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Designing localized electromagnetic fields in a source-free space
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An approach to characterizing and designing localized electromagnetic fields, based on the use of differen-
tiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel
families of exact time-harmonic solutions to Maxwell's equations in the source-free space—Ilocalized fields
defined by the rotation group—are obtained. The proposed approach provides a broad spectrum of tools to
design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to
govern the distributions of their energy densitipsth size and form of localization domajnsnd to set the
structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive
elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional
field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern
motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-
dimensional and three-dimensional field gratings is treated.
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I. INTRODUCTION and various families of localized fields: three-dimensional

In the last two decades, the problem of localized transmis-StanOllng waves, moving and evolving whirls. This can be

. . ) a}PpIied to any linear field, such as electromagnetic waves in
sion of electromagnetic and acoustic energy has been MUGtee space, isotropic, anisotropic, and bianisotropic media
investigated(see, for example, Ref§l—-21] and references pace, pIC, pic, P

therein. Many so-called localized wave solutions to the ho-[zz_zq’ elastic waves in isotropic and anisotropic media

mogeneous scalar wave equation and Maxwell’s equation£27’28]’ sound wave427], weak gravitational waveg4],

that describe localized, slowly decaying transmission of en?ztc' By way of illustration, we have treatd@2-2 the

. fields defined by the spherical harmonics. In particular, we
ergy, have been found. They include focus wave m¢#lgg, L
: . . have presentefi26] an approach to characterizing electro-
modulated, moving Gaussian puls€3], electromagnetic T .
- . magnetic fields and complex media, based on the use of
missiles[4], Bessel and Bessel-Gauss bedm$|, acoustic . .
. . . novel families of electromagnetic beams. It was sh¢@8]
[7] and electromagneti§8,9] directed-energy pulse trains . o . ;
, . i that the localized elastic field27] can be combined into a
(ADEPT's and EDEPT’s moving modified Bessel-Gauss . L i
. . : — 7~ complex field structure, such as an ultrasonic diffraction
pulses[13], moving pulses with Gaussian localization in rating. This makes them promising tools to control laser
both longitudinal and transverse directidrl], etc. It was 9 di t.g' P 9
shown[8,9,14 that localized fields can be realized physi- ra Ila 'r?.n' diff hni for obtai
cally, they can be excited from finite apertures. To this end, '" (IS Paper, we propose a difterent technique for obtain-
Ziolkowski suggested to use an array that has independent#9 localized exact solutions of Maxwell's equations. It has
addressable elemenf&2]. The existence of ADEPT's was éxtended potentialities for field design. To illustrate this, we
sound in watef7,10]. Recently, Saari and Reivelt proposed SOme examples of combining them into a complex field
an approach to constructing realizable schemes for genergtructure. The proposed approach can be used in designing
tion of localized fields in optic regiofil9,20. It was shown localized electromagnetic fields to govern motion and state
that they can be used to generate good approximation tof charged and neutral particles. We illustrate this on an ex-
focus wave modes. ample of relativistic electrons moving in the designed field
Plane-wave expansions play a very important role in thegratings.
analysis of localized fields. By using the Fourier transform, a The plan of the paper is as follows. In Sec. Il, we present
method for obtaining separable and nonseparable localizeah approach to characterizing and designing localized elec-
solutions of constant coefficient homogeneous partial differtromagnetic fields, based on the use of differentiable mani-
ential equations was developed by Donnelly and Ziolkowskifolds and differentiable mappings. In Sec. lll, we introduce a
[14,15. It was shown by Shaarawit al. that the source-free family of localized fields defined by the group of rotation.
focus wave modes are composed of backward and forwarbocalized electromagnetic fields with spherical and toroidal
propagating homogeneous plane walEg. beam manifolds are presented in Secs. IV and V, respec-
By using expansions in plane waves, we have introducetively. In Sec. VI, two examples of combining localized
[22,23 a specific type of linear fields—beams defined by afields into a complex field structure are presented. Motion of
set of orthonormal scalar functions on a two-dimensional orelativistic electrons in one-dimensional and three-
three-dimensional manifoltbeam manifoldl The proposed dimensional field gratings is also treated in this section. Con-
approach enables one to obtain a set of orthonormal beanttuding remarks are made in Sec. VII.
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Il. PARAMETRIZATION OF PLANE-WAVE vector in a Lorentz framé with the basis ¢), » andk are
SUPERPOSITIONS the angular frequency and the three-dimensional wave vector

In this paper, we use both four-dimensional and threeln this frame.c is the velocity of light in vacuumk=k/k is
dimensional electromagnetic field equations. The four{h€ unit wave normalk=w/c=2m/\ is the wave number,
dimensional formalism makes it possible to construct variou®NdA is the wavelength.
exact covariant solutions of plane waves parametrized by
some geometrical objects independent of the reference
frame. The three-dimensional formalism is convenient for To compose an electromagnetic field of eigenwaves
description of some special fields, such as time harmonic gpropagating in the source-free space, one must specify their
quasimonochromatic fields in some given reference frame. propagation directions, frequencies or wave numbers, polar-

izations, intensities, and initial phases. Since the eigenwave
A. Lorentz covariant parametrization phased is Lorentz invariant, to set all these parameters, one
can conveniently use the four-dimensional wave ve&tor
the field tensoiF, and the so-called beam manifalBM) B

Using the intrinsic tensor techniqu®9,30, the four— [23,24). This approach provides Lorentz covariant parametri-

dimensional electromagnetic field tengocan be written as  zation for an electromagnetic plane-wave superposition as

2. Beam manifoldBB

1. Eigenwaves

F=Bl9*+EA®*= > F ;9N =B30\9? F(x)=fe“l’(x'b)F(b)u(b)dB, (6)
1=<i<j=<4 B
— B9\ 93+ By 92N\ 9%+ (E; 91+ Ep 92+ E9°) where
4
A4 (1) ®(x,b)=x-K(b) +D(b) @)
where

is the phase of a partial eigenwayey(b) is the initial phase

3 _ (the phase value at the poirt=0), F(b) is the normalized
E= —e4JF=E E;¥', (280  real or complex amplitude specifying the eigenwave polar-
i=1 ization,u=u(b) is a scalar real function o, specifying the
3 eigenwave magnitude, amB is the infinitesimal element of
B=xg|F=> Ble, @ep B
i=1

3. Wave-vector manifoldC

The wave-vector manifold/WVM) is the imagek of B
. . under the mappingb—K(b), i.e., it is the subset
its dual V* (the space of one-forms or, in other words, the{K(b); be B} oth)hegfour—d(im)ensional wave-vector space.
space of covariant vectors®, /\, |, and| are the tensor, The mappingK of B onto K=K (B) need not be injective

exterior, and interior products; * is the star operator. In this(one—oné Since we treat here the electromagnetic plane-
paper, we distinguish thevectors(antisymmetricr contra- wave superpositions in vacuum, any poiki(b)=k(b)

variant tensorsfrom other tensors by the bold type, in par- e . : -

ticular, Be V lend EeV*. The covagant and coynlc')[ravarigmt *&w(b)/c of the WVM satisfies the dispersion equation
- : [K(b)]?=0, i.e.,[k(b)]*>=[w(b)/c]?.

metric tensors have the form

E;=E', Bj=B', andi=1,2,3. Here, ¢) and (9') are the
dual orthonormal bases in the Minkowski vector sp¥@nd

g= 910 91+ 920 9%+ 930 93— 94 94, (33 4. Initial phase function®, and zero phase manifold2
. Since the function& =K (b), F=F(b), u=u(b), and
g =eReteetez0e;—e,0e, (B ®y=dy(b) are independent of, the field pattern in a par-

