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Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation
and the modified nonlinear Schrödinger equation
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A direct perturbation theory for solitons of the derivative nonlinear Schro¨dinger~DNLS! equation is devel-
oped based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The
slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known
simple gaugelike transformation, these results are transformed into those for the perturbed modified nonlinear
Schrödinger~MNLS! equation describing propagation of femtosecond pulses in optical fibers. A calculation of
the perturbation-induced radiation fields for the perturbed DNLS and MNLS equations is also made. Our
results for the perturbed MNLS equation can be reduced perfectly to those for the perturbed nonlinear Schro¨-
dinger equation in the small nonlinear-dispersion limit.
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I. INTRODUCTION

It is well known that exactly integrable nonlinear diffe
ential equations have soliton solutions that travel stationa
and collide elastically. Many wave propagation phenome
can be described by integrable equations in some ideal
ditions. Several soliton perturbation theories have been
veloped to study the effects of small perturbations on in
grable equations. In these theories, two categories
mathematically complete because they cannot only ob
the slow evolution of soliton parameters, but also t
perturbation-induced radiation. The first one is the pertur
tion theory based on the inverse scattering transform~IST!
@1,2#, which has a recent development based on
Riemann-Hilbert problem@3,4#. The second one includes th
Green’s function perturbation theory@5# and the direct soli-
ton perturbation theory, which are both based on a se
complete eigenfunctions of the linearized equation aroun
soliton solution. The direct method was further developed
recent years~see, e.g., Ref.@6# and references therein!. Re-
sults of these two categories of perturbation theories are
sistent in general.

The idea of the direct method is very simple: just to e
pand the perturbed equation around the soliton solution
solve the resulted linear inhomogeneous equations at var
orders. Usually, the expansion is considered up to the fi
order correction only. If one can find a complete set of eig
functions for the homogeneous equation, the first-order
rection can be expanded in this complete set. Expan
coefficients can be found by solving some ordinary differe
tial equations. The coefficients for the discrete eigenfu
tions would grow secularly and should be suppressed. S
pression of the secular terms leads to the slow evolu
equations for soliton parameters. Then only the terms of c
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tinuous eigenfunctions appear in the first-order correcti
These continuous eigenfunctions are energy radiation f
solitons. In general, the direct method is independent of
IST even though connections to IST scattering are still v
ible and sometimes results of the IST are helpful to find
eigenfunctions. The direct method is simpler to apply. F
example, the direct perturbation theory for dark solitons w
developed@7# recently where the theory based on IST e
countered a difficulty caused by the varying backgrou
wave @8#. The direct theory has the further advantage tha
can be applied to nonintegrable equations@9#, thus it has a
wider range of applications.

The key of the direct method is to find a complete set
eigenfunctions of the linearized equation. It is known th
derivatives of the soliton solution with respect to soliton p
rameters are discrete eigenfunctions. But one still need
know continuous eigenfunctions in order to construct a co
plete set. A complete set can be constructed by the so-ca
‘‘squared Jost solutions’’@10#, or by directly solving the ei-
genvalue problem@11#, or by finding the discrete eigenfunc
tions using the derivatives of the soliton solution with resp
to soliton parameters and then guessing and testing the
tinuous eigenfunctions. But no applicable general metho
available. However, it has been shown recently that, at le
for the Korteweg–de Vries~KdV!, nonlinear Schro¨dinger
~NLS!, and modified Korteweg–de Vries~mKdV! hierar-
chies, the linearization operators of all equations in the sa
integrable hierarchy share the same complete set of ei
functions@6#, that is, whenever a complete set of eigenfun
tions for one equation is found it can also be used to deve
direct perturbation theories for the rest of the equations in
same hierarchy. This idea is very helpful in finding the eige
functions of the linearized derivative NLS~DNLS! equation
presented in this paper.

The propagation of picosecond solitons in single-mo
nonlinear fibers is well described by the NLS equation. T
effects of perturbations such as fiber loss, higher-order
persion, self-induced Raman scattering, and the nonlin
dispersion~self-steepening! can be studied by perturbatio
theories. But for femtosecond pulses, the effects of the n
linear dispersion are so significant that it can no longer

-
m.
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treated as a perturbation@12,13#. However, the equation in
cluding the nonlinear dispersion@the third term on the left
hand side of Eq.~1!#, the so-called modified nonlinear Schr¨-
dinger ~MNLS! equation

i ] tv1]x
2v1 ia]x~ uvu2v !12buvu2v50 ~1!

is also integrable@14#. A Painlevéanalysis suggests that tw
other models containing both the third-order dispersion te
and the nonlinear dispersion term are integrable@15#. For
temporal pulses in optical fibers,v is the field amplitude,t is
the propagating distance,x is the time measured in a fram
moving with the group velocity,a andb are constants rep
resenting the relative magnitudes of the nonlinear disper
term and the nonlinear term. The effects of nonlinear disp
sion can be studied exactly while the effects of other per
bations should be studied based on a perturbation theory
the MNLS equation. Such a theory was first developed
Shchesnovich and Doktorov based on the Riemann-Hil
problem @4#. However, they only obtained the evolution
soliton parameters. To our knowledge, the problem
perturbation-induced radiation has never been solved for
perturbed MNLS soliton. The aim of this paper is not only
provide a direct perturbation theory for the perturbed MN
equation, but also to solve the problem of perturbatio
induced radiation for perturbed MNLS solitons.

