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Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation
and the modified nonlinear Schralinger equation
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A direct perturbation theory for solitons of the derivative nonlinear Sdinger (DNLS) equation is devel-
oped based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The
slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known
simple gaugelike transformation, these results are transformed into those for the perturbed modified nonlinear
Schralinger(MNLS) equation describing propagation of femtosecond pulses in optical fibers. A calculation of
the perturbation-induced radiation fields for the perturbed DNLS and MNLS equations is also made. Our
results for the perturbed MNLS equation can be reduced perfectly to those for the perturbed nonlinear Schro
dinger equation in the small nonlinear-dispersion limit.
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[. INTRODUCTION tinuous eigenfunctions appear in the first-order correction.

These continuous eigenfunctions are energy radiation from

It is well known that exactly integrable nonlinear differ- solitons. In general, the direct method is independent of the
ential equations have soliton solutions that travel stationarilyST even though connections to IST scattering are still vis-
and collide elastically. Many wave propagation phenomenable and sometimes results of the IST are helpful to find the
can be described by integrable equations in some ideal cofigenfunctions. The direct method is simpler to apply. For
ditions. Several soliton perturbation theories have been de&xample, the direct perturbation theory for dark solitons was
veloped to study the effects of small perturbations on intedeveloped 7] recently where the theory based on IST en-
grable equations. In these theories, two categories argfuntered a difficulty caused by the varying background

mathematically complete because they cannot only obtainave[S]. The direct theory has the further advantage that it

the slow evolution of soliton parameters, but also the®aN be applied to n_oni_ntegrable equatigh thus it has a
' wider range of applications.

T e L o e ™ T ke of n drec methd s 0 i  complte se o
. eigenfunctions of the linearized equation. It is known that
[1.’2]’ wh|ch has a recent development bgsed on th erivatives of the soliton solution with respect to soliton pa-
Riemann-Hilbert probleri3,4]. The second one includes the ) meters are discrete eigenfunctions. But one still needs to
Green's function perturbation theof§] and the direct soli- o\ continuous eigenfunctions in order to construct a com-
ton perturbation theory, which are both based on a set gfjete set. A complete set can be constructed by the so-called
complete eigenfunctions of the linearized equation around 8squared Jost solutionsf10], or by directly solving the ei-
soliton solution. The direct method was further developEd irbenva|ue prob|erﬁ11]’ or by f|nd|ng the discrete eigenfunc-
recent yeargsee, e.g., Ref.6] and references therginRe-  tjons using the derivatives of the soliton solution with respect
sults of these two categories of perturbation theories are cono soliton parameters and then guessing and testing the con-
sistent in general. tinuous eigenfunctions. But no applicable general method is
The idea of the direct method is very simple: just to ex-available. However, it has been shown recently that, at least
pand the perturbed equation around the soliton solution anfbr the Korteweg—de VriegKdV), nonlinear Schidinger
solve the resulted linear inhomogeneous equations at varioyslLS), and modified Korteweg—de VrieénKdV) hierar-
orders. Usually, the expansion is considered up to the firstehies, the linearization operators of all equations in the same
order correction only. If one can find a complete set of eigenintegrable hierarchy share the same complete set of eigen-
functions for the homogeneous equation, the first-order corfunctions[6], that is, whenever a complete set of eigenfunc-
rection can be expanded in this complete set. Expansiotions for one equation is found it can also be used to develop
coefficients can be found by solving some ordinary differen-direct perturbation theories for the rest of the equations in the
tial equations. The coefficients for the discrete eigenfuncsame hierarchy. This idea is very helpful in finding the eigen-
tions would grow secularly and should be suppressed. Sugtunctions of the linearized derivative NL®NLS) equation
pression of the secular terms leads to the slow evolutiopresented in this paper.
equations for soliton parameters. Then only the terms of con- The propagation of picosecond solitons in single-mode
nonlinear fibers is well described by the NLS equation. The
effects of perturbations such as fiber loss, higher-order dis-
*Also at Department of Physics, Jinan University, Guang-persion, self-induced Raman scattering, and the nonlinear
zhou 510632, P. R. China. Electronic address: xchen@emba.uvrdispersion(self-steepeningcan be studied by perturbation
edu theories. But for femtosecond pulses, the effects of the non-
"Electronic address: jyang@emba.uvm.edu linear dispersion are so significant that it can no longer be
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treated as a perturbatidd2,13. However, the equation in- we then develop a direct perturbation theory for the DNLS
cluding the nonlinear dispersidithe third term on the left equation by the usual procedure of direct perturbation theo-
hand side of Eq(1)], the so-called modified nonlinear Schro ries (see, e.g., Ref.20]). This theory gives the slow evolu-

dinger (MNLS) equation tion of soliton parameters and the evolution of the
_ b, 5 5 perturbation-induced radiation. These results are then trans-
i + dqv +iady(|v|*v) +2B|v|*v=0 (1) formed to the perturbed MNLS equation, in which the evo-

is also i blé14]. A Painlev vsi h lution of the soliton center and the phase slightly differ from
is also integrabl¢14]. A Painleveanalysis suggests that two e in Ref[4]. However, in the small nonlinear dispersion

