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Quadrupole-mode transfer function and the nonlinear Mathieu instability
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We show that the quadrupole-mode transfer functiQfF) is a powerful nondestructive tool to measure
properties of dynamical systems. In particular, we discuss the feasibility of using the QTF to measure the
betatron tunes and the beam emittances with a beam-position monitor system. The QTF can also be used to
compensate the optical mismatch during the beam injection process. However, it is less effective than the rf
dipole method in overcoming the intrinsic spin resonances for polarized beam acceleration.
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[. INTRODUCTION pole field. A fast field-changing quadrupole can be used to
produce betatron tune jump for overcoming intrinsic spin

The parametric resonances of dynamical systems haw@sonance$ll,12, and for studying a strong betatron reso-
been studied extensively in the past. It is a powerful tool innance[13]. Similarly, a harmonic tune modulation can be
characterizing chaos and properties of many dynamical sygised to study the effect of enhanced-diffusion process at a
tems[1]. Naturally, it has many applications in the physics of betatron resonancgl4]. This paper studies physics of a
beams. For example, the parametric resonances in the longfansverse quadrupole-mode transfer function and its appli-
tudinal phase space induced by rf cavity voltage and phasgations, and the corresponding dynamical systems associated
modulations have been employed to manipulate beam buncHith the nonlinear Mathieu instability.
for various application2,3]. The rf cavity phase modulation ~ We organize this paper as follows. In Sec. Il, the effective
induces dipole-mode oscillations of the beam bunch in thélamiltonian in the presence of an rf quadrupole is reviewed,
synchrotron phase space, and thus it may be used to active\lyhere the stable and unstable fixed points are discussed. Sec-
Compensate the Synchro_betatron Coup"ng resondp‘@eﬂ tion Ill examines some applications of rf quadrUpOIe-mOde
can also be used to create a bounded chaotic region in tHgansfer function, such as measuring the beam emittance and
longitudinal phase space for a controlled bunch dilufish ~ the betatron tune by using an rf quadrupole and the quadru-
The rf cavity voltage modulation at the second synchrotrorPOle beam-transfer function of beam-position monitor
sideband has also been applied to alleviate the coupled bunéBPM), compensating the injection mismatch with rf quadru-
instability driven by the parasitic mod¢6], and to manipu- poles, and overcoming the intrinsic spin resonances with co-
late bunch shape for bunch length compres$idn herent quadrupole excitation. The conclusion is given in Sec.

The idea of bunch manipulation has recently been exV!- Properties of the nonlinear Mathieu instability and the
tended to the transverse phase space, where the coheréffength of the quadrupole-mode transfer function for the
dipole-mode excitation driven by a transverse rf dipole fieldBoltzmann beam distribution are discussed in the Appen-
has been successfully applied to overcome intrinsic spifflixes.
resonances at the alternating-gradient synchrq@s) [8].

The rf dipole, excited adiabatically, changes the beam closed ||, BEAM DYNAMICS WITH rf QUADRUPOLES

orbit without changing the phase-space area. Since the co- ) o
herent betatron oscillation amplitude vs the rf dipole modu- In the Frenet-Serret coordinate system, the Hamiltonian
lation tune is well known, one can use this method to meafor particle motion in the transverse phase-space coordinates,
sure the betatron tune without suffering emittance dilutionin the presence of rf quadrupoles,[I5]

[8]. However, a coherent betatron dipole-mode oscillation

can change th_e betatron tur_le thgt one is measfurir)g. Thiswill ly’2+ EK (s)y2+£Krf(S)y2 codwt+6p), (1)
produce additional uncertainty in the determination of the 2 2 2

betatron tune.

With advanced data analysis techniques, the dipole-mod¥herey,y’ are phase-space coordinates representing either
transfer function can be used to reveal hidden dynamicdihe horizontal or vertical phase spag(s) = B1(s)/(Bp) is
variables in many complicated dynamical systems. Some dhe designed quadrupole strength of the accelerator lattice,
these data analysis techniques are the orbit response matf(S) = dB,/dx is the gradient function of the vertical mag-
method [9], and the model independent analysis methodnetic flux densityK(s) =B (s)/(Bp) is the strength of rf
[10]. Both techniques have been successfully implemented ifuadrupoleBp is the magnetic rigidity of the bears;is the
improving the performance of high intensity accelerators. longitudinal coordinatew,, is the modulation angular fre-

On the other hand, the power of quadrupole-mode transfeguency, and, is the initial phase angle of the rf quadrupole.
function has not been explored. There is only a limited studylransforming the phase-space coordinate to the action-angle
on beam dynamics for a time dependent transverse quadrmariables, one obtains an effective Hamiltonian near betatron

sideband agsee the Appendix A and Ref15])

*Electronic address: weguo@indiana.edu H(Jy,éy)~vyJy+J,Cico42d,—NO—vy,0+x), (2)
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where we assume that the modulation tune= w,/wq IS
near a quadrupole betatron sidebafd,—n| and w, is the
angular revolution frequency of the beam. The Hamiltonian
tori will be resonantly deformed.

A. Linear Mathieu instability

We transform the Hamiltonia(®) into aresonance rotat-
ing frameby using the generating functidﬁ2=(¢y—%n0
—2v,0+ x)J to obtain a new Hamiltonian:

H(,1)= 81+ C;l cos 2, 3
where 1=J, ¢=¢,—3n0—zv,0+x, and 5=|vy—3n|
— v, is called theresonance proximity parameteSince
the Hamiltonian(3) is time (#) independent, the Hamiltonian

is a constant of motion. It is equivalent to take the Poincare _o.004

surface of section at every) turns.