It is known that under a simple gaugelike transformat
~see, e.g.,@16#!, Eq. ~1! becomes the DNLS equation

i ] tu1]x
2u1 i ]x~ uuu2u!50, ~2!

which is relevant to Alven waves in plasmas@17#. We find
that not only the perturbed MNLS equation, but also t
linearized equation for the perturbed MNLS equation arou
a soliton solution can be transformed into that for the DN
equation with an effective perturbation. Therefore, we c
develop a direct perturbation theory for both the DNLS a
MNLS equations, beginning with the simpler DNLS equ
tion. However, eigenfunctions for the linearized DNLS equ
tion have never been found in the literature before. The
rivatives of the soliton solution with respect to its paramet
show that the discrete eigenfunctions are much more com
cated than those in the NLS, KdV, and mKdV hierarchi
So, to construct the eigenfunctions with the squared Jos
lutions, using the results of IST for the DNLS equation@18#
might be a better choice, but we immediately find that
squared Jost solutions are not eigenfunctions. However, s
larity between the KdV hierarchy and the DNLS hierarc
@19# suggests that eigenfunctions for the linearized DN
equation are possibly derivatives of the squared Jost s
tions with respect tox, just as the KdV hierarchy. We con
firmed this using the Lax pair of the DNLS equation. We a
find that the adjoint eigenfunctions are squared Jost solut
with flipped components, similar to the KdV hierarchy. T
completeness of these eigenfunctions and adjoint eigenf
tions can be verified directly by complex integration. W
note that Gerdjikov, Ivanov, and Kulish also derived a c
sure relation for squared Jost solutions in@19#. But that clo-
sure relation is not the one we need in a direct perturba
theory. After the complete set of eigenfunctions is obtain
06660
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we then develop a direct perturbation theory for the DN
equation by the usual procedure of direct perturbation th
ries ~see, e.g., Ref.@20#!. This theory gives the slow evolu
tion of soliton parameters and the evolution of t
perturbation-induced radiation. These results are then tr
formed to the perturbed MNLS equation, in which the ev
lution of the soliton center and the phase slightly differ fro
those in Ref.@4#. However, in the small nonlinear dispersio
limit, our results for the evolution of soliton parameters c
be perfectly reduced to the well-known results for the p
turbed NLS equation@1,2#. This fact supports the validity o
our results, not Shchesnovich and Doktorov’s@4#. Finally, as
an example of our theory, we study the slow evolution o
damped MNLS soliton and find that the decay of its amp
tude is a little slower than the exponential decay of a N
soliton, but its energy decay rate is the same as that of a N
soliton.

II. THE PERTURBED DNLS EQUATION AND ITS
LINEARIZATION OPERATOR

The perturbed DNLS equation is

i ] tu1]x
2u1 i ]x~ uuu2u!5 ir ~u!, ~3!

wherer (u) is the perturbation function, which can be writte
asr (u)5ep(u) @e is a small positive parameter representi
the amplitude of perturbationr (u)#. We expandu around a
DNLS soliton solutionus up to O(e),

u5us1eq, ~4!

where the one-soliton solution is@16#

us~x,t !524D singe2ue2 i2w
e4u1eig

~e4u1e2 ig!2
, ~5!

which can be rewritten as

us~x,t !524h
z̄1e2u1z1e22u

~z1e2u1 z̄1e22u!2
e2 i2(w23/4g). ~6!

Herez15D exp(ig/2) (0,g,p) is the discrete eigenvalue
the bar denotes complex conjugate, and

j5Re~z1
2!5D2cosg, h5Im~z1

2!5D2sing, ~7!

u5h~x2 x̂!, x̂524jt1x0 , ~8!

w5j~x2 x̂!1ŵ, ŵ522~j21h2!t1w0 . ~9!

There are four independent soliton parameters,j, h, x0, and
w0. In the presence of perturbation, they will evolve slow
with the ‘‘slow time’’ t5et. In the two-time scale,] t be-
comes] t1e]t . We use a trick proposed in Ref.@20# of
replacingt in x̂ andŵ to make them only depend on the slo
time t,

x̂524jte211x0 , ~10!
8-2



in-

DIRECT PERTURBATION THEORY FOR SOLITONS OF . . . PHYSICAL REVIEW E 65 066608
ŵ522~j21h2!te211w0 , ~11!

and expand them as

x̂5 x̂21e211x01 x̂1e11•••, ~12!

ŵ5ŵ21e211w01ŵ1e11•••. ~13!

Substituting all of the above expansions into Eq.~3!, in e0

order, we have
a-

w

d

06660
]tx̂21524j, ~14!

]tŵ21522~j21h2!. ~15!

In e1 order, combining its complex conjugate, we get a l
earized vector equation

~] t2L!q5p~us!2s~us!, ~16!

in which L is a 232 differential operator,
L5S i ]x
222uusu2]x22]x~ uusu2! 2us

2]x2]x~us
2!

2ūs
2]x2]x~ ūs

2! 2 i ]x
222uusu2]x22]x~ uusu2!

D , ~17!
-

r
l-
per-
lly
of
and

q5~q q̄!T, p~us!5„p~us!p~us!…
T, ~18!

s~us!5
]us

]j

dj

dt
1

]us

]h

dh

dt
1

]us

]x0

dx0

dt
1

]us

]w0

dw0

dt
, ~19!

us5~us ūs!
T. ~20!

Here the superscript ‘‘T’’ represents the transpose of a m
trix. In the linear space of solutions forL, we define the inner
product between functionsF andG as

^GuF&5E
2`

1`

dxGTF, ~21!

and defineLA—the adjoint ofL, as

^GuLF &5^LAGuF&1 i ~GTs3Fx2Gx
Ts3F!u2`

1` . ~22!

Here

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

are Pauli spin matrices. According to these definitions,
find that

LA5S i ]xx12uusu2]x ūs
2]x

us
2]x 2 i ]xx12uusu2]x

D . ~23!

The key to solving the inhomogeneous equation~16! is to
find a complete set of eigenfunctions forL. It is not difficult
to show that for any Jost solution

w5~w1 w2!T ~24!

satisfying the Lax equations~A1!, the corresponding square
Jost solution

W5wsw5~w1
2 w2

2!T ~25!
e

satisfies equations

~] t2L!Wx50 ~26!

and

~] t1LA!s1W50. ~27!

