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Designing localized electromagnetic fields in a source-free space
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Department of Theoretical Physics, Belarusian State University, Minsk, Belarus

~Received 20 February 2002; published 21 June 2002!

An approach to characterizing and designing localized electromagnetic fields, based on the use of differen-
tiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel
families of exact time-harmonic solutions to Maxwell’s equations in the source-free space—localized fields
defined by the rotation group—are obtained. The proposed approach provides a broad spectrum of tools to
design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to
govern the distributions of their energy densities~both size and form of localization domains!, and to set the
structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive
elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional
field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern
motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-
dimensional and three-dimensional field gratings is treated.

DOI: 10.1103/PhysRevE.65.066612 PACS number~s!: 03.50.De, 34.90.1q, 41.20.Jb, 41.75.2i
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I. INTRODUCTION

In the last two decades, the problem of localized transm
sion of electromagnetic and acoustic energy has been m
investigated~see, for example, Refs.@1–21# and references
therein!. Many so-called localized wave solutions to the h
mogeneous scalar wave equation and Maxwell’s equati
that describe localized, slowly decaying transmission of
ergy, have been found. They include focus wave modes@1,2#,
modulated, moving Gaussian pulses@3#, electromagnetic
missiles@4#, Bessel and Bessel-Gauss beams@5,6#, acoustic
@7# and electromagnetic@8,9# directed-energy pulse train
~ADEPT’s and EDEPT’s!, moving modified Bessel-Gaus
pulses @13#, moving pulses with Gaussian localization
both longitudinal and transverse directions@21#, etc. It was
shown @8,9,16# that localized fields can be realized phys
cally, they can be excited from finite apertures. To this e
Ziolkowski suggested to use an array that has independe
addressable elements@12#. The existence of ADEPT’s wa
confirmed by Ziolkowskiet al.with experiments using ultra
sound in water@7,10#. Recently, Saari and Reivelt propose
an approach to constructing realizable schemes for gen
tion of localized fields in optic region@19,20#. It was shown
that they can be used to generate good approximatio
focus wave modes.

Plane-wave expansions play a very important role in
analysis of localized fields. By using the Fourier transform
method for obtaining separable and nonseparable local
solutions of constant coefficient homogeneous partial dif
ential equations was developed by Donnelly and Ziolkow
@14,15#. It was shown by Shaarawiet al. that the source-free
focus wave modes are composed of backward and forw
propagating homogeneous plane waves@17#.

By using expansions in plane waves, we have introdu
@22,23# a specific type of linear fields—beams defined by
set of orthonormal scalar functions on a two-dimensiona
three-dimensional manifold~beam manifold!. The proposed
approach enables one to obtain a set of orthonormal be
1063-651X/2002/65~6!/066612~16!/$20.00 65 0666
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and various families of localized fields: three-dimension
standing waves, moving and evolving whirls. This can
applied to any linear field, such as electromagnetic wave
free space, isotropic, anisotropic, and bianisotropic me
@22–26#, elastic waves in isotropic and anisotropic med
@27,28#, sound waves@27#, weak gravitational waves@24#,
etc. By way of illustration, we have treated@22–28# the
fields defined by the spherical harmonics. In particular,
have presented@26# an approach to characterizing electr
magnetic fields and complex media, based on the use
novel families of electromagnetic beams. It was shown@28#
that the localized elastic fields@27# can be combined into a
complex field structure, such as an ultrasonic diffracti
grating. This makes them promising tools to control las
radiation.

In this paper, we propose a different technique for obta
ing localized exact solutions of Maxwell’s equations. It h
extended potentialities for field design. To illustrate this,
present unique families of localized fields in free space a
some examples of combining them into a complex fie
structure. The proposed approach can be used in desig
localized electromagnetic fields to govern motion and st
of charged and neutral particles. We illustrate this on an
ample of relativistic electrons moving in the designed fie
gratings.

The plan of the paper is as follows. In Sec. II, we pres
an approach to characterizing and designing localized e
tromagnetic fields, based on the use of differentiable ma
folds and differentiable mappings. In Sec. III, we introduce
family of localized fields defined by the group of rotatio
Localized electromagnetic fields with spherical and toroi
beam manifolds are presented in Secs. IV and V, resp
tively. In Sec. VI, two examples of combining localize
fields into a complex field structure are presented. Motion
relativistic electrons in one-dimensional and thre
dimensional field gratings is also treated in this section. C
cluding remarks are made in Sec. VII.
©2002 The American Physical Society12-1
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II. PARAMETRIZATION OF PLANE-WAVE
SUPERPOSITIONS

In this paper, we use both four-dimensional and thr
dimensional electromagnetic field equations. The fo
dimensional formalism makes it possible to construct vari
exact covariant solutions of plane waves parametrized
some geometrical objects independent of the refere
frame. The three-dimensional formalism is convenient
description of some special fields, such as time harmoni
quasimonochromatic fields in some given reference fram

A. Lorentz covariant parametrization

1. Eigenwaves

Using the intrinsic tensor technique@29,30#, the four–
dimensional electromagnetic field tensorF can be written as

F5Bc* q41E`q45 (
1< i , j <4

Fi j q
i`q j5B3q1`q2

2B2q1`q31B1q2`q31~E1q11E2q21E3q3!

`q4, ~1!

where

E52e4cF5(
i 51

3

Eiq
i , ~2a!

B5* e4bF5(
i 51

3

Biei , ~2b!

Ei5Ei , Bi5Bi , and i 51,2,3. Here, (ei) and (q i) are the
dual orthonormal bases in the Minkowski vector spaceV and
its dual V* ~the space of one-forms or, in other words, t
space of covariant vectors!; ^ , `, c, and b are the tensor,
exterior, and interior products; * is the star operator. In t
paper, we distinguish ther-vectors~antisymmetricr contra-
variant tensors! from other tensors by the bold type, in pa
ticular, BPV and EPV* . The covariant and contravarian
metric tensors have the form

g5q1
^ q11q2

^ q21q3
^ q32q4

^ q4, ~3a!

g215e1^ e11e2^ e21e3^ e32e4^ e4 , ~3b!

respectively. To simplify the subsequent relations, we use
Gaussian units.

Electromagnetic homogeneous plane waves~eigenwaves!,
propagating in the source-free space, can be written as

F~x!5F~r ,t !5F~0!eiF, ~4!

where

F5x•K5k•r2vt, ~5!

x5r1cte4 is the four-dimensional position vector, andK
5k1e4v/c5k( k̂1e4) is the four-dimensional wave vecto
Here, t and r are the time and the three-dimensional rad
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vector in a Lorentz frameL with the basis (ei), v andk are
the angular frequency and the three-dimensional wave ve
in this frame,c is the velocity of light in vacuum,k̂5k/k is
the unit wave normal,k5v/c52p/l is the wave number,
andl is the wavelength.

2. Beam manifoldB
To compose an electromagnetic field of eigenwav

propagating in the source-free space, one must specify t
propagation directions, frequencies or wave numbers, po
izations, intensities, and initial phases. Since the eigenw
phaseF is Lorentz invariant, to set all these parameters, o
can conveniently use the four-dimensional wave vectorK ,
the field tensorF, and the so-called beam manifold~BM! B
@23,24#. This approach provides Lorentz covariant parame
zation for an electromagnetic plane-wave superposition a

F~x!5E
B
eiF(x,b)F~b!u~b!dB, ~6!

where

F~x,b!5x•K ~b!1F0~b! ~7!

is the phase of a partial eigenwave,F0(b) is the initial phase
~the phase value at the pointx50), F(b) is the normalized
real or complex amplitude specifying the eigenwave pol
ization,u5u(b) is a scalar real function onB, specifying the
eigenwave magnitude, anddB is the infinitesimal element o
B.

