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Isotropic versus anisotropic modeling of photorefractive solitons
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The question of the isotropic versus anisotropic modeling of incoherent spatial screening solitons in photo-
refractive crystals is addressed by a careful theoretical and numerical analysis. Isotropic, or local, models allow
for an extended spiraling of two interacting scalar solitons, and for a prolonged propagation of vortex vector
solitons, whereas anisotropic, nonlocal, models prevent such phenomena. In the context of Kukhtarev's mate-
rial equations, the difference in behavior is traced to the continuity equation for the current density. We further
show that neither an indefinite spiraling of two solitons nor stable propagation of vortex vector solitons is
generally possible in both isotropic and anisotropic models. Such systems do not conserve angular momentum,
even in the case of an isotropic change in the index of refraction.

DOI: 10.1103/PhysReVE.65.066610 PACS nuni)erd2.65.Tg, 42.65.Jx

[. INTRODUCTION first group stems primarily from experimental evidence,
which is supported by theoretical modeling. The validity of
For a few years now, the question of what exactly twoclaims by the second group is established by theoretical
interacting incoherent spatial-screening solitons do as thegnalysis, which is supported experimentally. Theoretical dif-
propagate down a photorefractive strontium barium niobatéerences are the result of different levels of approximation
(SBN) crystal has occupied the attention of a number of re-applied to the standard Kukhtarev model. The difference in
searcher$l—10]. Although the question is of little relevance experimentation is contained in the fine print describing ex-
to perceived applications of photorefractiffeR) solitons, it  perimental conditions.
is important in understanding the physics of the interaction In one of our earlier publicatior{40] we pointed out how
between them. small changes in initial experimental conditions can blend
One group of researchers claims that the PR screeningne point of view(oscillation of solitong with another(pro-
solitons and the interaction between them is primarily isotrofonged spiraling In the present paper we address the ques-
pic in nature, even though the PR medium is inherently antion that seems to be at the core of the problem: How well, if
isotropic [1]. Circular PR screening solitons are observedat all, can the PR screening solitons be described by the local
[2], and approximately described by isotropic local modelsisotropic models? Modeling is important for spatial solitons
[3]. Under proper initial conditions, two solitons spiral about because of the difficulties in observing solitons inside the
each other in elliptical orbits4]. The solitons behave similar crystal. On the matter of principle, the answer to the question
to an attractive celestial two-body system that conserves arposed is easy to give: not at all. PR screening solitons are
gular momentuni5]. inherently anisotropic. Yet, from the practical point of view,
The other group of researchers claims that the PR materiahe initial stages of the interaction can be approximated by
response is both anisotropic and a nonlocal function of thésotropic models, and both the isotropic and anisotropic mod-
light intensity[6]. Strong anisotropy does not allow for radi- els yield similar behavior. It matters little if the difference
ally symmetric solutions, hence circular solitons do not existbetween the models becomes perceptible after 10 cm propa-
[7]. The interaction between solitons is anomalous in thatation through the crystal.

they experience both attractive and repulsive fof&sThis Recently, however, novel types of spatial solitary waves
feature prevents stable spiraling, and causes beams to osacitere proposed11,12 and observed12,13 in an SBN
late about each other and eventually f(i8¢ crystal—the vortex, the dipole-mode, and the propeller vec-

It is interesting to note that such varied, yet apparentlytor solitons—whose behavior is even more strikingly differ-
valid, statements can be given about essentially the sament in the two models than that of the spiraling solitons. They
physical system, describédy both groupsusing the same, arise when a system of two beams is coaxially launched into
Kukhtarev model for the PR effect, and studied under similathe crystal, a fundamental beam in the form of a simple
experimental circumstances. The validity of claims by theGaussian and a higher order mode: a vortex beam or a di-

pole. In the course of joint propagation they form self-
trapped vector solitons. In fact, the present situation is a bit
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nonlocal anisotropic PR crystals are u$éd,15|. for the generation/recombination rate of the mobile charges
The vortex and the dipole-mode vector solitons are intro{16],

duced and discussed numerically iri], and in[13] they are

observed experimentally as well as studied numerically. It is G=S(Np—N3)(Ip,+1)—yrNpn, 1)

found that the vortex vector solitor(gvith unit topological ] ) )

charge are linearly unstable, decaying into the dipole-modeth€ Poisson equation for the charge density,

vector solitons, which apparently are stable. The two arms of N

the dipole-mode component ate phase shifted, and their V-D=q(Np —Na—n), @

dynamics resembles that of the two spiraling beams. Rotat-

ing propeller solitons are demonstrated experimentally and

theoretically in_[12]. They are the dipole vector _soIitons that qon=qG+V-J. 3)

rotate(both in intensity and phagebout thez axis.

