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Structure of electromagnetic field excited by an electron bunch
in a semi-infinite dielectric-filled waveguide
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The exact solution of a problem on electromagnetic field excitation by a thin annular charged bunch in a
semi-infinite round cylindrical waveguide with metal sidewalls and solid homogeneous dielectric filling is
obtained. Expressions for all components of electromagnetic field are derived. These formulas describe the
excited field at any point and any moment of time. In contrast to previous works, where asymptotic methods
(saddle-point techniquevere used, we applied a number of successive conformal transformations of integra-
tion area in order to carry out the inverse Fourier transformation. Integration along the initial infinite straight-
line contour was substituted by integration along the closed circular contour. This allowed us to separate out
the integral presentation of the cylindrical Bessel function of first kind and obtain the final solution in the form
of infinite converging series. The process of integration is presented in detail. Both cases, when the Cherenkov
resonance condition is satisfied and when this condition is not satisfied, are considered. Spatial pictures of field
excited by a finite-size electron bunch are calculated numerically and discussed. In the case of the Cherenkov
resonance the drift of excited wake field after the bunch with group velocity is demonstrated, and in the
nonresonance case the appearance of impulse of transition radiation and the presence of precursor of the signal

are shown.
DOI: 10.1103/PhysReVvE.65.066501 PACS nunierd1.60—m
[. INTRODUCTION termined with the help of the saddle-point technique. The

obtained approximate solution contains Fresnel integrals and
A round cylindrical waveguide with metal sidewalls and is valid for the moments of time, which are large in compari-
dielectric filling is often used in experiments on excitation of SOn with the wave period. o _ _
electromagnetic oscillations by electron bunches. The ex- Propagation of transition radiation can be described with

cited waves can be applied for wake-field acceleration ofn® Nelp of formalism, applied for study of pulsed signal
charged particle§1—5] or for radiation sourcefs,7]. For a propagation in dispersive medium. The expansion of phase

; i : ; ; ._of incoming signal in seriefl0,11 or asymptotic methods
theoretical examination of field excited by moving charge in 12.13 were usually applied for that. In a number of particu-

such waveguide it is usually supposed that a waveguide Tar cases of dispersive media with dispersion equation of the

infinite along thez axis. Consequently, if the Cherenkov 7 . o
resonance condition is satisfied, the excited field will be Ob_form k%x ”— wp, wherek, is the Iongltudllr)al wave num-
ber, w is the wave frequencyy, is some critical frequency,

tained in the form of the Cherenkov wave, which occupies ) o X
the whole region behind the charf@]. If there is no reso- the exact solutions were obtamed..for the |o_nospherg by
) enisov[14] and for the flat waveguide by Wait and Spies

nance, then only the exponentially decaying quasistatic fiel 15]
of moving charge can be obtained. _ As the dispersion equation of round cylindrical metal
The semi-infinite waveguide, which is shorted with metal, 4 equide with solid dielectric filling has similar form, there
wall at the input end, can be considered as a first approximgg the possibility to obtain exact solution for the field of
tion for theoretical description of finite-length system with- ransition radiation in such waveguide. So, in the present
out reflections. For the first time the field of uniformly mov- paper for approximation of prescribed uniform motion of
ing point charge in such a waveguide was considered byharged bunch, the expressions for the field, which are valid
Burshtein and Voskresenskg]. They presented the excited at any point and any moment of time, will be derived. Based
field as a sum of three components. The first component isn these expressions the structure of field excited by electron
the Cherenkov wave, the same as in an infinite waveguidébunch in the semi-infinite waveguide will be described.
The second one is the “quenching wave,” which compen-  This paper is organized as follows. Section Il gives a de-
sates the Cherenkov wave in the region between the facailed description of calculation of field of elementary thin
wall z=0 and the “group wave frontz=v4t, wherevy is  charged ring. We considered in parallel the case when the
the group velocity of synchronous electromagnetic wave inCherenkov resonance condition is satisfied, and the case
the round dielectric-filled waveguide. The third componentwhen this condition is not satisfied. All values, which relate
ensures smooth passage across the group wave front regiao.the nonresonance case, are marked with tilde. In Sec. IlI
It corresponds to the transition radiation, which arises due téhe computed pictures of spatial two-dimensio(2D) dis-
presence of boundarg=0 irrespective of satisfaction of tribution of field of finite-size electron bunch are presented
Cherenkov resonance condition. This additional field was deand discussed.
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Il. FIELD OF A THIN CHARGED RING ic o