other models containing both the third-order dispersion termyis “o\r results for the evolution of soliton parameters can

and the nonIine:_;tr dis_persi_on term are integra{h]_ Bl. qu be perfectly reduced to the well-known results for the per-
temporal puls_es in optical _flbers,l_s the field ampl!tudet 'S turbed NLS equatiofl,2]. This fact supports the validity of
the propagating distanca,is the time measured in a frame - regyits, not Shchesnovich and Doktordvd Finally, as
moving with the group velocityw and 8 are constants rep- example of our theory, we study the slow evolution of a

resenting the relative magnitudes of the nonlinear dispersioaamped MNLS soliton and find that the decay of its ampli-
term and the nonlinear term. The effects of nonlinear disperg e is 4 Jittle slower than the exponential decay of a NLS
sion can be studied exactly while the effects of other perturs

bations should be studied based on a perturbation theory f%g:::gzj butits energy decay rate is the same as that of a NLS

the MNLS equation. Such a theory was first developed by

Shchesnovich and Doktorov based on the Riemann-Hilbert

problem[4]. However, they only obtained the evolution of

soliton parameters. To our knowledge, the problem of

perturbation-induced radiation has never been solved for the The perturbed DNLS equation is

perturbed MNLS soliton. The aim of this paper is not only to

provide a direct perturbation theory for the perturbed MNLS iU+ d2u+iay(|ul?u)=ir(u), 3

equation, but also to solve the problem of perturbation-

induced radiation for perturbed MNLS solitons. wherer (u) is the perturbation function, which can be written
It is known that under a simple gaugelike transformationasr (u) = ep(u) [€ is a small positive parameter representing

(see, e.9.[16]), Eq. (1) becomes the DNLS equation the amplitude of perturbation(u)]. We expandu around a

DNLS soliton solutionug up to O(e),

Il. THE PERTURBED DNLS EQUATION AND ITS
LINEARIZATION OPERATOR

i du+ d2u+idy(|ul?u)=0, 2
u=ug+ eq, 4)
which is relevant to Alven waves in plasmgk7]. We find
that not only the perturbed MNLS equation, but also thewhere the one-soliton solution [46]
linearized equation for the perturbed MNLS equation around

. . . 40 i
. e*’'+e'”
a soliton solution can be transformed into that for the DNLS S(X,t) | i 20,—i2¢

®

equation with an effective perturbation. Therefore, we can (e*+e 172’
develop a direct perturbation theory for both the DNLS and

MNLS equations, beginning with the simpler DNLS equa-which can be rewritten as

tion. However, eigenfunctions for the linearized DNLS equa-

tion have never been found in the literature before. The de- Zle29+ e %!

rivatives of the soliton solution with respect to its parameters Us(x,t)=—4ny e 1273 (g)

show that the discrete eigenfunctions are much more compli-
cated than those in the NLS, KdV, and mKdV hierarchies.
So, to construct the eigenfunctions with the squared Jost s
lutions, using the results of IST for the DNLS equat{dig]
might be a better choice, but we immediately find that the _ 2\ _ A2 _ 2y _ A 2qi

squared Jost solutions are not eigenfunctions. However, simi- ¢=Retgy)=Acosy,  p=Im(sy)=A%siny, 0
larity between the KdV hierarchy and the DNLS hierarchy
[19] suggests that eigenfunctions for the linearized DNLS
equation are possibly derivatives of the squared Jost solu- . .
tions with respect te, just as the KdV hierarchy. We con- e=E(X—X)+ @, ©=—2(&+n°)t+ . 9
firmed this using the Lax pair of the DNLS equation. We also . _

find that the adjoint eigenfunctions are squared Jost solutionsnere are four independent soliton parametérsy, xo, and
with flipped components, similar to the KdV hierarchy. The ¢o- In the presence of perturbation, they will evolve slowly
completeness of these eigenfunctions and adjoint eigenfun®ith the “slow time” 7=et. In the two-time scaleg; be-
tions can be verified directly by complex integration. We COMesdi+ed,. We use a trick proposed in Reff20] of
note that Gerdjikov, Ivanov, and Kulish also derived a clo-replacingt in x and¢ to make them only depend on the slow
sure relation for squared Jost solutiong19]. But that clo- time 7,

sure relation is not the one we need in a direct perturbation R

theory. After the complete set of eigenfunctions is obtained, x=—4éte 14X, (10

(§1920+Z19_20)2

Here {1=A exp(y/2) (0<y<m) is the discrete eigenvalue,
e bar denotes complex conjugate, and

