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Isotropic versus anisotropic modeling of photorefractive solitons
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The question of the isotropic versus anisotropic modeling of incoherent spatial screening solitons in photo-
refractive crystals is addressed by a careful theoretical and numerical analysis. Isotropic, or local, models allow
for an extended spiraling of two interacting scalar solitons, and for a prolonged propagation of vortex vector
solitons, whereas anisotropic, nonlocal, models prevent such phenomena. In the context of Kukhtarev’s mate-
rial equations, the difference in behavior is traced to the continuity equation for the current density. We further
show that neither an indefinite spiraling of two solitons nor stable propagation of vortex vector solitons is
generally possible in both isotropic and anisotropic models. Such systems do not conserve angular momentum,
even in the case of an isotropic change in the index of refraction.

DOI: 10.1103/PhysRevE.65.066610 PACS number~s!: 42.65.Tg, 42.65.Jx
o
he
a
re
e

io

ni
ro
an
e
el
u
r
a

er
th
i-
is
ha

s

tl
am
,
ila
h

e,
of
ical
if-

ion
in

ex-

nd

es-
l, if
ocal
ns
the
tion
are
,
by

od-
e
opa-

es

ec-
r-
ey

into
ple

di-
lf-
bit
ic
nly

uj
I. INTRODUCTION

For a few years now, the question of what exactly tw
interacting incoherent spatial-screening solitons do as t
propagate down a photorefractive strontium barium niob
~SBN! crystal has occupied the attention of a number of
searchers@1–10#. Although the question is of little relevanc
to perceived applications of photorefractive~PR! solitons, it
is important in understanding the physics of the interact
between them.

One group of researchers claims that the PR scree
solitons and the interaction between them is primarily isot
pic in nature, even though the PR medium is inherently
isotropic @1#. Circular PR screening solitons are observ
@2#, and approximately described by isotropic local mod
@3#. Under proper initial conditions, two solitons spiral abo
each other in elliptical orbits@4#. The solitons behave simila
to an attractive celestial two-body system that conserves
gular momentum@5#.

The other group of researchers claims that the PR mat
response is both anisotropic and a nonlocal function of
light intensity@6#. Strong anisotropy does not allow for rad
ally symmetric solutions, hence circular solitons do not ex
@7#. The interaction between solitons is anomalous in t
they experience both attractive and repulsive forces@8#. This
feature prevents stable spiraling, and causes beams to o
late about each other and eventually fuse@9#.

It is interesting to note that such varied, yet apparen
valid, statements can be given about essentially the s
physical system, described~by both groups! using the same
Kukhtarev model for the PR effect, and studied under sim
experimental circumstances. The validity of claims by t
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first group stems primarily from experimental evidenc
which is supported by theoretical modeling. The validity
claims by the second group is established by theoret
analysis, which is supported experimentally. Theoretical d
ferences are the result of different levels of approximat
applied to the standard Kukhtarev model. The difference
experimentation is contained in the fine print describing
perimental conditions.

In one of our earlier publications@10# we pointed out how
small changes in initial experimental conditions can ble
one point of view~oscillation of solitons! with another~pro-
longed spiraling!. In the present paper we address the qu
tion that seems to be at the core of the problem: How wel
at all, can the PR screening solitons be described by the l
isotropic models? Modeling is important for spatial solito
because of the difficulties in observing solitons inside
crystal. On the matter of principle, the answer to the ques
posed is easy to give: not at all. PR screening solitons
inherently anisotropic. Yet, from the practical point of view
the initial stages of the interaction can be approximated
isotropic models, and both the isotropic and anisotropic m
els yield similar behavior. It matters little if the differenc
between the models becomes perceptible after 10 cm pr
gation through the crystal.

Recently, however, novel types of spatial solitary wav
were proposed@11,12# and observed@12,13# in an SBN
crystal—the vortex, the dipole-mode, and the propeller v
tor solitons—whose behavior is even more strikingly diffe
ent in the two models than that of the spiraling solitons. Th
arise when a system of two beams is coaxially launched
the crystal, a fundamental beam in the form of a sim
Gaussian and a higher order mode: a vortex beam or a
pole. In the course of joint propagation they form se
trapped vector solitons. In fact, the present situation is a
confusing in that, on the level of theory, only local isotrop
models are proposed and, on the level of experiment, o

e-
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nonlocal anisotropic PR crystals are used@14,15#.
The vortex and the dipole-mode vector solitons are int

duced and discussed numerically in@11#, and in@13# they are
observed experimentally as well as studied numerically. I
found that the vortex vector solitons~with unit topological
charge! are linearly unstable, decaying into the dipole-mo
vector solitons, which apparently are stable. The two arm
the dipole-mode component arep phase shifted, and thei
dynamics resembles that of the two spiraling beams. Ro
ing propeller solitons are demonstrated experimentally
theoretically in@12#. They are the dipole vector solitons th
rotate~both in intensity and phase! about thez axis.

