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Liquid light condensates
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We show that a laser beam which propagates through a cubic-quintic nonlinear optical material may reach,
for a given power, a condensed state with a collisional dynamics resembling a liquid drop. We qualitatively
describe the analogies between this system and the usual fluids and show them by simulating numerically total
reflections of these beams with planar boundaries and localized defects. We use the analogy “liquid light” to
stress the connections with the dynamics of quantum fluids, including Bose-Einstein condensates.
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[. INTRODUCTION self-focusing take place for intense two-dimensional propa-
gation in bulk Kerr-like material§4]. However, collapse can
If a laser beam is regarded as a gas of photons, two intebe limited if the nonlinear growth of the refractive index

esting questions can be formulated: Would it be possible tsaturates for high powers, and thus stable two-dimensional
produce something like a state of liquid light? and whatstationary beams can be obtairn&g6].
physical properties will this peculiar state show? We will  In the present work, we will analyze the dynamical prop-
demonstrate in the present paper that high-power laser bearagies of laser beams and pulses propagating through a non-
and pulses which propagate through certain nonlinear opticdinear optical material with the following refractive index:
materials, may reach a condensed state with physical behav-
ior resembling a(coherenk liquid droplet. We have per-

formed a numerical exploration of the properties of theseyheren,, n,, andn, are positive constants determining the
“light droplets,” inspired by the physical picture of the sur- nonlinear response of the optical material with the intensity
face tension of the usual liquids. Our numerical simulations() of the light beam. This kind of refractive index represents
reveal that the collisions of light “streamsli.e., laser the so-called cubic-quintic optical materigld—11] and it
beamsg and dropletdi.e., laser pulsed beamagainst bound- can be considered as a Taylor expansion up?tterms of
aries and localized inhomogeneities show interesting analanore complicated optical nonlinearities. The abavd)

gies with fluid mechanics. The calculations also demonstratgrows with increasing for low powers, and diminishes for
that our theoretical predictions can be tested in the frame O%igh powers due to the contribution of the negativg?
current experiments with realistic materials. term. Very interesting examples of materials that correspond

Thus, we will begin by recalling some well-known effects t the refractive index of Eq(l) are the recently reported
of laser beam propagation in cubic-quintic nonlinear media,

which are the simplest optical materials where light conden- ;4

n(1)=ng+n,l —nyl?, 1)

sates can be obtained. Next, we will analyze in detail the os II .
peculiar shape of the stationary states of the system and for b T e 1
mulate two simple ideal experiments to detect properties of o.0s|- 5[ 15 . .
“light streams” and “light droplets” analogous to the surface | %""‘.‘ ] % ik i
tension of liquids. Finally, we performed the numerical —~ =0 120k
implementation of these ideas and found that light condené 0.06= oo, 0 .
sates do exhibit surface tension properties. We calculated th= | x (um) x (um) i
main parameters involved for realistic materials, in order to § P B
stimulate the experimental test of our predictions. 2 0.041= ‘glz: ] N
i % i ] |
II. PHYSICAL MODEL 0.02F 10.2_— L . -
=60 =30 0 30 60
Thus, let us begin by recalling some well-known effects i x (Um) ]
concerning nonresonant laser propagation in nonlinear mate gy C T
rials. In optical media presenting linear growth of the refrac- 0015 B 0.045

tive index shift with light intensity(optical Kerr effect, en-

velope solitong1-3] can be produced for one-dimensional  F|G. 1. Beam powetN) vs nonlinear phase shiftg) for sta-
propagation. They can be obtained as pulses in optical fibefifonary nodeless states. Solid line, numerical; dashed line, varia-
with anomalous dispersioftemporal solitonsor as continu-  tional. Note that the power grows monotonically wigrand there is
ous beams in several planar configurations. On the othet gap (,) at 8=0. Insets: beam shapes corresponding to several
hand, wild unstable phenomena like blowup and catastrophigalues of power. Note that the intensity scaldatis different.
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I ( arbitrary units )

FIG. 4. Sketch of the numerical simulation of Fig. 5, showing
total reflection at a nonlinear-linear interface.

can be chosen to fit the usual experimental configurations by
taking ny=1.8, n,~2x10 % cm?/GW, and n,~2