6=n(x—X), X=—4&+X, 8
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o=—2(82+ n?)Te 1+ @y, (12) dX_1=—4E, (14)
and expand them as (9750_1: —2(82+ 772)_ (15)
X=X_1€ '+Xgt X+, (12 In ¢! order, combining its complex conjugate, we get a lin-
A A g ~ earized vector equation
p=¢_16 “togtpiet---. (13
- o s (dt—L)a=p(us) —s(us), (16)
Substituting all of the above expansions into E8), in €
order, we have in which L is a 2x 2 differential operator,
|
19— 2|ug|?d5— 20,(|ugl®) —UZd,— dy(u3) W
—UZdx— y(u3) —i07—2[uy?9—20(|ug?) )’
|
and satisfies equations
a=(a @7, p(ug=(P(ugp(uy)’, (18) (39— L)W,=0 (26)
dugdé dugdny dugdxy, dug deg and
U= g a7 P oy dr Tax, dr g dr (19
(d¢+ LYo W=0. (27)

us=(us ug)". (20)
This is similar to the KdV hierarch{6]. Thus we can con-

Here the superscriptT” represents the transpose of a ma- stryct eigenfunctions of. and L with squared Jost solu-
trix. In the linear space of solutions for we define the inner  tjons . i.e.,

product between functions and G as

<G|F)=f dxG'F, (22)
h LT (x,t:0) = 0T (x,t:), (28b)
and defineLA—the adjoint ofL, as
LAD(x,t;¢) = — 0@ (x,1;0), 29
(GILF)=(LAGIF)+i(GTasF,~ GlosF)| 2. (22 =7 abeete (29
Here LAD(x,t;0)=— ;D (x,t;), (29b)
0 1 0 —i 1 0 where
71711 o) 7270 o) 7T o -1)
V(x,t;{)=2a Xt X, t;0)),
are Pauli spin matrices. According to these definitions, we (6O =aJxtOYX D)
find that ~ ~ ~
A i&xx+2|us|2(9x Ug&x
o R P B O W A P(X,:) = 01 (X L) XL,
The key to solving the inhomogeneous equatitf) is to D(x,5:)=01h(X, 1) B(X, ;). (30b
find a complete set of eigenfunctions for It is not difficult
to show that for any Jost solution Here definitions for Jost solutiong/(x,t;{), &(x,t;{),
w=(w; wy)T (24)  ¥(x.t;), and $(x,t;{) and their explicit expressions for

one-soliton potential are given in Appendixes A and B. Al-
satisfying the Lax equationi®\1), the corresponding squared though the above results are presented by expanding the per-
Jost solution turbed DNLS equation around a soliton solution, actually
> ot they are valid for expansions around any arbitrary solution of
W=wOw=(wj w3) (25 the DNLS equation.
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lll. EIGENFUNCTIONS FOR THE ONE-SOLITON CASE where explicit expressions foW(6,7), W(6,2), (6,0),

For one-soliton case, it is more convenient to chogse and ‘T{(@,i) can be found in Appendix C. When these ex-
andt as independent variables insteadxaindt. Then we  pressions are substituted into E¢88) and (29), we obtain

have the following familiar eigenvalue equations:
2. 2,2
h— o+ aEndy, dx—mdy, I—nPdy. (3D LW(0,0) =42 2N E2-D)W(0,0), (343

Variables in the eigenfunctions can be separated as

e LE(6,0)=—14(= (P DW(6,0), (34D
\I,(X’t;g):elﬂ’ X+i4¢ t7|2¢e7|20'3<p\p( 0'5), (323 1 1

{I',(X,t;g):e*i2{2)”(7i4§4t+i2(:oe7i203(;\'i,( a,g)’ (32b) ‘CA(I)( 01‘:):|4(§2_§i)(§2_z€)®( 0,§), (35a
B(x,t;0) = x4 tri2egi2oseq( 9, 1), (339 LAB(0,0)=—14(2~ N2 )D(6,0). (35D

P(x,t;0) =23 +iat-i2¢6i20508 (9, 7), (33D Here

L=L(6,0)=€293¢Le " 1205¢ — 4£ 79,1 — i 4A 0y

d|uo(0)|? du3(6
i 7295 27[ |ug( )| 2+ 25]&0—27;'3—((9)'44& —nug(0)dg— 7 (;’(0 )
B —— dude) _ dug()l®> |
— US(60) 35— n# —in? 05— 29[ |uo(0)|?+ 28] 75— 2p— o +i4A*
(36)
| is the unit matrix
Uo(6) = use'2?, (37)
and the adjoint operatof ” is
LA=LA(0,0)=e 12739 Agi203¢ 4 4¢ 1d,| — i 4A %
[ 1nPa5+ 20l ug(0)|7+2£]d,—i14A* NuG(6)dy 39
7U3(0)3, —i 205+ 29| ug(0)|2+2£]0,+i4A%)
|
In this case, the first-order equati¢h6) becomes (D) W(0))=i2mw¢%a?(0) 8(L%2—L'?), (423
(%= L)Q=P=S 39 (B W)= —i27dB2(D (- 1'D). (42D
where Nonzero inner products between discrete eigenfunctions are
:ei21r3<;: , pP= ei2<r3;a , S= ei20’3:psl 40 . . gl .
pre P “o (D) W(£2)) = (D) W(20) = — o B(L),
Also, Eq.(22) becomes (433
(GILF)=(LAG|F)+in*(GTosF 4~ GjosF)| = 4 -

(@20 W(20)=(B(20)|¥(20)= 5 3Ly, (43D)