In the region of—|C;|< < +|C,|, the beam encounters
the linear Mathieu instability driven by the rf quadrupole.
The Hamiltonian(3) is stable wher §|>|C;|. Introducing
the normalized coordinates:X= 2l cosyy and P=
— /21 siny, the Hamiltonian is transformed to

1
H==

5 @

1
(6+C)X2+ 5(8-Cy) P2,
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FIG. 1. Top left: stablgsolid line) and unstabléshort dashed
line) fixed points vs the effective resonance proximity parameter
A=4lay, for the effective resonance strength parametgr
=0.10 mm. The plots labelefl), (2), and (3) correspond to the
vertical long-dashed lines marked as 1, 2, and 3, respectively. The
Hamiltonian isH=Al —c,l cos 2//+%I2 with X=/2I cosy and P

— 2l siny.

A torus associated with a constant Hamiltonian value is elwith ;=0 and#. The corresponding unstable fixed points

liptical, and the fixed stable point is located at the origin with
lstp="0, or Xs,=Psp,=0. The aspect ratio of the ellipse is

\/|(8+ C,)/(6—C,)|. Adjusting thes or C, parameters, one
can adjust the shape of admittance ellipse, and thus the
guadrupole can be used to compensate injection mismatch

B. Nonlinear Mathieu instability

are located at

1
——(6-Cy) if &>Cy,
Qyy
if

)

rf up=

O _Cl< 6<Cl,

with ¢,= /2 and 3m/2. The top-left plot of Fig. 1 shows
the action of the fixed points vs the parameterfor a pa-

When a detuning term is included, e.g., in the presence ofameterc,=0.10 mm(see Appendix B The plots labeled

octupole magnets, the Hamiltonian becomes

1
H=6l+C,l cos 2+ anyﬂ, (5)

where we neglect effects of higher order nonlinear reso
nances. The nonlinear detuning paramedgy may arise
from the space charge force, the concatenating effects of se
tupoles, and other higher order multipoles. For example, th
detuning parameter due to an octupole i&,
=(1/16m)$(B3/Bp) B;ds, whereB;=3°B,/9x? is the octu-
pole field strength.

Fixed points can be obtained from the Hamiltonian's

equation:l =0 and =0, where the overdot represents the
time derivative. The general property of the Hamilton{&n
is discussed in Appendix B. It depends only on two indepen
dent parametersA=d/ay, and c;=—C;/ayy. For ex-
ample, ifa,, <0 andC, >0, the stable fixed points are given
by
! (6+Cyp) f
Qyy
if

§>—Cy, ©

I sfp—

0 6>C; and 6<—Cy,

06650

(1), (2), and(3) correspond to the parameters marked with
the vertical long-dashed lines 1, 2, and 3 respectively. Note
that the region(1) is below the bifurcation threshold and the
phase space is bifurcated into two islands in redi®nand
three islands in regiofB).

IIl. APPLICATIONS OF RF QUADRUPOLE-MODE
TRANSFER FUNCTION

X-
e
A. Emittance and tune measurement

It was first pointed out by Miller that the signal from a
BPM can be used to derive the beam moméh€s, and thus
the beam emittance can be determih&d. There were con-
siderable efforts to measure emittance using BPMs in linacs
[18]. Application of this idea to storage ring has not been
fully successful because the rms signal derived from a BPM
is weak and the rms beamwidth cannot easily be modified by
a quadrupol¢19]. Here we present an idea in enhancing the
weak rms signal for the measurement of emittance by the rf
quadrupole-mode transfer function, and we carry out numeri-
cal simulation to justify our claims.

The induced surface charge density on a conducting cyl-
inder by an infinitely long line charge is

5-2
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a2—r2 @ .
o(r,¢,a,0)= o
2ma g2+ r2—2ar cog O — ¢)
=5 1+2i§1 5) cosk(®@—¢) |, (8

where\ =Nge/(\270 ) is the line-charge densitg is the 2000 2100 2200 2300 2400 _ 2500
charge of the orbiting particléNg is the number of particles Turn Number
in a bunch,o is the rms bunch lengthy (¢) is the location 4 . . . '
of the line charge in cylindrical coordinate systera,®) is e s b ]
the position on the conducting cylinder with radias We i3
expand the induced surface charge density in power series of g ot ]
r/a because the radius of the charge particle is much 2
smaller than the BPM chamber radiasLet the beam dis- g— 1r ]
tribution function bep(x,x’,z,z"), where &,x') and (z,z") < 0 L . g
are the transverse phase-space coordinates of betatron mo- 0 0.1 0.2 0.3 0.4 0.5
tion. The distribution function is normalized by Tune

Jp(x,x",z,2")dxdxX dzdZ =1. The induced surface density

) —(x)2 - .
on the cylinder becomes FIG. 2. Top: the second momenx€) —(x)?) derived from nu

merical simulation with parameter§=0.0025, C,=0.0005, v,
=8.7, andv,,=0.395. Bottom: fast Fourier transfortfrFT) spec-
o-(a,)=f o(X,2,a,0)p(x,x",z,2")dxdzdxdz trum of the second moment, where we obtaby=3.405
X10°% m? andb;=6.7x10"% m?. Note thatb, and b, are de-
{ (X) (z) fined as twice the Fourier amplitude.
1+2—cos.+ 2—SII’1.
2ma : e
and/(z?) is the rms beamwidth iz direction. Although the
) (x > dc componenty, of the quadrupole moments, is much
c0s 20 +4——sin 20 + - larger than the modulation tertmy, the coefficientb; can,
however, be accurately determined by a Fourier transforma-
(9) tion of the quadrupole pickup. Here the coefficidnt is
called the quadrupole-mode transfer function.