FIG. 2. Potential functions given by E¢4) of the nodeless X10™* Cm4/GW?, with A=1600 nm. Thus, nonlinear ef-
states(a), (b), and (c) from Fig. 1. fects become significant for values ofin the range of

GW/cn?. The physical picture of the above nonlinearity is
nonlinearities of chalcogenide glasgd€], which show an evident: for low intensities, propagation remains in a quasi-
intensity-dependent refractive index that can be fitted by Eglinear regime. If the power is increased, nonlinear self-
(1). Our aim in the present paper will be to show that thisfocusing tends to counteract diffraction and will overcome it
change in the sign of the nonlinear response with the intenfor a critical beam flux. This would yield to blowup in pure
sity leads to the formation of light condensates with physicaKerr materials (,=0). However, for high powers, the de-
properties resembling those of fluids. These light condenfocusing effect of the termyl 2 will balance collapse, yield-
sates can be obtained in the form of continuous or pulsethg a stable two-dimensional beam.
beams. Thus, we will use the terrtight streamsand light
drops respectively, to refer to each case.

We will analyze in the first place the propagation alang
in the paraxial regime, of a continuous linearly polarized Before analyzing the dynamics of laser beams, it is useful
laser beam trough a nonlinear optical material with the abovéo take a look at the spatial profile of the lowest-order sta-
refractive indexn(l). The dynamics of the envelope of the tionary solutions of Eq(2), which are nodeless wave func-
electromagnetic wave¥(x,y,z) is given by a generalized tions of the formW¥ = y(r)e'#?, where 8 is the nonlinear
nonlinear Schrdinger equatiodNLSE) of the form[7] phase shift(propagation constanand ¥ («)=0. It can be

seen in Fig. 1 that the shape and properties of the above

2ikn £+V2\I’+2k2n (N, W|2=n,|¥|H) ¥ =0, (2) states d_epend crucially on the value®fin contrast to Iinear_
09z 't o2 4 ’ waveguidegwhere there is only one fundamental mode with
. ) 5 a given B8) nonlinear propagation yields a continuum of
where k=27/\ is the wave number in vacuum ald]  npodeless eigenstates. This is evident, since the nonlinear
=°/9x*+ 3%/ gy®. Typical values of the above parameterspeam generates its own waveguide during propagation. Thus,
we have found by numerical integration the stationary states
corresponding to Eq2) for increasing values of the nonlin-
ear phase shift, starting fro@=0. The result is a continuum
of stationary states with different shapes and increasing val-
ues of the beam powe= [|¥|?dxdy. Some of these spa-
tial profiles are shown in the insets of Fig. 1.

The form of the stationary solutions of E(R) has been
analyzed by several authof$3-15. It is well known, for
instance, that there is a minimum power threshblgl to
generate a stationary beam. Obviously, this minimum beam
flux coincides with the collapse power threshold for a Gauss-
ian beam in bulk Kerr medifl6,17]. We must also point out
i that there is a critical valug. of the propagation constant
; a0l 0"02 0,‘03 : 0,‘04 —5.05 fpr which N diverggs. Thus, foB> 8., no stationary solu—_

Power (MW) tions can be obtained. Although therg are go_od analytical
approximations for the shapes of previous stationary beams

FIG. 3. Resonance frequencies) (of the nodeless states as a [15], less attention has been paid to investigating the peculiar
function of the beam power. Dashédolid) lines correspond to form of the spatial profiles of Fig. 1 from a physical point of
variational(numerical calculations, as given by E§7). view. Thus, let us try to extract a qualitative picture of the

Ill. STATIONARY NODELESS STATES
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FIG. 5. Numerical simulation corresponding to the sketch of Figay-(f) Gray scale images of the transverssgeplane for different
values ofz (in um). (g)—(I) Maximum intensity profiles along theaxis corresponding to the above gray scale images. The scale »f the
axis is the same in both top and bottom pictures.