We will show that the vortex vector solitons in isotropic Here S is the cross section for photoexcitatiopg is the
model_s can propagate for tens of dlffractlon lengths beforgecompination ratelNp , Ni , N, andn are the densities of
decaying into dipole-mode vector solitons, due to the transgoners, jonized donors, acceptors, and mobile charges, re-
verse modulational |nstab|.I|t|es and radlgtlon losses. The réspectively., is the background light intensityjs the soliton
sultlng_two beams of the d|pole mode sp|ral about Qach Oth%tensity,Dst is the space-charge displacement figdg
clockwise or counterclockwise, depending on the sign of theno gielectric constantand J=qunE+ksTVn is the cur-
initial topological charge. As a result of further radiation Iossrent density § and x are the charge and mobility of the
and beam interaction, the angular momentum of the SySte”&*arriers,kB is the Boltzmann’s constant, arklis the tem-

as well as the integrated power, slowly decreases. . ; :
’ . . ) erature. To simplify bookkeeping, we assumie=0. This
On the other hand, the vortex vector solitons in amso—p @ plify ping

troi del bsolutel table. d ing into dinol amounts to neglecting diffusion, which is not essential for
ropic models are absolutely unstable, decaying into dipoleg, argumentG measures the rate of change of ionized do-
mode vector solitons within a fraction of diffraction length.

. . ) “nors, G=¢Nj. We assume that the generation/
The dynamics of the resulting two beams is completely dif- o S
. . . recombination process reaches equilibrium much faster than
ferent from the isotropic case. During the breakup phase th

fragments of the vortex stay arrested oblique to the directior&‘ e other Processes in the crystal, which me@rs0 (also a
common assumption

of the external electric field, and start rotating only after the To treat the continuity equation, one has to find an expres-

formation of the dipole-mode soliton is complete. However, _. f This | lished b bining th
the two beams do not spiral about each other, but oscillatg 0" 1oF M- This Is accomplished by combining the rate equa-
' ion and the Poisson equation:

about the stable direction perpendicular to the external field.
Correspondingly, the angular momentum of the system oscil- Np—Na—Nge—N
lates about zero. The oscillations are damped, and in the end n=n,
a stable stationary dipole-mode vector soliton is formed, con-

sisting of an elongated fundamental beam and a dipole per- _o : . :
pendicular to the direction of the external field, withma wheren, =S(Ip+1)/ v is the fraction of the mobile charge

pace shit btee tne wo beam arms. B o e I st 2™ e
The layout of this paper is as follows. Kukhtarev's mate-

rial equations are introduced in Sec. Il, the isotropic and thePace charge displacement field. This implicit equation can

anisotropic models are defined in Sec. lll, and the case of th(x%'the.r be solved fon d|_rectly (as a quadratic eq“a“?"“’r .
Iteratively, by substituting the zeroth-order approximation

spiraling scalar solitons is presented in Sec. IV. The propa- ©)=p,(Np—N»)/N, into the right-hand side of Eq4a)

gation of vortex vector solitons is discussed in Sec. V, an L 1d continuina the process. In the first order. for example
the question of the nonconservation of angular momenta is 9 P ) ] pie,

: : : dne obtains a saturable mode[17] n®M=n,(N
. VL. tion VII t | : . "D
addressed in Sec Section presents conclusions - NA)NA/(Nf\+n|ND)- In typical PR crystals, under condi-

tions presumed for the generation of screening solitons, it is
Il. MATERIAL EQUATIONS Np,Na>>n..,n;, so that to a good approximation
~n(®. Hence, approximately is directly proportional to

nd the continuity equation,

: (4a)

Nap+Nnget+N

We introduce the models by analyzing Kukhtarev's mate-,
rial equations, and pinpoint the source of the trouble—the®
continuity equation for the current density. We integrate both S(Np—Ny)
models for exactly the same initial and boundary conditions, n~—/—S (Up+D. (4b)
and display how the differences evolve. A surprising conclu- YRR A
sion is that neither the isotropic model of spiraling solitons,his formula is often explored in the modeling.
nor the decaying vortex vector modes support stable spiral-
ing, due to the modulational instabilities, and losses to radia-
tion in the course of energy exchange between the beams.
These effects further cause the power loss and the noncon- The solution of the steady-state continuity equation
servation of angular momentum.