This is similar to the KdV hierarchy@6#. Thus we can con-
struct eigenfunctions ofL and LA with squared Jost solu
tions, i.e.,

LC~x,t;z!5] tC~x,t;z!, ~28a!

LC̃~x,t;z!5] tC̃~x,t;z!, ~28b!

LAF~x,t;z!52] tF~x,t;z!, ~29a!

LAF̃~x,t;z!52] tF̃~x,t;z!, ~29b!

where

C~x,t;z!5]x„c~x,t;z!c~x,t;z!…,

C̃~x,t;z!5]x„c̃~x,t;z!c̃~x,t;z!…, ~30a!

F~x,t;z!5s1f~x,t;z!f~x,t;z!,

F̃~x,t;z!5s1f̃~x,t;z!f̃~x,t;z!. ~30b!

Here definitions for Jost solutionsc(x,t;z), f(x,t;z),
c̃(x,t;z), and f̃(x,t;z) and their explicit expressions fo
one-soliton potential are given in Appendixes A and B. A
though the above results are presented by expanding the
turbed DNLS equation around a soliton solution, actua
they are valid for expansions around any arbitrary solution
the DNLS equation.
8-3



e x-

XIANG-JUN CHEN AND JIANKE YANG PHYSICAL REVIEW E 65 066608
III. EIGENFUNCTIONS FOR THE ONE-SOLITON CASE

For one-soliton case, it is more convenient to choosu
and t as independent variables instead ofx and t. Then we
have

] t→] t14jh]u , ]x→h]u , ]x
2→h2]u

2 . ~31!

Variables in the eigenfunctions can be separated as

C~x,t;z!5ei2z2x̂1 i4z4t2 i2ŵe2 i2s3ŵC~u,z!, ~32a!

C̃~x,t;z!5e2 i2z2x̂2 i4z4t1 i2ŵe2 i2s3ŵC̃~u,z!, ~32b!

F~x,t;z!5e2 i2z2x̂2 i4z4t1 i2ŵei2s3ŵF~u,z!, ~33a!

F̃~x,t;z!5ei2z2x̂1 i4z4t2 i2ŵei2s3ŵF̃~u,z!, ~33b!
-

06660
where explicit expressions forC(u,z), C̃(u,z), F(u,z),
and C̃(u,z) can be found in Appendix C. When these e
pressions are substituted into Eqs.~28! and ~29!, we obtain
the following familiar eigenvalue equations:

LC~u,z!5 i4~z22z1
2!~z22 z̄1

2!C~u,z!, ~34a!

LC̃~u,z!52 i4~z22z1
2!~z22 z̄1

2!C̃~u,z!, ~34b!

L AF~u,z!5 i4~z22z1
2!~z22 z̄1

2!F~u,z!, ~35a!

L AF̃~u,z!52 i4~z22z1
2!~z22 z̄1

2!F̃~u,z!. ~35b!

Here
L5L~u,z!5ei2s3ŵLe2 i2s3ŵ24jh]uI 2 i4D4s3

5S ih2]u
222h@ uu0~u!u212j#]u22h

duu0~u!u2

du
2 i4D4 2hu0

2~u!]u2h
du0

2~u!

du

2hu0
2~u!]u2h

du0
2~u!

du
2 ih2]u

222h@ uu0~u!u212j#]u
222h

duu0~u!u2

du
1 i4D4D ,

~36!

I is the unit matrix

u0~u!5use
i2ŵ, ~37!

and the adjoint operatorL A is

L A5L A~u,z!5e2 i2s3ŵLAei2s3ŵ14jh]uI 2 i4D4s3

5S ih2]u
212h@ uu0~u!u212j#]u2 i4D4 hu0

2~u!]u

hu0
2~u!]u 2 ih2]u

212h@ uu0~u!u212j#]u1 i4D4D . ~38!
are
In this case, the first-order equation~16! becomes

~] t2L!Q5P2S, ~39!

where

Q5ei2s3ŵq, P5ei2s3ŵp, S5ei2s3ŵs. ~40!

Also, Eq. ~22! becomes

^GuLF&5^L AGuF&1 ih2~GTs3Fu2Gu
Ts3F!u2`

1`

24jhGTFu2`
1` . ~41!

In Eq. ~41!, choosing F5C(u,z), G5F(u,z8) and F
5C̃(u,z), G5F̃(u,z8), respectively, we find the orthogo
nalities of the continuous eigenfunctions to be
^F~z8!uC~z!&5 i2pz2a2~z!d~z22z82!, ~42a!

^F̃~z8!uC̃~z!&52 i2pz2ã2~z!d~z22z82!. ~42b!

Nonzero inner products between discrete eigenfunctions

^Ḟ~z1!uC~z1!&5^F~z1!uĊ~z1!&52
z1

2
ȧ2~z1!,

~43a!

^Ḟ̃~ z̄1!uC̃~ z̄1!&5^F̃~ z̄1!uĊ̃~ z̄1!&5
z̄1

2
ȧ̃2~ z̄1!, ~43b!

^Ḟ~z1!uĊ~z1!&52 1
2 ȧ2~z1!2 1

2 z1ȧ~z1!ä~z1!, ~44a!

^Ḟ̃~ z̄1!uĊ̃~ z̄1!&5 1
2 ȧ̃2~ z̄1!1 1

2 z1ȧ̃~ z̄1! ä̃~ z̄1!. ~44b!
8-4
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Here the dot denotes the derivative with respect toz. Explicit
expressions fora(z), ã(z) and for eigenfunctions can b
found in Appendixes B and C.