3. Wave-vector manifoldK
The wave-vector manifold~WVM ! is the imageK of B

under the mappingb°K (b), i.e., it is the subset
$K (b); bPB% of the four-dimensional wave-vector spac
The mappingK of B onto K5K (B) need not be injective
~one-one!. Since we treat here the electromagnetic pla
wave superpositions in vacuum, any pointK (b)5k(b)
1e4v(b)/c of the WVM satisfies the dispersion equatio
@K (b)#250, i.e., @k(b)#25@v(b)/c#2.

4. Initial phase function F0 and zero phase manifoldZ
Since the functionsK5K (b), F5F(b), u5u(b), and

F05F0(b) are independent ofx, the field pattern in a par-
ticular space-time domain, described by the valuesF(x) @Eq.
~6!# of the two-formF, is dictated by phases of eigenwav
in this domain. In other words, the field valueF(x1) at any
given space-time pointx1 is dictated by the local phase func
tion F15F1(b)5F(x1 ,b). If the phase functionsF1 and
F2 at the points x1 and x2 are related asF22F1
[K (b)•(x22x1)52pn, wheren is an integer, the field val-
ues in these points coincide:F(x2)5F(x1).

By changing initial phases of partial eigenwaves, one c
obtain an infinite family of different, but closely relate
fields that can be treated as different phase states of the s
plane-wave superposition. All members of this family a
described by the same functionsK5K (b), F5F(b), u
5u(b) on B, but they are distinguished by different initia
2-2
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DESIGNING LOCALIZED ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW E 65 066612
phase functions~IPFs! F05F0(b) on the same BMB. In
particular, the fieldF8(x)5F(x2y), obtained from the field
F(x) @Eq. ~6!# by a space-time shifty, is described by the
IPF F085F0(b)2y•K (b).

The functionsK5K (b) andF05F0(b) in Eq. ~7! can be
set independently of each other. Alternatively, one can
the parametrization

F~x,b!5K ~b!•@x2xp~b!#, ~8!

wherexp5xp(b) is a vector real function onB, specifying
the IPF asF052K (b)•xp(b). The imageZ of B under the
mapping b°xp(b) is the subset$xp(b); bPB% of the
Minkowski space. SinceF„xp(b),b…50 for anybPB, Z is
called below the zero phase manifold~ZPM!. In other words,
F(b)u(b)dB is the field value of the infinitesimal eigenwav
at the pointx5xp(b). With a given ZPM, the IPFF0 is
uniquely defined by the wave-vector functionK5K (b).

Both manifoldsB andZ are the Lorentz invariant identi
fying geometrical characteristics of each field under cons
eration. However, in contrast toZ, B is not related directly
with the space-time. It is merely a parametrization manifo
i.e., each pointb of B specifies the corresponding eigenwav
and the infinitesimal elementdB is a Lorentz scalar invarian
by definition. The four-dimensional formalism is especia
useful in the investigation of localized electromagnetic a
weak gravitational fields moving without dispersing at spe
V,c @23,24#, as well as in analysis of relativistic particl
movement in localized fields~see Sec. VI B!.

Using the relationsx5r1cte4 , xp5r p1ctpe4, and K
5k1e4v/c, we can present the eigenwave phase as

F~x,b!5F~r ,t,b!5k~b!•@r2r p~b!#2v~b!@ t2tp~b!#.
~9!

Thus, in the frameL, the ZPM is described by a vector func
tion r p5r p(b) and a scalar functiontp5tp(b), specifying
the spatial and the temporal eigenwave shifts, respectivel
the special case, when the field is time harmonic~THF! in
some Lorentz frame, for example,v(b)[v in the frameL,
it is convenient to set the ZPM so as to obtaintp(b)[0.

5. Polarization manifoldP
Let vaPV be an auxiliary vector related to the contrava

ant K and the covariantK5g•K wave vectors by the nor
malization conditionva•K5vacK51. The eigenwave two-
form F and two-vectorF can be written as@29,30#

F5K` f , F5K`f, ~10!

where f 5vacF and f5g21
• f are the covariant and contra

variant polarization vectors satisfying the conditionK c f
[fcK50. Thus, to set the normalized amplitude functionF
5F(b) in Eq. ~6!, it is sufficient to set either the covarian
f 5 f (b) or contravariantf5f(b) vector function on the BM.
Like Z, the imageP of B under the mappingb°f(b) is the
subset$f(b); bPB% of the Minkowski space. SinceP pro-
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vides the Lorentz invariant geometrical characteristic of p
tial eigenwaves polarization states, it is called below the
larization manifold~PM!.

It should be noted that the transformationf°f85f1aK
does not changeF at any given scalara, becauseK cK50
andK`K50. It is merely equivalent to the replacement
the auxiliary vector parameterva by some other vectorva8
satisfying the conditionsva8•K51 andva8•f850. Naturally,
the auxiliary vectorva can be chosen so as to obtainf with a
specific physical meaning in the frameL. In particular, to
describe the eigenwave polarization in terms of the elec
field in the frameL, we choseva52e4 /k. Then,f5E/k, and
we obtain

F5~ k̂1e4!`E. ~11!

In this frame, the PM is defined by the functionE5E(b) on
B, wherek̂(b)•E(b)50 for anybPB, E•E* 51, andE* is
complex conjugate ofE.

6. Magnitude function u and magnitude manifoldM
The infinitesimal eigenwave with the wave vectorK (b)

has the amplitudeF(b)u(b)dB. This factorization makes it
possible to set the polarization and the magnitude of
wave by two independent factors, i.e., the two-formF(b)
and the scalaru(b), respectively. That is why the magnitud
function ~MF!, u5u(b), plays a major role in setting the
contribution of each eigenwave to the total field, even thou
dB also may depend onb. We assume thatu(b) is nonvan-
ishing almost everywhere, i.e., for allbPB with allowable
exception of a set of measure zero inB. Otherwise, the BM
is actually the domain ofB with nonzerou(b).

7. Covariant field design

In the frame of the presented covariant approach, a su
position of homogeneous eigenwaves in the source-
space is defined by the functionsK5K (b), xp5xp(b) @or
F05F0(b)#, f5f(b), andu5u(b) on the beam manifoldB.
All these functions as well as the related geometri
objects—the beam manifoldB and its imagesK, P, and
Z—are Lorentz invariant characteristics of the field. Exce
for the only conditionK (b)•f(b)50 imposed on the points
of K and P, the described design characteristics can be
independently from each other in any convenient refere
frame.

On the whole, the field base~the set of eigenwaves form
ing the field! is specified by the functionK5K (b), whereas
a field state is given by the functionsf5f(b), xp5xp(b), and
u5u(b). The manifoldsK,P,Z provide a graphic portraya
of this field.