We will show that the vortex vector solitons in isotrop
models can propagate for tens of diffraction lengths bef
decaying into dipole-mode vector solitons, due to the tra
verse modulational instabilities and radiation losses. The
sulting two beams of the dipole mode spiral about each o
clockwise or counterclockwise, depending on the sign of
initial topological charge. As a result of further radiation lo
and beam interaction, the angular momentum of the sys
as well as the integrated power, slowly decreases.

On the other hand, the vortex vector solitons in ani
tropic models are absolutely unstable, decaying into dipo
mode vector solitons within a fraction of diffraction lengt
The dynamics of the resulting two beams is completely d
ferent from the isotropic case. During the breakup phase
fragments of the vortex stay arrested oblique to the direc
of the external electric field, and start rotating only after t
formation of the dipole-mode soliton is complete. Howev
the two beams do not spiral about each other, but oscil
about the stable direction perpendicular to the external fi
Correspondingly, the angular momentum of the system os
lates about zero. The oscillations are damped, and in the
a stable stationary dipole-mode vector soliton is formed, c
sisting of an elongated fundamental beam and a dipole
pendicular to the direction of the external field, with ap
phase shift between the two beam arms.

The layout of this paper is as follows. Kukhtarev’s ma
rial equations are introduced in Sec. II, the isotropic and
anisotropic models are defined in Sec. III, and the case of
spiraling scalar solitons is presented in Sec. IV. The pro
gation of vortex vector solitons is discussed in Sec. V, a
the question of the nonconservation of angular moment
addressed in Sec. VI. Section VII presents conclusions.

II. MATERIAL EQUATIONS

We introduce the models by analyzing Kukhtarev’s ma
rial equations, and pinpoint the source of the trouble—
continuity equation for the current density. We integrate b
models for exactly the same initial and boundary conditio
and display how the differences evolve. A surprising conc
sion is that neither the isotropic model of spiraling soliton
nor the decaying vortex vector modes support stable sp
ing, due to the modulational instabilities, and losses to ra
tion in the course of energy exchange between the bea
These effects further cause the power loss and the non
servation of angular momentum.

The starting points are the standard Kukhtarev’s equat
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for the generation/recombination rate of the mobile char
@16#,

G5Si~ND2ND
1!~ I b1I !2gRND

1n, ~1!

the Poisson equation for the charge density,

“•D5q~ND
12NA2n!, ~2!

and the continuity equation,

q] tn5qG1“•J. ~3!

Here Si is the cross section for photoexcitation,gR is the
recombination rate,ND , ND

1 , NA , andn are the densities o
donors, ionized donors, acceptors, and mobile charges
spectively.I b is the background light intensity,I is the soliton
intensity,D5«E is the space-charge displacement field (« is
the dielectric constant!, and J5qmnE1kBT“n is the cur-
rent density (q and m are the charge and mobility of th
carriers,kB is the Boltzmann’s constant, andT is the tem-
perature!. To simplify bookkeeping, we assumeT50. This
amounts to neglecting diffusion, which is not essential
our argument.G measures the rate of change of ionized d
nors, G5] tND

1 . We assume that the generatio
recombination process reaches equilibrium much faster t
the other processes in the crystal, which meansG50 ~also a
common assumption!.

To treat the continuity equation, one has to find an expr
sion forn. This is accomplished by combining the rate equ
tion and the Poisson equation:

n5nI

ND2NA2nsc2n

NA1nsc1n
, ~4a!

wherenI5Si(I b1I )/gR is the fraction of the mobile charg
density directly proportional to the light intensity, andnsc
5“•D/q is the density of charge carriers giving rise to t
space charge displacement field. This implicit equation
either be solved forn directly ~as a quadratic equation! or
iteratively, by substituting the zeroth-order approximati
n(0)5nI(ND2NA)/NA into the right-hand side of Eq.~4a!,
and continuing the process. In the first order, for examp
one obtains a saturable model@17# n(1)5nI(ND

2NA)NA /(NA
21nIND). In typical PR crystals, under cond

tions presumed for the generation of screening solitons,
ND ,NA..nsc ,nI , so that to a good approximationn
'n(0). Hence, approximatelyn is directly proportional to
I b1I :

n'
Si~ND2NA!

gRNA
~ I b1I !. ~4b!