IV. CLOSURE OF THE SET OF EIGENFUNCTIONS

The closure relation of the set of eigenfunctions is

I 5
2@ ȧ~z1!1z1ä~z1!#

z1
2ȧ3~z1!

uC~z1!&^F~z1!u

2
2

z1ȧ2~z1!
@ uC~z1!&^Ḟ~z1!u1uĊ~z1!&^F~z1!u#

2
2@ ȧ̃~ z̄1!1 z̄1ä̃~ z̄1!#

z̄1
2ȧ̃3~ z̄1!

uC̃~ z̄1!&^F̃~ z̄1!u

1
2

z̄1ȧ̃2~ z̄1!
@ uC̃~ z̄1!&^Ḟ̃~ z̄1!u1uĊ̃~ z̄1!&^F̃~ z̄1!u#

1
1

p i EG
dz

uC~z!&^F~z!u

za2~z!

2
1

p i EG̃
dz

uC̃~z!^F̃~z!u

zã2~z!
, ~45!

or

d~x2y!5
2@ ȧ~z1!1z1ä~z1!#

z1
2ȧ3~z1!

C~x,z1!FT~y,z1!

2
2

z1ȧ2~z1!
@C~x,z1!ḞT~y,z1!

1Ċ~x,z1!FT~y,z1!#

2
2@ ȧ̃~ z̄1!1 z̄1ä̃~ z̄1!#

z̄1
2ȧ̃3~ z̄1!

C̃~x,z̄1!F̃T~y,z̄1!

1
2

z̄1ȧ̃2~ z̄1!
@C̃~x,z̄1!Ḟ̃T~y,z̄1!

1Ċ̃~x,z̄1!F̃T~y,z̄1!#

1
1

p i EG
dz

C~x,z!FT~y,z!

za2~z!

2
1

p i EG̃
dz

C̃~x,z!F̃T~y,z!

zã2~z!
, ~46!

whereI is a unit matrix,G is a path consisting of a line from
i` to 0 and a line from 0 tò in the first quadrant of thez
plane, whileG̃ is a path consisting of a line fromi` to 0 and
a line from 0 to2` in the second quadrant. Equation~46!
06660
can be directly proved by performing complex integration
Therefore, any solution of Eq.~39! can be expanded in thi
complete set.

V. EVOLUTION OF THE SOLITON PARAMETERS

Having obtained a complete set of eigenfunctions for
linearization operatorL, we can expand the first-order co
rection Q into it. In the expansion, the terms of discre
eigenfunctions are secular and thus should be suppres
yielding the secularity conditions

^F~z1!u~P2S!&50, ~47a!

^Ḟ~z1!u~P2S!&50, ~47b!

^F̃~ z̄1!u~P2S!&50, ~48a!

^Ḟ̃~ z̄1!u~P2S!&50. ~48b!

Due to Eqs.~C13! and ~C15!, it is obvious that Eq.~48! is
just the complex conjugate of Eq.~47!. As usual@5#, S can be
expressed as a linear combination of the discrete eigenf
tions ~see Appendix D!,

S5 i2 sin2g$2@e2 igC~z1!2eigC̃~ z̄1!#1D@e2 ig/2Ċ~z1!

2eig/2Ċ̃~ z̄1!#%
dD

dt
1D sing$ i2@e2 i2gC~z1!

2ei2gC̃~ z̄1!#2D sing@e2 ig/2Ċ~z1!1eig/2Ċ̃~z 1̄!#%
dg

dt

14D3sin2g@C~z1!1C̃~ z̄1!#
dx0

dt

24D sin2g@e2 igC~z1!1eigC̃~ z̄1!#
dw0

dt
. ~49!

Hence,

^F~z1!uS&5 ie2 i7/2g
dz1

dt
, ~50!

^Ḟ~z1!uS&5e2 i (7/2)gF2
1

h

dj

dt
2

i

4

1

j21h2

d~j21h2!

dt

12~j1 ih!
dx0

dt
22

dw0

dt G , ~51!

e^F~z1!uP&5e2 i (7/2)gz1
2E

2`

1`

due2uD~u!R1~u,t !,

~52!
8-5
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e^Ḟ~z1!uP&52 ie2 i (7/2)g
4z1

3

h E
2`

1`

du ue2uD~u!R2~u,t !

1 ie2 i (7/2)g
2z1

h E
2`

1`

du@je2ur 0~u,t !

2uz1u2e22ur 0~2u,t !#D~u!. ~53!

Here

r 0~u,t !5ei2[w2(3/4)g]r ~us!, ~54!

R6~u,t !5r 0~u,t !6r 0~2u,t !, ~55!

D~u!5
1

~ z̄1e2u1z1e22u!2
. ~56!

Substituting the above expressions into Eq.~48! and after
some simple algebra, we find the following evolution equ
tions for a DNLS soliton’s parameters:

dj

dt
52 i E

2`

1`

du~z1
3e2u2 z̄1

3e22u!D~u!R1~u,t !, ~57!

dh

dt
52E

2`

1`

du~z1
3e2uz̄1

3e22u!D~u!R1~u,t !, ~58!

dx0

dt
52

1

h2E2`

1`

duu~z1
3e2u1 z̄1

3e22u!D~u!R2~u,t !

1
i

4hE2`

1`

du~z1e2u1 z̄1e22u!D~u!R2~u,t !,

~59!

dS w02
3

4
g D

dt
5j

dx0

dt
1 i

1

hE2`

1`

duu~z1
3e2u

2 z̄1
3e22u!D~u!R2~u,t !

2 i
j

4hE2`

1`

du~z1e2u

1 z̄1e22u!D~u!R2~u,t !

2 i
uz1u2

4h E
2`

1`

du~ z̄1e2u

1z1e22u!D~u!R2~u,t !. ~60!

VI. THE PERTURBATION-INDUCED RADIATION

Upon suppression of the discrete terms, the first-order
lution Q becomes
06660
-

o-

uQ~u,t !&5E
G
dz f ~ t,z!uC~u,z!&1E

G̃
dz f̃ ~ t,z!uC̃~u,z!&,

~61!

which contains only energy radiation. Substituting it into E
~39!, letting ^F(z)u and ^F̃(z)u act on both sides of the
equation, we get ordinary differential equations for the e
pansion coefficientsf and f̃ as

] t f ~ t,z!2 i4~z22z1
2!~z22 z̄1

2! f ~ t,z!52 i
^F~z!uP~ t !&

2pza2~z!
,

~62a!