. _ . ticular space-time domain, described by the vakés) [Eq.
respectively. To simplify the subsequent relations, we use th@e)] of the two-formF, is dictated by phases of eigenwaves

Gaélssian units. N | _ in this domain. In other words, the field vali€x;) at any
ectromagnetic homogeneous plane walesgenwaves  iven space-time point is dictated by the local phase func-

propagating in the source-free space, can be written as ®,=®,(b)=d(x,,b). If the phase function, and

_ _ id ®, at the pointsx; and x, are related asd®,—d;
FO)=F(r.H=F(0)e™, @ K(b) - (x,—x,)=2mn, wheren is an integer, the field val-
where ues in these points coincide(x,) =F(x4).
By changing initial phases of partial eigenwaves, one can
d=x-K=k-r—wt, (5) obtain an infinite family of different, but closely related

fields that can be treated as different phase states of the same
x=r+cte, is the four-dimensional position vector, afd  plane-wave superposition. All members of this family are
=k+e,w/c=k(k+ey) is the four-dimensional wave vector. described by the same functions=K(b), F=F(b), u
Here,t andr are the time and the three-dimensional radius=u(b) on B, but they are distinguished by different initial
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phase functiongIPF9 ®,=d,(b) on the same BMB. In vides the Lorentz invariant geometrical characteristic of par-
particular, the field=’ (x) = F(x—y), obtained from the field il eigenwaves polarization states, it is called below the po-

F(x) [Eq. (6)] by a space-time shify, is described by the larization manifold(PM). Y
IPF ®)=dy(b)—y-K(b). It should be noted that the transformatibrf’ =f+ aK

The functionsk =K (b) and®,=d(b) in Eq.(7) can be does not changE at any giver_1 scalawr, becauseK |[K=0
set independently of each other. Alternatively, one can us8ndK/\K=0. Itis merely equivalent to the replacement of

the parametrization thel au_xiliary vector. paramete/ra by some other vectov,
satisfying the conditions}-K=1 andv,-f'=0. Naturally,
®(x,b)=K(b)-[x—Xy(b)], ®) the auxiliary vectowr, can be chosen so as to obtéiwith a

specific physical meaning in the frante In particular, to
describe the eigenwave polarization in terms of the electric
field in the frameL, we choses,= —e,/k. Then,f=E/k, and

we obtain

wherex,=X,(b) is a vector real function o, specifying
the IPF agb,= —K(b) - x,(b). The imageZ of B under the
mapping b—xy(b) is the subset{x,(b); be B} of the
Minkowski space. Sinc@ (xy(b),b)=0 for anybe B, Z'is F=(k+e)/\E 11
called below the zero phase manif¢i€PM). In other words, ( 4)/\E. (D
F(b)u(b)dBiis the field value of the infinitesimal eigenwave |n this frame, the PM is defined by the functiés=E(b) on
at the pointx=xy(b). With a given ZPM, the IPFbo is ;5\ heref(b)- E(b)=0 for anybe B, E-E* =1, andE* is
uniquely defined by the wave-vector functish=K(b). complex conjugate of

Both manifolds5 and Z are the Lorentz invariant identi- '
fying geometrical characteristics of each field under consid- g magnitude function u and magnitude manifoldM
eration. However, in contrast t8, B is not related directly o . .
with the space-time. It is merely a parametrization manifold, '€ infinitesimal eigenwave with the wave vecto(b)
i.e., each poinb of B specifies the corresponding eigenwave,nas the amplitud& (b)u(b)dB. This factorization makes it
and the infinitesimal element3 is a Lorentz scalar invariant POSSible to set the polarization and the magnitude of this
by definition. The four-dimensional formalism is especially Wave by two independent factors, i.e., the two-foFitb)
useful in the investigation of localized electromagnetic and®"d the scalan(b), respectively. That is why the magnitude

weak gravitational fields moving without dispersing at speedunction (MF), u=u(b), plays a major role in setting the
V<c [23,24, as well as in analysis of relativistic particle contribution of each eigenwave to the total field, even though

movement in localized fieldgsee Sec. VI B QB_aIso may depend ob. Wg assume thaj(p) is nonvan-
Using the relationsx=r+cte,, X,=r,+ct,e;, and K ishing almost everywhere, i.e., for dle B with allowable
—k+e,0/c, we can present the eiggnwpave ;;)hase as exception of a set of measure zerodnOtherwise, the BM

is actually the domain oB with nonzerou(b).

O (x,b)=d(r,t,b)=k(b)-[r—ry(b)]- w(b)[t_tp(b)]-g 7. Covariant field design

In the frame of the presented covariant approach, a super-
Thus, in the frame., the ZPM is described by a vector func- POsition of homogeneous eigenwaves in the source-free
tion r,=r,(b) and a scalar function,=t,(b), specifying SPace is defined by the functios=K (b), x,=x,(b) [or
the spatial and the temporal eigenwave shifts, respectively. I?o=Po(b)], f=f(b), andu=u(b) on the beam manifolés.
the special case, when the field is time harmd(iElF) in All these functions as well as the related geometrical
some Lorentz frame, for example(b)=w in the frameL,  Objects—the beam manifol§ and its imagesk, P, and

it is convenient to set the ZPM so as to obtgjth)=0. Z—are Lorentz invariant characteristics of the field. Except
for the only conditionK (b) - f(b)=0 imposed on the points
5. Polarization manifoldP of K andP, the described design characteristics can be set

. . independently from each other in any convenient reference
Letv, eV be an auxiliary vector related to the contravari- frame.

antK and the covarianK=g-K wave vectors by the nor- On the whole, the field bag¢he set of eigenwaves form-
malization conditionv,-K=v,|K=1. The eigenwave two- ing the field is specified by the functio =K (b), whereas
form F and two-vectoi can be written a§29,3q) a field state is given by the functiofs f(b), x,=x,(b), and
u=u(b). The manifoldsC,P, Z provide a graphic portrayal
F=KAf, F=KAf, (100 of this field.
where f=v,|F andf=g‘1~f are the covariant and contra- B. Three-dimensional parametrization

variant polarization vectors satisfying the conditiéf|f
=f|[K=0. Thus, to set the normalized amplitude functfen
=F(b) in Eqg. (6), it is sufficient to set either the covariant I the field under consideration is time harmonic in some
f="f(b) or contravarianf=f(b) vector function on the BM. reference framd., this frame naturally becomes preferable
Like Z, the imageP of 5 under the mapping—f(b) is the  for its description and parametrization. In particular, instead
subset{f(b); be B} of the Minkowski space. Sinc® pro-  of the four-dimensional vector functiorié=K (b), f=f(b),

1. Time harmonic and evolving fields
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and x,=Xp(b), one can describe this field by the three- Yjs(a,@):NjSPES|(cosa)e‘s‘P, (16)
dimensional vector functionk=k(b), E=E(b), andr,

=r,(b). Correspondingly, instead of the manifolisP, Z in [(2j+1)(j—]s|)!

the Minkowski space, one can characterize the THF by their Njs= W a7
sectionskCs, Ps, and Z5, lying in the Euclidean subspace in J ’

the frameL.

and P]-S(cose) is the spherical Legendre function, is some
normalizing constant factor. For these waves, the beam
manifold B is the unit spher&?, anddB= sin édéde.

