that our

no direct speed comparisons have been made t9.date canonical repre;entatmn is evolving with respect to some
Despite its advantages, the GDA method, as described ig2rametet, and is denoted by, ,P) at parameter value

Ref. [2], does not give the overall generating function O convenience, we will call our parametethe “time,

S(q,P) transforming from the initial §,p) basis to the final ?'tho‘ﬂgh I shquld he understoqd that it does not represent

(Q,P) basis. Thus, in Ref2], we could compute the energy time in the ordmary. sense, but is rather a hom(_)topy param-

spectrum arising from an optimized invariant torus basis, bufter- As our canonical paur evqlves, the funcuongli depen-

not the corresponding semiclassical wave functions existin@ence ofH on t_he canor_ncal pair changes._ln add't.'oﬂ’ the

on the IRR tori. verall generating functiors(qg,P;t) connecting the initial
This paper is a continuation of the work presented in Ref(0.P) to the current Q;,P;) evolves as well. '

[2], and it has several purposes: First, the presentation of the COnsider an arbitrary set of canonical coordinates. At

method given in Ref[2] has been greatly simplified. Sec- UMet, we are at system{;,Py). At time t+dt, we are at

ondly, and more importantly, the method has been extended¥/St€M Qt+at:Pr+ar). These are connected by an infini-

to include the determination of the overall generating funciesimal generating — function F(Q;,Pts4t;t) = Q- Pryar

tion S(q,P). This provides a powerful visualization tool +dtG(Qt,Prsqt;t). Therefore,

which allows one to actually construct the semiclassical

wave functions associated with the optimized canonical ba- t+dt= Qut dtVpG(Qy,Prigrit), ()]
sis. Thus, while the full method will be developed in this
paper, the numerical examples focus on the overall generat- Pt=Priart dtVoG(Qr,Priarit). 4

ing function S(q,P). As mentioned before, numerical ex- . . I ) .
amples dealing with the Hamiltonian directly may be found These equations are just Hamilton’s equations of motion for
in Ref. [2]. the dynamics governed @, which plays the formal role of

This paper is organized as follows. In Sec. Il we obtain@ Hamiltonian in this case. The functional dependenck of

the generic evolution equations for the Hamiltonian and théherefore evolves according to

overall generating function, starting from an arbitrary ca-

nonical basis ¢,p). In Sec. Ill we consider the case of a ﬁJr{H Gl=0 (5)
nearly integrable Hamiltonian, and obtain the specific form at ' '

our evolution is to take if we want to optimize the canonical

basis used to represent the Hamiltonian. A similar, yet mordhis equation is simply a statement this invariant under
detailed, derivation may be found in R¢2]. In Sec. IVwe the canonical transformation induced Hy(dH/dt=0),
consider the first-order limit of our PDE approach. We obtainwhich follows from the fact tha¥ is a time-independent
a generalized first-order classical perturbation theory whicteanonical transformatiofb].

coincides with standard perturbation theory in an appropriate For what follows in this paper it will prove convenient to
limit, obtained by taking the evolution parameter to infinity. represent the dynamics in Fourier space. To this end, assume
However, the advantage of our first-order formula is that itthatH is periodic in eactQ; with periodL;. Then we shall
remains convergent for all finite values of the evolution pa-chooseG to also be periodic in eack; with periodL;.
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Define V=L;---Lp, and let Q denote
D-dimensional box of side lengthis,, ... Lp

an arbitrary
. Then,

H(Q,Pit) = % 2 Hi(Pine?me, )

where

Hk(P;t)EJ'QdQH(Q,P:t)efz”ik'Q, ()

and similarly forG(Q,P;t). Our componentwise evolution is
then

IH,

.1 ,
a_t:277|v§ {(k 'VPkak’)Gk'