B. Three-dimensional parametrization

1. Time harmonic and evolving fields

If the field under consideration is time harmonic in som
reference frameL, this frame naturally becomes preferab
for its description and parametrization. In particular, inste
of the four-dimensional vector functionsK5K (b), f5f(b),
2-3
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GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612
and xp5xp(b), one can describe this field by the thre
dimensional vector functionsk5k(b), E5E(b), and r p
5r p(b). Correspondingly, instead of the manifoldsK,P,Z in
the Minkowski space, one can characterize the THF by th
sectionsK3 , P3, andZ3, lying in the Euclidean subspace i
the frameL.

In the present paper, we confine our numerical illust
tions mainly to the time-harmonic beams@v(b)[v#

W~r ,t !5E
B
eiF(r ,t,b)u~b!W~b!dB ~12!

with two-dimensionalB. However, the presented approa
can be readily extended to the beams

W̆~r ,t !5E
B
eiF(r ,t,b) j 0@pF~r ,t,b!#W~b!u~b!dB ~13!

with three-dimensional beam manifoldB̆5B3@k2 ,k1#.
Here,W is the electricE or magneticB field vector,j 0 is the
spherical Bessel function,p5Dk/k, Dk5(k12k2)/2, and
k5(k11k2)/2. The solutionsW̆(r ,t), related toW(r ,t)
@Eq. ~12!# by integration over wave numberk as

W̆~r ,t !5
1

2DkEk2

k1

W~r ,t !dk, ~14!

describe finite-energy evolving fields@24#. In the case of
quasimonochromatic beams,Dk!k.

One can carry out orthogonal transformations~rotations,
reflections, and their compositions! and spatial shifts~trans-
lations! of these fields by the corresponding transformatio
of K3 , P3, and Z3 as follows. The field W1(r ,t)
5G0W(G̃0r ,t) is obtained fromW(r ,t) by making use of
an orthogonal operatorG0. The latter satisfies the conditio
G0

215G̃0, whereG̃0 is the transposed operator. The fieldW1

is obtained by the orthonormal transformations ofK3 , P3,
and Z3, described by the mappingsk(b)°G0k(b),
W(b)°G0W(b), and r p(b)°G0r p(b), respectively. Simi-
larly, the shifted fieldW2(r ,t)5W(r2r0 ,t) results from the
shift r0 of the Z3, described by the mappingr p(b)°r p(b)
1r0. It is essential that this transformation is independen
the WVM K3. The same shift can also be induced by the I
transformationF0(b)°F0(b)2k(b)•r0 that depends on
both functionsF05F(b) andk5k(b).

2. Standing waves defined by the spherical harmonics Yj
s

By way of illustration, let us consider the three
dimensional standing electromagnetic waves presente
Refs.@22–24#. They are defined by the spherical harmon
(Yj

s) as

Ej
s~r ,t !5u0e2 ivtE

0

2p

dwE
0

p

eik(u,w)•rYj
s~u,w!

3E~u,w!sinudu, ~15!

where
06661
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Yj
s~u,w!5NjsPj

usu~cosu!eisw, ~16!

Njs5A~2 j 11!~ j 2usu!!
4p~ j 1usu!!

, ~17!

andPj
s(cosu) is the spherical Legendre function,u0 is some

normalizing constant factor. For these waves, the be
manifold B is the unit sphereS2, anddB5sinududw.

To set the functionsk5k(u,w) and E5E(u,w), i.e.,
propagation directions and polarizations of eigenwaves,
can use the spherical basis vectors

er~u,w!5eR~w!sinu1e3 cosu, ~18a!

eM~u,w!5eR~w!cosu2e3 sinu, ~18b!

eA~w!52e1 sinw1e2 cosw, ~18c!

where

eR~w!5e1 cosw1e2 sinw. ~19!

In Refs. @23,24#, we have treated the standing waves w
k(u,w)5ker and two different polarization states, name
EM fields with the meridional orientation@E(u,w)5eM# and
EA fields with the azimuthal orientation@E(u,w)5eA# of the
eigenwave electric field. They are formed from plane wav
of all possible propagation directions. The family of the
waves consists of storms, defined by the zonal spherical
monicsYj

0 , and whirls defined by the otherYj
s (sÞ0). For

the storms, the time average energy flux is identically zero
all points. The whirls have circular energy flux lines lying
the planes orthogonal toe3.

For these fields, the WVMK3 is merely the sphereSk
2

with a radiusk5v/c in the three-dimensional wave-vecto
space, andk̂(u,w)[er(u,w). For various types of time-
harmonic orthonormal beams also treated in Refs.@23,24#,
the WVM is some domain ofSk

2 . The PMP3 for EM andEA

fields can be conveniently illustrated as the meridional a
azimuthal unit vector fields on the surface of this sphe
respectively.

The ZPMZ3 is described by the relations

tp[0, r p~u,w!52
sw

k
er~u,w!, ~20!

whereuP@0,p# andwP@0,2p#. It can be rewritten in terms
of dimensionless radius vectorr p85r p /l5xp8e11yp8e2

1zp8e3 as

r p852
sw

2p
er~u,w!. ~21!

The corresponding normalized zero phase manifoldZ3 ~in
this case, it is a parametrized surface! is independent ofj,
and its dimensions are proportional tos. For the electromag-
netic storms (s50), the ZPM shrinks to the pointr p850.
2-4
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Since, at any integern, the phase shift 2pn does not
change the eigenwave field, one can replace Eq.~21! by the
equation

r p852H sw

2pJ er~u,w!, ~22!

where$x% denotes the fractional part of a numberx, defined
as a odd numerical function, for example,$62.4%560.4. In
this case, the wholeZ3 lies within the unit sphere. Figure
shows the corresponding ZPM of electromagnetic whirls,
fined by the spherical harmonicsYj

2 ; j 52,3, . . . .
The same approach, based on the use ofr p(b) parallel to

k(b), can be applied to redefine any other ZPMZ3. The
transverse component ofr p(b) @orthogonal tok(b)# does not
contribute toF0(b). Given the WVMK3, one can redefine
any ZPMZ3 to satisfy the conditionr p(b)ik(b). In this case
r p8(b)52F0(b) k̂(b)/2p graphically illustrates the depen

dence of the initial phaseF0 on the propagation directionk̂.
It is significant that both conditionsr p(b)ik(b) and

uF0uP@0,2p# are not mandatory. In some cases, they
come inconvenient and can be canceled, for example, to
troduce~independently fromK3) a large continuous ZPMZ3
or to describe some field transformation, such as a sp
shift r0 with r0

2.l2 ~see Sec. II B 1!.
Let us now consider magnitude functions of the stand

waves under the consideration. It follows from Eqs.~15! and
~16! that the MF of the waveEj

s has the form

u5u0NjsPj
usu~cosu! ~23!

and can be graphically illustrated by a parametrized surf
as

FIG. 1. Zero phase manifold of electromagnetic whirls defin
by the spherical harmonicsYj

2 ; j 52,3, . . . .
06661
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ru85~u/u0!er~u,w!5NjsPj
usu~cosu!er~u,w!, ~24!

whereuP@0,p# andwP@0,2p#. Since this surface is axially
symmetric, it is sufficient to depict its section by a merid
onal planew50. This gives the directional diagram, i.e., th
dependence of the eigenwave magnitude on the propaga
direction, as

ru85xu8e11zu8e35NjsPj
usu~cosu!~e1 cosu1e3 sinu!,

~25!

whereuP@0,p#. It should be mentioned that the MFu @Eq.
~23!# may take negative values at some intervals ofu. Alter-
natively, one can replaceu by its absolute valueuuu and
introduce an additional phase shiftp wheneveru becomes
negative. However, this is an unnecessary complication
breaks the continuity of the ZPM and makes it dependen
the degreej of Yj

s . Figure 2 illustrates the directional dia
gram of the electromagnetic whirl defined by the spheri
harmonicsY3

1. The lobes lying in the second and third qua
rants correspond to the negative values of the MF. Figur
in Ref. @23# depicts the only nonvanishing~azimuthal! com-
ponent of the energy flux vector of this whirl.