—4£9GTF| T2 (41)
In Eq. (41), choosing F=W(6,{), G=®(6,') and F (D(£1)|W(Ly)=—3a%(L) — 3L:a(L)a(Ly), (449
=W(6,0), G=d(0,'), respectively, we find the orthogo- L L .
nalities of the continuous eigenfunctions to be (D(L)|W(L1))=3a%(1) +30.a(8)a(lq). (44D
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Here the dot denotes the derivative with respecttBxplicit ~ can be directly proved by performing complex integrations.
expressions fora(é"), a(g) and for eigenfunctions can be Therefore, any solution of Eq39) can be expanded in this

found in Appendixes B and C. complete set.
IV. CLOSURE OF THE SET OF EIGENFUNCTIONS V. EVOLUTION OF THE SOLITON PARAMETERS
The closure relation of the set of eigenfunctions is Having obtained a complete set of eigenfunctions for the
: . linearization operatol, we can expand the first-order cor-
I 2la({)+8a(dy)] V()N D) rection Q into it. In the expansion, the terms of discrete
2a%(¢y) . ! eigenfunctions are secular and thus should be suppressed,
yielding the secularity conditions
2 . .
AR ) @) (B(LI(P-9)=0, 47
a0y o
o (B(Z1)|(P-5)=0, (489
+_&2_ WD N P+ W(L) ) P(L)]] _
£1a%(4q) (D(Z1)|(P—9))=0. (48b)
1 [P (OHNP() o , _
+ =y Fd W Due to Egs.(C13 and(C15), it is obvious that Eq(48) is
just the complex conjugate of EGL7). As usual 5], Scan be
3 & expressed as a linear combination of the discrete eigenfunc-
iﬁ —|q’(€)<¢(§)| (45) tions (see Appendix D
mJT {a*(g)
or S=i2sirty{—[e"""W(s) —e"W({y)]+Ale” W (L)
. . . — dA :
S(x—y)— 2la(z) + §1a(§1)]w(x,§l)¢T(y'gl) — e W (L)) -+ A siny{i2le (L)
a4y
S o e ——d
2 | —e 7B (Z,)] - A sinyfe (L) + e BT T
- [W(x,{1)P(y,{1) T
£1a%(4y) - dx
_l_"I,(X'gl)(I)T(y,Zl)] +4A35|nz’)/[\l’(§1)+‘l’(§1)]¥
Aa(i)+4a(l)] . — ~o — _ ; —i iy 71 3%0
A (;3(§)(§1)]W(X,gl)q)T(y,gl) 44 sintyfe” M W(y) +e M B(2) ] (49)
1a°(¢1

Hence,
+

———— WX, )®(y,0y)
§1az(§1) %

. (D(Ly)|g)=ie” ", (50
+W(X1§1)®T(y1§l)]
W(x,)P'(y,L) . _ 1dé i 1 d(&+ 9
P R e v (@il =eim -~ 2 A
mJr ga (g) n dr 4 §2+772 dr
1 W(x,H)®(y,{) dxo _d
- — | d——=, 46 i) 0 ,0%0
wherel is a unit matrix,I" is a path consisting of a line from
ico to 0 and a line from O tee in the first quadrant of thé i tee
~ ®(Ly)|P)=e" 172y Zf dee?’D(H)R, (6,1),
plane, whilel is a path consisting of a line froime to 0 and «®(£))[P)=e f)  doe (DR (6.
a line from 0 to— in the second quadrant. Equati¢é6) (52
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(2P = —ie- G f d6 06D (O)R_(6,1)

2Ly [+
+ie"(7’2)7%j do[ £e?%ro(6,1)

~1¢1]%e?ro(— 6,0)]D(6). (53)
Here
ro(6,t)=e'2le=CMMr(yy), (54)
R.(0,t)=rg(0,t)£ro(—0,1), (55)
1
D(6)=—= . (56)

(£16%7+ £,672%)2

Substituting the above expressions into E48) and after

PHYSICAL REVIEW E 65 066608

|Q<e,t>>=ergfu.ollv(e,z)wdeff(t.@lﬁf(e,z)x
(61)

which contains only energy radiation. Substituting it into Eq.

(39), letting (®(¢)| and (@(¢)| act on both sides of the
equation, we get ordinary differential equations for the ex-

pansion coefficient§ andf as

®({)|P(t
A= H = DB =i PO

some simple algebra, we find the following evolution equa-AS

tions for a DNLS soliton’s parameters:

d oo
d—f= —i f_w do(s3e?’—Je 2)D(O)R.(0,1), (57)

HZ_J_ do(5e?’Ge 2)D(OR,(6,1), (58

1 [+=
- ?f de(Lie’’+ e *)D(HR_(,1)

i +oo o
+ EJLOO d6(£,e2%+ 7,6 29D (O)R_(6,1),

(59

Eqp O 4i 1f_+:d00(§fez"
~ e ?)D(OR_(6,1)
—|—f deo(g,e?’
+£,e6729)D(O)R_(6,1)
—|%f_ do(z,e??