This formula is often explored in the modeling.

III. MODELS

The solution of the steady-state continuity equation

“•~nE!50 ~5!
0-2
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crucially depends on whether one-~transverse! dimensional
~1D! or two-dimensional~2D! solitons are considered. In 1D
one has the equation]x(nE)50, which yieldsnE5n`E0,
whereE0 is the externally applied field andn` is the charge
density at transverse infinity. This leads to the standard
tropic 1D model@18# for the space-charge field,

E5E0

I b1I `

I b1I
, ~6!

where I ` is the beam intensity at infinity. In 2D, the cont
nuity equation has the form

]x~nEx!1]y~nEy!50, ~7!

and the isotropic model cannot be the general solution
requires that both terms in Eq.~7! equal 0, whereas the equa
tion only requires that they should balance each other
One can choose it as a special solution, and see how co
tent it is with the general development. We choose the s
plest possibility,Ey50, to compare easily with the gener
anisotropic model. Other choices are possible@3,19#, and all
of them are equally good for the initial stages of the proce
However, all of the isotropic models fail equally after som
propagation in the crystal.

With the choiceEy50 andEx , as in Eq.~6!, one pro-
ceeds to solve the paraxial propagation equation for the b
envelope

2ikn0]zA1“

2A52k2n0
4r 33EA, ~8!

wherek is the wave number in vacuum,n0 is the bulk re-
fractive index, andr 33 is the component of the electro-opt
tensor that couples to the space-charge field. The b
propagates in thez direction, and is polarized along thex
direction, which is also the direction of the crystallinec axis.

In the anisotropic model one makes noa priori ansatz, but
generally proceeds to solve Eq.~5! by introducing an elec-
trostatic potential“f5E0ÀE that takes care of the bound
ary conditions@20#. Upon substituting the solution from Eq
~4b!, into Eq. ~5! one obtains

“

2f1“f•“ ln~11I !5E0]xln~11I !, ~9!

where the intensity is now normalized toI b . This equation
has to be solved numerically, together with the parax
propagation equation appropriate to the anisotropic mod

2ikn0]zA1“

2A52k2n0
4r 33~E02]xf!A. ~10!

In this manner, the two models are defined: the isotropic
Eqs.~6! and~8!, and the anisotropic by Eqs.~9! and~10!. In
the case of multicomponent beams one has to solve the
tem of equations for all of the components, andI in the
equations then stands for the total intensity. We procee
integrate and compare the models for the two character
cases.

It should be noted that the integration of both models
carried out using two independent integration methods. T
produced, qualitatively and quantitatively, very similar r
sults.
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IV. SPIRALING SCALAR SOLITONS

First, we consider the case of two spiraling incohere
scalar solitons. We integrate both models for exactly
same set of parameters, found in the experimental par
Ref. @19#. The steady-state transverse intensity distribution
the two interacting solitons at different depths within t
crystal is shown in Fig. 1. As expected, the isotropic mo
leads to prolonged spiraling, whereas the anisotropic mo
precludes such a phenomenon. However, up to a thicknes
;5 mm the two models produce similar behavior. T
beams rotate for;p/2 in both cases, but then the anisotrop
solitons stop spiraling and start oscillating. It is interesting
note that in the exit crystal face both models produced si
lar beam distributions; however, the beam positions are
verted.

Figure 2 represents the space-charge distributions co
sponding to Fig. 1. In the isotropic case, onlyEx is shown,
since the other component remains zero. The space-ch
distribution is merely the negative replica of the intens
distribution, imprinted on the background fieldE0. This is
not so for the anisotropic model. Both components there
nonzero, and show considerably more structure than the
tropic model. TheEx component exhibits features that a
both above~bright regions in the figure! and below~dark
regions! the level of the external field. The positive region

FIG. 1. Two solitons (A andB) propagating in a SBN crystal
shown at different propagation depths. Left column, the isotro
model; right column, the anisotropic model. Propagation distan
in mm are noted in each of the figures. Other parameters are:
initial intensity of the beams isI 055, the initial widthw513 mm,
andE054 kV/cm.
0-3
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are crucial in understanding the existence of repulsive for
between solitons@8#, and are responsible for preventing th
spiraling. There are no positive regions in the space-cha
field of the isotropic model~no negative intensity!, hence it
cannot explain the existence of repulsive forces. It only p
dicts attractive forces between solitons, and can only lea
gravitational analogies. For both models, surface plots of
space-charge field at the exit face are presented in Fig.