—[(k=K")-VpGy JHg /). (8)
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Following a similar derivation to the one in R¢2], it may

be shown that, in the first-order limit, the gradient-descent
prescription for minimizing|H,|?=HH, ,k#0, is to set
Gy=27i (k- VpHO)H, . Then in the first-order limit we ob-
tain that dHH,/dt=—8m%(k- VpH()2H,H,, which is
clearly negative. For stronger perturbations, this is no longer
the gradient-descent prescription. However, for nearly inte-
grable systemsthe ones of interest to us in this papéne
perturbation should still be sufficiently weak that the above

choice forGy will shrink therﬁk ,k# 0. Therefore, we take
Gy=2i (k- VpHO)H, , which gives
G(Q,P;t)=VpH® . VoH=VHO. V,HD. (13

Note that the Fourier expansion & involves terms of the
form k- VpH©. A k for which k- VpH(®=0 is a general-
ized resonance &. The integrability ofH(® is destroyed by
the resonant terms iH%). It should also be pointed out here
thatG has units of energy?/[ action|=[ power], and sa has

Note that the evolution preserves the integration limits of outunits of [time]?.
original system. Thus the topology of the original phase Our evolution does not formally distinguish between reso-

space is preserved.

nances, near-resonances, and nonresonances. The evolution

It should be mentioned that degrees of freedom for whichis done on the entire Hamiltonian without any terms ne-
L; is finite can be treated in an action-angle formalism inglected. However, the closer a term is to being resonant, the

which L;=1, while degrees of freedom for which;=o°

smaller the corresponding Fourier componeniGyfand so

have their corresponding Fourier sums replaced by integralshe less that term is affected by the evolution.

Finally, the evolution of the generating functi®{q, P;t)
is given by the Hamilton-Jacobi POB—-7]

S_o[7S o, .
E_ ﬁ! )t . ( )
Ill. CHOOSING G

We want an approach that minimizes the dependent of
on Q. The condition thaH be independent dD is equivalent
to the vanishing of the nonzero Fourier componéhiéP;t).
We therefore seek to minimize the dependenck oh Q by
choosingG in such a way that théH, (P;t)| are continu-
ously decreasing for ak+# 0.

At some timet, we can write H(Q,P;t)=H©O(P;t)
+H®(Q,P;t). The idea is tha (?) contains the piece of the
Hamiltonian that is dependent only éh andH®) contains
the remainder. Then,

dH

—r = VeH®- VoG- {H®,G}. (10

In the limit of a first-order perturbation on an integrable
Hamiltonian, the relevant equation is

JH

E=VPH<°>.VQG. (12)
In Fourier space, this becomes
oH
7k=2wi(k-va<O>)Gk. (12)

In the first-order limit,H(®(P;t) differs from H(©)(P;0)
by a correction that is at most first order k%), Therefore,
if we useH©(P;0) instead oH®)(P;t) in our prescription
for choosingG in Eq. (13), we get a discrepancy of at most
second order inH®), so that the two formulations are
equivalent to first order. Since our prescription for choosing
G was derived from the first-order limit of the evolution of
H, we see that it is equivalent to usé®(P;0) or HO(P;t)
in Eq. (13). Finally, ourt=0 Hamiltonian is usually given as
H(qg,p) =Ho(p) +V(a,p), whereH, is the zeroth-order, in-
tegrable Hamiltonian, and/ is the perturbation. We can
extract the k=0 Fourier component ofV, writing
V(9,p)=Vo(p) +V(a,p). ThenH(Q,P;0)=Hq(P)+V,(P)
+V(Q,P), so that HO(P;0)=Hy(P)+Vy(P), and
HM(Q,P;0)=V(Q,P). Therefore, note that in the first-order
limit it is equivalent to useH(®(P;0) or Hy(P) in the pre-
scription for choosings. Once again, this means that it is
equivalent to useH((P;0) or Hy(P). In what follows
HO(P;t), HO(P;0), andHy(P) will all be denoted by
H© or HO(P). When required, we will specify to which
H(© we are referring. Very often, one of the three choices
will result in a formulation of the PDEs that is considerably
simpler to implement than the others. For example, in Ref.
[2] we used theH(©)(P;t) formulation to evolve the Fourier
components of, but neglected terms involving second de-
rivatives inP, because they were considered small enough to
be unimportant. Thus we solved an approximate system of
PDEs instead of the full, exact set. However, had we instead
used theHy(P) formulation, then the resulting evolution
would have required only first derivativesih so with slight
modification the system of approximate PDESs solved in Ref.
[2] would have become exact.
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We conclude this section by deriving the PDE governingand

the evolution ofS, given our prescription for choosirg. We
have

3S
E(q.P:t)=G(Q(q.P;t),P;t)