EV=— — —HY. (5)

A. Integral expressions for the field components we dz ¢

Consider the cylindrical metal waveguide with radiys
filed with homogeneous dielectric with relative dielectric
constants. Along the longitudinal direction the waveguide is

In order to solve Eq(3) we presentH, as a series of
eigenfunctions of waveguide,

semi-infinite (0sz<«), at the endz=0 it is shorted with a o ;

metal wall that is transparent for electrons. The axially sym- HO=Y a,.(z,w)d ()\ _) (6)
. . . . ~ 1) en nb ’

metric monoenergetic electron bunch flies into the wave

guide through this wall, and then it moves with constant

velocity v, along thez axis. We neglect the necessity of wherelJ; is the Bessel function of first kind of first ordex,,

presence of vacuum transit channel and its influence o#$ thenth root of the Bessel function of zero ordelp. After

waveguide electrodynamics, and for simplification of calcu-substituting Eq(6) into Eq. (3) and also taking into account

lations the dielectric filling is considered to be solid. Egs.(2) and(5), we obtain the following expression for the
For determination of field, excited by the bunch with ar- Fourier component of azimutal magnetic field:

bitrary distribution of density, it is necessary to find at first

the field of infinitely thin and short charged ring, coaxial Ho— -

with the waveguide. The densities of chaggand currenf He= 7ch 2 Rin(r,ro,b

of such ring in the case of uniform straight-line motion are

w%n expli wtg)

2 2

expliwz/vg)
n(w - wOn)

expik,n2) |,

w
__ _ _ Tk
p 277_rovoé(r ro)o(t—t.), o

- where  Rpn(r,ro,b)=Jo(Anro/b)Im(Anr/0)/I2(N,), w3,
J=pvoe,, D =\ (b2elc?-b2v)), I2,=ewc?—\Z/b?, andky is the
longitudinal wave number ofith radial harmonic of free

where —q is the charge of the rin andr, are, corre- ¢ e . i R
d d %o 0 electromagnetic oscillations in the dielectric-filled wave-

spondingly, the constant velocity and radius of the ring,
t (tg,rg,2)=ty+z/v, is the Lagrangian time of the ringg guide. , . . .

is the moment of ring’s arrival into the waveguide, amds wAfter carrying out the inverse Fourier transformatlon for
the unit vector in the direction along tizeaxis. The bunch of ¢ @nd taking into account Eqé4) and(5), we obtain

finite size can be represented as a set of such annular
bunches(macroparticles with different charges, radii, and

E Ron(r,rg,b)

Ez(t,r,z,to,ro):

arrival times. 7sz
The electromagnetic field excited by the charge in the
semi-infinite waveguide satisfies the Maxwell's equations a |w0n
with the source function in form(1) and the following X \/— Ion | (7)
boundary conditions: Vo
Ez|r:b:01 2q - w2
E/(t,r,z,tg,r9)= Tbevg &4 N, —Ryn(r.rg,b)
Er|z:O:0- (2
d
After carrying out the Fourier transformation we obtain the X1 lqpti a—glm), (8)
following equation of excitation for the Fourier component
of azimutal magnetic fieldH; :
H,(t,r,z,tg,r Rin(r,ro,b
(92+1c9 1+&2+8w2Hw 477&w 2 ol 0:Fo)= ;l)\ 1n(r,ro,b)
g2 rar 2 g2 |t e arle 9
X —Lil 9
wherec is the speed of light in vacuum, and N Jeve 0T )
» Herer=t—t,, é=z\e/c, and
]z = 2 L)-
0 | _jwd exp—iwT+iwz/vg) 10
Fourier components of longitudinaEf) and radial E;) =) e wZ_wgn ' (10
electric fields are expressed Vg, :
- s . 2_ 2
i o ami ) I2n=f+ wexp( ioT+iéJo : an)’ 11
2= ooy oy THY) — 7 (4) e 07— a0 w2,
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FIG. 1. Contours for calculation of integralg,, Ty, in com- FIG. 2. The selection of branch of functionk,,
plex planew. L is the initial contour of integration. Dashed line = (Ve/c)Jw?—ad. ¢;=arg+a,), ¢,=arglw—e,), and 9
closesL if t—ty—2z/vy<0, dash-dotted line closek if t—tg =arg(k,,) =(¢1+ ¢5)/2. Here and hereinafter black circles mark