The y component of the anisotropic space-charge fi
also consists of positive and negative parts, and is predo
nantly a multipole electric field in nature~quadrupole and
higher!. The Ex component is predominantly a dipole fiel
Even though theEy field does not influence the propagatio
of the solitons much~it does not couple to the effective com
ponent of the electro-optic tensor!, it is important for the
overall picture, as a part of the general solution of the c
tinuity equation. It affects the form of the space-charge fie
and contributes to the nonlocal, anisotropic effects in
interaction of solitons.

V. VORTEX VECTOR SOLITONS

Next, we consider the propagation of vortex vector so
tons. Again, a system of two beams, the fundamental Ga
ian and a vortex of the formA0(r/w)2exp(2r2/w2)exp(iw),
where (r,w) are the polar coordinates in the transverse (x,y)
plane, is launched into the crystal and propagated using
isotropic and the anisotropic codes, for similar sets of para
eters. Figure 4 depicts the transverse beam distribution
the crystal at various depths. It is seen that the isotro
vortex exhibits pronounced stability, apparently not chang
for more than 20 diffraction lengths, which corresponds
;100 mm propagation through the crystal. As the instabi
sets in, two lobes develop at the opposite sides of the di

FIG. 2. Distribution of the space-charge field, corresponding
Fig. 1 ~initial distribution omitted!. Left column, the isotropic
model; middle column,Ex ; and right column,Ey of the anisotropic
model.
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bution, rotating about the rim. The vortex elongates and
cays into two filaments that vigorously spiral about ea
other, similarly to the propeller solitons. The phase diffe
ence, which was running linearly from 0 to 2p along the
vortex, is exactlyp between the filaments.

In the case of the anisotropic model, a different scena
unfolds. The vortex beam develops a modulational instabi
within a fraction of diffraction length, and breaks into tw
elongated beams. During the breakup process, the fragm
are almost stationary, and then start rotating toward the e
librium position, which is in the direction perpendicular
the external field. In the end, they oscillate about the sta
solution—the dipole-mode soliton. It should be noted th
the vortices, both isotropic and anisotropic, can break i
more than two fragments depending on the values of par
eters, the width of the doughnut mode, and the vortex cha
In such a case, the higher-order stable modes—the trip
quadrupole, etc.—can be reached.

It appears that these findings are in agreement with
experimental findings in@13#.

VI. NONCONSERVATION OF ANGULAR MOMENTUM

An interesting question to ask is what happens to the
gular momentum of the system as it evolves? On theoret

o

FIG. 3. Surface plots of the components of the space-cha
field from Fig. 2 atz511.3 mm.~a! Ex of the isotropic model; and
~b! Ex and ~c! Ey of the anisotropic model.
0-4
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grounds, being the consequence of the isotropy of space
momentum should be constant for the isotropic model, an
should vary for the anisotropic model. Figures 5 and 6 de
the situation.

In the case of the spiraling anisotropic solitons@Fig. 5~a!#,
or the vortex vector soliton@Fig. 5~b!#, the situation is as
expected. Initially the momenta of both models are clo
however, upon approaching each other the solitons start
changing energy. The spiraling solitons arrest mutual rota
and reverse its sense, and start to oscillate about the s
direction perpendicular to the external field. The moment
reverses its sign periodically and performs damped osc
tions about zero. It is similar for the vortex vector solito
after a few mm of propagation, the vortex component bre
up, and the momentum drops to zero and reverses the
As a result of the interaction between components, the f
damental beam acquires a nonzero momentum, which
tially is in counterphase to the dipole momentum. Howev
this relation is soon violated, and the momenta do not b
ance each other out. The total angular momentum keeps
cillating about zero. A similar scenario unfolds for vario
multipole vector solitons.

The situation with the isotropic model is somewhat une
pected in that the angular momentum is also not conser
The isotropic spiraling solitons keep spiraling, but their a

FIG. 4. Breakup during propagation of the vortex componen
a vector soliton. Left column, the isotropic model; right column, t
anisotropic model. Even though the breakup phases appear sim
note the widely different propagation distances in each of the
ures. Initial intensities of the fundamental~not shown! and of the
vortex component wereI 059, and other parameters are as in Fig.
06661
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gular momentum is not constant@Fig. 6~a!#. It changes due to
a strong energy exchange, which also occurs in isotro
models@19#. As the solitons start interacting, part of the tot
energy is lost to radiation. A part of each soliton is trapp
by the other, and the identity of individual solitons becom
questionable. Consequently, a part of the momentum is ta
by the radiation, and the momentum of the solitons slow
drops. Hence, even the isotropic solitons do not support
definite spiraling. In a generic situation, with Gaussi
beams launched and with reasonable initial momenta s
plied to the beams, one can observe spiraling only over fi
distances~which may exceed the thicknesses of commo
available crystals!. On the other hand, for anisotropic beam
the spiraling is suppressed and ceases after a few mm
propagation.