=VeH@.VoH(Q(a,Pit),P;t). (14
Now, we know that
H(Q,P;t)=H(q,p;0)
=H(q,(4S/99)(q,P;t);0).
From 0/ 9Q= (9%S/ 9Paq) ~1a/ 9q we obtain
dS _ oH® [ #S\~1oH(q,05/dq;0) 15
ot 9P |aPaq aq . (15)
where
9H(q,0S/9q;0)|  H ( &S_O)
@ |, %5
+(928 oH ( aso 16
aq? Ip 45q°

Note that, sinceH(q,p;0) is simply our initial Hamiltonian,
we do not need the evolution &f in order to get the evolu-
tion of S

The numerical evolution dbis described in Appendix A.
The numerical evolution oH in the case of action-angle
variables is discussed at length in R&X]. Since the case for

92S gH ( 4S 0) #2G oH aé 0)
I 9P 4 5q P &p P ﬁq’
_azé aH 00 1
) —p (A.P:0). (19
Now, H(q,p;0)=H(p;0)+HM(q,p;0). Then
(H/99)(q,P;0)=(dHV/3q)(q,P;0). To first order,

(3°H19P3q)(q,P;0)dG/aq = (3*°HM/9Paq)(q,P;0)aG/aq
=0. Finally, to first order, ¢*G/dg?)(aH!P)|4(a,P;0)
=(3°Gl3q?) (dH @/ 9P)(P;0). Since each of these terms is

first order in eitheH®) or G, in the first-order limit we take
(6%SI9Paq) ~1=1. Putting everything together gives us our
first-order equation

G 9HO (aH(l) 92G gH©)
—= : +— (20)
at 9P aq  gq2 P
In Fourier space, this becomes
G
—o = 2mi(k- VeHO)H(
—472(k-VpH®)2G, . (21)

SinceG,(P;0)=0V k, we obtain
iH®

_ a—4m3(k-VpH )2t
27T(k-VpH(°))(1 e P ). (22

Gu(P;t)=

arbitrary canonical pairs is handled similarly, we do not giveygte thatG (P:1)=0 for all resonant terms. This can be

numerical details for thél evolution in this paper.

IV. THE FIRST-ORDER LIMIT

From our choice ofG in the previous section, it follows

that in the limit of a first-order perturbation on an integrable

Hamiltonian

JoH

—p = AT VeHO)2H, (17)
Our first-order solution yields  Hy(P;t)

=H(P;0)exg —4m(k- VpH(®)2t]. Note that the more

seen by looking at the original ordinary differential equa-
tion from which the solution is derived, or equivalently by
noting that lim.y 0 _.of1—exg —4n(k- VpH @)t
(k-VpH®)=0. We can write

H(l)
k-VpH©

= By

X(1— e747r2(k<VPH(O))zt)eZn-ikq '

<k

G(q,P;t) =

(23)

This series is convergent, because the exponential term pre-
vents resonances and near-resonances in the denominator

nonresonant a term is the faster the exponential decay. ffom causing the series to diverge. We cartieto to get the
particular, resonances are not affected at all. It may also brst-order perturbation theory result

noted that the first-order evolution equation amounts to run-

ning the Hamiltonian through a heat equation.
We now turn to the evolution dbin the first-order limit.