III. FIELDS DEFINED BY THE ROTATION GROUP

In our previous works@22–24#, we have treated linea
fields defined by a given set of orthonormal scalar functio
on a two-dimensional or three-dimensional beam manifo
In this section, we present a different type of plane-wa
superpositions—electromagnetic fields defined by the ro
tion group. For the sake of brevity, we confine our consid
ation to the time-harmonic superpositions of linearly pol
ized homogeneous plane waves in vacuum, that can

d
FIG. 2. Directional diagram of the electromagnetic whirl defin

by the spherical harmonicsY3
1.
2-5
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GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612
parametrized by pointsbPB of a two-dimensional BM as
follows:

W~r ,t !5e2 ivtE
B
eik(b)•[ r2rp(b)]W~b!u~b!dB. ~26!

As before, the unit real vectorsW(b)5E(b) and W(b)
5B(b) specify the polarization in terms of the electric a
the magnetic fields, respectively, whereas the eigenw
magnitude is defined by the MFu5u(b). In concordance
with Maxwell’s equations, the normalized amplitudesE(b)
andB(b) of each eigenwave are related as

B~b!5 k̂~b!3E~b!. ~27!

For the plane-wave superposition under consideration,
orthonormal triads@ k̂(b),E(b),B(b)# of any pair of partial
eigenwaves are related by a rotation operator. Let us de
k̂05 k̂(b0), E05E(b0), andB05B(b0), whereb0PB is an
arbitrarily given point of the BM. Then, we can set the tria
of all eigenwaves by a rotation operator functionG5G(b)
as

k̂~b!5G~b!k̂0 , E~b!5G~b!E0 , B~b!5G~b!B0 ,
~28!

whereG(b0)51 is the unit dyadic. In its turn, the rotatio
operatorG can be conveniently parametrized by the Eu
angles or the Fedorov complex vector parameter@31#.

This approach makes it possible to describe the beam
the evolution operator,

F~r ,t !5e2 ivtE
B
eik(b)•[ r2rp(b)]u~b!G~b!dB, ~29!

that defines both the electric and magnetic fields as

E~r ,t !5F~r ,t !E0 , B~r ,t !5F~r ,t !B0 . ~30!

It should be noted that Eqs.~29! and ~30! can be readily
applied to superpositions of eigenwaves with elliptic or c
cular polarization. To this end, it is sufficient to set the n
malized amplitudesE0 andB0 as

E05a1 ib, B05 k̂03E0 , ~31!

wherea andb are the major and the minor semiaxes,a• k̂0

5b• k̂05a•b50, a21b251, anda22b2>0. Beams in iso-
tropic media, including chiral ones, can be treated simila
except that the eigenwaves in an isotropic chiral medium
circularly polarized (a25b2). Superpositions of eigenwave
with different polarizations can be treated by making use
the exponential evolution operators@32#.

The operatorG of rotation through the anglew around the
unit vectorn can be written as

G[exp~wn3!5n^ n1~12n^ n!cosw1n3 sinw,
~32!
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where n3 is the antisymmetric tensor dual ton (n3E
5n3E). In this paper, we shall parametrize the operatorG
by three rotation angles (c j , j 51,2,3) as

G5exp~c3d3!exp~c2eA
3!exp~c1e3

3!, ~33!

where

d5exp~c2eA
3!exp~c1e3

3!d0 , ~34!

eA5eA(c1), andd0 is a unit vector that will be specified in
subsequent sections.

In particular, ifd05e3, the operatorG can be written as

G5g1^ e11g2^ e21d^ e3 , ~35!

where

g15eM~c2 ,c1!cosc31eA~c1!sinc3 , ~36a!

g252eM~c2 ,c1!sinc31eA~c1!cosc3 , ~36b!

d5er~c2 ,c1!5eR~c1!sinc21e3 cosc2 . ~36c!

The operator functionG5G(b) can be uniquely defined
by three real scalar functionsc5c j (b), j 51,2,3. In particu-
lar, for the EM and EA fields defined by the spherical ha
monics~see Sec. II B 2!, E05e1 andE05e2, respectively. In
both cases,k̂05e3 , c15w, c25u, andc3[0.

All three-dimensional standing waves defined by t
spherical harmonics have the same BM~the unit sphereB
5S2) as well as the same WVM~the sphereK35Sk

2). Al-
thoughEM andEA waves have different PMs (P3 is set by
the meridional and the azimuthal vectors, respectively!, their
electric and magnetic fields are related by the duality tra
formation. The diversity of the standing wavesEj

s is caused
mainly by various MFsu @Eq. ~23!# and different ZMPsZ3
~see Fig. 1!. However,Z3 depends only ons that acts as
scaling multiplier@see Eq.~20!#.

The THF defined by the rotation group possess a m
larger diversification potential. To illustrate this, let u
present two types of such fields with topologically differe
beam manifolds—spherical and toroidal BMs. For the sa
of brevity, we consider here only a rather special case w
the MF u reduces to a constantu0.

IV. FIELD WITH SPHERICAL BM

Let the BM be the unit sphere (B5S2) andu(u,w)[u0.
In this case, the evolution operatorF @Eq. ~29!# becomes

F~r ,t !5u0e2 ivtE
0

2p

dwE
0

p

eiF(r ,u,w)G~u,w!sinudu,

~37!

where

F~r ,u,w!52p k̂~u,w!•@r 82r p8~u,w!#, r 85r /l.
~38!
2-6
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DESIGNING LOCALIZED ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW E 65 066612
As an example of the ZPMZ3, let us consider an ellip-
soidal surface that, in terms of the dimensionless radius v
tor r p85r p /l, is described as

r p85~e1R1 cosw11e2R2 sinw1!sinw21e3R3 cosw2 ,
~39!

where R1 , R2, and R3 are the semiaxes,w1P@0,2p# and
w2P@0,p#.

Let us confine our illustrations to the case of linear fun
tions w j @Eq. ~39!# andc j @Eq. ~33!#, given as

w j5ub1 j1wb2 j1b3 j , j 51,2, ~40a!

c j5uc1 j1wc2 j1c3 j , j 51,2,3, ~40b!

wherebi j andci j are some given real coefficients.
Even within the imposed restrictions, a multitude of d

sign possibilities still remains. One can construct vario
families of localized fields by setting the PM and the WV
through the parametersE0 , k̂0 , d0 , (bi j ), and the ZPM
through the parametersR1 , R2 , R3, and (ci j ). It is essential
that the mapping andr p85r p8(u,w) need not be injective
~one-one! and/or surjective~onto!. In other words, the ZPM
Z3 may be a domain of or a curve on the described ellips
dal surface. The special caseR15R25R3, when the ZPM
shrinks to the pointr p850, is also allowable. Let us present
few graphic illustrations.