The starting points are the standard Kukhtarev’s equations V.-(nE)=0 (5)

Ill. MODELS
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crucially depends on whether ongransversgdimensional
(1D) or two-dimensiona(2D) solitons are considered. In 1D
one has the equatiof(nE)=0, which yieldsnE=n_E,,
whereE, is the externally applied field and, is the charge
density at transverse infinity. This leads to the standard iso-
tropic 1D model[18] for the space-charge field,

B lp+1., "
- Olb——’_l, ( )
wherel ., is the beam intensity at infinity. In 2D, the conti-
nuity equation has the form

dx(nEy) +dy(nE)) =0, (7)

and the isotropic model cannot be the general solution. It
requires that both terms in E) equal 0, whereas the equa-
tion only requires that they should balance each other out.
One can choose it as a special solution, and see how consis-
tent it is with the general development. We choose the sim-
plest possibility,E,=0, to compare easily with the general
anisotropic model. Other choices are possiBld.9], and all
of them are equally good for the initial stages of the process.
However, all of the isotropic models fail equally after some
propagation in the crystal.

With the choiceE,=0 andE,, as in Eq.(6), one pro-
ceeds to solve the paraxial propagation equation for the beam
envelope

2ikngd, A+ V2A= —kznérssEA. (8) FIG. 1. Two solitons A andB) propagating in a SBN crystal,
shown at different propagation depths. Left column, the isotropic
wherek is the wave number in vacuum, is the bulk re- model; right column, the anisotropic model. Propagation distances
fractive index’ and'33 is the component of the e|ectro_optic in mm are noted in each of the figures. Other parameters are: The
tensor that couples to the space-charge field. The beaffiitial intensity of the beams ig=5, the initial widthw=13 um,
propagates in the direction, and is polarized along the ~2andEq=4 kvicm.

direction, WhiCh is _also the direction of the _CI’)_/Sta”iCIGXiS. IV. SPIRALING SCALAR SOLITONS
In the anisotropic model one makes a@riori ansatz, but ] . o
genera”y proceeds to solve E@r')) by introducing an elec- First, we consider the case of two Splrallng incoherent

trostatic potentiaV ¢=E,—E that takes care of the bound- scalar solitons. We integrate both models for exactly the

ary conditiong20]. Upon substituting the solution from Eq. S&me set of parameters, found in the experimental part of
(4b), into Eq.(5) one obtains Ref.[19]. The steady-state transverse intensity distribution of

the two interacting solitons at different depths within the
V2¢+Vh-VIn(1+1)=ExdIn(1+1), (9) crystal is shown in Fig. 1. As expected, the isotropic model

leads to prolonged spiraling, whereas the anisotropic model

where the intensity is now normalized tg. This equation precludes such a phenomenon. However, up to a thickness of
has to be solved numerically, together with the paraxial~5 mm the two models produce similar behavior. The

propagation equation appropriate to the anisotropic model: beams rotate for- 7/2 in both cases, but then the anisotropic
solitons stop spiraling and start oscillating. It is interesting to

2ikngd,A+V2A=—k2ndray(Eg—dyd)A.  (10)  note that in the exit crystal face both models produced simi-
lar beam distributions; however, the beam positions are in-
In this manner, the two models are defined: the isotropic byerted.
Egs.(6) and(8), and the anisotropic by Eg&) and(10). In Figure 2 represents the space-charge distributions corre-
the case of multicomponent beams one has to solve the sysponding to Fig. 1. In the isotropic case, oy is shown,
tem of equations for all of the components, anih the since the other component remains zero. The space-charge
equations then stands for the total intensity. We proceed tdistribution is merely the negative replica of the intensity
integrate and compare the models for the two characteristidistribution, imprinted on the background fielg},. This is
cases. not so for the anisotropic model. Both components there are
It should be noted that the integration of both models isnonzero, and show considerably more structure than the iso-
carried out using two independent integration methods. Theyropic model. TheE, component exhibits features that are
produced, qualitatively and quantitatively, very similar re-both above(bright regions in the figupeand below(dark
sults. regions the level of the external field. The positive regions
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FIG. 2. Distribution of the space-charge field, corresponding to
Fig. 1 (initial distribution omitted. Left column, the isotropic
model; middle columnE, ; and right columnE, of the anisotropic
model.

are crucial in understanding the existence of repulsive forces
between soliton$8], and are responsible for preventing the
spiraling. There are no positive regions in the space-charge
field of the isotropic mode(no negative intensiyy hence it
cannot explain the existence of repulsive forces. It only pre-
dicts attractive forces between solitons, and can only lead to
gravitational analogies. For both models, surface plots of the FIG. 3. Surface plots of the components of the space-charge
space-charge field at the exit face are presented in Fig. 3. field from Fig. 2 az=11.3 mm.(a) E, of the isotropic model; and
The y component of the anisotropic space-charge fieldb) E, and(c) E, of the anisotropic model.
also consists of positive and negative parts, and is predom
nantly a multipole electric field in naturgquadrupole and
highen. The E, component is predominantly a dipole field.
Even though thé, field does not influence the propagation
of the solitons mucliit does not couple to the effective com-
ponent of the electro-optic tengpiit is important for the
overall picture, as a part of the general solution of the con
tinuity equation. It affects the form of the space-charge field
and contributes to the nonlocal, anisotropic effects in th
interaction of solitons.