—2/vy>0. Here and hereinafter white circles mark the polesthe branch pointss=*a,, the thick line depicts the branch cut
w=* wq, related to the case,>c/ /e, and white squares mark the between the branch points.

polesw= *iw,, related to the case,<c/ /. )

where a,,=\c/(bVe). For the integration in Eqg10) and Niexn:—?om(t—to—z/vo)]
(11) it is necessary to go above the singular points at the real @on
axis, because in this case the excited field is equal to zero in B for t—ty—2z/vy=0,
the regionz>0 whent<t,. l1n= (12b)
w ~
B. Calculation of integrals ~—exXf won(t—to—2/vo)]

Won

Thus, the problem of determination of electromagnetic
field is brought to the calculation of integrals0) and (11). \
The process of calculation e.ssentially depends on Whet.her Integral (11) corresponds to the free electromagnetic os-
vo> c/\e orvg<clye.In the first case the charged bunch is jjations in cylindrical waveguide. Terms with,, appeared
in Cherenkov resonance with eigenwaves of waveguide. bgg, Egs. (7)—(9) due to the finiteness of system along the
sides the Cherenkov radiation the transition radiation will;yis These terms allow the fields to satisfy the boundary
arise du_e to thg presence of_ the boundany0. The transi- condition(2) at the metal plane at input end. Exact analytical
tion radiation will interfere with the Cherenkov one. In the gqution for similar integral was found, e.g., in Ref$4] and
second case only the transition radiation will be excitedyqg)
which will superimpose on the quasistatic field of uniformly Th ; _ p) ;

: i g ) e functionk,,= (\e/c)\w — a2 is double valued and
moving charged bunch. The firgtesonancecase is typical has branch pointzsn alb(z +a) Makenthe branch cut in com-
for dielectric wake-field accelerators. The secd@ndnreso- lex planew along the s_egr?”n.ent—(a - &) and choose that

n» n

nar)ce) case can be used for obtaining wideband eIecFromaggranch of square root, which is determined by condition 0
netic pulses. In the resonance case, the tergp, which <arg(w* a,) <2 (see Fig. 2 In this case the signs of real

ippears n Eqs(?)—(;l), defines two singular pointe= and imaginary parts of,,(w) are equal to that of real and
—2“’0“ on the real axis. In th.e.nonreson.ance case, the.ter aginary parts ofw, correspondingly. This condition must
wgn becomes negative and it is convenient to change it fofe gatisfied, because we consider only the waves propagating
wgn=—wg,. This substitution will define two singular in the positive direction of the axis. Such waves have
points w= *iwg, on the imaginary axis. sgriRe(k,)]=sgri Re(w)].

Integral (10) describes the field of moving charge in the Integral (11) can be easily calculated wheb—tg
infinite waveguide. Ifu,>c/\/e this is the Cherenkov wake —2zy/e/c<0. In this case the initial contour of integratian
wave field. Ifvg<c/ /e this is simply the quasistatic field. In can be closed by the half circle of infinite radius in the upper
both cases integr&l0) can be easily calculated with the help complex half plane» (see Fig. 3. Integration along this half
of the theorem of residues because the initial contour of incircle gives zero. Ifvg>c/\/e there are no singular points
tegration can be transformed into the closed one by halinside the closed contour, andif<c/ /e there is one sin-
circles of infinite radii, as is shown in Fig. 1. Integration gularity, w=iwg,, inside the closed contour. That is why,
along these half circles will give zero. Notice that, in contrastwhent_to_z\/g/c<o,
to the resonance case, the value of EM) is nonzero in

for t—ty—2z/vy<O.

front of the charge in the nonresonance case: 12,=0, (139
T . ~ im\ev ~
T si won(t—to=2/vo) ] lop=— #exp{wm(t—to—z/vo)]. (13b
— On 2 wOnC
l1n= for t—to—2z/vy=0 (123 :
o~ 4vo=Y, Whent—to—z\/glc>0, the integral along the contour
0 for t—ty—2/vy<0; Cin» Which is the half circle of infinite radius in the lower
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Mm o @

FIG. 3. Contours for calculation of integrals,, 1o, in com-
plex planew. L is the initial open contour. The dashed line marks
the way of closing of this contour whet-t,—z\s/c<0. The
dash-dotted line marks the contour of infinite radig . Cis the
closed contour, which encloses the branch cui, ; ,). Region
D; is hatched.