When an rf quadrupole is adiabatically turned on, where First, we consider a linear system without nonlinear beta-
the modulation tune is near a betatron quadrupole-mod&on detuning. The stability condition for the linear Mathieu
sideband, the bunch distribution will follow the invariant el- equation is|5|>|C,|. The quadrupole-mode transfer func-
lipse shown in Eq(4), and the ellipse rotates at a tune of tion b, becomegsee Appendix €
/2. The rms beamwidth becomes

2C1Bx€o

<X2>:<X>2+%(<X2>+<P§>)+%((X2>—(Pf>)sinvm0, Je-c2’

(10 whereg, is the betatron amplitude function at the location of

; the quadrupole-mode monitor.
where X= /2 cosy, and Py,=—/2 siny, are the . .
Bl x cosi Byl sin s Measurement of thb, coefficient vs the machine param-

normalized betatron phase-space coordinates. A quadrupole h 1 !
pickup will see a dominant harmonic of,, i.e., eter o= |V §n|_— 2vm (by varyingvy) can be used to de-

termine the emittance,. This provides a powerful experi-
mental method to measure the beam emittance. Figure 2
shows the rms quadrupole moment as a function of revolu-
tion turns from an example of multiparticle simulation,
where a sample of 10000 particles is initially distributed in
Gaussian distribution and the evolution of the distribution is
governed by a one-turn linear map, an rf quadrupole kick,
and a thin lens octupole kick. The strength of the rf quadru-
pole increases adiabatically in the first 1000 turns, while the
modulation tune is maintained at a constant value, and the
where quadrupole momentx?)—(x)?, is measured from 2001 to

4000 turns. The coefficieftt; is obtained by a Fourier analy-

bo=2({(x)?—(2)?—(z%)) +(X?) +(P%), (12 sis of the quadrupole moment data.
Figure 3 shows the parametéf vs the derived Fourier
by=(X?)~(PJ), (13 amplitude 12 from data of multiparticle simulations with

[ 4=

a

b= (14)

3T
oAy
37

"2

o(a,00+o(a,m)—ala,

2

qz=

T
a,=|tola

o(a,00+o(a,m)+ala, >

1
=—2(b0+ b, cosv,,0), (11
a
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FIG. 3. Data obtained from a Fourier analysis of numerical € (n-mm-mrad)
simulations. The parameteéf is plotted as a function of ﬂ:i{. The
parameters ar€,=0.0005 with «,,=0, —100, —200, —400, FIG. 4. Comparison between the measured emittaagdr¢m
—800, and—1000 mi'%, respectively, in different symbols from numerical simulation dajeaand the initial input emittancee( hori-
the leftmost to the rightmost. The straight line is shown to guide thezontal axi3. A total of 150 sets of numerical simulation data with
eyes. The data are fitted to obtain the beam emittance. The inpuiifferent machine parameter€{( ranging from 0.0005 to 0.005,
rms beam emittance of all simulations isrInm mrad, and the anda,, ranging from 0 to— 1000 ') and different initial beam
betatron amplitude function is 16.7 m. distribution functiond Gaussiarn(circles and uniform(diamond$]

are included in this plot for comparison. The spread arises essen-
an initial emittance 1.8 mm mrad andC;=0.0005. Using fially from the nonlinear detuning, and the strength of tGe
Eq. (14), one can deduce emittance from the graplof/s  Parameter.
1/b? to be 0.9% mm mrad. We note that, indeed, the curve
is linear for the linear betatron system, and the slope can
used to derive the emittance quite accurately. The intercept
of the line with the vertical axis ab=C,
determine the betatron tune.

uniform distributions. Exact expression for the coefficient

r a Boltzmann distribution is derived in Appendix C.

For an actual beam-emittance measurement, the machine
can be used 10 gheration condition should be set such that it stays away

S g . from the nonlinear Mathieu bifurcation region, i.e., in the
In & realistic machine experiment, the accuracpptan  region (1) of Fig. 1. The procedure to measure beam emit-
be increased by increasing the number of measurement tums;nce in a storage ring goes as followd) Minimize the

Naturally, the number of data point is also limited by the jinear coupling, and measure the nonlinear detuning param-
machine stability, such as the tune stability, effects of beta‘eteraxx; (2) Determine the rf quadrupole strengfh, using

beat, etc., and the available memory of the data recording,o method derived in Appendix A3) Measure the quadru-
hagé\lljgt?c.)n(m) s valid only for a linear betatron motion pole transfer functioi, as a function of the modulation tune
However, Fig. 3 shows tha¥ vs 1b? derived from numeri-. v (Or the resonance proximity pa_rameté); (4-) Use the

» MY 1 measured data df; vs & to determine the emittance. The

cal _simulations for nonzero detuning parameter follows &arameteiC, depends on the strength of the rf quadrupole
family of nearly linear curves. The slope is reduced even fokjg 4 and the value of the betatron amplitude function. It

the same initial emittance. Appendix C discusses the effect a1 not be too large to cause large betatron-function per-
nonlinear detuning parameter on the beam distribution, ang,pation.

derives theb, coefficient for the Boltzmann beam distribu-

tion. We show that the slope is indeed reduced due to the
nonlinear detuning parameter. Nevertheless, we can also de- ) . ) o
rive the beam emittance and the tune of the dynamical sys- Optical mismatch during the injection can cause un-

B. Mismatch correction

tem by using a phenomenological ansatz: wanted emittance dilution. Let the acceptance ellipse at the
injection point of a synchrotron be
B 2C;Breo 15 yy>+2ayy' + By'?= e, (16)
1_ 2 1
V(8+F aryy€0)?—C3 where «, 3,y are the Courant-Snyder parameters of a syn-
chrotron. The injection ellipse is

where the nonlinear detuning coefficiemt, can be accu- 24 20vV + 12— ¢ 1
rately measured by using the method proposed in Réi. e Y+ Ay 0 17
The derived emittance agrees well with the input emittancdor a mismatched injection optics, whesg,8;,v, are the

as shown in Fig. 4 witlF~2.5=0.2 for both Gaussian and Courant-Snyder parameters from the injection line. Trans-