To this end, writeS(q,P;t)=q-P+G(q,P;t). In what fol-
lows we shall work to first order i andH®). Then,

(9S
a.— aq

oH 2

&q

pre
(q,P;O)% (18

NI

1 i H( )
o K eZ'n'Ik~q' (24)
V 27 &o k-VpH(O)

G(q,P;) =
where the sum is over all nonreson&niNote, however, that
the convergence of the various Fourier components to their
t—oo limits is not uniform, because the time constant for the
exponential term is proportional to ¥{V pH(?)?2. This goes
to infinity ask approaches a resonance. The above equation

066613-4



PARTIAL-DIFFERENTIAL-EQUATION-BASED APPROACH . .. PHYSICAL REVIEW BB5 066613

must be solved for finite, and then thé—oc limit must be vV H(© is taken to be (1/2)(1,1). In addition, for this

taken. This prevents any ambiguitiesGn[6]. Hamiltonian it is readily verified that
We should point out that we have not derived a first-order

classical perturbation theory that is necessarily convergent., , S € 9S S

The standard first-order formula is obtained by takingtthe — (q,—;o) =——— —{sin4m6,

—oo limit of our expression, and as can be clearly seen the alp 99 7 90y 30,

presence of near-resonances can result in a divergent series.

However, the advantage of our formula is that, for all finjte

+3[sin 4m( 6,+ 6y)

the near-resonances are attenuated by the exponential term in +sin4m(6,— 0y)],sin4mo,

such a way that the series does converge. Thus, this method . )

does not require ang priori removal of terms that are as- +3[sindm( O+ 6y) —sin 4ar( 65— 6,) 1}
signed as “resonant.” Rather, all terms may be included in (27)

the first-order expression, amndanay be chosen to be as large

as possible without any Fourier term exceeding some cutoff

criterion. In this way, the nonresonant Fourier terms will es-an
sentially have their standard first-order values, while the

more nearly resonant terms will still have a non-negligible 9H
exponential term present which keeps the overall series con- —
vergent. The corresponding nonresonant Fourier terms in the P q
Hamiltonian will then have been essentially removed, while 1
the more nearly resonant terms will have bgen reduced some- T 2lcos 4m(6,t 0y) + cos 4m(6,— Oy) 1}
what, but not completely. ( S 35)

1 €
:E(l,l)+m{1+cos 4 0+ COoS 4 0,

(28)
V. A NUMERICAL EXAMPLE

We chose to test th8 evolution numerically on the two- We substitute into Eq16) and then into Eq(15) to get the

dimensional Pullen-Edmonds Hamiltonig8l, given by PDE for S
We sete=0.05, andl,=I,=97. This corresponds to a

torus with zeroth-order energy=9 att=0. The system is

nearly integrable in this regime], yet a study of the semi-
(25) classically obtained energy spectry®3] shows clear dif-

ferences from first-order perturbation theory. We therefore
This was the two-dimensional system studied numerically irtest our PDE beyond the first-order limit with this example.
Ref.[2] in testing the GDA method. The results there were We setN=20, DX=0.1, DT=0.034, andGDSZ=9,
compared with those obtained in R¢8] using the CHM  which allowed us to propagate the PDE out to a time of
method. However, while in Ref2] the evolution was done 0.306(the meaning of these parameters is given in Appendix
on H in the context of obtaining a semiclassical quantumA). The rate of change @& on the grid reaches a minimum at
spectrum, in this case it is the PDE f8that is being tested. this point[which was determined by tracking((JS/dt)?)

We seto,=w,=1. Thet=0 canonical representation is on the grid, so the evolution was stopped here. Because our
simply the harmonic oscillator action-angle basis, denoted by’DE approach is only the gradient-descent prescription in
(6x,0y,Jx,dy). The arbitraryt canonical representation is the first-order limit, for finite perturbations there is no reason
denoted by é,,dy,l4,ly), so thatS=S(6,,60,,l,,l,;t), toexpectthe evolution to reach steady state. We discuss this
with J,=dS/96, and J,=dS/d6,. The transformation to issue further in Appendix C.

pe+py

1
H(X,Y,px,Py) = +§(w§x2+ wly?) + ex?y?.

the harmonic representation is obtained by setting Figures 1a)-1(d) show the results of the evolution at
=J,/mcos 276,, p,=—Jy/m7sin2m6,, and similarly for times t=0.0, 0.1, 0.2, and 0.3. It should be noted that
y.py. The result is we are not plottingS in these graphs. Rather, we plot

H(6x,0y,0S/36,,05/36,). There are two reasons for this.