FIG. 5. Hatched regio} in complex plane is the image of
D3 after the transformatiop= —i w.

where X2—Y2=aZ. In the casevy>c/ e, it must beX

half planew, is equal to zero. After closing the initial contour ~ @on» and in the gaseo<c/\/§, i}) must beY> wo,. The
L by contourC,, we obtain the domaib, that contains the direction of C|rculat|or! of contou€y, is negative. According
branch cut € e, :a,). We transformD, into the doubly o the theorem of residues,

connected domain by including conto@y,, into its bound-

ary, as is depicted in Fig. 3. According to the theorem of leurt le1= — 27 [ResF(— won) + ResF (won) ],
residues (163
TeurtTe=—27i[ResF(—iwgn) + ResF (i wgy) ],
| o+ | = — 2i[ ReSF ( — wgy) + ResF (wgp) ], curt ler=—2mI[ResF(~lwen) (Feoon)] (16b)
(14a
wherel, andT,, are integrals along the conto@y,. Com-
Ton+ T eu= — 271 ResF(—iwgp). (14h  paring Egs(14) and(16) we obtain
- lon=ler, (1739
Here |l and |, are the integrals along the contoQg,,
and Res$(wg) denotes the residue of subintegral function in o iW\/;vo 5
Eq. (11) at corresponding singularity,. For determination [on=le— —=5——eXd won(t—to—2z/vgy)]. (17b

of integrals along the banks of branch cut we consider the anC
doubly connected domaib?, represented in Fig. 4. Con- ) _
tour e is the inner boundary d% . The outer boundary of The seconolterm in Eq17b) corresponds to the residue at

¢ is ellipseCy, focuses of which are situated at the branchsingularity i wo, . Expressiong17) allow to pass from inte-
pointsw=* a,,. The equation oY is gration along the infinite straight linke to integration along

the closed contou€y.
(Rew)? (IM o)? The calcul~ation ofl in the casevy>c/\e and the
+ =1 (15) calculation off , in the casevg<c/ /e are almost identical.

X? Y? The difference is that the line, along which the singularities
of first order are situated if,>c/ /e, is perpendicular to the
line along which similar singularities are situated if
vo<cl/\e. That is why we describe below only the proce-
dure of calculation of,.

Let us change the variable= —iw. This results inw/2
turn of domainD? relative to the poinw=0 (see Fig. 5.
ContourCg transforms into the conto@® in complex plane
p. The equation ofCP is

(Rep)® (Imp)?
+ =1.
Y? X2
FIG. 4. Doubly connected domaiby (hatched. Cg, is the el- _ ' . . . ' _
liptic contour (15). LettersA—L mark the typical points of region The direction of circulation o€P is negative. Expression for
Dy in order to trace its transformation on the subsequent figures. | ¢ iS

066501-4



STRUCTURE OF ELECTROMAGNETIC FIELD EXCITED. .. PHYSICAL REVIEW EB5 066501

M}""W @

E
A

N F |[D B\ E M
] 00—
0 Rew

A

c"/ F

Ny

FIG. 7. Final form of integration contol€" in complex plane
w, into which contourC¢ transforms after substitutiofi= — Sw.

FIG. 6. Hatched regio$ is obtained fromD}5 after transfor-

e ; VIR 1 1
mation = (\/p?+ anz_ p)/ a,. PointsM, N, and M, N mark the Tl = [2_ ;2
additional couples of poles that appear in the subintegral function. _ 4 f Wex 2 w w anVT -8
a2l e (W W) (W= wo) (W—w3) (W—W,)
- —exp(pr—&Vp®+ ap)
e Jep P /—sz+ an(p2+wgn) : v.vherewlyzyg,ﬂ,: {1234 B, respectively. The subintegral func-
tion can be transformed as follows:
Next variable is{=(\p°+ azn—p)/an. Function £(p) is 5
double valued, so we choose that branch of function where _ \/;UO d %“n”z_g ( . i”
O<arg(p*ia,)<2w. In this case the signs of real and el ngnc cw 2 w
imaginary parts of square root will coincide with the signs of
real and imaginary parts gf. Such function transforms the v 1 1 N 1 18)
banks of branch cut{i«,;ia,) into the circle with unitary W—W; W—Wy; W—W3 W—W,|

radius in complex plang, and the elliptic contouC® into
the circular contouC? (see Fig. 6. Direction of circulation As the contourC¥ does not contain the singularities