+£,e729D(O)R_(6,1). (60)

VI. THE PERTURBATION-INDUCED RADIATION

2mga%(()
(629
< (IPw)
I (LO+14( =)= DT =1i—=—
t( ) +id(L— 51)(5 D)= 2nia 2(0
(62h)
(D()[P(1)=(D()|P(1)), (63)

it is obvious thatf(t,)="f(t,¢). With initial conditions
f(0,£)=0, solution off(t,{) is
ol 4(£%- E)(?-

MLO= = @0

t H ’
v jodvefmwzféi)@zf?‘iﬁ (D()|P(L)).

(64)

Thus, we have obtained the perturbation-induced radiation
from the first row of Eq.(61), which can be rewritten as an
integral ofA = {2 because the eigenfunctions are functions of
A1

eq(a,t)=e_i2‘;’j+m+l d\[COLOWL(B,N)

Upon suppression of the discrete terms, the first-order so-

lution Q becomes

etio?
+CONOWL(0,0)]. (65
Here
qr(a,x)z(qu(a,x)\lrz(e,x))T, (66)
X (®OV)|R()), (67)
R=¢€P, A\ = gl, and
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VII. THE PERTURBED MNLS EQUATION

A2 [+ .
d(M\)|R(t =—f doD()e'2Emo . . :
(@OIIRD) NJow (6) In this section, we transform the previous results for the

(5220 20626 perturbed DNLS equation to those for the perturbed MNLS
x{e71(62e20 N e 12MMI=20 (g, t) equation. Considering a perturbed MNLS equation

i2(N/n)0+26 —i2
+\e 2N o(— ,1)] - 2e72a()) 90+ 020 +iady(|v]|20)+2Bv|20 =ir(v), (70

X[\ e 2N mMO=ivi2y (g ¢ . . .
(M o 6:1) where the perturbation function can also be writterr @)

—Ne2Nmetiv2e (g t)] =ep(v). Whene=0, its one-soliton solution is
+e*i(3/2)‘ya2()\)e72f} ze20+§ e*29
1 1 i
. . ve(x,t)=—4 = e '2e, 71
X[)\lef|2()\/7))0+287|yr0( ﬁ,t) S( ) 7’(§1620+ gle—ZG)Z ( )
+rel2Mmo=20+iye (g )1, (68)  Here
Whenro(e,t) is a functio_n _of0 only [see Eq.(54)], .R is_ 6(x,t)= n(ax— ax), §<:—4a(§—p)t+x0, (72)
independent of, thus radiation formul&@65) can be simpli-
fied as p(x,1)= (& 7) 6+ p(t) — apx-+2a2p%t,
e—iz& rinh d\ N
caon-——[ " _ B(t)=—20%( &+ 7P)t+ g, (73
167 J—e=rio® A\(N=A)(A=\y) ) , .
andé=Re(¢5), n=Im(Z5), andp=a 2. Around this soli-
(®(\)|R) (®(\)|R) ——— ton solution, Eq(70) can be linearized as
X| =W (0. \)+ —— W,(O,\) |. MM
a’(\) (%) [a— LMo =p(ve) —S(vo) (74)
(69  in which
|
" i&i—2a|vs|2z9x—2ac9x(|vs|2)+i4B|vS|2 —avgﬂx—a&(vg)-i-iZ,ng
LY= . . ; 75
a2 an (D260 —idi—2aloda—2ailudD)—14Blus? (79
d'=@@ 0, p)=(p(ve Py, (76)
Jdvg d dvg d dvs dxg dve d
(o= s dE sdn 05 A% Gvs Ao 77
¢ dr dm dr  dxo AT dog dT
ve=(vy)". (79)
|
Under a gaugelike transformation, with an effective perturbation
v(X,t)=u(X,T)eisz+i4”2T,qM(X,t)=qD(X,T)ei2"X+i4”2T, pD: a,*Ze*i2pX7i4p2Tp[U(X’T)einX+i4p2T] . (83)
(79
For simplicity, we consider the case where the perturba-
with tion functionp(v) is of the form
x=a YX+4pT), t=a °T, (80) i
p(v)=2, pullo[*)o5, (84
d=a’dr—4Bdy, = ady, (81)

] _ where p(k=1, ... n) are complex functions. This form
the perturbed MNLS equatiaf70) becomes an effective per- ¢overs aimost all physical perturbations in optical fibers such
turbed DNLS equation as fiber loss, higher-order dispersion, and Raman effect

] _ ) [12,13. Then it is clear thap® is a function ofu(X,T) only.
2 200 — D
i dru+axu+idx(|ul“u)=iep®, (82 The one-soliton solutioi71) becomes
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27+ fe 2 26D deo _ dX0+.lf+°° 3,20 73,—20
UK T)=—dn o= @ g ab-qr o] doo(iie?’~ e )D(OR (6.0
N e —
where ~iy do(¢,e?’+ e %) D(9)R_(6,t)
o S 2
= — = + = too

XD =n(X=X), X==4TH %o, Xo 0 g6 —i—|i17|7 dO(51e*’+ ;e *)D(OR-(6,1). (94)
and Here R.(6,t) andD(#0) are defined in Eq955) and (56).