properties of the mentioned stationary beams, by analyzingtreams” are formed due to the competing effects of diffrac-
the changes in the shape of the eigenstates of(Bqgfor  tion, the Kerr term (,), and the self-defocusing nonlinearity
growing values ofs. (n4), similar to the way van der Waals forces form liquid
As can be appreciated in Fig. 1, low values of the beandroplets in gas-liquid condensation. Thus, low-power beams
flux N (i.e., B—0) lead to light distributions with quasi- (i.e., 3—0, quasilinear regimeyield to Gaussian-like spatial
Gaussian profiles. Ag is increased, the beam flux grows distributions with boundaries less sharp than in the case of
and the spatial shapes tend to narrow, approximately keepinggh-power beams, where the distributions are close to
the Gaussian shape and reaching a minimum width and super-Gaussian functions. The analogy is more evident in the
maximum peak for an intermediate power. For larger valuegase of pulsed beams, where “light droplets” will be ob-
of B, the beam flux grows rapidly and the peak intensity oftained. We will analyze this case in the last section of the
the light distribution saturates due to the effectmgf The  present work.
light distributions tend to super-Gaussian profiles and thus Thus, if one assumes the previous picture, the next step is
high-power stationary beams yield wide flat-topped profilesto formulate ideal experiments to detect the typical behavior
The slope at half maximum grows with the power and tendf liquids in the liquid light states mentioned, like the exis-
to a maximum constant value, with the result that the shapetence of properties resembling surface tension.
of high-power beams differ only in the length of the flat top.
If we reconsider the previous scenario in the light of the
statistical mechanics of a “photon gas,” it resembles a phase
transition from a gas cloud into a liquid drop. The analogy To get a deeper physical insight into the properties of the
would be as follows. In Eq2) the diffraction (V2¢) can be  above light distributions, we performed a variational analysis
interpreted as a kinetic terigthermal expansion of the pho- of the frequency spectrum of the small amplitude oscillations
ton gag and the nonlinearity can be regarded as a “coolingof slightly perturbed stationary beams. The perturbation can
effect,” opposed to the kinetic ternV?y. Stable “light  be experimentally implemented with a thin lens, which adds

IV. SMALL AMPLITUDE OSCILLATIONS
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FIG. 6. The same as Fig. 5 for total reflection at anr@ air hole.

a slight curvature to an input Gaussian beam. As we willThe widths of the perturbed beams evolve, oscillating around
show, the beam will oscillate periodically like an elastic ma-the minimum ofll, like classical particles in potential wells,
terial forced with an instantaneous perturbation. Thus, the playing the role of time. In Fig. 2, we plot the shapes of the
frequency of the oscillations can be considered as a measurprevious potentials for three different values of the peak
ment of the rigidity of the stationary state. The variational power, corresponding to the shapes of the insets in Fig. 1. As
approacH13,14,1§ starts by describing the evolution of the can be seen in the plot, the highNr the deepedl. The
beam by means of the following trial function: minimum width of the potential is achieved for tfi® eigen-
state. The variational analysis, although not exact, provides
r . 2 the widths of the stationary states, as a function of the
W(r.z)=y(z)exq - 2w2(2) +ib(z)r, 3) beam power. They are given by the valueswdbr which I1
is minimum. From a simple inspection of E@) the follow-
wherey, w, andb are quantities depending ancorrespond-  ing value for the width of the beam is obtained:
ing to the peak amplitude, beam width and curvature, respec-

2

tively. Following the standard variational procedure, after 8n, N2
minimization of the corresponding Lagrangian density over ng _ (5)
the set of trial functions from Eq3), an ordinary Newton- 9n; N—No
like differential equation is obtained for the above parameter
potentials for equivalent particles in the following fofr]:
1 nyN 2n,N?
:<22_ 2 L wel U “) No= 2277 : ®)
k°ng 47No 97ng k“ngnz
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The value ofNg is the small gap in the beam power gt 7=-10
=0 of Fig. 1. It is straightforward to calculate the minimum |
width w,,, of a stationary beam, which is achieved f§r
=2Ngy and is given byw,,=(8/3kn,)\wn,/ny. For the ex- |
perimental values given above, it is easily obtained that @
~6.4 um, which gives peak powers in the range of
2 GWr/cnt to generate the stationary states. Thus, the varia
tional model predicts a minimum beam power to generate the (@)
stationary states that we numerically calculated above. Obvi-
ously, Eq.(6) coincides with the critical collapse threshold
for a Gaussian beam in a bulk Kerr matefia¥]. The com-
parison with direct numerical calculations, as can be appre:
ciated in Fig. 1, gives very good agreemésrtror below 1% \
for low values of3. However, it must be stressed that, as the
shape of the stationary states deviates from the Gaussian pr = \
file, the fit of the theoretical and numerical curves is only '
qualitative.