] t f̃ ~ t,z!1 i4~z22z1
2!~z22 z̄1

2! f̃ ~ t,z!5 i
^F̃~z!uP~ t !&

2pzã2~z!
.

~62b!

As

^F̃~z!uP~ t !&5^F~ z̄ !uP~ t !&, ~63!

it is obvious that f̃ (t,z)5 f (t,z̄). With initial conditions
f (0,z)50, solution of f (t,z) is

f ~ t,z!52 i
ei4(z22z1

2)(z22 z̄1
2)t

2pza2~z!

3E
0

t

dt8e2 i4(z22z1
2)(z22 z̄1

2)t8^F~z!uP~ t8!&.

~64!

Thus, we have obtained the perturbation-induced radia
from the first row of Eq.~61!, which can be rewritten as a
integral ofl5z2 because the eigenfunctions are functions
l,

eq~u,t !5e2 i2ŵE
2`1 i01

1`1 i01

dl@C~l,t !C1~u,l!

1C~ l̄,t !C2~u,l̄ !#. ~65!

Here

C~u,l!5„C1~u,l!C2~u,l!…T, ~66!

C~l,t !52 i
ei4(l2l1)(l2l̄1)t

4pla2~l!
E

0

t

dt8e2 i4(l2l1)(l2l̄1)t8

3^F~l!uR~ t8!&, ~67!

R5eP, l15z1
2, and
8-6
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^F~l!uR~ t !&5
D2

l E
2`

1`

duD~u!ei2(j/h)u

3$e2 i (5/2)ge2u@l1e2 i2(l/h)u22ur 0~u,t !

1lei2(l/h)u12ur 0~2u,t !#22e2 i2ga~l!

3@l1e2 i2(l/h)u2 ig/2r 0~u,t !

2lei2(l/h)u1 ig/2r 0~2u,t !#

1e2 i (3/2)ga2~l!e22u

3@l1e2 i2(l/h)u12u2 igr 0~u,t !

1lei2(l/h)u22u1 igr 0~2u,t !#%. ~68!

When r 0(u,t) is a function ofu only @see Eq.~54!#, R is
independent oft, thus radiation formula~65! can be simpli-
fied as

eq~u,t !5
e2 i2ŵ

16p
E

2`1 i01

1`1 i01 dl

l~l2l1!~l2l̄1!

3F ^F~l!uR&

a2~l!
C1~u,l!1

^F~ l̄ !uR&

a2~ l̄ !

C2~u,l̄ !G .

~69!
-

06660
VII. THE PERTURBED MNLS EQUATION

In this section, we transform the previous results for t
perturbed DNLS equation to those for the perturbed MN
equation. Considering a perturbed MNLS equation

i ] tv1]x
2v1 ia]x~ uvu2v !12buvu2v5 ir ~v !, ~70!

where the perturbation function can also be written asr (v)
5ep(v). Whene50, its one-soliton solution is

vs~x,t !524h
z̄1e2u1z1e22u

~z1e2u1 z̄1e22u!2
e2 i2w. ~71!

Here

u~x,t !5h~ax2a x̂!, x̂524a~j2r!t1x0 , ~72!

w~x,t !5~j/h!u1ŵ~ t !2arx12a2r2t,

ŵ~ t !522a2~j21h2!t1w0 , ~73!

andj5Re(z1
2), h5Im(z1

2), andr5a22b. Around this soli-
ton solution, Eq.~70! can be linearized as

@] t2LM#qM5p~vs!2s~vs! ~74!

in which
LM5S i ]x
222auvsu2]x22a]x~ uvsu2!1 i4buvsu2 2avs

2]x2a]~vs
2!1 i2bvs

2

2a v̄s
2]x2a]x~ v̄s

2!2 i2b v̄s
2 2 i ]x

222auvsu2]x22a]x~ uvsu2!2 i4buvsu2
D , ~75!

qM5~q q̄!T, p~vs!5„p~vs! p~vs!…
T, ~76!

s~vs!5
]vs

]j

dj

dt
1

]vs

]h

dh

dt
1

]vs

]x0

dx0

dt
1

]vs

]w0

dw0

dt
, ~77!

vs5~vsv̄s!
T. ~78!
ba-

ch
fect
Under a gaugelike transformation,

v~x,t !5u~X,T!ei2rX1 i4r2T,qM~x,t !5qD~X,T!ei2rX1 i4r2T,
~79!

with

x5a21~X14rT!, t5a22T, ~80!

] t5a2]T24b]X , ]x5a]X , ~81!

the perturbed MNLS equation~70! becomes an effective per
turbed DNLS equation

i ]Tu1]X
2u1 i ]X~ uuu2u!5 i epD, ~82!
with an effective perturbation

pD5a22e2 i2rX2 i4r2Tp@u~X,T!ei2rX1 i4r2T# . ~83!

For simplicity, we consider the case where the pertur
tion functionp(v) is of the form

p~v !5 (
k50

n

pk~ uvu2!]x
kv, ~84!

where pk(k51, . . . ,n) are complex functions. This form
covers almost all physical perturbations in optical fibers su
as fiber loss, higher-order dispersion, and Raman ef
@12,13#. Then it is clear thatpD is a function ofu(X,T) only.
The one-soliton solution~71! becomes
8-7
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us~X,T!524h
z̄1e2u1z1e22u

~z1e2u1 z̄1e22u!2
e2 i2wD

, ~85!

where

u~X,T!5h~X2X̂!, X̂524jT1X0 , X05ax0 ,
~86!

and

wD~X,T!5 j/hu1ŵ~T!, ŵ~T!522~j21h2!T1w0 .
~87!