of contourC* is positive. The equation oE* is =W, 534 at this contour the following expansions are valid:
X—-Y 2 o K
(Regy?+ (m 2= SR 19
@ W—=W;  Wj k=0 \W;j '
The integral transforms in the following way: wherej=1,2,3,4. Let us notice also thgt6]
_n —¢ 1 X 1 k+1
fexp — Z(T+§)—T 5 dewwkex SIW= ) [= (D ().
le=—| d ,
o ) T I D () (20
) ) After substituting seriel9) into (18), interchanging the or-
where 6=i[(Vevo=0)/(Vevo+0)1™% L=i[(Vevo  ger of integration and summation, and taking into account
+¢)/(evo— )], £3=—{y, and{y=—{o. The appeared Eq (20), we obtain
additional couple of singularities is situated beyond the uni-
tary circle, becauseX—Y)/a,<|{;|. So, inside the contour 5 \/— o
C¢ there is only one singular poirdt=0 o= miVevo E 1ym(pZrEm_p2zeamy
Let us make the last change of varialgle — Sw, where w0nc m=0
B=\(m—&)/(7+ &). ContourC¢ transforms into the circular (21
contourC" with positive direction of circulatiorisee Fig. 7.
The equation of2" is where  ry=B[(Vevo—c)/(Vevo+c)]Y2 ro=pB[(Vevo
+C)/(\/EUO_C)]1/21 Yn=any7— &%
) ) (X=Y)? The Lommel function of theath order of two arguments
(Rew)“+(Imw)°= Bal Un(q,x) is defined ag17]
n
Inside the contouC" only one singular pointv=0 is con i m(q) neem
- ) U,(g,x)= -1)M = J X). 22
tained. The integral takes the form nl ) m:O( Ml n+2m(X) 22
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Finally, after taking into accounfiL7), (21), and(22), we can

r o0
write in resonance and nonresonance cases tfot, > (—nmrtEmy oy if [r]<=1,
—z\Jelc>0: m=0
, Uiryy)=4 [y |y} < (1"
2mievg sin >+ 57~ > o dieam(Y)
IZnZwZ—[UZ(rzynayn)_UZ(rlyniyn)]a (239 m=0 r
on L if |r|>1.
2
~ 2i \/EUO ~ ~ ( 7)
l2n=——=5——) Ualirayn,yn) —Ua(ir 1yn,Yn) _ )
Won We shall need also the following relations:
b exTaon(t—to—2 23 [Yn Y
ZeXF[wOn( o= 2ol (23D _22n Z_ranwOn(t—to_Z/UO)’ (289
wherer? ,=—r%,, respectively.
ir2yn Yn .~
C. Some properties of Lommel functions 5 T 2T, =liwon(t—to—2/vo). (28b)

Now the integrald ;,, andl,, are calculated. But before
one will turn to Egs.(7)—(9), let us notice, first, that using | et ys introducev
the properties of Lommel functiorfd 7] the following nec-
essary expression must be obtained:

o= C/\e and vg=c?evy. Whent—t,
—Z/lv,=0 we have

ry O=r,<1,

d U = d y U
ax n(fy,Y)—& > o n-1(ry,y)

d [yt Osr,<1 for t—ty—2/vg=0O, (299
- &(F) 5 Jn-1(y), (24)
r,>1 for t—ty—2z/vy>0;
wherer=r(x), y=y(x). Second, if|g|<|x|, the Lommel
function U,,(g,x) can be easily calculated with the help of 0<r,<1,
Eqg. (22. If |g|>|x|, the number of memberms of series in
Eqg. (22), which must be accounted for obtaining the con- ~
verging result, is approximately defined by condition O<rp<1 for t—to—2/vo=<0, (290
+2m>x, that is why in the case of bifx|>1 the direct
summation of serie22) seems to be rather problematic. T,>1 for t—ty—2z/vy>0.