1 €dydy First, because we are working in the weakly perturbed,
H(Ox,0y,dx,dy) = E(Jﬁ— Jy)+—2{1+ COS 4 0y though still beyond first-order, regimes remains fairly
4m close to the identity transformation. The effect on
+C0S 470, + [ cos 4m( O+ 6,) H(6yx,0y,0S/ 36,05/ 36,), however, is dramatic, and so it is
Y Y much more convenient to represent the evolutio® of this
+cos 4m(6— 6,)]}. (26) indirect fashion. Second, even if the perturbation were suffi-

ciently strong to significantly deforr, the only way to de-
The only nonvanishing Fourier components atg2,0), termine if the deformation of is correct is to look at its
+(0,2),%(2,2), and =(2,—2). Note in particular that effect onH.
+(2,—2) is a resonance. Using the formula derived in Appendix B, it is
Of the three prescriptions for choosirig, the simplest readily shown that the first-order solution to
one to use isHO=H,=(1/2m)(1,1)-(I,,ly), so that H(6y,6,,dS/d6,,dS/6,) is
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(b)

FIG. 1. Plot ofH(#6y,6,,dS/36,,9S/36,) at various times for FIG. 3. Plot ofH(#6y,6,,dS/36,,95/36,) at various times for
the Pullen-Edmonds Hamiltonig@rbitrary units. (a) t=0.0, (b) t the Pullen-Edmonds Hamiltonian with the {22) resonance re-
=0.1,(c) t=0.2, and(d) t=0.3. moved (arbitrary unit$. (a) t=0.0, (b) t=0.1, (c) t=0.2, and(d)

t=0.3.
H(a 6 7S 5 L1+ Dy gea h that th hs in Figgalt-1(d) evolve to look
— = e such a way that the graphs in Figsa evolve to loo
X s V’aex’aey 271_( xt1ly) 4772{ y grap g

like the graph in Fig. 2. Without the (2,2) resonancet is
integrable at this energy8], so it is possible to transform to
a basis in whichH depends only onl(,l,). Instead, the
+3[cos 4m( 65— 6y) evolution eliminates as much of the nonresonant behavior as
s possible, but the resonant angle dependence arising from the
te 7 cosdm(O+6y)]}. (29 (2,-2) term remains. In Figs.(8—3(d) we present the re-

) . . sults of the evolution on the Hamiltonian obtained by remov-
While the perturbation is sufficiently strong that there areing the (2-2) resonance from the Pullen-Edmonds term.
clear differences from first-order perturbation theory, the peryyq changedT to 0.033 and5DSZto 11. All other param-
turbation is still sufficiently weak that the first-order result otars are otherwise unchanged. In this case, the evolution

provides a qualitative and semiquantitative picture of howgp,,1d flatterH. and as Figs. @)—3(d) confirm, this is ex-
the evolution should proceed. Letting-=, we see that the 4y what hapbens. ’

long-time limit of the evolution gives

al o S 4S
060,96,

X (cos 4+ cos 4m )

1 VI. CONSTRUCTION OF SEMICLASSICAL
:ﬂ(l xT |y) WAVE FUNCTIONS
t=o0

We applied this PDE-based approach to construct opti-

elyly L mized semiclassical wave functions for Gaussian bump po-
+ a2 [1+3cos 4m(6x—0y)].  tentials. Thus, we considered a Hamiltonian of the form
(30 s , ,
H(x,y,px,py)zi2 +\ exfd — (ax?+2cxy+by?)].
This is plotted for our specific set of parameters in Fig. 2. (31)

Note that the numerical evolution does indeed def&in

We considered two different potentials. For potential I, we
took A;=1la=b=1,c=0. For potential Il, we tookh,
=1la=b=3,c=2. This corresponds to the potential
exf —(x*+5y?)], with the xy axis rotated clockwise by 45°.
The S evolution was solved foP,=1.5P,=0.0, corre-
sponding to a particle momentum of (1.5,0.0) far away from
the potential. Thus, the particle energy is above the bump
height for both potentials. We worked on the spatial grid
[ —4,4] X[ —4,4] with a step size of 0.2. We used a momen-
FIG. 2. Plot of H(6,,6,,dS/36,,9536,) for the Pullen- tum step size of 0.05. Starting at tinbe 0, we propagated
Edmonds Hamiltonian fot= in the first-order limit(arbitrary ~ out tot=0.2 for potential | and=0.15 for potential Il using
units). a time step of 0.01. In both cases, the rate of chand&auf
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FIG. 4. Plot ofH(x,y,dS/dx,dSl dy) att=0 for potentials | and
Il (arbitrary unit$. (a) Potential | andb) potential II.