The linearized equation~74! also becomes that for the DNL
equation,

@]T2L#qD5pD~us!2s~us!, ~88!

where

s~us!5
]us

]j

dj

dT1
1

]us

]h

dh

dT1
1

]us

]X0

dX0

dT1
1

]us

]w0

dw0

dT1

5a22e2 i2rX2 i4r2Ts~vs!, ~89!

and T15eT. We can obtain soliton and radiation evolutio
equations for this effective perturbed DNLS soliton usi
results in the precoding two sections. Notice that the term3

4 g
in the phase of Eq.~6! is absorbed intowD in Eq. ~85!, and
the effective perturbationr D(us)5epD(us) just shows up in
the form of r 0

D(u,T), where

r 0
D~u,T!5ei2wD

r D~us!5
1

a2
r 0~u,T!, ~90!

and r 0(u,T)5ei2wr (vs). Then by simply substituting Eq
~90! into Eqs. ~57!–~60! for the effective perturbed DNLS
soliton and lettingT5a2t, we will obtain the following
equations for the perturbed MNLS soliton’s parameters:

dj

dt
52 i E

2`

1`

du~z1
3e2u2 z̄1

3e22u!D~u!R1~u,t !, ~91!

dh

dt
52E

2`

1`

du~z1
3e2u1 z̄1

3e22u!D~u!R1~u,t !, ~92!

dx0

dt
52

1

ah2E2`

1`

duu~z1
3e2u1 z̄1

3e22u!D~u!R2~u,t !

1
i

4ahE2`

1`

du~z1e2u1 z̄1e22u!D~u!R2~u,t !,

~93!
06660
dw0

dt
5aj

dx0

dt
1 i

1

hE2`

1`

duu~z1
3e2u2 z̄1

3e22u!D~u!R2~u,t !

2 i
j

4hE2`

1`

du~z1e2u1 z̄1e22u!D~u!R2~u,t !

2 i
uz1u2

4h E
2`

1`

du~ z̄1e2u1z1e22u!D~u!R2~u,t !. ~94!

Here R6(u,t) and D(u) are defined in Eqs.~55! and ~56!.
Further, we obtain the perturbation-induced radiation as

eqM~u,t !5ei2(b/a)x2 i4(b2/a2)t2 i2ŵ

3E
2`1 i01

1`1 i01

dl@CM~l,t !C1~u,l!

1CM~ l̄,t !C2~u,l̄ !# ~95!

in which

CM~l,t !52 i
ei4a2(l2l1)(l2l̄1)t

4pla2~l!
E

0

t

dt8e2 i4a2(l2l1)(l2l1)̄t8

3^F~l!uR~ t8!&. ~96!

When r 0(u,t) is a function ofu only, which is true for the
class of perturbations~84!, radiation expression~95! can be
rewritten as

eqM~u,t !5
ei2(b/a)x2 i4(b2/a2)t2 i2ŵ

16p

3E
2`1 i01

1`1 i01 dl

l~l2l1!~l2l̄1!

3F ^F~l!uR&

a2~l!
C1~u,l!1

^F~ l̄ !uR&

a2~ l̄ !

C2~u,l̄ !G .

~97!

Whena→0, the perturbed MNLS equation~70! reduces
to the well-known perturbed NLS equation. In this limit, o
soliton evolution and radiation results above for the p
turbed MNLS equation~70! must reduce to the well-known
counterpart results for the perturbed NLS equation. This
indeed the case. Notice that asa→0,

j→ m

a
1

b

a2
, h→n

a
, ~98!

D→
Ab

a
, tang→an

b
, ~99!

and the MNLS soliton reduces to a NLS soliton,

vs522b21/2n sech~2u!e2 i2w ~100!
8-8
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with

u5n~x2 x̂!, x̂524mt1x0 , ~101!

w5m~x2 x̂!1ŵ, ŵ522~m21n2!t1w0 . ~102!

In this limit, evolution equations~91!–~94! of the MNLS
soliton parameters also reduce to those of the NLS sol
@1,2#,

dm

dt
5b1/2E

2`

1`

du tanh~2u!sech~2u!Im@ei2wr ~vs!#,

~103!

dn

dt
52b1/2E

2`

1`

dusech~2u!Re@ei2wr ~vs!#, ~104!

dx0

dt
52

b1/2

n2 E
2`

1`

du usech~2u!Re@ei2wr ~vs!#,

~105!

dw0

dt
5m

dx0

dt
2

b1/2

n E
2`

1`

duu tanh~2u!sech~2u!

3Im@ei2wr ~vs!#1
b1/2

2n

3E
2`

1`

dusech~2u!Im@ei2wr ~vs!#. ~106!

We notice that our evolution equations~91! and ~92! are
equivalent to those obtained by Shchesnovich and Dokto
in Ref. @4#. But Eqs.~93! and ~94!, the evolution of soliton
center and phase, are different from those in Ref.@4#. These
differences are actually too small to be verified numerica
However, the fact that our equations~91!–~94! can be re-
duced perfectly to those of the perturbed NLS soliton in
limit a→0 indicates that our equations~93! and ~94! are
correct, not Shchesnovich and Doktorov’s.

VIII. EXAMPLE: A DAMPED MNLS SOLITON

As an example of the present theory, we consider the s
plest example, a MNLS soliton under damping,r 52Gvs ,
corresponding to the fiber loss in an optical fiber, wheret is
the propagating distance andx is the time measured in th
frame moving with the group velocity of the soliton@12,13#.
For modern typical fibers, the damping rateG generated
from fiber loss is so small thatr can be treated as a pertu
bation. In this case,

r 0~u!5ei ŵr ~vs!54hG
z̄1e2u1z1e22u

~z1e2u1 z̄1e22u!2
, ~107!