A. Fields with c3Æ0

Let us setw15c15wP@0,2p#, w25c25uP@0,p#, and
c350. In this case, the rotation operatorG(u,w) becomes

G~u,w!5exp@ueA
3~w!#exp~we3

3!5eM ^ e11eA^ e2

1er ^ e3 . ~41!

It follows from Eqs.~32! and~41! that this operator satisfie
the relations

G0G~u,w!G05G~2u,w!, ~42a!

G1G~u,w!5G~u,w1w0!, ~42b!

where G05122e3^ e3 is the operator of reflection in th
plane normal toe3, and G15exp(w0e3

3) is the operator of
rotation through an arbitrary anglew0 around the vectore3.

Let us setk05e3. Then, the basis functions forEM and
EA fields, composed of eigenwaves with the meridion
@E(u,w)5eM# and the azimuthal@E(u,w)5eA# orientations
of the electric fieldE, can be defined as

W15F~r ,t !e1 , W25F~r ,t !e2 . ~43!

The electric and magnetic fields ofEM (E05e1) and EA
(E05e2) fields are related by the duality transformation a

EM52BA5W1 , BM5EA5W2 . ~44!
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If the localized field is composed of eigenwaves with diffe
ent polarization states@see Eq. ~31!#, i.e., E05E01e1
1E02e2, it can be described as a superposition ofEM andEA
fields,

E5E01W11E02W2 , B5E01W22E02W1 . ~45!

SinceG0r p8(u,w)5r p8(p2u,w), andG(u,w) satisfies the
relation ~42a!, the functionsW1 andW2 have the following
symmetry properties:

W1~G0r ,t !52G0W1~r ,t !, ~46a!

W2~G0r ,t !5G0W2~r ,t !. ~46b!

To obtain an axially symmetric field, it is sufficient to s
R25R1 in Eq. ~39!. In this case, the ZPM becomes an elli
soid of revolution, i.e.,G1r p8(u,w)5r p8(u,w1w0). From

Eqs. ~28! and ~42b!, we obtain the similar relation fork̂:
G1k̂(u,w)5 k̂(u,w1w0). All this results in the following
symmetry relations for the phase functionF(r ,u,w) and the
evolution operatorF(r ,t):

F~G̃1r ,u,w!5F~r ,u,w1w0!, ~47a!

F~r ,t !5G1F~G̃1r ,t !. ~47b!

The operator functionF(r ,t) defines both electric and mag
netic vector fieldsE(r ,t) andB(r ,t) @Eq. ~30!#. Their polar-
ization states are dictated by the vector parametersE0 and
B05 k̂03E0.

The fieldsW1 and W2 can be conveniently described i
terms of the cylindrical coordinatesR, c, z, and the corre-
sponding basis vectorseR(c), eA(c), and e3, related tor
5x1e11x2e21x3e3 as follows:

r ~R,c,z!5ReR~c!1ze3 , ~48a!

R5A~x1!21~x2!2, z5x3. ~48b!

Since r (R,c,z)5G1(c)r (R,0,z), whereG1(c)5exp@ce3
3#

andr (R,0,z)5Re11ze3, the relation~47b! can be written in
terms of the cylindrical coordinates as

F~R,c,z,t !5G1~c!F~R,0,z,t !. ~49!

As a consequence, one can relate field values in any
meridional planes by the operator of rotationG1. In particu-
lar,

W i~R,c,z,t !5G1~c!W i~R,0,z,t !, i 51,2. ~50!

Hence, to find the fieldsW1 andW2, it is sufficient to cal-
culate their values in the plane (c50) (x250) and then to
apply Eqs.~50!. In this plane, the phase functionF(r ,u,w)
reduces to

F~R8,z8,u,w!52p~R8 sinu cosw1z8 cosu

2R1 sin2u2R3 cos2u!, ~51!
2-7
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GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612
whereR85R/l and z85z/l. By making use of Eqs.~50!
and~51!, one can show thatW1 andW2 satisfy the following
orthogonality conditions:

eA~c!•W1~R,c,z,t !50, ~52a!

eR~c!•W2~R,c,z,t !50, ~52b!

e3•W2~R,c,z,t !50. ~52c!

If R15R25R3, the fieldsW1 andW2 reduce to the earlie
presented electromagnetic storms defined by the sphe
harmonicY0

0, because the IPF becomes independent of b

u andw @r p8(u,w)5R1k̂(u,w) andF0(u,w)[2pR1#. In this
phase state, the storms have the vanishing time averag
ergy flux at all points@23#. The conditionR15R2ÞR3 re-
sults in a different phase state of these storms. The fi
remains highly localized~see Fig. 3!, but now it has nonzero
time average energy fluxes lying in the meridional plan
i.e., S28(x8,0,z8)[0 ~see Figs. 4 and 5!.

FIG. 3. Normalized energy densityw8 as a function ofx8 and
z8; y850; R15R250.25; R350.75; w15c15w; w25c25u;

c3[0; k̂05e3 ; E05e1.

FIG. 4. ComponentS18 of the normalized Poynting vectorS8 as
a function ofx8 andz8; y850; the field parameters are the same
those in Fig. 3.
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The time average energy density

w5
1

16p
~ uEu21uBu2! ~53!

and the cylindrical components of the time average Poyn
vector

S5
c

8p
Re~E3B* ! ~54!

are independent of the azimuthal anglec. Owing to Eqs.
~44! these characteristics are the same forEM andEA fields.
To illustrate the spatial distributions of energy density a
energy fluxes, we use the dimensionless coordinatesx8
5x1/l, y85x2/l, z85x3/l, the normalized densityw8
5w/w0, and the componentsSi85ei•S8 of the normalized
Poynting vector S85S/S0, where w05u0

2/(8p) and S0

5cw0.
It follows from Figs. 4 and 5 that bothS18 and S38 are

vanishing along thez8 axis. The componentS18 reaches its
peak in the planez850 atR85ux8u'0.6. The radial compo-
nent SR8 of S8 is negative in the vicinity of this plane (uz8
u,0.3), but it becomes positive atuz8u.0.3, (SR856S18 for
x856R8). The componentS38 reaches it maximum atR8
'0.4. The energy fluxes diverge from~converge to! the
planez850 atR8,0.7 (R8.0.7). It was shown in Ref.@23#
that a change of the phase state of an electromagnetic s
or an orthonormal beam does not change the energy
through any planez85const. In the particular case unde
consideration, this general property remains valid. As a
sult, the density of energy fluxes divergent from thez plane
is larger than the density of convergent fluxes, since the la
are distributed over a wider area.

B. Fields with c3Å0

Let us now setd05e3 andc35u. Let all other parameters
be the same as before. In this case,d5 k̂5er , i.e., the third

s

FIG. 5. ComponentS38 of the normalized Poynting vectorS8 as
a function ofx8 andz8; y850; the field parameters are the same
those in Fig. 3.
2-8
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DESIGNING LOCALIZED ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW E 65 066612
rotation@see Eqs.~28! and~33!# changes only the orientatio
of the eigenwave amplitudesE andB, but it does not change
its direction of propagation. Accordingly, instead of the ro
tion operatorG(u,w) @Eq. ~41!#, we obtain

G~u,w!5~eM cosu1eA sinu! ^ e11~eA cosu2eM sinu!

^ e21er ^ e3 . ~55!