066505-4
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forming the injection ellipse into the normalized phase space  0.002

of the ring optics withY=(1/{/8)y and P=(1//B)(By’

+ay), we find
turn =0

a,Y2+a,Y P+a;P2= ¢, (18) 0.001

where a;=g/B1+ (a1~ B12)% BB1, a=2a1B—ap;/
B, andas=B1/B. The major and minor axes of the ellipse X oot .
are given by F+:(me+,/[:2mm_1)1/2 and F_=(Fum turn = 1000

—F2,.—1)"2 where the mismatch factd,, is

-0.001 r { R
turn = 3000

1
me=§(y1ﬁ+,817—2a1a). (19

The mismatch angle between the major axis ¥rakis is —0.002, o.01 0 0.01 0.02

X (m)

1 a,
Ymm= > arcta a (20

a—a FIG. 5. The mismatched beam ellipse with |, at the injection

(Oth turn is captured by an rf quadrupole, and the rf quadrupole
The ellipse of the mismatched injection beam will rotatestrength is adiabatically turned off to restore the matched beam
because of the betatron motion. If the betatron motion wergondition at the 3000th turn. The beam ellipse at the 1000th turn is
linear, the injection ellipse would rotate forever without also shown for reference.
emittance dilution. In the presence of nonlinear detuning, the
bunch will filament and fill an area ofF2 . The rms enjit-. =0.235 m'!. The corresponding mismatch factors are
tance of this diluted beam depends on the particle distribu  —1.08728,F, =1.2305, andF_=0.81268. The mis-

tion, and the rms emittance dilution factor is approximately, o haq ellipse at the first-tumn is snapped by the ellipse

Fmm- induced by an additional rf quadrupole, where the parameters
for the rf quadrupole aré=0.01, C;=0.003808 7, and),
=1.05649. The rf quadrupole is adiabatically turned off
Since the invariant torus is naturally elliptical when the rf from 2000 to 3000 turns. The ellipses at injecti@th turn),
quadrupole is modulating at,~[2v,—n|, the torus can be at 1000th turn, and 3000th turn are shown in Fig. 5. The
used to compensate the mismatch. In other words, the admibeam ellipses can be perfectly matched by an rf quadrupole.
tance ellipse can be adjusted by an rf quadrupole such that it
matches the |nj_e.cted bgam. I\_lote that if the injected beam is 5 \ricmatch compensation employing nonlinear Mathieu
off-center, additional dipole is needed to compensate the
closed orbit, i.e., the rf quadrupole can only modify the ) ]
Courant-Snyder parameters. In many accelerators, the nonlinear betatron detuning
To match the ellipses, we need to adjust the shape an§'ms are unavoidable. The method discussed in the preced-
orientation of the acceptance ellipse. When the rf quadrupol#)d section can still be applied in the parametric redibrof

is located at the injection point, the match conditions are Fig. 1. However, we can also use the nonlinear Mathieu in-
stability island in region(3) of Fig. 1 for mismatch compen-

c, F2-F2 sation. Appendix B discusses the general properties of the

5 m (21) nonlinear Mathieu Hamiltonian. Figure 6 shows an example
R of the phase-space ellipse for a nonlinear Mathieu Hamil-

tonian (5) with parameters§=0.02, C;=0.007 464, and

1. Mismatch compensation for linear systems

instability island

and
ayy=—100 m 1. The Hamiltonian values of these tori are
(7= 2¢mm) v for 6>0, ’
| Go=2¢mm/vm for <0, (22 0.04 2
0.02

where ¢, F+, andF_ are mismatch phase and factors, ~"
andéy is the rf quadrupole initial phase angle. If the rf quad- " o
rupole is not located at the injection point, the phase differ-
ence between the rf quadrupole and the injection point —%2
should be added to or subtracted frah,,. After the beam 0.
injection, we can adiabatically turn off the rf quadrupole. -0.04 -002 0 002 004 0 0.0002  ~ 0.0004
. 4 .. . . . X(m'™) Area (nr-m-rad)

Figure 5 shows the evolution of an injection ellipse in a
numerical simulation where the betatron functions for the F|G. 6. Left: the invariant tori of the nonlinear Mathieu
acceptance ellipse arer=1.5, B=16.692 m, andy  Hamiltonian with parameters: 5=0.02C,=0.007 464, a,,
=0.1947 m!, and the betatron amplitude functions of the = —100 m . Right: the ratio Vi mg/lmn as a function of the
injection ellipse are a1=1.4, B;=12.6 m, and 1y, phase-space area of invariant tori inside the middle island.

1/,

Aspect Ratio
=]

-
n
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H,;=8.27x10"% m andHg,=7.86<10 " m. The invari- %% _— 0.005 N
ant torus rotates in the phase space at a tung, (. e )
To achieve mismatch compensation, the phase-space are . ] X ]
of an ellipse enclosed by the separatrix torus must be large
than the phase-space area of the injected beam, and the &
pect ratio must be equal. The actibnof a given torus ata . , 0,005 ,
constantH is -0.04 0 0.04 -0.04 0 0.04
X (m) X (m)
| = i[—(5+clcosz¢)+ V(8+Cy cos )2+ 2ary H]
Qyy (23) 0.005 T 0.005 T
' - Turn = 1000 -, Turn = 3000
for the inner islandsee the left plot of Fig. 6 The aspect ¥ ¥
ratio of a torus is 0 0 ]
ly=miz —(8—C1)+ V(86— Cy)*+2ayH 24
= ) -0.005 L -0.005 L
ly=0 20.04 0 0.04 20.04 0 0.04