_ To set the functionsk=k(6,¢) and E=E(0,¢), i.e.,
W(r,t):f e *tPy(b)W(b)dB (12 propagation directions and polarizations of eigenwaves, one
o can use the spherical basis vectors

with two-dimensional3. However, the presented approach

In the present paper, we confine our numerical illustra
tions mainly to the time-harmonic bearhe(b)=w]

can be readily extended to the beams &(6,¢)=er(¢)sinf+e; cosb, (183
< : 0,0)= cosf—e;sind, 18b
Wi(r.0= [ el b IW(b)u(b)dE (13 SulOre) =Rl e)costmes e

B
ea(@)=—e; sinp+e; cose, (189

with three-dimensional beam manifoliﬁ=B><[k_ K.

Here,W is the electricE or magnetic field vector,j, is the ~ Where

spherical Bessel functiom=Ak/k, Ak=(k,—k_)/2, and ,

er(¢p)=e, cosp+e, sine. (29

k=(k,.+k_)/2. The solutionsW(r,t), related toW(r,t)

[Eq. (12)] by integration over wave numbéras In Refs.[23,24), we have treated the standing waves with

. 1 (k. k(6,9)=ke, and two different polarization states, namely,
W(r,t)= —f W(r,t)dk, (14 Ey fields with the meridional orientatidrE( 0, ¢) =€y ] and
28k Jic_ E, fields with the azimuthal orientatidrE( 6, ¢) = e,] of the
eigenwave electric field. They are formed from plane waves
of all possible propagation directions. The family of these

One can carry out orthogonal transformatidrstations waves consists of storms, defined by the zonal spherical har-
y 9 ' monich?, and whirls defined by the otherf'jS (s#0). For

reflections, and their compositionand spatial shiftstrans- the storms, the time average energy flux is identically zero at

lations of these fields by the corresponding transformations . : ; . S
of K5, Py and Z, as follows. The field Wy(r,t) all points. The whirls have circular energy flux lines lying in
31 /3 3 : o

B ~ . : i the planes orthogonal te;.

_GOVY](GOr’t)l IS obtgedek:orFW(r,t) l:_)yf_makr:ng usg_qf For these fields, the WVMC; is merely the spheré;ﬁ
anii)rt~ogona oEerz_at o- The latter satisfies the COT‘ WON \yith a radiusk=w/c in the three-dimensional wave-vector
G, "=Gy, whereGy is the transposed operator. The figlt

. . ; space, andk(6,¢)=e(6,¢). For various types of time-
is obtained by the orthonormal transformationskof, Ps, harmonic orthonormal beams also treated in REZS,24,

and Z;, described by the mappingk(b)—Ggk(b), the WVM is some domainoﬂéﬁ The PMP. f
. 0 . 5 for Eyy andEp,
W(b)—>GoW(b), andrp(b)—Gorp(b), respectively. Simi- - fo4q can pe conveniently illustrated as the meridional and

larly, the shifted fieldV,(r,t)=W(r —rq,t) results from the imuthal unit tor field th £ f thi h
shift ry of the 23, described by the mapping,(b)—r,(b) azg:ctisel;m vector fields on The suriace ot fhis sphere,

e
+ry. It is essential that this transformation is independent o{ The ZPM Z. is described by the relations
the WVM K;. The same shift can also be induced by the IPF 3 y
transformation® y(b)— P (b) —k(b) -ry that depends on S

both functions®y=®(b) andk=k(b). t,=0, ry(0,0)=— T(per(ﬂ,(p), (20)

describe finite-energy evolving field24]. In the case of
guasimonochromatic beamsk<k.

2. Standing waves defined by the spherical harmoniq% Y ) ]
wherefe[0,7] andg [ 0,27]. It can be rewritten in terms

.By way of illqstration, let us _consider the three- of dimensionless radius vectorrrgzrp/)\:x,;eﬁy,’)ez
dimensional standing electromagnetic waves presented 'QLz’e?, as
Refs.[22—-24. They are defined by the spherical harmonics P
(Y9) as

!

S¢
rp:_ﬂer(ea(P)- (21)

2 T
Ejs(r,t)zuoe*i“"f d(pf ek 0o)TYS(6,0)
0 0 The corresponding normalized zero phase manifBid(in
X E(8,¢)sinode, (15)  this case, it is a parametrized surface independent of,
and its dimensions are proportionalgoFor the electromag-
where netic storms ¢=0), the ZPM shrinks to the poirrl,’jzo.
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FIG. 1. Zero phase manifold of electromagnetic whirls defined
by the spherical harmoniCéjZ; i=23,... . FIG. 2. Directional diagram of the electromagnetic whirl defined
by the spherical harmoniCé%.
Since, at any integen, the phase shift 2n does not
change the eigenwave field, one can replace(Ed. by the r,=lug)e(0,¢)= NjSP}SI(COSH)er(H@), (29

equation
wherede[0,7] and¢ [ 0,27]. Since this surface is axially

, Se symmetric, it is sufficient to depict its section by a meridi-
o= —[E]&(WP), (22)  onal planep=0. This gives the directional diagram, i.e., the
dependence of the eigenwave magnitude on the propagation
. . direction, as
where{x} denotes the fractional part of a numberdefined
as a odd numerical fun_ction,_ fo_r examp{_e; 2.4 ==+ 0:4. In rl=x e +7es= stpﬁ(cosa)(el cosf+e; sind),
this case, the whol€&; lies within the unit sphere. Figure 1 (25)
shows the corresponding ZPM of electromagnetic whirls, de-
fined by the spherical harmonibgz; j=23,... . where 6 e[0,7]. It should be mentioned that the MHEq.

The same approach, based on the use,@) parallel to  (23)] may take negative values at some intervalg ohlter-
k(b), can be applied to redefine any other ZP&4. The natively, one can replaca by its absolute valueu| and
transverse component of(b) [orthogonal tk(b)] does not  introduce an additional phase shift wheneveru becomes
contribute tod,(b). Given the WVMK;, one can redefine negative. However, this is an unnecessary complication that
any ZPM Z; to satisfy the conditiomy(b)[[k(b). In this case  breaks the continuity of the ZPM and makes it dependent on

r")(b):-(l)o(b)lz(b)/zﬂ- graphically illustrates the depen- the degreg of Y;. Figure 2 iIIusFrates.the directional dig—
dence of the initial phas®, on the propagation direction gram of the electromagnetic whirl defined by the spherical

It is significant that both conditions ,(b)[k(b) and harmonicsY;. The lobes lying in the second and third guad-
rants correspond to the negative values of the MF. Figure 7

|®o| €[0,27] are not mandatory. In some cases, they be- ) e
come inconvenient and can be canceled, for example, to i Ref-[23] depicts the only nonvanishingzimutha) com-

troduce(independently froniC;) a large continuous ZPM; ponent of the energy flux vector of this whirl.
or to describe some field transformation, such as a spatial
shift ro with r2>)2 (see Sec. Il B 1 Ill. FIELDS DEFINED BY THE ROTATION GROUP
Let us now consider magnitude functions of the standing | qur previous workg22-24, we have treated linear
waves under the consideration. It follows from EG5) and  fie|gs defined by a given set of orthonormal scalar functions

(16) that the MF of the wavé} has the form on a two-dimensional or three-dimensional beam manifold.
" In this section, we present a different type of plane-wave
u=UuoN;sP;(cosf) (23)  superpositions—electromagnetic fields defined by the rota-

tion group. For the sake of brevity, we confine our consider-
and can be graphically illustrated by a parametrized surfacation to the time-harmonic superpositions of linearly polar-
as ized homogeneous plane waves in vacuum, that can be

066612-5



GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612

parametrized by points e B of a two-dimensional BM as Where n* is the antisymmetric tensor dual o (n*E
follows: =nXE). In this paper, we shall parametrize the oper&tor
by three rotation angles)(, j=1,2,3) as

wir y=e v | O T HOM BB, (20 G=ex o0 )expl el Jexpvnel),  (33)

As before, the unit real vecto/(b)=E(b) and W(b) where
=B(b) specify the polarization in terms of the electric and _ « «
the magnetic fields, respectively, whereas the eigenwave d=exp( 26, ) expl 1165 )do, (34
magnitude is defined by the M&=u(b). In concordance
with Maxwell’s equations, the normalized amplitudeéb)
andB(b) of each eigenwave are related as

ex=en(4), anddg is a unit vector that will be specified in
subsequent sections.