R1~u!52r 0~u!, R2~u!50. ~108!
06660
n

v

.

e

-

Substituting all of the above into Eqs.~91!–~94! leads to
evolution equations of this damped MNLS soliton’s para
eters:

dj

dt
522GF ~j22h2!

h
g2jG , ~109!

dh

dt
522G@2jg2h#, ~110!

dx0

dt
50,

dw0

dt
50. ~111!

Then

dg

dt
522Gg, ~112!

g5g~0!e22Gt, ~113!

D5D~0!eGtAsin@g~0!e22Gt#

sin@g~0!#
, ~114!

and the energy decay of the damped MNLS soliton is

E~ t !5E
2`

1`

dxuvsu25
4g

uau
5E~0!e22Gt, ~115!

which is the same as a damped NLS soliton. This result i
agreement with Ref.@4#.

The amplitude of the soliton is

A5
2h

D cos
g

2

54D sin
g

2
. ~116!

Let B5A/4D5sing/2, we have

dB

dt
5

1

2

dg

dt
cosg/2522GA12B2sin21B. ~117!

The solution of this equation leads to

A~ t !54D sinS e22Gtsin21
A~0!

4D~0! D . ~118!

We see from this formula that, in the beginning, the decay
the amplitude of the damped MNLS soliton is a little b
slower than that of the damped NLS soliton, which simp
decays exponentially at decay rate 2G. For largert, the decay
of the damped MNLS soliton approaches that of the dam
NLS soliton.

As a→0, A→2b21/2n,

n~ t !5n~0!exp~22Gt !. ~119!

This is the well-known result of a damped NLS soliton.

IX. SUMMARY AND DISCUSSION

In summary, we have developed a direct perturbat
theory for the perturbed DNLS and MNLS solitons, corre
ing some mistakes in the evolution equations of MNLS so
8-9



in
li

er
a
o

ch
fo

ce
99
a

th

ns
T

XIANG-JUN CHEN AND JIANKE YANG PHYSICAL REVIEW E 65 066608
ton’s center and phase in the literature and obtain
perturbation-induced radiation of the perturbed MNLS so
tons. Evolution equations for the MNLS soliton paramet
perfectly reduce to those for the NLS equation in the sm
nonlinear dispersion limit. Also, we obtain a complete set
eigenfunctions for the linearized DNLS equations, whi
may be useful in developing direct perturbation theories
other equations in the DNLS hierarchy.
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APPENDIX A: THE LAX EQUATIONS AND JOST
SOLUTIONS FOR THE DNLS EQUATION

The Lax equations for Eq.~2! are @18#

]xW~x,t;z!5LW~x,t;z!, ~A1a!

] tW~x,t;z!5MW~x,t;z!, ~A1b!

in which the Lax pair are

L52 i z2s31zU, ~A2a!

M52 i2z4s312z3U2 i z2U2s31zU32 i zUxs3 ,
~A2b!

and

U5S 0 u

2ū 0D . ~A3!

We define Jost solutionf(x,t;z) andf̃(x,t;z) of Eqs.~A1!
by

f~x,t;z!→S 1

0D exp~2 i z2x!, x→2`, ~A4!

f̃~x,t;z!→S 0

21D exp~ i z2x!, x→2`, ~A5!

and definec(x,t;z), c̃(x,t;z) by

c~x,t;z!→S 0

1D exp~ i z2x!, x→`, ~A6!

c̃~x,t;z!→S 1

0D exp~2 i z2x!, x→`. ~A7!

The scattering coefficients are defined by

f~x,t;z!5a~z!c̃~x,t;z!1b~z!c~x,t;z!, ~A8a!

f̃~x,t;z!52ã~z!c~x,t;z!1b̃~z!c̃~x,t;z!. ~A8b!
06660
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-
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Functionsf(x,t;z), c(x,t;z), anda(z) are analytic in the
first and third quadrants of thez plane, while f̃(x,t;z),
c̃(x,t;z), and ã(z) are analytic in the second and four
quadrants. Furthermore

ãa1b̃b51, ~A9!

f̃~z!52 is2f̄~ z̄ !5S 0 21

1 0 D f̄~ z̄ !, ~A10a!

c̃~z!5 is2c̄~ z̄ !5S 0 1

21 0D c̄~ z̄ !. ~A10b!

For more details, see Ref.@18#.

APPENDIX B: EXPLICIT EXPRESSIONS OF JOST
SOLUTIONS FOR THE ONE-SOLITON POTENTIAL

IN THE DNLS EQUATION

It is easy to find the explicit expressions for Jost solutio
of one-soliton potential in the DNLS equation from the IS
for the DNLS equation in Ref.@18#:

c1~x,t,z!5D
exp~2u2 i2w1 ig!

exp~4u!1exp~2 ig!
z21

3@12a~z!#exp~ i z2x!h21~ t,z!

5c1~u,z!ei z2x̂1 i2z4t2 i2ŵ, ~B1a!

c2~x,t,z!5
exp~4u!1a~z!exp~ ig!

exp~4u!1exp~ ig!
exp~ i z2x!h21~ t,z!

5c2~u,z!ei z2x̂1 i2z4t, ~B1b!

f1~x,t,z!5
a~z!exp~4u!1exp~2 ig!

exp~4u!1exp~2 ig!
exp~2 i z2x!h~ t,z!

5f1~u,z!e2 i z2x̂2 i2z4t, ~B2a!

f2~x,t,z!5D
exp~2u1 i2w2 ig!

exp~4u!1exp~ ig!
z21@12a~z!#

3exp~2 i z2x!h~ t,z!

5f2~u,z!e2 i z2x̂2 i2z4t1 i2ŵ. ~B2b!

Hereh(t,z)5exp(2i2z4t), and

a~z!5exp~2 i2g!
z22z1

2

z22 z̄1
2

, ã~z!5a21~z!, ~B3!

c1~u,z!5D
ei (z222z1

2)/hu1 ig

e4u1e2 ig
z21@12a~z!#, ~B4a!

c2~u,z!5
e4u1a~z!eig

e4u1eig
ei (z2/h)u, ~B4b!
8-10
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f1~u,z!5
a~z!e4u1e2 ig

e4u1e2 ig
e2 i (z2/h)u, ~B5a!

f2~u,z!5D
e2 i

z222z̄1
2

h u2 ig

e4u1eig
z21@12a~z!#. ~B5b!