5ution, rotating about the rim. The vortex elongates and de-
cays into two filaments that vigorously spiral about each
other, similarly to the propeller solitons. The phase differ-
ence, which was running linearly from 0 tom2along the
vortex, is exactlyr between the filaments.

In the case of the anisotropic model, a different scenario
unfolds. The vortex beam develops a modulational instability
within a fraction of diffraction length, and breaks into two
E‘elongated beams. During the breakup process, the fragments
are almost stationary, and then start rotating toward the equi-
librium position, which is in the direction perpendicular to

V. VORTEX VECTOR SOLITONS the external field. In the end, they oscillate about the stable

Next, we consider the propagation of vortex vector SO”_solution.—the dipoI_e—modc_—z soliton. 'It shogld be noted that
tons. Again, a system of two beams, the fundamental Gausdhe vortices, both isotropic and anisotropic, can break into
ian and a vortex of the form(p/w)2exp(—p?w?)exp(e), more than two fragments depending on the values of param-
where (o, ¢) are the polar coordinates in the transvensg) eters, the width of the QOughnut mode, and the vortex ch_arge.
plane, is launched into the crystal and propagated using th& Such a case, the higher-order stable modes—the tripole,
isotropic and the anisotropic codes, for similar sets of paramguadrupole, etc.—can be _rea}ched. ) )
eters. Figure 4 depicts the transverse beam distributions in 't @Ppears that these findings are in agreement with the
the crystal at various depths. It is seen that the isotropi€XPerimental findings in13]
vortex exhibits pronpuncgd stability, appgrently not changing V. NONCONSERVATION OF ANGULAR MOMENTUM
for more than 20 diffraction lengths, which corresponds to

~100 mm propagation through the crystal. As the instability ~An interesting question to ask is what happens to the an-
sets in, two lobes develop at the opposite sides of the distrigular momentum of the system as it evolves? On theoretical
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FIG. 4. Breakup during propagation of the vortex component of ~ FIG. 5. (a) Angular momenta of the pair of anisotropic solitons
a vector soliton. Left column, the isotropic model; right column, thefrom Fig. 1, and(b) of the anisotropic vortex vector soliton from
anisotropic model. Even though the breakup phases appear simila¥ig. 4, as functions of the crystal thickness. Dashed lines represent
note the widely different propagation distances in each of the figthe total intensity. Dotted lines represent the momenta of the vortex
ures. Initial intensities of the fundamentalot shown and of the  and of the fundamental component.
vortex component werk,=9, and other parameters are as in Fig. 1.
gular momentum is not constdifiig. 6(a)]. It changes due to

grounds, being the consequence of the isotropy of space, tl&e strong energy exchange, which also occurs in isotropic
momentum should be constant for the isotropic model, and imodels[19]. As the solitons start interacting, part of the total
should vary for the anisotropic model. Figures 5 and 6 depicenergy is lost to radiation. A part of each soliton is trapped
the situation. by the other, and the identity of individual solitons becomes
In the case of the spiraling anisotropic solitdf#y. 5a)], questionable. Consequently, a part of the momentum is taken
or the vortex vector solitofFig. 5(b)], the situation is as by the radiation, and the momentum of the solitons slowly
expected. Initially the momenta of both models are closedrops. Hence, even the isotropic solitons do not support in-
however, upon approaching each other the solitons start exefinite spiraling. In a generic situation, with Gaussian
changing energy. The spiraling solitons arrest mutual rotatiolmeams launched and with reasonable initial momenta sup-
and reverse its sense, and start to oscillate about the stalpéied to the beams, one can observe spiraling only over finite
direction perpendicular to the external field. The momentundistancegwhich may exceed the thicknesses of commonly
reverses its sign periodically and performs damped oscillaavailable crystals On the other hand, for anisotropic beams
tions about zero. It is similar for the vortex vector soliton: the spiraling is suppressed and ceases after a few mm of
after a few mm of propagation, the vortex component breakgropagation.
up, and the momentum drops to zero and reverses the sign. A similar picture holds for the total angular momentum of
As a result of the interaction between components, the funthe isotropic vortex vector solitofFig. 6(b)], although the
damental beam acquires a nonzero momentum, which inimomenta of components vary considerably. The angular mo-
tially is in counterphase to the dipole momentum. Howevermentum remains constant for as long as the integrity of the
this relation is soon violated, and the momenta do not balvortex vector soliton is intact. However, as the vortex breaks
ance each other out. The total angular momentum keeps ogp, the system starts radiating and the momenta of compo-
cillating about zero. A similar scenario unfolds for various nents start oscillating. The total momentum slowly declines,
multipole vector solitons. but remains positive. The changes in the momenta of the
The situation with the isotropic model is somewhat unex-fundamental and dipole beams oscillate in counterphase
pected in that the angular momentum is also not conservednore closely than in the anisotropic case, but they do not
The isotropic spiraling solitons keep spiraling, but their an-exactly cancel each other out.
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VII. CONCLUSIONS