Since the scalar coefficients in parentheses depend onu, Eqs.
~37! and ~55! describe a new family of localized fields th
cannot be represented as a linear superposition of the me
onal W1 and the azimuthalW2 fields. Each member of this
family is defined by a individual vector parameterE0. These
fields still obey symmetry relations~47! and ~49!, but they
cannot be treated as different phase states of the electro
netic storms and whirls presented earlier.

The field with E05e1 is slightly less localized and ha
smaller energy densityw8 (maxw851.8) and smaller com-
ponentsS18 andS38 (maxS1850.29 and maxS3850.38) than the
field described in the previous section, but Figs. 3–5 s
provide a rather good illustration of its properties in a qua
tative sense. However, its major distinctive property is n
vanishing azimuthal energy fluxes~see Fig. 6!. It is interest-
ing that there are both clockwise and counterclockw
energy fluxes in the planez85const. Calculations show tha
as before,S38(R,c,0)[0, i.e., there is no energy transpo
through the planez850.

If d0Þ k̂05e3, the rotation through the anglec35u

around the unit vectordÞ k̂ changes both the direction o
propagation and the eigenwave amplitudesE andB. Let us
set, for example,d05(e11e2)/21e3 /A2. This yields a field
with nonzero energy flux through the planez850 ~see Fig.
7! and asymmetric~with respect to the planez850) energy
density distribution. For this fieldw8 reaches its peak a
z850.45.

V. FIELDS WITH TOROIDAL BM

In the case of a toroidal BMB5SA
13SB

1 , instead of
F(r ,t) @Eq. ~37!#, we obtain the evolution operator

FIG. 6. ComponentS28 of the normalized Poynting vectorS8 as
a function of x8 and z8; y850; R15R250.25; R350.75; w1

5c15w; w25c25c35u; k̂05d05e3 ; E05e1.
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F~r ,t !5
u0

p
e2 ivtE

0

2p

dwE
0

2p

eiF(r ,u,w)G~u,w!

3~11r sinu!du, ~56!

wherer5B/A<1, B is the radius of circlesSB
1 , forming the

toroidal surface (w5const,uP@0,2p#), provided that their
centers are placed at a circleSA

1 of radiusA (pAB51). We
assume here that Eqs.~33!, ~38!, and~40! remain valid.

In the above examples, the BMB5S2 ~the unit sphere!,
the WVM K35Sk

2 ~the sphere of radiusk), and ZPMZ3 ~the
ellipsoid! are two-dimensional differentiable manifolds wit
the same global topology. In other words, they are diffeom
phic to each other. The corresponding diffeomorphismsB
→K3 andB→Z3 are given asb°k(b)5kk̂(b) andb°r p

5lr p8 for all bPB5S2.
Let us now consider the surfaceZ0 given as

r p5lr p85l@R0~e1 cosw11e2 sinw1!1e3R3 cosw2#,
~57a!

R05R11R2 sinw2 , w1P@0,2p#, w2P@0,2p#.
~57b!

If R1 , R2, andR3 are nonvanishing, one can set the functi
r p5r p(b) by some diffeomorphismB→Z0 of the toroidal
BM B5SA

13SB
1 onto Z0, using the entireZ0 as the ZPM

(Z35Z0). Alternatively, one can use some subset ofZ0 as
the ZPM (Z3,Z0) or assign zero values to some of th
parametersRi ( i 51,2,3).

In the examples presented in this section, we assume
d05e1. In this case, the rotation operatorG @Eq. ~33!# be-
comes

G5d^ e11g2^ e21g3^ e3 , ~58!

where

d5eM~c2 ,c1!5eR~c1!cosc22e3 sinc2 , ~59a!

g25er~c2 ,c1!sinc31eA~c1!cosc3 , ~59b!

FIG. 7. ComponentS38 of the normalized Poynting vectorS8 as
a function ofx8 andz8; y850; d05(e11e2)/21e3 /A2; the other
field parameters are the same as those in Fig. 6.
2-9
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GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612
g35er~c2 ,c1!cosc32eA~c1!sinc3 . ~59c!

A. Fields with a circular ZPM

Let us set the ZPMZ3 by Eq. ~57!, wherew15w and
R25R350. In this special case, the surfaceZ0 shrinks to the
circle Z3 of radiusR1, lying in the planez850. Any given
point r p(w) of this circle is the image of the circle
SB

1,B—the corresponding section of the toroidal BM.
Let us set the anglesc i as follows:c15w, c252w, c3

5u. Substitution of Eqs.~57a! and ~58! into Eqs.~38! and
~56! yields the evolution operatorF(r ,t) that describes a
family of fields with the circular ZPMZ3. The members of
this family have different WVMsK3 and PMsP3, specified
by the values ofk̂0 and E0 @see Eqs.~28!#. Their common
feature is thatr p and d depend only onw. As a result, any
point r p(w) of the zero phase circleZ3 corresponds to a
subset of partial eigenwaves with triads@ k̂0(u,w),
E(u,w),B(u,w)#, related to each other by rotations arou
d(w) (uP@0,2p#, w5const).

In particular, ifk05e3 , E05e1, andB05e2, the WVM is
defined by the functionk(u,w)5kg3(u,w). In terms of the
electric and magnetic fields, the corresponding PM is defi
by the functionsE(u,w)5d(w) and B(u,w)5g2(u,w), re-
spectively. Upon integrating fields of partial eigenwaves o
uP@0,2p# we obtain an infinitesimal electromagnetic wa
~wavelet!—the superposition of eigenwaves correspond
to an arbitrary givenw5w0. The electric field of this wavele
is linearly polarized alongd(w0) at any pointr . By the con-
struction ofF(r ,t), the initial phases of all eigenwaves form
ing the wavelet vanish at the pointr05r p(w0)PZ3. At this
point, the electric field of the wavelet reaches its absol
maximum independent ofr, whereas the magnetic field take
a value depending onr. Upon integrating the electric field o
wavelets overwP@0,2p# we obtain the total fieldE(r ,t)
constructed so that a major contribution to the field va
E(r0 ,t) at any pointr05r p(w0) of the circleZ3 yield wave-
lets with parametersw lying in a neighborhood ofw0. Since
other wavelets differ widely in polarization, magnitude, a
phase at this point, they suppress each other and thus
crease their contribution to the total field in this neighb
hood. By the same reasoning the magnetic field in the ne
borhood of the circleZ3 is smaller than the electric field
Figures 8–10 illustrate properties of the described locali
fields for two different values of parameterr. In Fig. 9 and
thereafter, the normalized instantaneous electric field is
fined asE85ReE/E0, whereE05u0 /A4p.

B. Fields with two-dimensionalZ3

For the fields under consideration, every phase stat
described by a subsetZ3#Z0, parametrized by the points o
the BM B. In the preceding section, we considered so
fields with one-dimensional~circular! Z3, where every point
r pPZ3 is the image of a subset ofB ~circle w5const). Here
we present three examples of fields with two-dimensionalZ3
defined by an injective~one-one! mapping ofB onto Z0.
Different mappingsr p5r p(b) of B onto the same surfaceZ0
give different phase states~parametrizationsZ3 of Z0).
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These mappings can be given in terms of local coordin
(u,w) on B and (w1 ,w2) on Z0, but the corresponding phas
state is independent of the choice of the coordinates syste
Similarly, all other properties of the field are defined by t
coordinate-free mappingsB→K3 , B→P3, andu5u(b).