—(8+Cy)+(8+Cy)?+2ay H

X (m) X (m)

apd the phase-space area '.S @eldy. The right plot O.f FIG. 7. Left plots: the injected beam is mismatched at the top-
Fig. 6 shows the aspect ratio as a function of the availablgyg ot Filamentation is clearly shown in the bottom-left plot at
phase area inr m rad. The formula for the bucket size is e 1000th turn for the mismatched beam. Right plots: using non-
complicated. However, one can use the condition that thgnear Mathieu resonance to match the injected beam shown in the
minimum actionl s, min of the separatrix torus must be larger top-right plot, we find that the beam emittance is preserved at the
than 6, of the injected beam to ensure enough phase-spacooth turn even in the presence of nonlinear detuning parameter.
area for the injected beam, i.e., The solid lines in this graph show ther2admittance ellipse. See

s c.\2 the text for parameters used in these simulations.
[C1

——|1-—\/—=] >6¢;.

a ( o ) °

yy

st, min— (25
3000 turns, and the rf quadrupole is adiabatically turned off

In summary, the procedure of mismatch compensation isrom 2001 to 3000 turns. Based on our discussion above, the
given as follows. First, we adjusl,/é to shape the aspect parameters for the rf quadrupole and the octupole are set at
ratio of an admittance torus, changg,, to provide enough  §=0.02, ay,=—100 m !, andC,=0.007 464 with a mis-
bucket area for the injection beam, and adjust the the phasaatch angled,=1.0594. The octupole was treated as a lo-
of the rf quadrupole to match the orientation of the ellipsecalized kick element. The left-top plot in Fig. 7 shows the
with match conditions:yl na/ I min=F+ /F_, and 8= (= initial mismatched beam injected into an accelerator, where
= 2¢mm)! v, Wherey,, F., andF_ are mismatch phase the 20 phase-space admittance ellipse is also shown. The
and factors. Here the in the 6, matching condition arises left-bottom plot of Fig. 7 shows particle distribution in the
from the fact that the major axis of the ellipse is in tihe phase space at 1000th turn, where one observes filamentation
= 77/2 direction. of particle distribution. On the other hand, if the rf quadru-

We should note that the shape of the tori is not exactlypole is properly implemented, the matched ellipse as shown
elliptical and the aspect ratio depends on the phase-spadae the top-right plot of Fig. 7, the resulting emittance is pre-
area(see Fig. 6, and hence it is difficult to compensate mis- served as shown in the bottom-right plot of Fig. 7. The rms
match fully. In realistic applications, the ratio between theemittance measured at 3000th turn is about %.48n mrad
major and minor axes of a weakly mismatched injection elwithout mismatch compensation vs 60Imm mrad with
lipse in normalized phase-space is close to 1, hence we canismatch compensation.
choose|§|>|C,|, where the aspect ratio is close to a con- A slight increase of emittance arises from mismatch com-
stant if the beam emittance is small. We can also choose thgensation using nonlinear Mathieu islands arises from torus
aspect ratio matching condition only for the rms actligp,  deformation. The left plot of Fig. 8 shows th&0c ellipse
=eol2 ellipse, wheree, is the rms beam emittance. Our at injection and the filamented ellipse at 3000th turn. On the
simulations show that the final emittance can be well preother hand, if the ellipse is mismatched in the phase coordi-
served by this simplified matching condition. nate, the resulting phase-space dilution will be large as

In our multiparticle simulations, we use identical mis- shown in the right plot of Fig. 8 for thed ellipse, where the
match parameters as we have used in the preceding sectidnitial phase mismatch is 90 °. Results of numerical simula-
i.e., the admittance ellipse parameters ane=1.58 tions also show that the emittance is not very sensitive to the
=16.692 m, y=0.1947 m!, and the injection ellipse is aspect ratio, but more sensitive to the phase matching condi-
defined bya;=1.43,=12.6 m, andy;=0.235 m 1. The tion. Since the island tune of the Mathieu resonance island is
mismatch factors ar€,,,=1.087 28,F . =1.2305, andr _ highly nonlinear, the resulting emittance increase is limited.
=0.81268. Multiparticle simulations are carried out with Clearly the mismatch compensation with nonlinear Mathieu
10000 particles in Gaussian distribution at an initial rmsisland is not as good as that using the linear Mathieu phase-
emittance of 6. mm mrad. All particles are tracked for space distortion. The existence of octupole component can

066505-6



QUADRUPOLE-MODE TRANSFER FUNCTION AND TH . . . PHYSICAL REVIEW E 65 066505

0.004 0.002 : 0.01 : 0.01 : 0.01
Sy Turn = 1000
I
\ N\
x X 9 N N
< 500
Turn = 500 Turn =0 >
=
-0.004 : -0.002 :
-0.04 0 0.04 —0.02 0 0.02
X (m) X (m)
FIG. 8. For nonlinear Mathieu resonance islands, the invariant o~ N
tori are not perfectly elliptical. However, the emittance growth is _p.01 s s _0.01 :
L - : : -0.01 0 0.01  -0.01 0 0.01 -0.01 0 0.01
limited by the nonlinearity of these tori. The left plot shows that the z " z (' z ('

\/1—00 ellipse will evolve with filamentation. On the other hand, if
the phase of the injection ellipse is mismatched by 90 °, the emit- FIG. 10. The evolution of bunch distribution as the rf quadru-
tance dilution is much more severe. The right plot shows the evopole parameters are adiabatically changed. The beam splits into two
lution of the 1o ellipse with an initial phase intentionally set#&t  beamlets, and restore back to one. The normalized phase space in
= o+ m/2. We observe a much larger beam filamentation. Becaushis plot is defined aZ= 2| cosy and P,= — \/2I siny. Param-
the Mathieu island is highly nonlinear, the ellipse is tightly eters used in the numerical simulations at the bottom-left plot are
wrapped. 6=—0.006 256,C,=0.01, andx,,=—200 m L. The times corre-
sponding to these Poincarsurfaces of section are marked in

change the aspect ratio and limit the bucket size. Figure &i9- 11.