In particular, ifdy=e3, the operatoG can be written as
B(b)=k(b)xE(b). (27) G=g0e,+%ee+doe;, (35)

For the plane-wave superposition under consideration, th@here
orthonormal triadg k(b),E(b),B(b)] of any pair of partial

eigenwaves are related by a rotation operator. Let us denote G1=€w (2, 1) COSYz+en(thy)Sinys, (363

ROZ R(bo), Ey=E(bg), andBy=B(bg), wherebye 5 is an )

arbitrarily given point of the BM. Then, we can set the triads 92= —ew(¢, f1)singstea(yy)cosys, (36D

of all eigenwaves by a rotation operator functiGn= G(b) _

as d=e& (2, ¢1) =er(P1)sing,+e3cosy,. (360
R(b)=G(b)I20, E(b)=G(b)E,, B(b)=G(b)B, The operator functiols=G(b) can be uniquely defined

(28) by three real scalar function= ¢;(b), j=1,2,3. In particu-
lar, for the E,, and E, fields defined by the spherical har-
where G(by) =1 is the unit dyadic. In its turn, the rotation monics(see Sec. |l B p Eo=¢; andEy=e,, respectively. In
operatorG can be conveniently parametrized by the Eulerpoth casesl%o=e3, V1=, Pp=0, andy3=0.

angles or the Fedorov complex vector paramgsdy. All three-dimensional standing waves defined by the
This approach makes it possible to describe the beam bypherical harmonics have the same Btfle unit sphere3
the evolution operator, =%?) as well as the same WVNthe sphereC;=S7). Al-

thoughE,, andE, waves have different PMsH; is set by
]_-(r’t):e—ith elk®) r=ro®y(h)G(b)dB,  (29) the mgridional and the gzimuthal vectors, respectiv\/d_alyeir
B electric and magnetic fields are related by the duality trans-
formation. The diversity of the standing wavE$ is caused
that defines both the electric and magnetic fields as mainly by various MFu [Eq. (23)] and different ZMPsZ,
(see Fig. 1L However, Z; depends only ors that acts as
E(r,t)=F(r,t)Eo, B(r,t)=F(r,1)By. (30 scaling multiplier[see Eq.(20)].
) The THF defined by the rotation group possess a much
It should be noted that Eq$29) and (30) can be readily |arger diversification potential. To illustrate this, let us
applied to superpositions of eigenwaves with elliptic or Cir-present two types of such fields with topologically different
cular polarization. To this end, it is sufficient to set the nor-pegm manifolds—spherical and toroidal BMs. For the sake
malized amplitude€, andB, as of brevity, we consider here only a rather special case when
. the MFu reduces to a constant,.
Eog=a+ib, By=KkyXEg, (3D
~ IV. FIELD WITH SPHERICAL BM
wherea andb are the major and the minor semiaxasky _ )
=b-ke=a-b=0, a2+ b?=1, anda®— b?=0. Beams in iso- Let the BM be the unit spherd3E& S°) andu(6,¢)=u.
tropic media, including chiral ones, can be treated similarly," this case, the evolution operat®t[Eq. (29)] becomes
except that the eigenwaves in an isotropic chiral medium are 5
circularly polarized §=b?). Superpositions of eigenwaves Ar t)=u0e‘i“‘f wd(wae@(r,@xp)G(g @)sinod o
with different polarizations can be treated by making use of ' 0 0 ’ ’

the exponential evolution operatd32]. (37
The operato(G of rotation through the angle around the
unit vectorn can be written as where
G=exp en*)=n®n+(1-n®n)cose+n* singe, <I>(r,0,go)=27ﬂ2(0,<p)-[r’—r;,(a,cp)], r'=r/\.
(32 (38)
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As an example of the ZPMEj, let us consider an ellip- If the localized field is composed of eigenwaves with differ-
soidal surface that, in terms of the dimensionless radius ve@nt polarization state§see Egq. (31)], i.e., Eg=Epne

tor r£,= rp/\, is described as + Eg.8,, it can be described as a superpositiofEgf andE 5
fields,
ro=(eRycosei+ &R, sing,)sing,+e;R3 cose,,
P (39 E=EqW1+EqW,, B=EquW,—EpW;. (49
whereR;, R,, and R, are the semiaxesp; e[0,2] and SinceGor ,(0,¢) =rp(7m—6,¢), andG(6,¢) satisfies the
@,e[0,7]. relation (429, the functionswW; andW, have the following

Let us confine our illustrations to the case of linear func-Symmetry properties:
tions Eqg. (39)] and Eaq. (33)], given as
¢; [Eq. (39] and ¢; [Eq. (33)], g W,(Gr 1) = — GgWa(r 1), (463

=0y +gby by, j=1,2 40
;= 0by;+ @by +byj, | (403 W (Gt 1) = GgW,(r ). (46b)

gj=0cy+eCytcyy, =123, (40b) To obtain an axially symmetric field, it is sufficient to set

; .- R,=R; in Eq. (39). In this case, the ZPM becomes an ellip-
whereb;; andc;; are some given real coefficients. 2t . (39 p

Even within the imposed restrictions, a multitude of de.501d Of revolution, i.e.,Gyrp(6,¢)=rp(6, ¢+ ¢o). From
sign possibilities still remains. One can construct various=dS: (28) and (42b), we obtain the similar relation fok:
families of localized fields by setting the PM and the WVM G1K(8,9) =Kk(8,¢+ @o). All this results in the following
through the parameter,, Ko, do, (b;), and the ZPM symmetry relations for the phase functidrr, 6,¢) and the
through the parameteR;, R,, Rs, and (;;). It is essential evolution operator(r,t):
that the mapping and =r(6,¢) need not be injective ~ B
(one-ong and/or surjectivéonto). In other words, the ZPM P(Gyr,0,9)=D(r,0,¢+ ¢o), (478
Z3 may be a domain of or a curve on the described ellipsoi- -
dal surface. The special cas =R,=R3, when the ZPM F(r,t)=G1F(Gyr ). (47b
shrinks to the point,’azo, is also allowable. Let us present a

few graphic illustrations. The operator functio{(r,t) defines both electric and mag-

netic vector field€(r,t) andB(r,t) [Eq. (30)]. Their polar-
ization states are dictated by the vector parameigrand
Bo=koX Ey.