Further, we obtain the perturbation-induced radiation as

D X, T)= ~ ~ — 2 2 ~
¢ (XM= &no+e(T), @(T)=—2(E+ )T+ gq. e (6,1 = 2B 4(EIaP 25

(87)
c+i0t
The linearized equatiofv4) also becomes that for the DNLS x| dAN[CM(N, D)W (6,0)
equation —etio”
+CMOL D WR(0,0)] (95)
[or—L1qP=pP(uy) — S(us), (88) ’
in which
where 42 Ny
gi4a® (A=A (A At oy —
CM(\, 1) =—i fdtfe—iztaz(x—xl)(x—xl)t'
o &usﬁ dug dnp  dug dX, dug dog 4mna?(\) 0

Us) = —— T o T 9T " dT.
9§ dTy  dn dTy X dT; deo dT, “(D(N)|R(E)). (96)

_ —2.—i2pX—i4p?T
a e S(vs), (89 Whenry(6,t) is a function ofé only, which is true for the

. ) o _ class of perturbation&34), radiation expressiof®5) can be
and T;=€T. We can obtain soliton and radiation evolution reritten as

equations for this effective perturbed DNLS soliton using

results in the precoding two sections. Notice that the tggm el 2(Bla)x—i4(8%la®)t-i2¢
in the phase of Eq(6) is absorbed inta® in Eq. (85), and eqM(6,t)=
the effective perturbation®(ug) = ep®(ug) just shows up in 16w

the form ofr2(6,T), where

J’+oc+i0+ dx
—= 10" \(N=Ap)(A—Ny)

rg’(a,T)=e‘2¢DrD(uS)=i2r0(e,T), (90) -
“ (®N)IR) (B[R ———
. X| =W (0,\) +——=— W,(6,\)
and ro(0,T)=€"??r(vy). Then by simply substituting Eq. a?(\) az(f)
(90) into Egs.(57)—(60) for the effective perturbed DNLS
soliton and lettingT=a?t, we will obtain the following 97

equations for the perturbed MNLS soliton’s parameters: When a—0, the perturbed MNLS equatiaff0) reduces

d to the well-known perturbed NLS equation. In this limit, our
to : . L
as_ . 3,20 73.-20 soliton evolution and radiation results above for the per-
dt 'f_w do(£1e7"— {187 )D(OR(6,1), (9D turbed MNLS equatior{70) must reduce to the well-known
counterpart results for the perturbed NLS equation. This is
indeed the case. Notice that as-0,

‘:j_’t?: - fjwda(ﬁez‘%Zfe’z”)D(0)R+(9,t), (92

mo B v
SHE'*‘?y = (98)
dxg 1 (+= B
H:__zj do6(L3e?’+ 2e 2 D(9)R_(6,t) JB av
ancJ - A—-—, tany——, (99
. a B
i+ _
2 -2
+ 4a,7j_m d6(£,*"+ {16 *))D(O)R_(0,1), and the MNLS soliton reduces to a NLS soliton,
(93 vs=—2B Y2y secti26)e '?¢ (100)
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with Substituting all of the above into Eq$91)—(94) leads to
evolution equations of this damped MNLS soliton’s param-
6=v(X—X), X=—4ut+x,, (101  eters:
A~ A dé (&= 7%
p=pn(X—X)+@, @=-2(p*+v*)t+ey. (102 a——ZT[—n y—§| (109
In this limit, evolution equationg91)—(94) of the MNLS d77_
soliton parameters also reduce to those of the NLS soliton dat —2l[2&y—n], (110
[1.2],
dx d
q .. “0_p, POy, (111)
M 1o i2¢ dt dt
E_'B » detanh(20)secki26)Im[e'“*r(vg)],
(103 Then
dy
b —==—2Ty, (112
dv 1/2 i2¢ dt
T wdesecmza)Re[e r(vg)], (109
y=y(0)e~?"", (113
dxg B2 (4= " [sifly(0)e 1]
_o__F @ _ re, (2oL AR)=E 4
T e do fsecti2)Re e"**r(vy)], A=A(0)e S (0)] " (114
(109 and the energy decay of the damped MNLS soliton is
deg  dxg BY2[+= fm , 4y —ort
W—MF—T - dootanh(26)secti20) E(t)= - dX|US| —W—E(O)e , (1195
i 12 which is the same as a damped NLS soliton. This result is in
XImle=er(vg) ]+ 5 agreement with Ref4].
The amplitude of the soliton is
+ o
X désecli26)Im[e'2¢r . 106 2
Lw li26)Im[e'“r (v)] (106 P :4Asin%_ 116
A co%

We notice that our evolution equatiof®l) and (92) are
equivalent to those obtained by Shchesnovich and Doktoroy o g — ao/4A = sinv/2. we have
in Ref. [4]. But Egs.(93) and (94), the evolution of soliton ne
center and phase, are different from those in IR€f. These dB 1dy o
differences are actually too small to be verified numerically. Gt~ 2 gieosy2=—2I'y1-Bsin 'B.  (117)
However, the fact that our equatio®1)—(94) can be re-
duced perfectly to those of the perturbed NLS soliton in theThe solution of this equation leads to
limit a—0 indicates that our equation®3) and (94) are A(0)
correct, not Shchesnovich and Doktorov’s. A(t)=4A sin e‘zrtsin‘lm ]