In all three examples, we setR150.75, R25R350.25,
k̂05e3, andd05E05e1, i.e., the operator of rotation is give
by Eqs. ~58!. Let us first obtain an axially symmetricEM
field with Z3 diffeomorphic toB. To this end, we setw1
5c15w, w25c25u, andc3[0. In this case, the two set
of orthogonal coordinate curves onB ~circlesw5const and
u5const) are one-one mapped onto the similar sets of c
dinate circles onZ0. However, the mappingsk(u,w)
5ker(u,w), E(u,w)5eM(u,w), B(u,w)5eA(w), defining
the WVM K3 and the PMP3, are not injective.

Figure 11 illustrates the total energy densityw85we8
1wm8 of the obtained localized field. Owing to the built-i
symmetry, the electric field densitywe8 peaks at thez axis,

FIG. 8. Normalized energy densityw8 as a function ofx8 and
y8; z850; r50.05; R150.5; R25R350; w15c15w, c252w,

c35u; k̂05e3 ; d05E05e1.

FIG. 9. ComponentE38 of the normalized instantaneous electr
field E8 as a function ofx8 and y8; z850; t50; the field param-
eters are the same as those in Fig. 8.
2-10
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DESIGNING LOCALIZED ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW E 65 066612
whereas the magnetic field densitywm8 and the time average
Poynting vectorS are vanishing at this axis. The azimuth
components ofS andE, as well as thez component ofB, are
everywhere zero.

Let us now change the phase state of the above field
defining the parametrizationZ3 of Z0 as

w152w, w250.5u1w, ~60!

where 0<w,2p, and 0<u,2p. In this case,K3 and P3
remain as before, but the mappingB→Z0 is not continuous
at the circleu50 on B, since every coordinate circlew
5const onB is mapped onto a semicircle onZ0. Every
coordinate circleu5const onB is mapped onto a close
curve that makes two complete revolutions around the h
of Z0 and each time intersects the planez850. The de-
scribed phase change breaks the initial axial symmetry
produces a well-localized field with the domain of localiz

FIG. 10. Normalized energy densityw8 as a function ofx8 and
y8; z850; r51; the other field parameters are the same as thos
Figs. 8 and 9.

FIG. 11. Normalized energy densityw8 as a function ofx8 and
z8; y850; r50.5; R150.75; R25R350.25; w15c15w; w2

5c25u; c3[0; k̂05e3 ; d05E05e1.
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tion shifted in thex8 direction~see Fig. 12! and rather com-
plicated structure of energy fluxes.

As the third example, let us construct an axially symm
ric field with nonvanishing azimuthal energy fluxes. To th
end, it is sufficient to set the parameters as follows:w1
5c15w, w25c25c35u. In this case,Z3 remains the
same as in the first example, but bothK3 andP3 are differ-
ent, since the conditionc3[0 is replaced byc35u. Figures
13–16 illustrate the properties of the obtained field. To
verse the direction of the azimuthal fluxes, it is necessar
set c352u. The structure of the azimuthal fluxes can
modified by changing the BM parameterr. The other two
cylindrical components ofS are scarcely affected by
change of this parameter.

VI. COMPLEX FIELD STRUCTURES

A. Field gratings

The presented electromagnetic fields have a very sm
~about several wavelengths! core region with maximum in-
tensity of field oscillations and unique space distributions

in
FIG. 12. Normalized energy densityw8 as a function ofx8 and

z8; y850; r50.5; R150.75; R25R350.25; w152w; w250.5u

1w; c15w; c25u; c3[0; k̂05e3 ; d05E05e1.

FIG. 13. Normalized energy densityw8 as a function ofx8 and
z8; y850; r50.5; R150.75; R25R350.25; w15c15w, w2

5c25c35u; k̂05e3 ; d05E05e1.
2-11
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GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612
polarization states, energy densities, and energy fluxes.
side the core, the intensity of oscillations rapidly decrease
all directions. The three-dimensional localization makes
possible to use these fields as structural elements to f
various complex electromagnetic fields.

By way of illustration, let us consider a field defined a

W8~r ,t !5 (
n5M1

N1

(
m5M2

N2

(
l 5M3

N3

W~r2anml ,t2tnml!,

~61a!

anml5na11ma21 la3 , ~61b!

tnml5nt11mt21 l t3 , ~61c!

whereW(r ,t) is set by Eq.~12!, aj and t j are some given
spatial and temporal shifts.

On the one hand, this field can be treated as a diffe
state ofW(r ,t), obtained by the magnitude function tran

FIG. 14. ComponentS18 of the normalized Poynting vectorS8 as
a function ofx8 andz8; y850; the field parameters are the same
those in Fig. 13.

FIG. 15. ComponentS28 of the normalized Poynting vectorS8 as
a function ofx8 andz8; y850; the field parameters are the same
those in Fig. 13.
06661
ut-
in
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formation u(b)°u(b)uh(b)u and the phase transformatio
F(r ,t,b)°F(r ,t,b)1DF(b). Here,uh(b)u andDF(b) are
defined as

h~b![uh~b!ueDF(b)5h1~b!h2~b!h3~b!, ~62!

where

hj~b!5 (
m5M j

Nj

eimF j (b)

5
exp@ iM jF j~b!#2exp@ i ~Nj11!F j~b!#

12exp@ iF j~b!#
, ~63!

F j~b!5v~b!t j2k~b!•aj . ~64!

However, these fields have the same WVMK3 and the same
PM P3.

On the other hand, the translated fieldsW(r2anml ,t
2tnml) form a family of wavelets withW(r ,t) as the mother
wavelet. Hence, ifW is one of the foregoing localized fields
and lengths of the shift vectorsaj ( j 51,2,3) are sufficiently
large, the fieldW8 will constitute a field grating. Figures 17
and 18 depict componentE38 of the normalized instantaneou
electric fieldE8 of the three-dimensional~cubic! grating at
two different instants t50 and t850.25 @ t85t/T
5vt/(2p)#, respectively. The grating is composed of 27EM

stormsEj
s ( j 5s50), whose properties are described in som

details in Ref.@23#. In the next section, we consider th
influence of this grating on relativistic electrons.

The great diversity of the presented localized fields w
different geometries of core regions provides a great sc
for combining them, as constructive elements, into vario
one-, two-, or three-dimensional gratings and other comp
geometrical structures, where each element has only rea
ably small deviations from its initial form.

Moreover, the prior investigation of a single localize
field permits us to use copies of this field with small spat
and time shifts in designing complex electromagnetic fiel

s

s

FIG. 16. ComponentS38 of the normalized Poynting vectorS8 as
a function ofx8 andz8; y850; the field parameters are the same
those in Fig. 13.
2-12
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DESIGNING LOCALIZED ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW E 65 066612
Designing localized electromagnetic fields to control mot
and state of charged and neutral particles~atoms and mol-
ecules! is a possible application of the presented techniqu
In the following section, we illustrate this on an example
relativistic charged particles.

B. Charged particles in localized fields

Let m0 ande be the rest mass and the charge of a rela
istic particle moving in an electromagnetic fieldF. Taking
into account Eq.~3!, the relativistic equation of motion ca
be written as@33#

m0c
du

ds
5Q, ~65!

FIG. 17. ComponentE38 of the normalized instantaneous electr
field E8 of the cubic grating composed of 27 stormsE0

0 as a func-
tion of x8 and y8; z850; M15M25M3521; N15N25N351;
ai85ai /l51.75ei , t i85vt i /(2p)51.75 (i 51,2,3); t50.