In the second place, notice that by expandihground its (b)
minimum it is possible to obtain the frequencieof small
amplitude oscillations along of perturbed stationary states, | z=10
as functions of the main parameters involved, and thus the
beams will behave as harmonic oscillators. Therefore, to ge |
a more physical picture of the light condensates, it is inter-
esting to considew as a measure of the “rigidity” of the = |
oscillators corresponding to the different stationary states ‘
Hence, after a simple Taylor expansion around the minimu

(d)

2=

of IT, we obtain (©)
97 (N/Ng—1)%? FIG. 7. Numerical simulation of the collision of a light drop
V= 3.2 > . (7 against a planar boundatgot visible in the graphs The values of
4\/§k NoNa N z in each picture are the distance of the center of the pulse to the

origin of coordinates. The paper planexig andz is perpendicular

In Fig. 3, we show a comparison between the variational the paper plane. The experimental parameters are given in the
formula (7) and the numerically calculated frequencies forext.

the different eigenstates of the system. To carry out this cal-

culation, we have added a small curvature to each eigenstaf@y esaplish the gas-liquid frontier above which beams will

of the system, propagated them, and performed the Fourigfa e some kind of surface tension that can block the emis-
transform of the amplitude oscillations. The variational i1 of radiation at total reflection of the beam.
analysis reveals that a maximum rigidity of the light conden-

sate is achieved for a given value Nf(or equivalentlyg).

The critical value ofN corresponding to the maximum fre- V. NUMERICAL SIMULATIONS
uency can be easily calculated by takohg/dN=0, and is . .
given )t/)y y y takihg In the present section we analyze numerically the propa-

gation of a light condensate through a bulk cubic-quintic
nonlinear optical material in the presence of boundary con-
- — 4N,. (8) ditions and localized inhomogeneitiéisoles. The propaga-
k?ngn, tion equation for the above waveguide in the paraxial regime
is a generalized NLSE, including the effect of boundaries or
In Fig. 3, we observe that the variational method has onljholes. The experimental parameters are in the same range as
a qualitative agreement with the numeri¢sblid line) calcu-  in the previous sections.
lation. We can argue thad., is a critical value for the be- Our computer simulations show that there is a deep anal-
havior of the beams at total reflection. Over this valudNpf ogy between incompressible fluid dynamics and the interfer-
the stationary states become flat topped and thus the liglence behavior of light condensates at boundaries and local-
distributions will show a constant density of photons aroundzed discontinuities. This can be understood by thinking of
the center of the beam, and a sharp decay at the boundafight condensates as having some kind of “surface tension,”
These beams will show a higher stability against small peranalogous to that of a liquid droplet. Considering that dif-
turbations at the boundary. This can be qualitatively underfraction in the NLSE plays the role of a kinetic energy term,
stood by taking into account the fluid picture mentioneda Kerr-like material can be regarded as a “cold medium” that
above. If one considers that a gas-liquid phase transition itends to compress the photon das., beam self-focusing
taking place as the power is increased, the maximum rigiditfrrom this point of view, when collapse is stopped due to
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quintic defocusing terms, the situation is similar to dropletresponding NLSE becomest13 dimensional, and extra dif-
condensation due to van der Waals forces. ficulties are added to the numerical simulations. Not only is
As in the case of liquids, one can expect surface tensiothe increase in the length of the calculations inconvenient but
properties from the resulting light condensates. To show this0 is the representation of the data obtained. The need for
we present two particular cases from our numerical investianalytical tools like the variational model is more evident in
gation. Both simulations correspond to a radial stationaryhis case. _
fundamental state of the propagation equation. The beam is Thus, taking into account the data obtained for the two-
25 um wide and its peak intensity is 2.0 GW/ém dimensional case of laser beams, we will analyze the prop-
The numerical simulations were performed with standarcerties of pulsed beams, which propagate in cubic-quintic ma-
Fourier beam propagation method in a 1024-point grid. Interials, qorrespondlng to the same mater_lal parameters as in
Fig. 4, we show a sketch of the numerical calculations ofthe previous cases. The result is plotted in Fig. 7, where we
Fig. 5, where we have simulated internal reflection inside d'ave simulated the total reflection of a pulsed beam for the
bulk cubic-quintic material surrounded by air. This can becase of anomalous dispersion. It can be seen that the effect of
done by adding to Eq(2) a term &2n,An(x,y)¥, n, the planar boundary between the nonlinear and the linear
+An being the linear refractive index of the nonlinear ma-material(not shown in the picturgss to generate a corona of
terial. To simulate total reflection at a planar interface be-droplets in a similar way as happens in the crushing of a
tween the nonlinear material and air, we choge-1.0 and liquid drop. In fact, the dominant effect in the generation of
An=0.8 for the half planex>0 andAn=0 for x<0. The smaller pulses at the_ boundary is mo_dulati_onal instability
interference pattern when the beam reaches the boundak§-19—29 around the rings formed by diffraction. .
clearly resembles crushing of a liquid drop thrown toward a Ve must note the deep connection of this case with the
solid wall which splits into smaller droplets. We have per-dynamics of Bose-Einstein condensat@&ECs in alkali-
formed a large series of numerical explorations for differentMetal gases. In fact, the collective dynamics of a BEC in the
angles of incidence, from the quasielastic to the complet@dsence of a trapping potential is given by a NLSE which is
inelastic range, showing that the surface tension effect provsually called the Gross-Pitaevskii equation:
vides the beam with a high stability. 2