A similar picture holds for the total angular momentum
the isotropic vortex vector soliton@Fig. 6~b!#, although the
momenta of components vary considerably. The angular
mentum remains constant for as long as the integrity of
vortex vector soliton is intact. However, as the vortex brea
up, the system starts radiating and the momenta of com
nents start oscillating. The total momentum slowly declin
but remains positive. The changes in the momenta of
fundamental and dipole beams oscillate in counterph
more closely than in the anisotropic case, but they do
exactly cancel each other out.

f

lar,
-

.

FIG. 5. ~a! Angular momenta of the pair of anisotropic soliton
from Fig. 1, and~b! of the anisotropic vortex vector soliton from
Fig. 4, as functions of the crystal thickness. Dashed lines repre
the total intensity. Dotted lines represent the momenta of the vo
and of the fundamental component.
0-5
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A part of the mystery of nonconservation of angular m
mentum in the isotropic model lies in a rather precipito
drop in the momentum, either when the strong interact
between the spiraling solitons occurs, or after the vor
breakup. Such a drop occurs at the place where the sy
strongly radiates; however, the radiation loss accounts f
small change in the total power or energy, as is visible
Figs. 6~a! and 6~b!, and it cannot be expected to cause suc
large change in the momentum. According to theory@14,21#,
angular momentum should be strictly proportional to the
tal beam power or energy. We should mention that this f
ture is numerically robust, occurring in all of our comput
tional routines. We believe that, in addition to radiati
losses, the source of momentum loss is the strong overla
the induced coherence@19#, or the ‘‘mass’’ ~energy! ex-
change@9,10# between the system components, as they in
act. There is no reason to believe that angular momentum
any other of the ‘‘conserved quantities,’’ should be conserv
in a nonintegrable system such as ours.

FIG. 6. ~a! Angular momenta of the isotropic spiraling soliton
and~b! of the isotropic vortex vector soliton from Figs. 1 and 4,
functions of the crystal thickness. Dashed lines represent the
intensity. Dotted lines represent the momenta of the vortex an
the fundamental component.
n

oc
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VII. CONCLUSIONS

The differences between the isotropic, or local, and an
tropic, or nonlocal, modeling of spatial solitons in photor
fractive crystals have been considered in detail. On the le
of Kukhtarev’s material equations, the difference in behav
of interacting solitons is traced to the continuity equation
the current density. Both the isotropic and anisotropic mod
are solved concurrently for identical sets of parameters
for a few characteristic examples of soliton propagation:
spiraling of incoherent solitons, and the breakup of vor
vector solitons.

It is found that the two models offer widely different pic
tures of soliton behavior, even though the initial stages
soliton propagation look similar. The isotropic model allow
for an extended spiraling of two incoherent solitons and fo
prolonged propagation of vortex vector solitons. When
vortex eventually breaks, the fragments continue to sp
about each other. The anisotropic model prevents such
nomena. The spiraling of solitons stops after a few turns,
the beams start to oscillate about the stable direction per
dicular to the external field. The vortex vector soliton brea
after only a few mm of propagation, and the fragments
arrested again by the stable perpendicular direction.

The differences between the models persist even w
one considers the quantities that are normally conserved
ing solitonic propagation, such as the integrated power or
angular momentum of the system. Due to the interaction
instability of beams, the system radiates, and the radia
takes away part of the power and angular momentum
addition, the ‘‘mass’’~energy! exchange between the bea
components affects the ‘‘conservation’’ laws in a system t
is not integrable. Hence, even the angular momentum of
isotropic model is not conserved. On the other hand,
anisotropic model represents a noncentral mechanical sy
for which there is no reason for the angular momentum to
conserved in the first place. It drops rapidly, and perfor
damped oscillations about zero.

We conclude that, although allowed, isotropic models i
pose constraints on the general description of 2D photo
fractive screening solitons that are not warranted from
physical point of view. They lead to a simplified form of th
space-charge field that cannot capture all of the impor
features~such as repulsion! observed in the behavior of in
teracting solitons. They should only be used for short pro
gation distances and qualitative purposes.
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