FIG. 18. ComponentE38 at t850.25; the other field parameter
are the same as those in Fig. 17.
06661
s.
f

-

where

Qi5
e

c
Fikuk1

2e3

3m0c3

]Fik

]xl
uluk1

2e4

3m0
2c5

3@FikFklu
l1~umFmk!~Fklu

l !ui #, ~66!

u5
dx

ds
, g5~12b2!21/2, ~67!

ds5cdt/g, b5v/c, v is the velocity of the particle, and
summation over repeated indices is carried out from 1 to
The tensorF of a field grating can be readily found from Eq
~1!, provided thatE andB are calculated as described abov
Hence, if the initial velocity and the initial position of th
charged particle are given, one can investigate its motion
using point-by-point integration of Eqs.~65!–~67!.

Let us consider two examples. In both cases, as
mother wavelet, we use the electromagneticEM storm E0

0

@Eq. ~15!#. TheEM stormEj
0 , defined by the zonal spherica

harmonicYj
0 , is a localized field with the meridional orien

tation of the electric fieldE and azimuthal orientation of the
magnetic fieldB @23#. At any point of thez axis,E is directed
along this axis, andB50. Figure 19 shows the only nonzer
componentE38 of the instantaneous electric field ofE0

0 and
E1

0 storms at thez axis. Although both fields are highly lo
calized, a relativistic charged particle~electron, in the fol-
lowing illustrations!, moving through the core region (uz8
u,1) along thez axis, is alternately subjected to accelerati
and deceleration. However, one can construct a complex
calized field with the same axial symmetry and the exten
domain of acceleration~deceleration!. To this end, it is suf-
ficient to combine a number ofE0

0 storms into a one-
dimensional grating with small spatial and temporal sh
~see Fig. 20!. In this case, the particle can be continuous
accelerated~decelerated! during several periods of oscillatio
T52p/v. The initial coordinatesx085x8(t08), y085y8(t08),

FIG. 19. ComponentE38 of the normalized instantaneous electr
field E8 of EM storms as a function ofz8; x85y850; ~A! j 5s
50, t50; ~B! j 51, s50, t850.25.
2-13
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GEORGE N. BORZDOV PHYSICAL REVIEW E65 066612
z085z8(t08), and the initial timet085t0 /T specify the depen-
dence of the relativistic factorg on z8 ~see Figs. 21–23!. As
a consequence of the built-in spatial and temporal sh
(t38.0) of the E0

0 storms forming the complex field, th
particles, moving in the positive and the negative directio
have quite different dependencesg5g(z8) ~see Fig. 23!.

The above cubic field grating with large spatial and te
poral shifts~see Figs. 17 and 18! affects the particle motion
in a different three-stage manner. Figures 24 and 25 illust
the dependence ofg on z8 for six electrons that have th
same initial velocityb050.9997e3 at t08525, but different
initial coordinatesx08 andy08 at the planez08525.

VII. CONCLUSION

In this paper, an important approach to characterizing
designing localized electromagnetic fields, based on the

FIG. 20. ComponentE38 of the normalized instantaneous electr
field E8 of a complex field composed of 31EM stormsE0

0 as a
function of z8 at t50 ~solid curve! and t850.25 ~dashed-line
curve!; x85y850; M15N15M25N250; M35215; N3515;
a3850.125e3 ; t3850.125.

FIG. 21. Relativistic factorg of electron moving in the complex
field as a function ofz8; y0850; (A8) t08525; x0850.25; ~A! t08
525; ~B! t08524.875; ~C! t08524.75; ~D! t08524.625; x0850
for curves A, B, C, and D; b050.9997; l510.6 mm; E3

525.93109 V/cm at t50 and z50; the other field parameter
are the same as those in Fig. 20.
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of differentiable manifolds, differentiable mappings, and t
group of rotation, is presented. The beam manifoldB, the
wave-vector manifoldK, the polarization manifoldP, the
zero phase manifoldZ, and the magnitude functionu are the
key elements of the Lorentz covariant description. Every
calized field under consideration is characterized by the
ferentiable mappingsB→K, B→P, B→Z, andB→R, given
as K5K (b), f5f(b), xp5xp(b), and u5u(b). They
specify wave vectors, polarizations, initial phases, and m
nitudes of eigenwaves constituting the field. If the field
time harmonic in a frameL, one can characterize it by th
corresponding sectionsK3 , P3, andZ3 of K, P, andZ.

By way of illustration, families of exact time-harmoni
solutions to Maxwell’s equations in the source-free spac
fields defined by the rotation group—are presented. Th
families describe localized fields with two-dimensional bea
manifolds that are topologically distinct~spherical and toroi-
dal BMs!. For every field, both wave vectors and normaliz
amplitudes of partial eigenwaves are set by the same rota
operator function.

FIG. 22. Relativistic factorg of electron moving in the complex
field as a function ofz8; x085y0850; ~E! t08524.5; ~F! t08
524.375; ~G! t08524.25; ~H! t08524.125; the field parameter
are the same as those in Figs. 20 and 21.

FIG. 23. Relativistic factorg of electron moving in~A! the
positive z direction; ~B! the negativez direction; the field param-
eters are the same as those in Figs. 20 and 21.
2-14
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DESIGNING LOCALIZED ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW E 65 066612
It is shown that the proposed approach provides a br
spectrum of tools to design localized fields, i.e., to build
symmetry properties of oscillating electric and magne
fields, to govern the distributions of their energy densit
~both size and form of localization domains!, and to set the
structure of time-average energy fluxes.

Localized fields of one or more types can be combined
constructive elements to obtain a complex field struct
with desirable properties, such as one-, two-, or thr
dimensional field gratings.

The proposed approach can be used in designing loca
electromagnetic fields to govern motion and state of char
and neutral particles. In particular, the results described
the preceding section give promise that the field gratings
other complex localized electromagnetic fields may be
plied in free-electron lasers and electromagnetic propuls

FIG. 24. Relativistic factorg of electron moving in the three
dimensional field grating as a function ofz8; t08525; z08525;
y0850; b050.9997; ~A! x0850; ~B! x0851.75; ~C! x08521.75; l
510.6 mm; E3527.163109 V/cm at t50 andz50; the other
field parameters are the same as those in Fig. 17.
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devices~ion thrusters!. In both cases, the localization of en
ergy in small domains of wavelength size is an advantage
property. It results in strong electric and magnetic fields
their ~typically different! domains of localization. Besides
makes possible to construct a three-dimensional field gra
with a multitude of parallel many-stage acceleration ch
nels. When employing this grating as an ion thruster, elect
and positive ion packets can move along either the sa
channels with the time shiftnT/2 (n is an odd integer! or
different parallel channels. In the latter case, the phase s
of localized fields along the corresponding channels can
set differently to optimize acceleration of both electrons a
ions. With these applications in mind, it is important to r
member that localized electromagnetic fields can also be
signed to counteract Coulomb repulsing of charged partic
and, thus, to catalyze the forming of localized particle pa
ets @11,18#.

FIG. 25. Relativistic factorg of electron moving in the three
dimensional field grating as a function ofz8; ~D! x085y0851.75; ~E!
x085y0850.25; ~F! x085y0850.875; the other parameters are th
same as those in Figs. 17 and 24.
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