Let us setp,= 1= ¢ €[0,2m], o= ,=0€[0,m], and The fieldsW, andW, can be conveniently described in
#3=0. In this case, the rotation opera(6,¢) becomes  terms of the cylindrical coordinate®, #, z, and the corre-
sponding basis vectorss(#), ea(y), and ez, related tor

A. Fields with ¢3=0

G(6,¢)=exr fex (¢)]exp(pe;) =ey@ e +en®e, =x'e, +x%e,+ x%e; as follows:
te®es. (42) r(R,#,z)=Rex( ) + ze;3, (48a
It follows from Egs.(32) and(41) that this operator satisfies R=JOO)ZF (x0)2,  z=x° (48b)

the relations

Sincer(R,#,2)=G1()r(R,02), where Gy() =exf ye5 |
andr(R,0,z) = Re; + ze;, the relation(47b) can be written in
terms of the cylindrical coordinates as

GOG(01¢)GOZG(_67¢)1 (42@

F(R,4,2,t) =G () F(R,0z,1). (49
where Gog=1—2e;® e; is the operator of reflection in the
plane normal toe;, and G, =exp(eee;) is the operator of As a consequence, one can relate field values in any two
rotation through an arbitrary anglg, around the vectoe;. meridional planes by the operator of rotatiGs. In particu-
Let us setko=e;. Then, the basis functions fd&,, and lar,
E, fields, composed of eigenwaves with the meridional _
[E(6,¢)=ey] and the azimuthdlE( 6, ¢) = e,] orientations Wi(R,,2,t)=G1(¢)Wi(R,0z1), i=12. (50

of the electric fieldE, can be defined as Hence, to find the field$Vv, andW,, it is sufficient to cal-

43) culate their values in the plang/&0) (x?=0) and then to

Wi=Z(rne,  Wo=Frhe,. apply Egs.(50). In this plane, the phase functiah(r, 6, ¢)

The electric and magnetic fields &) (Eq=¢e;) and E, reduces to
(Ep=e,) fields are related by the duality transformation as ®(R',2,60,¢)=27(R’ sinfcose+2' cosh
Ew=—Ba=W;, By=Es=W,. (44) —R; sif#—R3 cog0), (51)
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FIG. 3. Normalized energy density’ as a function of’ and FIG. 5. Componens; of the normalized Poynting vect®' as
Z'; y'=0; Ri=R,=0.25; Rs=0.75; ¢1=)1=¢, @2=thy="0; a function ofx’ andz’; y’ =0; the field parameters are the same as
$2=0; Ro=eai Eo=e,. those in Fig. 3.
whereR’=R/\ andz’=2z/\. By making use of Eqs(50) The time average energy density
and(51), one can show that/; andW, satisfy the following 1
orthogonality conditions: w= E(|E|2+|B|2) (53)
ea(¥)-W1i(R,4,2,1)=0, (529
and the cylindrical components of the time average Poynting
er(¥)-Wy(R,#,2,1)=0, (52b  vector
e;-Wy(R,y,2,t1)=0. (520 c
T S= g, REEX B*) (54)

If R;=R,=Rs3, the fieldsW,; andW, reduce to the earlier

presentgd 0electromagnetic storms defiqed by the sphericg}e independent of the azimuthal angke Owing to Egs.
harmonicY,, because the IPF becomes independent of botly ) these characteristics are the sameHgrandE, fields.
6 ande [r)(6,¢)=R.k(60,¢) and®q(6,9)=27R,]. Inthis  To illustrate the spatial distributions of energy density and
phase state, the storms have the vanishing time average eshergy fluxes, we use the dimensionless coordinates
ergy flux at all points23]. The conditionR;=R,#R3 re-  =xY/\, y’=x?/\, z'=x%/\, the normalized densityv’
sults in a different phase state of these storms. The fielekw/w,, and the component§' =g-S' of the normalized
remains highly localizedsee Fig. 3, but now it has nonzero pgynting vectorS'=S/S,, where Wo=u2/(87) and S
time average energy fluxes lying in the meridional planes_ CWo.

i.e., Sy(x",02")=0 (see Figs. 4 and)5 It follows from Figs. 4 and 5 that botl$; and S} are
vanishing along the’ axis. The componen®; reaches its
peak in the plang’ =0 atR’ =|x’|~0.6. The radial compo-
nentS; of S’ is negative in the vicinity of this planeq’
|<0.3), but it becomes positive &’'|>0.3, (Sy=*S; for
x'==*R’"). The component; reaches it maximum aR’
~0.4. The energy fluxes diverge frorftonverge td the

0.5 ;
§ 5 LR planez’ =0 atR'<0.7 (R">0.7). It was shown in Ref23]
S'1 | BB ‘:.\"’ =7 :‘,.\, 7 -2 that a change of the phase state of an electromagnetic storm
~0.25 = m#“‘:’~i or an orthonormal beam does not change the energy flux
hé# LA .
-0.5 R LLRRIRE S 27T /0.5 through any plane’=const. In the particular case under
S NS erati - : :
-1.5 -..'...:...,~..:.~.4r..:.~ o . consideration, this general property remains valid. As a re-
-1 N -.’,~..:.2;.' 0.5 sult, the density of energy fluxes divergent from thplane
4

is larger than the density of convergent fluxes, since the latter
are distributed over a wider area.

B. Fields with ¢3#0
FIG. 4. Componen§; of the normalized Poynting vect&' as

a function ofx’ andz’: y’ =0; the field parameters are the same as L€t US now setl,=e; andy;3= 6. LetAa” other parameters
those in Fig. 3. be the same as before. In this cade.k=¢,, i.e., the third
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FIG. 7. Componen8; of the normalized Poynting vect&® as
a function ofx” andz’; y’'=0; do=(e1+e2)/2+e3/\/§; the other
field parameters are the same as those in Fig. 6.

FIG. 6. Componen§, of the normalized Poynting vect& as
a function ofx’ and z’; y'=0; R;=R,=0.25; R3=0.75; ¢,

=P1= @ P2= o= 1h3=0; R0:d0:e3; Eo=e.

rotation[see Eqs(28) and(33)] changes only the orientation L 2w B(r.6.0)
of the eigenwave amplitudésandB, but it does not change Fr=-—e fo dqojo e 09G( 9, p)
its direction of propagation. Accordingly, instead of the rota-
tion operatorG(6,¢) [Eq. (41)], we obtain X(1+psing)de, (56)
G(0,¢)=(ey cosf+e,sind)@e;+ (e, costd—ey sinb) wherep=B/A<1, Bis the radius of circleS; , forming the
®e,+eme;. (55) toroidal surface ¢=constfe[0,27]), provided that their

centers are placed at a cirtﬁé of radiusA (7AB=1). We

Since the scalar coefficients in parentheses deperf Bos.  assume here that Eq@3), (38), and(40) remain valid.