shows the aspect ratio as a function@®f for different non-
linear detuning parameter,, . tion, it would be interesting to examine the capability of the

rf quadrupole on the spin-resonance compensation.
To overcome spin resonance, we work with nonlinear
C. Overcoming spin resonances Mathieu instability shown in Fig. 1. The beam manipulation
grocedure goes as follows. The rf quadrupole is initially

The particle spin precesses in synchrotron at a spin tung' - ' X ; )
adiabatically turned on to a preset value in a single fixed

of Gy per revolution, whereG=(g—2)/2 is the Pauli X ) ; . .
anomalousy factor andy is the Lorentz relativistic factor. point region with| 5|>|C,], then the__modulatlon tuney, Is
During the polarized beam acceleration, the spin tune mafidiabatically changed to the conditigs|<|C,|, where the
sweep through many spin depolarizing resonances caused Bgable fixed point is bifurcated into two stable fixed points. In

the nonideal beam closed orbit and the betatron motiont i region, the unstable fixed point is locatedig=0.

There are a few innovative schemes invented to overcomB€cause all particles execute coherent betatron quadrupole-
these spin depolarization resonanfgg]. For example, the mode oscillations, the beam polarization can be maintained

if dipole has been successfully used to generate a coheref€r Passing through the spin resonance. ,
dipole motion and induce spin flip to most particles in the, T the parameters of the rf quadrupole are changed adia-
beam and thus preserve the polarization of the beam for p(_patlcally, particles will follow the Hamiltonian tori. Follow-

larized beam acceleration through an intrinsic spin resonand89 the procedure stated in the preceding paragraph, particles

[8]. However, the coherent dipole excitation produces twowill move into nonlinear Mathieu islands as shown in Fig.

nearly overlapping spin resonances, i.e., the intrinsic spirtQ: Where the times for the Poincaserface of sectiofsnap-
resonance, and the induced spin resonance. Since an rf quajlot In the phase-spacare marked as diamond symbols in

rupole can also induce coherent quadrupole-mode oscilld-'9- 11 With the corresponding machine parameters used in
the multiparticle simulation. The snapshots of the Poincare

surfaces of the section are taken in the time sequence from
the top-left plot in the first row to the bottom-right plot of the
second row. It seems that there is little emittance increase if
the procedure is carried out properly.

However, if we inspect the physics more closely, the pro-
cedure is intrinsically nonadiabatic, and emittance increase is
unavoidable. Figure 12 shows the evolution of thedllipse
of the corresponding multiparticle simulation shown in Fig.
10 at the exact time as shown in Fig. 11. As the phase-space
is divided into two islands, the phase space ellipse is wound
into two islands. When the procedure is reversed, these two
disjoint ellipses can not be restored into the original one, and
the emittance cannot be preserved during this process.

FIG. 9. The aspect ratio changes as a functiof pht the point In most applications, the increase of beam emittance is,
| y=0="5.0% 1077, 6§=0.002, from the inner to the outedt,, however, reasonably small. The left plot of Fig. 13 shows the
= —1000;- 800,~ 600, 400~ 200 in sequence. The curve ends rms emittance increment ratio far,,=—400 m* (A),
when the edge of the bucket is reached. —600 m! (¢), and—1000 m ! (O) as a function of

N
o

Aspect Ratio
n

0 0.0005 0.001 0.0015
Cl
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0.015 T T T T 1.8
1.6
L C‘ i -
0.010 :.\i 14
w
0.005 | ] 12
1 B
0 5 10
0.000 L4, (mm-mrad) L4, (mm-mrad)
—0.005 [ ] FIG. 13. Left: emittance increment ratig/ ¢; after moving the
TG s beam tolg, and back for differentr,, . Parameters used in this
0.010 | ] calculaton are C;=0.004 with a,,=—400 m(A),
I S o S N —-600 mt (¢), and —1000 m! (O), respectively. Right:
emittance increment ratio after moving the bearhgfpand back for
-0.015 - - L L i I =1\
0 2000 4000 5000 3000 different parameteC,. Here, we useav,, 1000 m -+, with C;

Turn Number =0.006 (), 0.004 (¢), and 0.002 Q), respectively.

FIG. 11. The dashed and solid lines are the resonance proximityhere| s IS action at stable fixed poing, is the spin reso-
o parameter and the rf quadrupole strenGthas functions of time 3 ce s![)rength for a particle with rms actigr,, and a
(in revolution turng. The Poincaresurfaces of section plotted in =d(Gy)/dé is the acceleration rate
Figs. 10 and 12 are marked as diamond symbols. The corresponding Usin : ;
g the AGS parameter as our working example, the
turn numbers are 0, 1600, 1800, 4000, 4540, and 8000. spin flipping rate is shown in Table I, where we use the

the I, by changing thes parameter at a constar@, parameters:ay,=—200 m!, C;=0.01, §=—0.006 26,
=0.0004. Note that the emittance growth does not depen@nd €c=1.66m mm mrad for the AGS beam to obtalg;,
much on thea,, parameter, but is a sensitive function of =18.7 mm fr:_)rad. The polarized beam acceleration rate is
Isfp- The emittance growth would be much |arger if n% a=486>< 107>. On the other hand, we can calculate the po-
goes beyond the second bifurcation region. The right plot ofarization by carrying out ensemble average from the beam
Fig. 13 shows the emittance growth factor as a function oflistribution. These two results are compared in the third and
lsp for a given ayy with different C,; parameter. For a the fourth column of Table I. Note that the polarization based
smallerC, parameter, one has to set th@arameter near the on Gaussian distribution slightly overestimate the final polar-
bifurcation of three-island region to get the desired actiorization value.

lsrp- The resulting emittance dilution becomes very large,
because some particles are squeezed out of a bucket into
another bucket. The adiabaticity condition is not fulfilled,
and the emittance dilution is inevitable.