Solutionsc̃(u,z) and f̃(u,z) can be simply obtained from
Eq. ~A10!.

APPENDIX C: EIGENFUNCTIONS OF THE LINEARIZED
DNLS EQUATION AROUND ONE-SOLITON

SOLUTIONS

The continuous eigenfunctions of the linearization ope
tor L are
06660
-

C~u,z!5
]

]u S c1
2~u,z!

c2
2~u,z!

D

52S F i ~z222z1
2!

h
2

4e4u

e4u1e2 igGc1
2~u,z!

F i
z2

h
1

4e4u

e4u1a~z!eig
2

4e4u

e4u1eigGc2
2~u,z!

D ,

~C1!

C̃~u,z!5s1C~u,z̄ !, ~C2!

where the corresponding eigenvalues are6 i4(z22z1
2)(z2

2 z̄1
2) @see Eq.~34!#, and2`,z,`.
The discrete eigenfunctions ofL are
C~u,z1!5 i
eig

2D sin2g
ei2s3ŵS @11e4uQ~u!#us

e4uQ~u!ūs
D , ~C3!

C̃~u,z̄1!5s1C~u,z1!, ~C4!

Ċ~u,z1!5
1

D2sin2g
ei2s3ŵS F2 i

ei 3/2 g

e4u1eig
2

ei 1/2 g

tang
@11e4uQ~u!#2

2ei 3/2 g

sing
u@11e4uQ~u!#Gus

F2
ei 3/2 g

sing
1 i

2ei 3/2 g

e4u1eig
2

eig/2

tang
e4uQ~u!2

2ei 3/2 g

sing
ue4uQ~u!G ūs

D , ~C5!

Ċ̃~u,z̄1!5s1Ċ~u,z1!. ~C6!
Here

Q~u!5S 1

e4u1eig
2

2

e4u1e2 igD , ~C7!

and

LC~u,z1!50, ~C8a!

LC̃~u,z̄1!50, ~C8b!

LĊ~u,z1!5216z1hC~u,z1!, ~C9a!

LĊ̃~u,z̄1!5216z̄1hC̃~u,z̄1!. ~C9b!

The continuous eigenfunctions of the adjoint operatorL A

are

F~u,z!5S f2
2~u,z!

f1
2~u,z!

D , ~C10!
F̃~u,z!5s1F~u,z̄ !, ~C11!

where the corresponding eigenvalues are6 i4(z22z1
2)(z2

2 z̄1
2) @see Eq.~35!#. The discrete eigenfunctions ofL A are

F~u,z1!5e2 i 7/2 gz1
2ei2s3[w2ŵ2(3/4)g]S e2uD~u!

e22uD~u!
D ,

~C12!

F̃~u,z̄1!5s1F~u,z1!, ~C13!

Ḟ~u,z1!5 i
e2 i (7/2)g

h
ei2s3[w2ŵ2(3/4)g]

3S ~24z3ue2u12jz1e2u!D~u!

~24z1
3ue22u22uz1u2z1e2u!D~u!

D ,

~C14!

Ḟ̃~u,z̄1!5s1Ḟ~u,z1!, ~C15!
8-11
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and

L AF~u,z1!50, ~C16a!

L AF̃~u,z̄1!50, ~C16b!

L AḞ~u,z1!5216z1hF~u,z1!, ~C17a!

L AḞ̃~u,z̄1!5216z̄1hF̃~u,z̄1!. ~C17b!

Here the definition forD(u) is Eq. ~56!.

APPENDIX D: RELATIONS BETWEEN DERIVATIVES
OF THE DNLS SOLITON WITH RESPECT TO

ITS PARAMETERS AND DISCRETE EIGENFUNCTIONS
OF THE LINEARIZED EQUATION

Here, for simplicity, we use Eq.~5! and chooseD, g, x0,
and w0 as its four independent parameters to calculate
derivatives of the DNLS soliton solution with respect to
parameters. They are

1

us

]us

]D
5

1

D
2 i4

eig

D sing
u1

8

D
Q~u!ue4u, ~D1!

1

us

]us

]g
5

1

tang
1

ieig

e4u1eig
1

i2e2 ig

e4u1e2 ig
12

eig

sing
u

1
4

tang
Q~u!ue4u, ~D2!

1

us

]us

]x0
5 i2D2eig24D2singe4uQ~u!, ~D3!
06660
e

1

us

]us

]w0
52 i2. ~D4!

With such a choice of parameters, Eq.~19! can be rewritten
as

s~us!5
]us

]D

dD

dt
1

]us

]g

dg

dt
1

]us

]x0

dx0

dt
1

]us

]w0

dw0

dt
.

~D5!

Upon observations on the explicit expressions of the d
crete eigenfunctions, we obtain

ei2s3ŵ
]us

]D
52 i2D sin2g@e2 igC~z1!2eigC̃~ z̄1!#

1 i2 sin2g@e2 i (g/2)Ċ~z1!2ei (g/2)Ċ̃~ z̄1!#,

~D6!

ei2s3ŵ
]us

]g
5 i2D sing@e2 i2gC~z1!2ei2gC̃~ z̄1!#

2D2sin2g@e2 i (g/2)Ċ~z1!1ei (g/2)Ċ̃~z 1̄!#,

~D7!

ei2s3ŵ
]us

]x0
54D3sin2g@C~z1!1C̃~ z̄1!#, ~D8!

ei2s3ŵ
]us

]w0
524D sin2g@e2 igC~z1!1eigC̃~ z̄1!#.

~D9!

Thus Eq.~49! follows.
n.

u,

c.
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