(37) and (55) describe a new fam”y of localized fields that In the above examp|es1 the BB= 52 (the unit Spher)g

cannot be represen'.[ed as a Iingar superposition of the m_eric{'he WVM 3= Sﬁ (the sphere of radiuk), and ZPMZ; (the

onal W, and the azimuthalV, fields. Each member of this o jih50iq) are two-dimensional differentiable manifolds with

ffim'ly IS defined by a |nd|V|duaI_ vector paramefey. These  ypo game global topology. In other words, they are diffeomor-

fields still obey symmetry relationgt?) and (49), but they hic to each other. The corresponding diffeomorphidfhs

cannot be treated as different phase states of the electroma%- o -

netic storms and whirls presented earlier. —Kg andB— 2, are Jiven ad—>k(b) =kk(b) andb—r,
The field with E;=e, is slightly less localized and has =M\fp forallbe B=S". ,

smaller energy densitw’ (maxw’=1.8) and smaller com- Let us now consider the surfac® given as

ponentsS; andS; (maxS;=0.29 and ma®,=0.38) than the

. . . : : ; . ry=Ar =A[Ry(e; cosg;+6€,Sing;) +e5R3 C0Se,],
field described in the previous section, but Figs. 3-5 still P~ "' P [Ro(€; COS¢1+ & SiNey) +&R; COSer ]

provide a rather good illustration of its properties in a quali- (573
tative sense. However, its major distinctive property is non-  R,=R;+R,sing,, ¢;€[0,27], ¢,[0,27].
vanishing azimuthal energy fluxésee Fig. 6. It is interest- (57b

ing that there are both clockwise and counterclockwise o )
energy fluxes in the plarg = const. Calculations show that, If Ri, Rz, andR; are nonvanishing, one can set the function

as before, Si(R,#,0)=0, i.e., there is no energy transport 'p="p(b) by some diffeomorphisnB— Z, of the toroidal
through the plane’ =0. BM B=S;XS§ onto Z,, using the entireZ, as the ZPM

(Z3=Z,). Alternatively, one can use some subset®fas

the ZPM (25C Z,) or assign zero values to some of the
parameter®R; (i=1,2,3).

In the examples presented in this section, we assume that
=eg,. In this case, the rotation operat@r[Eq. (33)] be-

If d0¢R0=e3, the rotation through the anglg;=6
around the unit vectod#k changes both the direction of
propagation and the eigenwave amplituéieand B. Let us
set, for exampledy= (e, +&,)/2+e;/+2. This yields a field d
with nonzero energy flux through the plane=0 (see Fig. 0

7) and asymmetri¢with respect to the plang’ =0) energy comes
density distribution. For this fieldv’ reaches its peak at G=d®e +0,06,+ 03063, (58
z'=0.45.

where

V. FIELDS WITH TOROIDAL BM .
_ Lo d= ey (42, ¢1) = ex(4h1)COSP, — & Sinyp, (593
In the case of a toroidal BM3=S,X Sz, instead of

F(r,t) [Eq. (37)], we obtain the evolution operator O>o=€(hy,i1)SiNi3+ en(f1)COSY3, (59b)
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Os= €& (12, 1) COSYz— € $h1)SIN 3. (599

A. Fields with a circular ZPM

Let us set the ZPMZ; by Eq. (57), where ¢;=¢ and
R,=R3=0. In this special case, the surfagg shrinks to the
circle Z; of radiusRy, lying in the planez’ =0. Any given 0.6
point ry(¢) of this circle is the image of the circle

&
1 . . . w' 0.4 ;:'. 1 i i:::::é:.::: :
SgC B—the corresponding section of the toroidal BM. & ',',,i-':.,.,eq VI 0‘.,”;..:.:,75;:,;:::%
h [ foll . _ _ 0.2 "". ."}'3.”.,",'"'."’.'.'...’.‘.‘ "! 1] ,":\\ #'.'0’5.""-':7:3:"5:'."5.
Let us set the angleg; as follows: 1=¢, y>=2¢, i3 ""”"MW’”" _.55 ) |
EP . SIZELLRRLLA] TR X BT
= 6. Substitution of Eqs(579 and (58) into Egs.(38) and 4‘.{‘:’?%{%?3@‘?3@33’ ..'.':'?::f.s\: ~~’.::§:::::.::~"7
i i i -2 R e NN SSS L e ’
(56) yields the evolution operata#(r,t) that describes a .%%gﬁ%%% Y

S AL 1

family of fields with the circular ZPMzZ;. The members of S "\"52”'4’:2‘&#::::'::'::::’:‘:':‘-'.':#
. . . . LIRS LY
this family have different WVMsC; and PMsP;, specified "-~'-.~:Z::.::~:Z::.:Z§,;'.::.~'
N i x’ L
by the values ok, and E, [see Eqs(28)]. Their common ""#W 2

feature is that, andd depend only onp. As a result, any

point r(¢) of the zero phase circl&€; corresponds to a FIG. 8. Normalized energy density’ as a function o’ and
subset of partial eigenwaves with triadgko(6,¢), Y Z =0: p=0.05Ri=0.5 Ro=Rs=0; ¢1=¢1= ¢, ¥,=2¢,
E(6,¢),B(6,¢)], related to each other by rotations around #s= 0 Ko=8s; do=Eo=6.

d(¢) (0[0,27r], ¢=-const).

In particular, ifk,=e;, Ep=¢;, andBy,=eg,, the WWM is  These mappings can be given in terms of local coordinate
defined by the functiok(6,¢)=kgs(8,¢). In terms of the (6,¢) onB and (¢;,¢,) on 2y, but the corresponding phase
electric and magnetic fields, the corresponding PM is definedtate is independent of the choice of the coordinates systems.
by the functionsE(8,¢)=d(¢) andB(6,¢)=g,(8,¢), re-  Similarly, all other properties of the field are defined by the
spectively. Upon integrating fields of partial eigenwaves oveicoordinate-free mappings— K3, B— Pz, andu=u(b).

0 <[0,2m] we obtain an infinitesimal electromagnetic wave In all three examples, we s&;=0.75, R,=R3=0.25,
(wavele}—the superposition of eigenwaves correspondingk,=e,, andd,=E,=e,, i.e., the operator of rotation is given
to an arbitrary giverp= ¢,. The electric field of this wavelet by Eqs.(58). Let us first obtain an axially symmetrig,,

is linearly polarized alongl(¢o) at any pointr. By the con-  field with Z; diffeomorphic to. To this end, we setp;
struction of 7(r,t), the initial phases of all eigenwaves form- =y, = ¢, ¢,=,= 6, and3=0. In this case, the two sets
ing the wavelet vanish at the poing=r(¢o) € Z3. At this  of orthogonal coordinate curves @ (circles ¢ =const and
point, the electric field of the wavelet reaches its absolutegy=const) are one-one mapped onto the similar sets of coor-
maximum independent gf, whereas the magnetic field takes dinate circles onZ,. However, the mappingk(6,¢)

a value depending op. Upon integrating the electric field of =ke,(6,¢), E(6,0)=eu(6,¢), B(6,¢)=ex(¢), defining
wavelets overe e[0,27r] we obtain the total fieldE(r,t) the WVM K3 and the PMP;, are not injective.

constructed so that a major contribution to the field value Figure 11 illustrates the total energy density =w,
E(ro,t) atany pointro=r,(¢o) of the circleZ; yield wave- 1\ of the obtained localized field. Owing to the built-in

lets with parameters lying in a neighborhood ob,. Since symmetry, the electric field density! peaks at the axis,
other wavelets differ widely in polarization, magnitude, and ©

phase at this point, they suppress each other and thus de-
crease their contribution to the total field in this neighbor-
hood. By the same reasoning the magnetic field in the neigh-
borhood of the circleZ; is smaller than the electric field.
Figures 8-10 illustrate properties of the described localized
fields for two different values of parameter In Fig. 9 and

0
D=
KSR
AT
"?&:ﬁ&: i)

>

AL [ "‘
thereafter, the normalized instantaneous electric field is de: - "‘@;ﬁ 7
fined asE’ = ReE/E,, whereEy=uq/\4. o 2} :g.}&& af'..“\“\w,:, I
= 3&\&«0'“‘“»!" 5
. ) . . B0 I K
B. Fields with two-dimensional Z; -2 = ".I!Q