If we assume that the beam distribution around two stabl%e
fixed points of the Mathieu instability region is Gaussian, the
spin flipping rate is given by the ensemble average of bea
distribution with the Froissart-Stora formula, i.e.,

Ps 2 p| I stp el a

IV. CONCLUSION

In conclusion, we have studied the quadrupole-mode
am-transfer function and the dynamics of the nonlinear
Mathieu instability. We show that the quadrupole-mode
"Beam-transfer function can be used to measure the betatron
tunes, beam emittances, to compensate beam mismatch dur-
ing the injection, and to overcome intrinsic spin resonances
for the polarized beam acceleration.

In the betatron tune measurement, the quadrupole beam-
transfer function has the advantage of not changing the beam

Pi 1+ 7edl € 1+medla

]—L (26)

0.01 ; 0.01 T 0.01

o o o closed orbit, and thus the resulting measurement is less af-
Eol O | Eo} ™ | B0l > fected by the effect of feed downs from the higher order
ol a a multipoles. We show clearly that the quadrupole-mode
-0.01 ~0.01 0.01 beam-transfer function is a powerful method to measure the

-0.01 0 0.01 -0.01 0 001 -0.01 0 0.01 . . .
112 112 beam emittance nondestructively, and to compensate the in-

Z(m™) Z (m™) Z(m™) o . . .
0.01 : 0.01 ; 0.01 : jection mismatch effectively. We, however, find that the
& &« & quadrupole-mode beam-transfer function is not as effective
Eoi» 5] Eop &= | Eo
& & & TABLE I. Polarization rate for AGS.
-0.01 ‘ -0.01 s -0.01 :
001 0 001 001 O 0.01  -001 0 0.01
z m" z m" z m'"® Pok/Pol
) . . ) nP*+v, E) Gaussian Simulation
FIG. 12. The evolution of the & ellipse in the beam manipu-
lation where the beam is moved adiabatically through the Mathieu 8.7 0.0061 —0.878 —0.765
bifurcation point and back. Parameters used in this simulation at 27.3 0.0051 —0.796 —0.657
the bottom-left plot ares=—0.006 256, C;=0.01, and ay, 44.7 0.011 —0.981 —0.940

=-200 ml
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as the rf dipole method in overcoming the intrinsic spin reso- N BiB(s)]; _

nance in the polarization beam acceleration. Ay s =D U lgminsi/Rej[2uy(s) = 2vys IR= 6]
The quadrupole-mode transfer function can also be a Ton=l SWBP

powerful tool to measure the machine impedances that cause B(5)B4(s) '

bunch shape oscillations. In the future, we plan to explore its = @ e INIREI2uy(s) ~2nysREA(9)] g g,

application in the collective beam instabilities. Correlation 8wBp

among quadrupole-mode monitors can be used to study the (A5)

o matrix for the beam transport. The method of the model
independent analysis can then be used to analyze the hidden
dynamical variables. The quadrupole-mode transfer functlon
(QTF) may also find applications in plasma physics, solid
state physics, and other branches of applied physics i
controlling and analyzing the stability of these dynamical
systems. H(Jy,dy)~vyJy+C1dy cO2¢hy—Nb—wnt+x),

(A6)

where we identify the Fourier amplitude a8, _ ,
=C,e X and neglect all nonresonance terms.

Note thatd¢y/d0 vy. When the modulation tune,
oml/wg is near a half integer betatron sideband, ewg,,
~2v,—n, the stationary phase term in the Hamiltonian
Homlnates the dynamics, and the Hamiltonian can be ap-

proximated by

APPENDIX A: RESONANCE STRENGTH OF
HALF INTEGER SIDEBANDS

We considem rf quadrupoles distributed in an accelera-

tor, the Hamiltonian for particle motion is APPENDIX B: TORI FOR NONLINEAR

MATHIEU INSTABILITY

N )
1(s)¥; The nonlinear Mathieu Hamiltonian can be normalized as
— 12
Hy.y")= 2y 3 K (s)y* 2 :2_00 2Bp follows:

1
X 8(s—s;—nC)y?cog wpyt+ 6;), (A1) H=Al—c,l cos 2+ EIZ, (B1)

wheres is the longitudinal coordinate along the accelerator

s; is the location of the rf quadrupol®&;(s;)¢; is the inte-

grated rf dipole field strength of tH¢h quadrupoleC is the

circumference of the acceleratar,, is the modulation angu-

lar frequency, andy; is the phase of theéth quadrupole.

Transforming to the action-angle coordinates, one obtains [Cl_A for Ascy,
sfp

where A=6/ayy,, C1=—Cilay. For c;=0, invariant
tori are shown in Fig. 1, and far; <0, the tori are rotated by
90°. Without loss of generality, we conside;>0. The
stable fixed points of the the Hamiltoni&B1) are given by

[15] |0 for A<-c, and A=c,, B2)

N 0 . _ . . . .
sVl B.(S with »=0 and#. The Hamiltonian value of the fixed point
H(Jy,¢y)=rydy+J E 2 M gin(s—sj)/R is Hsfp:_%lz

= ~ 27B . .
L P The unstable fixed points are located at

cos( ottt 6,), (A2)

—c,—A for As-—cy,
X cog| ¢y+ uy(s)— IUfP_[o 1 1

B3
for —ci=A=cy, B3

Vy R
Where\]y,(ﬁy are Conjugate action_ang|e coordinatess the with = /2 and 3r/2. These fixed pOIntS are shown in Flg
average radius of the accelerator, and we have used 1. The Hamiltonian value of the separatrix torusHsy,
ufp The minimum action of the separatrix orbit is
2
” lox, min= (/= A—cy) 2. Thus the aspect ratio of the separa-
nZ_x o(s—s—nC)=< nzm eln(s=s) (A3)  trix orbit is glven by (V—A— e )/(V=A+cy).