the grid was at least 50% smaller at the end of the evolution
than at the beginning. Our choice f@ was still able to
optimize the canonical basis for this Hamiltonian, even _, ]
though it was obtained based on first-order considerations _4 ~2 0 2 4
and we were at an energy only slightly above the barrier.  (b) x

Figures 4a) and 4b) plot H(x,y,dS/dx,dS/dy) for the
two potentials at the start of their respective evolutions. Up. FIG. 5. Probability density plots of the semiclassical wave func-
to the kinetic energy temﬂ)Z(Jr p)zl)/21 these graphs show the tlo_ns generated from the_evolutions on potentials | an@bitrary
shape of the Gaussian bumps for potentials | and I, respeéf—n'ts)' (a) The wave function for potential | an) the wave func-
tively. Figures %a) and 5b) are probability density plots of Uo" for potential II
the corresponding wave functions. White regions correspond
to enhanced probability density, while dark regions corre-however, the distribution is angled somewhat along the di-
spond to depleted probability density. In both cases, the&ection of the potential, which should be expected classically.
maximum probability density change from the background The one feature that may not be physically intuitive is the
value of 1 is from 20% to 30%. Note how the wave functionssymmetry of the probability distribution. It may be shown
reveal some of the underlying classical dynamics. For th¢6] that the overall generating function for these potentials is
symmetric Gaussian bump of potential I, classical trajectonot unique, but depends on the choice of boundary condi-
ries are deflected around the bump. Thus, there should betw@ns at infinity. Our implementation of the PDE fSiselects
depletion of probability in the center of the bump, and anthe boundary condition corresponding to a momentum field
enhancement in the region around the bump. As Fig) 5 which angles the trajectories slightly inwardat —, so
illustrates, this is exactly what happens. A similar situationthat the momentum field curves in as trajectories approach
occurs in Fig. ), corresponding to potential Il. This time, the bump, and then curves away as trajectories are deflected
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by the bump. While future work would attempt to allow for facilitated by resonance zones. Because both types of sys-
different boundary conditions numerically, we have foundtems can be treated within the same PDE-based approach,
the current implementation of the PDE f8ito be the most they are, in fact, formally equivalent phenomena.

stable.
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patible with any canonical representation of phase space, and
allows the construction and visualization of the semiclassical ~APPENDIX A: NUMERICAL PROPAGATION OF S
wave functions corresponding to the optimized canonical ba-

sis for the given Hamiltonian. . i :
g also be determined analytically. Therefore, it can be seen

As was mentioned in the Introduction, the motivation forf Eas. (15 and (16) that th ical ion 6f
this work is derived from semiclassical quantum mechanicsToM Eds-(15) and(16) that the numerical propagation

In light of the results for thed evolution in Ref.[2], this qnly requires_ the numeric_al evaluation o_f the partial deriva-
method may be useful in understanding vibrational dynamicé'ves qfs This is dpng using centereq differences. .

in polyatomic molecules. It may also be useful as a way to At time t=0, Sis simply .the |dent|.ty 'Fransformatlo_rl, S0
construct distorted-wave basis sets for scattering calculéhaFS(q'P;O)z_q'P' Thus,Sis not periodic in eacly; with
tions, and hence may find application in mesoscopic physic®€riod Li. DefineL,=(niL,, ... nplp), and note, how-

It should be noted in this regard that this PDE-based ap€Veh thatS(a+L,,P;0)=P-L,+S(q,P;0). We claim that
proach contains other methods as subcases. For example, {fi{S Property is preserved by the evolution. We shall assume
Ref. [9], Maitra and Heller used one-dimensional Wkp this for what follows, and then prove it at th? end of this
wave functions as a distorted-wave basis for computing€ction. Thus, althoug8is not periodic in they;’s, we still
above-barrier reflection coefficients. It may be shd@fthat  need only trackS for g in a D-dimensional box of side