VIIl. EXAMPLE: A DAMPED MNLS SOLITON We see from this formula that, in the beginning, the decay of

A le of th tth ider the si the amplitude of the damped MNLS soliton is a little bit
S an example of the present theory, we consider the SiMg, ., ye than that of the damped NLS soliton, which simply
plest example, a MNLS soliton under dampimgs —T'vg,

! . . ) . : decays exponentially at decay rate.Zor largert, the decay
correspondm_g to t_he fiber IOS.‘C’ in an _optlcal fiber, wr_teusa of the damped MNLS soliton approaches that of the damped
the propagating distance amds the time measured in the

frame moving with the group velocity of the solitph2,13. NLisszll_t?g. A28 12,

For modern typical fibers, the damping ralfe generated ' '

from fiber loss is so small thatcan be treated as a pertur- v(t)=v(0)exp —2I't). (119
bation. In this case,

(118

This is the well-known result of a damped NLS soliton.

T a20 —26
877+ e IX. SUMMARY AND DISCUSSION

ro(e):ei‘Pr(Us):477r(é,lezo+zle—20)2’ (107

In summary, we have developed a direct perturbation
theory for the perturbed DNLS and MNLS solitons, correct-
R,(6)=2rq(6), R_(6)=0. (108 ing some mistakes in the evolution equations of MNLS soli-
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ton’s center and phase in the literature and obtaining-unctions¢(x,t;{), ¥(x,t;{), anda({) are analytic in the
perturbation-induced radiation of the perturbed MNLS soli-first and third quadrants of thé plane, while $(x,t;¢),
tons. Evolution equations for the MNLS soll_ton .parameters;ﬂ(xit;g)’ anda(¢) are analytic in the second and fourth
perfectly reduce to those for the NLS equation in the small
; . e . quadrants. Furthermore

nonlinear dispersion limit. Also, we obtain a complete set of
eigenfunctions for the linearized DNLS equations, which
may be useful in developing direct perturbation theories for

other equations in the DNLS hierarchy.

aa+bb=1, (A9)

- [0 -1)\__
¢(§)=—|02¢(§)=(1 0 )¢(£), (A10a
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APPENDIX A: THE LAX EQUATIONS AND JOST APPENDIX B: EXPLICIT EXPRESSIONS OF JOST
SOLUTIONS FOR THE DNLS EQUATION SOLUTIONS FOR THE ONE-SOLITON POTENTIAL
The Lax equations for Eq2) are[18] IN THE DNLS EQUATION
AWt £) = LW(X.t: ), (Ala) It is easy to find the explicit expressions for Jost solutions

of one-soliton potential in the DNLS equation from the IST
SWOGLE D) = MW(X,E:0), (Alb) for the DNLS equation in Ref.18]:
exp20—i2¢+iy)

(X =A exp(46)+exp —iy) -

in which the Lax pair are

__ie2
S EA (A2 X[1-a(2) Jexp(i 20h~X(1,2)
_ _iosb 31172112 3_; Con 4o
M i120%03+2°U—i1{“U%03+ U IéUXUg&AZb) :l/jl(a’év)elgzxﬂzg t7|2¢>, (B1a)
and _expdo)+a(expliy) _
0 ! IJIZ(thig)_ eXF(40)+9X|T(I’y) eXF(|§2X)h l(t,g)
U:(—U o)' A9 = un(0,0)¢ 52, (B1b)
We define Jost soluti A do(x.t;¢) of Egs.(Al _a(fexp4o) texp(—iy)
bye efine Jost solutiorh(x,t;¢) and ¢(x,t;¢) of Egs.(Al) br(x,t,0)= A8 T ST exp —i22)h(t,)
1 = ¢y(0,0)e 2 (B2a)
¢(x,t;£)—>(o)exp(—i§2><), X— — 00, (A4)
L exp20+i2e—iy)
B . ( 0 ) o ¢2(X!t1§)_A exq40)+exq|7) g [1_3(5)]
d(X,t;0)— _1 expi{ox), X——o», (A5) w expl —i 22X)h(t,2)
and definey(x,t; ), P(x,t:¢) by = o 0,0)e X1 iz, (B2b)

0 Hereh(t,¢) =exp(-i2%), and
w(x,t;i)a(l)exmgzxx X—c, (AB)

N St s .
L a(§)=exp(—l27)ﬁ, a()=a"*¢), (BY
~zp(x,t;g)ﬂ(O)exﬂ—igzx), X—00. (A7) '
ol ((2=28)170+iy