Expanding the Hamiltonian in revolution harmonics, we APPENDIX C: BOLTZMANN DISTRIBUTION IN BEAM

find 1. Linear system

oo

Jy (2 tno+ant) . A peam in thermal equilibrigm obeys t_he Boltzmann dis-
HJy. ¢y)=rydy+ o 2 {An,+ €2y TROTOm tribution p=Ae "/Er, whereH is the Hamiltonian\is the
e normalization factor and is the “thermal energy” of the
+A, _ _el(72¢ytni-on) beam. For a linear Hamiltonian with = »,J,, the Boltz-
A mann distribution becomes Gaussian with
+An'+'7e](2¢y+n0—wmt) .
+A, _ elC20 0ol L g1, (Ad) p(Jy, by = ZWGOG‘JV’EO, (C1)

where §=s/R is the orbiting angle around the accelerator,where ¢, is the rms emittance of the beam. Normally, the
h(Jy,t) depends only on the timeandJ,, and thermal energy of the beam distribution in a linear system is
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E+=Qe, where() is the tune of the Hamiltonian. When an with the complzementary error function defined as erjc(
rf quadrupole field is applied to the system, the Hamiltonian=(2/\'m) ;e ¥'dy, and the parameteu is given by u
becomesH(i,J,) = 6Jy+ C,Jy cos 2, and the Boltzmann = vy[\2Etayy. Since the parametar depends orEy, the
distribution is thermal energy should be solved self-consistently from Eg.
(CH). In general,yy is much larger thar/2Ere, in accelera-
F{— 6Jy+C4Jy cos 2y (c2) tor, we findEr~ vy ey and N=1/(2mep). This is the unper-
V&28—C2¢y |

turbed Gaussian distribution shown in EG1), i.e., the non-
linear detuning does not substantially change the beam
where Q)= \/52—C12. The rms beamwidths of this distribu- distribution.
tion in the normalized coordinates are With an rf quadrupole, the effective Hamiltonian in the
, 5+C,\ M2 , 172 re?onagce rotating frames I—!(w,J_y)z 5_Jy+ J,Cq cos 2
oy=Pyeol =—=| . 0p =PBye€ , (C3 +3ay,Jy . If the rf quadrupole is adiabatically turned on, the
Y 6—C, y Y e o : o
particle distribution is a function of the Hamiltonian. In par-
whereg, is the betatron amplitude function at the location of ticular, the Boltzmann distribution is
measurement. The QTif; can easily be obtained.

1
p(Jy,ihy)= mex

1
5+C,

. 1
2. Nonlinear system 5‘]y+ Cl‘]y cos 2¢y+ 5 any§
When a nonlinear detuning term is included in the Hamil- p(Jy,l//y)=NeXp —
tonian, the Hamiltonian becomés(y,J,) = v, Jy+ 3 ay,J; . Er cs
The Boltzmann distribution is (C8)
1
vyJ+ ansz The normalization constat” and the thermal enerdy; are

- |, (c4y determined by the conditions:[pdJydyy,=1, and

Er VY2)(Py)— (Y Py)?=€o, Wheree, is the rms emittancey
where we assume,,>0. The normalization constanfand = v2Jycosyy, Py=—2J,sinyg, and (---) is the en-
the thermal energy are determined by the conditionssemble average over the beam distribution. Note that we are
Jpdddyy=1 and [JI,pdJ,diyy= ey, wheree, is the rms working in the parametric space where the beam bunch is

p(Jy ) ¢y) =Nexp| —

emittance. From these conditions, we find slightly perturbed, i.e., the phase space has not entered the
bifurcation region of the Mathieu instability. Thus we can
E_ erfcr(u) (c5) use the rms emittance to characterize a beam property.
T Vy€02u2[1—erfcr(u)]’ Using the normalization condition, we find
1 2u?[1-erfcru)]
= > (Co) Er d \ [ erfcr(u)
2mey  (erfer(u)) 27N lo| E— =1, (C9)
2ayy Jdu u
where the reduced complementary error function is
— \/_ u?
erfcr(u) =V ue™ erfo(u) whereu= 8/\2Etayy, é=C;1/\2Etay,, erfcr(u) is the

1 1x3  1x3X5 reduced complementary error function of EG7), andl ¢(x)
4 _ +..., (c7) s the zeroth order modified Bessel function. Using the rms
2u?  (2u?)?  (2u?)d beam-emittance condition, we obtain

Y E; d N d | d \erfcr(u) d d | d \erfer(u) B c10
m 2ay, au o9& ° S50 u ou o9& ° 0] 0 |7 (€10
|
Equations(C9) and(C10 can be used to determine the nor- b,=2p (<Y2>_<p2>)
R " y y
malization conditionN\ and the thermal energ; of the
Boltzmann distribution. Using the propertys(£d/du)(1/u) __4 Er |0 [, d)erfer(u)
. : 50! O8] = —4mBNs—| —lo , (C1y
=1/\Ju?>— €2, one can easily verify that the distribution func- 2ayy| 9& gu/ u
tion (C8) reduces to E¢(C2) in the small detuning parameter where variabless and ¢ are defined in the previous para-
limit with @, — 0. graphs. Using the asymptotic expansion, we can obtain the
The quadrupole-mode transfer functibp is coefficientb, of the quadrupole beam-transfer function.
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