For the fields under consideration, every phase state i
described by a subsét;C Z,, parametrized by the points of
the BM B. In the preceding section, we considered some
fields with one-dimensiondtirculan Z;, where every point
rp€ 23 is the image of a subset & (circle ¢ =const). Here
we present three examples of fields with two-dimensidhal
defined by an injectivgone-ong¢ mapping of B onto Z,. FIG. 9. ComponenE} of the normalized instantaneous electric
Different mappings ,=r,(b) of B onto the same surfac&, field E' as a function ok’ andy’; z'=0; t=0; the field param-
give different phase state@arametrizationsZ; of Z). eters are the same as those in Fig. 8.
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FIG. 10. Normalized energy density’ as a function ok’ and FIG. 12. Normalized energy density’ as a function ok’ and
’. [ . —_ . 1 i - [ . — . — . — — . — . —
y'; 2'=0; p=1, the other field parameters are the same as those in’; y'=0; p=0.5; R;=0.75; R,=R3=0.25; ¢,=2¢; ¢,=0.50
Figs. 8 and 9. =0 Wo=0° =0 ko= dy=E,=
g T @) Y= @ = 6; 3=0; ko=e3; do=Ep=e.

- ., . tion shifted in thex’ direction(see Fig. 12and rather com-
Where_as the magnetic f|e_Id c_iensvt)yn gnd the time average pjicated structure of energy fluxes.
Poynting vectorS are vanishing at this axis. The azimuthal *  As the third example, let us construct an axially symmet-
components o§ andE, as well as the component oB, are  ric field with nonvanishing azimuthal energy fluxes. To this

everywhere zero. end, it is sufficient to set the parameters as follows:
Let us now change the phase state of the above field by ;= ¢, ¢,=,=3=6. In this case,Z; remains the
defining the parametrizatiofi; of Z, as same as in the first example, but bdtl andP; are differ-
ent, since the conditiofr;=0 is replaced byj;= 6. Figures

?1=2¢, ¢2=0.50+ ¢, (60 13-16 illustrate the properties of the obtained field. To re-

verse the direction of the azimuthal fluxes, it is necessary to

. set 3= — 6. The structure of the azimuthal fluxes can be
where O ¢<27, and O<6<2. In this case’s andP;  modified by changing the BM parametgr The other two
remain as before, but the mappiBg- Z, is not continuous  cylindrical components ofS are scarcely affected by a
at the circle#=0 on B, since every coordinate circle change of this parameter.
=const onB is mapped onto a semicircle of,. Every
coordinate circled=const onB is mapped onto a closed VI. COMPLEX FIELD STRUCTURES
curve that makes two complete revolutions around the hole A Fi )

. Field gratings

of Z, and each time intersects the plame=0. The de-

scribed phase change breaks the initial axial symmetry and The presented electromagnetic fields have a very small
(about several wavelengthsore region with maximum in-

produces a well-localized field with the domain of localiza- ; i VEIE - AT
tensity of field oscillations and unique space distributions of
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FIG. 11. Normalized energy density’ as a function ok’ and FIG. 13. Normalized energy density’ as a function ok’ and
! [ . — . — . — — . — — . ! [ . — . — . — — . — —
zZ, y —O, p—05, R1—075, Rz—R3—O.25, Q1= l!ll—(P, ©o Z, y —0, p—05, R1—075, Rz—R3—0.25, qDl—l,bl—qD, (5]
=ir="0, 3=0; ko=¢63; dg=Ep=e. == 3= 0; ko=63; dg=Ep=ey.
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FIG. 16. Componen®; of the normalized Poynting vect& as

a function ofx’ andz’; y’ =0; the field parameters are the same asa function ofx’ andz’; y’=0; the field parameters are the same as

those in Fig. 13.

those in Fig. 13.

polarization states, energy densities, and energy fluxes. Oufiermation u(b)—u(b)|h(b)| and the phase transformation
side the core, the intensity of oscillations rapidly decreases i@ (r,t,b)—d(r,t,b)+ Ad(b). Here,|h(b)| andAd(b) are
all directions. The three-dimensional localization makes itdefined as

possible to use these fields as structural elements to form

various complex electromagnetic fields.

By way of illustration, let us consider a field defined as

Np N2 N3

W'(I’,t)= 2 E E W(r_anmht_TnmI)a

n=M1 m=M2 |:M3

(613
a,m=na;+mas+las, (61b
Tnm|:nTl+ m7'2+|7'3, (610)

whereW(r,t) is set by Eq.(12), & and 7; are some given

spatial and temporal shifts.

On the one hand, this field can be treated as a differe
state of W(r,t), obtained by the magnitude function trans-
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FIG. 15. Componer®, of the normalized Poynting vect®& as

h(b)=[h(b)[e**®=hy(b)h,(b)hs(b), (62)

where

N
hj(b): EJ: eim‘i’j(b)
m=M;
_exdiM;®;(b)]—exdi(N;+1)®j(b)]

1—exdi®;(b)] . (63

®;(b)=w(b)rj—k(b)-3. (64)

However, these fields have the same WY and the same

M Py,

On the other hand, the translated fieldé(r —a,,,t
— 7,m1) form a family of wavelets withWW(r,t) as the mother
wavelet. Hence, itV is one of the foregoing localized fields,
and lengths of the shift vectogs (j=1,2,3) are sufficiently
large, the fieldW' will constitute a field grating. Figures 17
and 18 depict compone#t; of the normalized instantaneous
electric fieldE’" of the three-dimensiongkubic) grating at
two different instants t=0 and t'=0.25 [t'=t/T
= wt/(27)], respectively. The grating is composed of2y
stormsE]-S (j=s=0), whose properties are described in some
details in Ref.[23]. In the next section, we consider the
influence of this grating on relativistic electrons.

The great diversity of the presented localized fields with
different geometries of core regions provides a great scope
for combining them, as constructive elements, into various
one-, two-, or three-dimensional gratings and other complex
geometrical structures, where each element has only reason-
ably small deviations from its initial form.

Moreover, the prior investigation of a single localized

a function ofx” andz’; y’ =0; the field parameters are the same asfield permits us to use copies of this field with small spatial

those in Fig. 13.

and time shifts in designing complex electromagnetic fields.
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S

SO0,

7
K

s

FIG. 19. ComponerE; of the normalized instantaneous electric
field E' of Ey storms as a function of’; x'=y'=0; (A) j=s
FIG. 17. Componeri; of the normalized instantaneous electric =0, t=0; (B) j=1,s=0,t'=0.25.
field E' of the cubic grating composed of 27 stonE% as a func-
tion of x" andy’; z'=0; M;=M,=M3=—1; N;=N,=N3=1; where
a=a/\=17%, 7{=w7/(2m)=1.75 (1=1,2,3);t=0.

e 2e’ oF' 2e*
Q'=EF' Uyt u'ugt

Designing localized electromagnetic fields to control motion ;
3myc® o 3mac®

and state of charged and neutral partiol@a®ms and mol-
ecules is a possible application of the presented techniques. _ _
In the following section, we illustrate this on an example of X[F*Fqu'+ (upF™) (Fiquhu'], (66)
relativistic charged particles.