The scattering coefficients are defined by $1(60,0)=A {1-a], (B4d)

et i
¢t =a(OPXEO+DOY(X D), (A8a) e’ +a(()e”
Yo 0,0)= ———

N 5 . = ei®m)e. (B4b)
d(X,t;0)=—a()P(x,t;0) +b()w(x,t;{). (A8b) e*f+e'Y
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i 2
a(pe’+e’” ., g [ ¥1(6,0)
SRS a———- | V)1 B W(h,{)=—
¢l( gvg) e4g+ e_l,y e ’ ( 53) ( g) 00 l//g( 01§)
2-22 i(£2-283) 4e*?
e*i 7 107”/ |: 77 - 40+ *i'y wi(a,g)
$2(0,0)=0—————("[1-a({)]. (B5b) _o e e
e"’+e'” 2 460 440
ions p : : [ " v a0y @l ¥2(6.0)
Solutions¥(6,¢) and ¢(6,{) can be simply obtained from 7 e*+a(Q)er e''+e”
Eq. (A10). (C1)
APPENDIX C: EIGENFUNCTIONS OF THE LINEARIZED ~ _ -
DNLS EQUATION AROUND ONE-SOLITON W(0,0)=01W(0,0), (€2
SOLUTIONS where the corresponding eigenvalues are4(£2—72)(£2
The continuous eigenfunctions of the linearization opera— ¢3) [see Eq(34)], and — < (<.
tor £ are The discrete eigenfunctions a@f are
|
v [1+e49(0)]us)
W(0,lq)=i g'“73¢ — C3
(6.L0=124 sirty 0 () u, €3
W(0,01)=01W(6,41), (C4
ei 3/2y ei 1/2y zei 3/2y
i _ 46 _ 46
) Ie‘”’+e‘7 tany [1+e*O(0)] Siny o[1l+e G)(H)]luS
I _ i20
W(0,61)= Azsinzye % el 32y 9gi3i2y  givl2 2ei 3/2y o ’ (€Y
_ H _ 46 _ 46
siny +Ie4"+ei7 tanye O(0) Siny fe @(49)1uS
W(0,0,)=01%(6,01). (C6)
|
Here B(6,0)=0,®(6,0), (1D
O(9) = __ 2 |, (C7) where the corresponding eigenvalues aré4(§2—§§)(§2
et’+elr e*te ! — %) [see Eq(35)]. The discrete eigenfunctions af* are
e D(0,L,)=e 7127262 3[¢—<}—(3/4)y1< ¢*’D(6) )
1 :e e 7 — L
LW(6,41)=0, (C8a ' ' e 2'D(0)
(C12
LW¥(6,4,)=0, (C8h L -
D(0,{1)=019(0,{1), (C13
LW(0,61)=—16017W(0,41), (C93 i
. e v .
] o o o D(0,() =i gi2osle—e—(3/4)]
LW(0,01)=—16{17W(6,{1). (C9b
(—430e*7+2¢2,e2))D(6)
The continuous eigenfunctions of the adjoint operatdr X 3. 20 2. g |
are (—4¢10e°"=2[{4]*¢,e°)D(0)
. (C14
¢2(01§)
®(0,0)=| : (C10 o .
$1(6,0) D(0,{,)=0,D(0,{1), (C15
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and
LAD(6,L,)=0, (Cl6a
LAD(6,7,)=0, (C16b
LAD(6,{1)=—16{17D(6,(1), (C17a
LAD(0,0)=—16,7®(0,1).  (C17h

Here the definition foD(0) is Eq. (56).

APPENDIX D: RELATIONS BETWEEN DERIVATIVES
OF THE DNLS SOLITON WITH RESPECT TO
ITS PARAMETERS AND DISCRETE EIGENFUNCTIONS
OF THE LINEARIZED EQUATION

Here, for simplicity, we use Ed5) and choosé\, vy, X,

and ¢ as its four independent parameters to calculate the
derivatives of the DNLS soliton solution with respect to its

parameters. They are

el S YA e’ 0+8®0049 D1
us dA A TAsiny (6)6e (D1)
1us 1 iel” . i2e”!” Jr2eiy )
Us dy tany e yely g4y e-iv  Tsiny
+i®(9)0e“0 (D2)
tanvy
1 du
—={2A26'7— 4AZsinye*?0 (6), (D3)

TR

PHYSICAL REVIEW E 65 066608

1 dug
Us dgg

=—i2. (D4)

With such a choice of parameters, Ef9) can be rewritten
as

dug dA

ausdy aus dxg
W=7 a7

6‘y dr 0X0 dr

dus deg

depg dr
(D5)

Upon observations on the explicit expressions of the dis-
crete eigenfunctions, we obtain

eiz(rg?p%: —i2A sity[e Y W(¢,) — € W(Ly)]
9A 7 ' '

+i2 sity[e” (Pir(z,) — e ()],
(D6)

iz(”;(?us . . —i2y i2y0p( 7.
e 3W=|2Asmy[e W({1)—eW({y)]

_ AZSinZ,y[e—i(yIZ)\'I,( gl) + ei(V/Z)ﬁI(é’T],

(D7)

el203¢ ax =4A3SiPy[W({) +W({y)], (D8)
2056 U _ 40 G2 [ "W(7)+eW(Zy)]
®o 7 ' o

(D9)

Thus Eq.(49) follows.
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