If H is given analytically, then the derivatives bff can

for all above-barrier energies our PDE method has a uniquéngthsts, ... .Lp.
steady state which exactly coincides with the one- The d grid is gven by {(niLs/N, ... npLp/N)|n;
dimensional WKB wave functions for all above-barrier ener-=0. - - . N—1}, giving N” grid points. We track alP on a

gies, so that the Maitra-Heller method is contained within thedfid of canonical momenta about some central momentum
GDA method. In their paper, Maitra and Heller raised thePo, where our grid consists of all canonical momeia
issue of generalizing their technique to higher dimensions=Po+ DXk, with k=(ky, ... kp) satisfying [k|+ ...
and to action-angle systems. Our PDE-based approach is ex-ko|<GDSZ Let us denote this set b (P;,GDS2).
actly this generalizatiofl1—31]. Since our evolution involves a first derivative fhof S, we

At this point, we have not yet applied the GDA method to cannot compute’S/dt at the boundary of thé grid. The
actual systems. The main difficulty in dealing with vibra- resultis that we can only propagate QiP,,GDSZ-1), so
tional calculations for polyatomics is that it is currently dif- that at each iteration the value GfDSZ shrinks by 1. This
ficult to obtain accurate vibrational potential energy surfacesgollapsing boundary method is described in further detail in
even for few-atom polyatomics. However, it would be usefulRef.[2], since it also arises naturally in the numerical imple-
to apply the GDA method to actual systems at some point. Ifinentation of theH evolution. The absence of any boundary
addition, while we wrote in the Introduction that we believe condition for theP grid is due to the fact that there are
the GDA approach is significantly faster than previous ca-simply no physically natural boundary conditions to impose.
nonical basis optimization algorithntat least for thed evo- ~ This is in contrast to the heat equation, for example, where
lution), we also wrote that in fairness no speed comparison§xing the temperature at the boundary is physically realized
have been made to date. Thus, another potentially useflly immersing the system in a constant temperature bath.
study would be to compare the GDA method with the vari- OncedS/dt has been evaluated on all possible grid points,
ous other methods on the market. the propagation by some time st&pr is done using the

To conclude, we should add that Heller has often madexplicit Euler method, which means that we S€g,Py;t
the comparison between the separatrix region generated by-aDT)=S(q,Py;t) + DT(dS/dt)(q,Py;t).
local potential bump in one dimension to the resonance zone Finally, suppose we are considering a system with un-
structure in a Poincareurface of section of a nearly inte- bound degrees of freedom, that is, some ofltfre 0. Then
grable Hamiltoniarf9,10]. Indeed, Heller regards the above- we track thoseq; e {dio*=nA|n=0, ... N;}. At each time
barrier reflection problem as a prototype for the more comstep, we can only computéS/dt up ton=N;—1, so that
plicated case of dynamical tunneling between invariant torafter each time step we shrink our setgpfby decreasing\;
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by 1. While in this case it may be possible to impose moreJsing the other two prescriptions will lead to at most
natural boundary conditions on the system, in practice it issecond-order corrections in our final result. From E2B)
numerically most stable to have a free boundary, as is donee get that
with the P grid. 1

We will now prove thaiS(q+L,,P;t)=P-L,+S(q,P;t). VHO. Vq'é(qp;t): —_— H
To do this, we make the key assumption that the numerical V 7o
propagation outlined above converges to the exact solution
of the PDE in the limit of the time and spatial steps ap-
proaching 0. Specifically, given some tinfe-0 to which