_ _ Y,
B. Charged particles in localized fields U=4gqs' 7= (1-p5H"12 (67)

Let mg ande be the rest mass and the charge of a relativ-
istic particle moving in an electromagnetic fiehd Taking ds=cdt/y, B=v/c, v is the velocity of the particle, and
into account Eq(3), the relativistic equation of motion can summation over repeated indices is carried out from 1 to 4.

be written ag33] The tensofF of a field grating can be readily found from Eg.
(1), provided thaE andB are calculated as described above.
m cd—u=Q 65) Hence, if the initial velocity and the initial position of the
ds ' charged particle are given, one can investigate its motion by

using point-by-point integration of Eq§65)—(67).

Let us consider two examples. In both cases, as the
mother wavelet, we use the electromagnéig storm E8
[Eq. (15)]. TheEy, stormE?, defined by the zonal spherical
harmonicYJQ, is a localized field with the meridional orien-
tation of the electric fielde and azimuthal orientation of the
magnetic field [23]. At any point of thez axis, E is directed

X \ 77
7] | ' i i = i
*3\&' W along this axis, an@=0. Figure 19 shows the only nonzero

J
¥/

5 SRS componentE} of the instantaneous electric field Bf and
L7725 4 N v . . .
E's o\ AR iq’""‘.! N/ EY storms at thez axis. Although both fields are highly lo-
\ 3 ’ b SO calized, a relativistic charged particlelectron, in the fol-
QYN BNNE 258 . i .
-5 “"0’0‘"#'.5“\\\\\\\&" lowing illustrations, moving through the core regioriz(
(7 i.s)}&\;’;:&\‘(\g\&@ % |<1) along thez axis, is alternately subjected to acceleration
48 o f'li’.’.&;;i‘& and deceleration. However, one can construct a complex lo-
& calized field with the same axial symmetry and the extended

domain of acceleratiofdeceleration To this end, it is suf-
ficient to combine a number oE) storms into a one-
dimensional grating with small spatial and temporal shifts
(see Fig. 20 In this case, the particle can be continuously

FIG. 18. ComponenE} att’=0.25; the other field parameters accelerateddeceleratepduring several periods of oscillation
are the same as those in Fig. 17. T=2m/w. The initial coordinates<z=x"'(ty), Yo=Y’ (ty),
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FIG. 20. Componeri; of the normalized instantaneous electric

field E’ of a complex field composed of 3&y, stormsEg as a
function of z’ at t=0 (solid curvg and t’=0.25 (dashed-line
curve; x'=y’'=0; M;=N;=M,=N,=0; M;=-15; N3=15;
a;=0.12%;; 73=0.125.

zy=2'(t{), and the initial timet{=t,/T specify the depen-
dence of the relativistic factoy onz’ (see Figs. 21-23As

PHYSICAL REVIEW 65 066612

-4 -2 2 4 6

FIG. 22. Relativistic factory of electron moving in the complex
field as a function ofz’; x;=y;=0; (E) ty=—4.5; (F) t;

=—4.375; (G) ty=—4.25; (H) ty=—4.125; the field parameters
are the same as those in Figs. 20 and 21.

of differentiable manifolds, differentiable mappings, and the
group of rotation, is presented. The beam manifBldthe

a consequence of the built-in spatial and temporal shiftyvave-vector manifold<, the polarization manifoldP, the
(74>0) of the EJ storms forming the complex field, the 2€r0 phase manifol&, and the magnitude functiamare the

particles, moving in the positive and the negative directions

have quite different dependences v(z') (see Fig. 2R

The above cubic field grating with large spatial and tem

key elements of the Lorentz covariant description. Every lo-
calized field under consideration is characterized by the dif-
ferentiable mapping8— KC, B—P, B— Z, andB—R, given

poral shifts(see Figs. 17 and 1&ffects the particle motion 25 K=K(b), f=f(b), x,=x,(b), and u=u(b). They
in a different three-stage manner. Figures 24 and 25 illustratePeCify wave vectors, polarizations, initial phases, and mag-

the dependence of on z' for six electrons that have the
same initial velocityB,=0.999%; at t;=—5, but different
initial coordinatesx, andyy at the planezy=—5.

VIlI. CONCLUSION

nitudes of eigenwaves constituting the field. If the field is
time harmonic in a framé&, one can characterize it by the
corresponding section§;, P;, and Z; of K, P, and Z.

By way of illustration, families of exact time-harmonic
solutions to Maxwell's equations in the source-free space—
fields defined by the rotation group—are presented. These

In this paper, an important approach to characterizing andgmilies describe localized fields with two-dimensional beam
designing localized electromagnetic fields, based on the udganifolds that are topologically distintpherical and toroi-

-4 -2 2 4 6

FIG. 21. Relativistic factory of electron moving in the complex
field as a function ofz’; y;=0; (A') t{=—5; x4=0.25; (A) t;

dal BMs). For every field, both wave vectors and normalized

amplitudes of partial eigenwaves are set by the same rotation
operator function.

Y
85

A NARY

65 |

554
45 r

35+

=-5; (B) ty=—4.875; (C) ty=—4.75; (D) t\=—4.625; x,=0
for curves A, B, C, and D; B;=0.9997; A\=10.6 um; Ej;

=-5.9x10° V/icm att=0 andz=0; the other field parameters
are the same as those in Fig. 20.

z!
) -4 -2 2 4

FIG. 23. Relativistic factory of electron moving in(A) the

positive z direction; (B) the negativez direction; the field param-

eters are the same as those in Figs. 20 and 21.
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- N . N P i S S S S S N Z’
-4 -2 2 4 6
FIG. 24. Relativistic factory of electron moving in the three-
dimensional field grating as a function af; t(=-5; z,=—5;
yo=0; Bo=0.9997; (A) x4=0; (B) x4=1.75; (C) x4=—1.75; A
=10.6 um; E;=—7.16x10° V/icm att=0 andz=0; the other
field parameters are the same as those in Fig. 17.

PH/SICAL REVIEW E 65 066612

ZI

—4 -2 2 4 6

FIG. 25. Relativistic factory of electron moving in the three-
dimensional field grating as a functionzf;, (D) x,=y,=1.75; (E)
Xo=Y4=0.25; (F) xy=yy=0.875; the other parameters are the
same as those in Figs. 17 and 24.

devices(ion thrusters In both cases, the localization of en-

It is shown that the proposed approach provides a broadrgy in small domains of wavelength size is an advantageous
spectrum of tools to design localized fields, i.e., to build-inproperty. It results in strong electric and magnetic fields in
symmetry properties of oscillating electric and magnetictheir (typically differen) domains of localization. Besides it
fields, to govern the distributions of their energy densitiesmakes possible to construct a three-dimensional field grating

(both size and form of localization domajnsnd to set the
structure of time-average energy fluxes.

with a multitude of parallel many-stage acceleration chan-
nels. When employing this grating as an ion thruster, electron

Localized fields of one or more types can be combined aand positive ion packets can move along either the same
constructive elements to obtain a complex field structurechannels with the time shift T/2 (n is an odd integeror
with desirable properties, such as one-, two-, or threedifferent parallel channels. In the latter case, the phase shifts

dimensional field gratings.

of localized fields along the corresponding channels can be

The proposed approach can be used in designing localizeskt differently to optimize acceleration of both electrons and
electromagnetic fields to govern motion and state of chargeibns. With these applications in mind, it is important to re-
and neutral particles. In particular, the results described imnember that localized electromagnetic fields can also be de-
the preceding section give promise that the field gratings andigned to counteract Coulomb repulsing of charged particles
other complex localized electromagnetic fields may be apand, thus, to catalyze the forming of localized particle pack-
plied in free-electron lasers and electromagnetic propulsioets[11,18.
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