v h
- 2 2 b —
In Fig. 6 we plotted a collision with an §m air hole it o VY ey WP —co|W[*W =0, (9

immersed in the bulk nonlinear material. In this case, we US§ harew is the wave function of the condensate ancand
An=0.8 inside a circle of 8um radius andAn=0 outside . 4re positive constants describing, respectively, the effect
it. The rest of the parameters are set equal to the previoyss 5 negative scattering length and repulsive three-body elas-
simulation. The effect is analogous to that of a surface tnfc jnteractions. The previous equation for the coherent cloud
sion: The beam is strangulated when it intersects the holgg formally the same as E€Q). Thus, it is evident that simi-
However, it recovers its original form if the angle of inCi- |5 hehavior as shown in Fig. 7 could be expected for BECs
dence is below a critical value. Both simulations show that, it an adequate experimental configuration. In fact, the
light condensates behave in a similar fashion to IIqUId2ossibility of gas-liquid phase transitions in Bose-Einstein
against collisional perturbations. The analogy with surface.qnqensates has recently been put forward by several authors

tension properties can_b_e qualitatively_ur!derstood as a b 23]. This means that for dense enough BECs one could
ance between the radiation pressure inside and outside t pect a phase transition from a gas cloud técaherent
beam. Inside the beam, the refractive index is greater thaﬁhuid drop.

outside, due to the nonlinear effects. However, a detailed
understanding of the phenomenon should start from a ther-

r_nodynamical point of view, defining quantitative coNncepts  |n the present work we described the phenomenon of light
like the temperature and entropy of the beams for a giveRongensation in nonlinear optical materials with cubic-
nonlinearity. This is a deep problem that we leave to furtherquimiC nonlinearity. To support the analogy between light
research. condensates and liquids, we tested the surface tension prop-
VI. PULSED BEAMS ertig; of “Iigh.t streams” and “Iight drops” by simulating
collisions against planar boundaries and localized inhomoge-
If the beam is pulsed, time must be included in the simuneities. Our predictions are fully verifiable in the frame of

lations. Thus, an extra second derivative with respect t@urrent experiments and open interesting connections be-
“proper time” should be added to Eq2) in order to take tween nonlinear optics and the dynamics of quantum fluids,
into account the effect of second-order dispersion. The corincluding Bose-Einstein condensates.

VII. CONCLUSIONS
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