X(1— e—4772(k~VPH(O))Zt)eZWik-q

1
we wish to propagate the PDE, we divide the time grid into =—-HDO+ v > HW
step sizes of lengtB T=T/N, whereN is an integer that we k=0
let go to~. At someq,P, we constructS(q,P;t) by con- ><e‘4”2(k‘VPH(O))2‘e2”‘k'q (B2)

structing S,(q,P)=S(q,P;nDT), wheren=0, ... N, and

forte[0,T] we defineS(q,P;t) to be the linear interpolation and so we obtain

of (So(q,P), .. ..Sy(0,P)) on[0,T]. Clearly, if we can show 55 1

that S,(q+L,,P)=P-L,+S,(q,P), then by interpolation oo -0 | = 0 p- - 1)/ p-

our claim holdsV te[0,T]. We prove this by induction. H(q, aq(q’P’t)’O) H (P’O)+V kz#:o HiZ(P:0)
By definition, S,(q+L,,P)=P-L,+S,(q,P) for n=0, o, ONZ i

so assume the result holds for somz0. To prove that it x e 4m (ke Ve ) Mg2mikea — (B3)

holds forn+1, we may note that
APPENDIX C: PROPAGATION TIME

JS Recall from Eq.(12) that the first-order expression for the
Sn+1(@+ L, P)=Sy(q+ Ly, P)+—(q+L,,PInDT)DT evolution ofH in Fourier space is
=P-L,+S,(q,P) o i (0)
n ) WZZWI(k'VpH )Gk (Cl)
JS
+orar L,,P;nDT)DT. (A1)  This equation was then used to obtain the gradient-descent

prescription for choosing in the first-order limit. For weak
, perturbations, this prescription no longer coincides with the

Now, from S,(q+Ln,P)=P-L,+S,(q,P) we obtain that 4 jient-descent approach, but should still shrink the non-
(9S/9P)(a+Ly,PnDT)=L,+(dS/9P)(q,P;nDT), so the ;614 Fourier components &f. This will occur as long as the
periodicity of G then implies that {S/9t)(q+L,,PinDT)  yight side of Eq.(C1) [or Eq. (12)] is sufficiently dominant
=(dS/t)(q,P;nDT). Then Eq.(A1) becomes compared to the remaining terms in the full PDE FarNote

then that for resonances and near-resonances this condition

does not hold. However, for sufficiently nonresonant terms

S
Shi1(q+L,,P)=P-L,+S,(q,P)+ —(q,P;nDT)DT this condition does hold. Thus, in general, for a weak pertur-
Jt bation, our PDE-based approach starts out by decreasing the
=P-L,+S,.1(q,P), (A2) ~ Mmore nonresonant terms bf TheQ dependence dfl starts

decreasing, and so the rate of chang&alecreases as well
AS the evolution proceeds. Eventually, the sufficiently non-
resonant terms oH are reduced to a point where higher-
order terms become important, so that our first-order
gradient-descent prescription for choosi@gwill no longer
APPENDIX B: AN ADDITIONAL FIRST-ORDER RESULT work to reduce the&) dependence dfl. The rate of change

of Sthen begins to increase after this point, and eventually
) . . . the PDE becomes numerically unstable. By tracking
HEq,&S/ag,O). Ifollowmg the proc_:edure |n.Sei. '\(’5)We_ write V((4SI9t)?) on the grid, it is possible to stop the evolution
S=q:-P+G(q,Pit). We also write H(q,p;0)=H™(p:0)  \yhere the rate of change @ reaches its minimum, and
+H®(q,p;0). Using p=dS/dq=P+V,G(q,P;t), we get  consequently where the canonical basis has been optimized.

thereby completing the induction step, and proving ou
claim.

In this section we derive the first-order result for

to first order that Of course, the weaker the perturbation, the closer a given
k must be to a resonance for our choice®to no longer
H(q,p;0)=HO(P;0)+ V:HO(P;0)- V,G(q,P;t) work to reduce the corresponding, . Furthermore, the
W weaker the perturbation, the longer it is possible to propagate
+HY™(q,P;0). (B1)  the PDE before\{(sS/dt)?) reaches its minimum, and the

more closely this minimum will correspond to a steady state.
For simplicity, we assume thaG was chosen using It would be interesting to develop a simple criterion to esti-
HO(P)=H©(P;0). As mentioned before, in the first-order mate at what time this minimum occurs, and how far away
limit all three prescriptions for choosinG are equivalent. the system is from steady state at the minimum.
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