The differences between the isotropic, or local, and aniso-
tropic, or nonlocal, modeling of spatial solitons in photore-
fractive crystals have been considered in detail. On the level
of Kukhtarev’s material equations, the difference in behavior
of interacting solitons is traced to the continuity equation for
the current density. Both the isotropic and anisotropic models
are solved concurrently for identical sets of parameters and
for a few characteristic examples of soliton propagation: the
spiraling of incoherent solitons, and the breakup of vortex
vector solitons.

z[mm] It is found that the two models offer widely different pic-
tures of soliton behavior, even though the initial stages of
soliton propagation look similar. The isotropic model allows
for an extended spiraling of two incoherent solitons and for a
prolonged propagation of vortex vector solitons. When the
vortex eventually breaks, the fragments continue to spiral
about each other. The anisotropic model prevents such phe-
nomena. The spiraling of solitons stops after a few turns, and
the beams start to oscillate about the stable direction perpen-
dicular to the external field. The vortex vector soliton breaks
after only a few mm of propagation, and the fragments are
arrested again by the stable perpendicular direction.

The differences between the models persist even when

one considers the quantities that are normally conserved dur-
(b) Zlmm] ing solitonic propagation, such as the integrated power or the
angular momentum of the system. Due to the interaction and

FIG. 6. (@) Angular momenta of the isotropic spiraling solitons, instability of beams, the system radiates, and the radiation
and (b) of the isotropic vortex vector soliton from Figs. 1 and 4, as takes away part of the power and angular momentum. In
functions of the crystal thickness. Dashed lines represent the tota@lddition, the “mass”(energy exchange between the beam
intensity. Dotted lines represent the momenta of the vortex and ofomponents affects the “conservation” laws in a system that
the fundamental component. is not integrable. Hence, even the angular momentum of the
isotropic model is not conserved. On the other hand, the

A part of the mystery of nonconservation of angular mo-anisotropic model represents a noncentral mechanical system
mentum in the isotropic model lies in a rather precipitousfor which there is no reason for the angular momentum to be

drop in the momentum, either when the strong interactiorfonserved in the first place. It drops rapidly, and performs
between the spiraling solitons occurs, or after the vortexd@mped oscillations about zero. _ _ _
breakup. Such a drop occurs at the place where the system e conclude that, although allowed, isotropic models im-
strongly radiates; however, the radiation loss accounts for B¢ constraints on t_he general description of 2D photore-
small change in the total power or energy, as is visible inractive scrgenmg.solltons that are not We}r.ranted from the
Figs. §a) and 6b), and it cannot be expected to cause such é)hysmal point qf view. They lead to a simplified form of the
large change in the momentum. According to theld,21] space-charge field that cannot capture all of the important
angular momentum should be strictly proportional to the to_featur_es(suc_h as repulsigrobserved in the behavior of in-
tal beam power or energy. We should mention that this fegteracting solitons. They shpul_d only be used for short propa-
ture is numerically robust, occurring in all of our computa- gation distances and qualitative purposes.

tional routines. We believe that, in addition to radiation
losses, the source of momentum loss is the strong overlap, or
the induced coherencfgl9], or the “mass” (energy ex- Partial support from the Spanish Comisitnterministe-
chang€9,10] between the system components, as they interrial de Ciencia y Tecnologia and Comunidad de Madrid is
act. There is no reason to believe that angular momentum, gratefully acknowledged. M.R.B. thanks IBERDROLA for
any other of the “conserved quantities,” should be conservedinancial support during his stay at Universidad Anama de
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