Hence, if|x|>1, the following property of Lommel func-
tions must be usefl7]:

Un(q,x)=cos<g+ —— n_w)

)n+2+2m

S +m| X
t2 (D (a

Inequalities(29) define the regions where the various presen-
tations(26), (27) of Lommel functions will be used for the
field structure description. In the casg>c/\/e the har-
monic terms in Eqs(26) and (27) will give the electromag-
netic wave that will be equal to the Cherenkov wake wave,
but with the opposite sign. This is the so-called “quenching
wave” [9], which compensates the Cherenkov radiation field

in the region 6<z<(t—tg)vg. In the casevo<c/ye the

(29
sine and cosine in Eq&26), (27) will become the hyperbolic

><‘-]—n-%—2+2m(x)-
One can show analytically that wheo=q, formulas (22) . :
and(25) can be transformed to the identical expressions. A€£d. (23b) in the region 6<z<(t—tg)v,.
we are interested in functions with=1 andn=2, finally

ones and will compensate the exponentially growing term in

we write that

Ua(ry,y) =1

r oo
—gl<—1>mr2mJ2m<y> if |r]<1,

©

ry -y (="
_CO{?‘F E +mE:0 r2m ‘J2m(y)
L if |r|>1;

(26)

D. Final expressions for the field in resonance case

In order to obtain the expressions describing the excited
fields, one must substitute Eq42), (13), and(23) into Egs.
(7)—(9) by taking into account Eq$24) and (26)—(29).

In the case of Cherenkov resonance the field, excited by
the thin charged ringl) in the semi-infinite waveguide, can
be written, similar to Ref.9], in the form of superposition of
spatially limited Cherenkov radiation field and transition ra-
diation field. The longitudinal electric field:
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STRUCTURE OF ELECTROMAGNETIC FIELD EXCITED. ..

Ez(t,r,z,to,ro): E;:her(t,r,z,to,ro)+ Etzrans(t,r,z,to,ro),
(30)

4 <)
ther(t,r,z,to,ro):qu nZl Ron(TFo,b)cog won(t—to
o =

—Zvo) ]9z, (t—to)vg,(t—to)vol,
(31

4 e

Eganitvrazvt()aro):_q E ROn(r1r01b){ﬁ[Z’(t_tO)
b2g n=1
><vgr,a—to)vpr]mZ:1 (=D™M(rim—r3™

X Jom(yn) + 92,0t - t0)Ug;r:|{‘:|0(yn)

1
) J2m(yn)1 }
2

(32

+2<1>(

The functiond is defined as

1 if zy<
0 if z<z;

=z<z,
Nz,2,,2,)=
(2.21,2)) or z,<z.
The radial electric field:

Er(t,r,z,to,ro) - E?he'(t,r,z,to,ro)+ E:rans(t,r,z,to,ro),
(33

4q
b2eVeoZioP—1 Z Rin(r,ro,b)
X siM wop(t—tg—2/vg) ]9 z,(t
—to)vg,(t—to)vol, (34)

ECMe(t,r,z,t0,ro)=—

4q

—— R b
b2 \ev5/c®—1 r1Z 1n{o:)

X[ 0[2,(t—t0)vgr,(t_t0)vpr]

EIat,r,z,t0,r ) =

l+2m)

xE (—1)m(ritamy

XJ1om(Yn) +9[Z,0(t—to)vg]

1
1+2
XXE( 1 ( " r1+2m)

2

XJ1+2m(yn)] . (35)

The azimutal magnetic field:

PHYSICAL REVIEW BE5 066501

H<p(t,l’,2,t0,l’0)=ther(t,r,z,to,ro)-i— Hganit,r,z,to,ro()é(s)

q 0
— T R r,r b
Xsir[won(t_to_Z/Uo)]

XH[z,(t—to)vg(t—to)ve], (37)

HE™(t,r,z,tg,ro) = —

4qug

W nE Rin(r,ro,b)
2 -

X[ ﬂ[Z,(t_to)Ugry(t_to)Upr]

HganitlrvzltOer): -

1+2m)

xE (—DM(ryAm—
XJ1+2m(Yn)+ﬁ[zvoa(t_to)vgr]

” 1
XmE:o(_l)m r%”m)

X‘]1+2m(yn)] . (38)

1+2m
ry +

Cherenkov componen{81), (34), and(37) are written by
taking into account the quenching wave and are nonzero
when ¢—to)vg=<z<(t—tg)v,. Within the limits of this re-
gion the amplitude of each harmonic of Cherenkov compo-
nent is constanfsee Fig. 8)]. The valuev is the group
velocity of electromagnetic wave, which is synchronous with
the charge. Plang,= (t—to)v, is the “group wave front”
of wake field. This wave front moves behind the bunch with
group velocityv ;.

Transition component$32), (35), and (38) exist in the
region O<z<(t—to)vp,. The valuev,, is the maximal ve-
locity of propagation of electromagnetic signals in dielectric-
filled waveguide. Exactly with this velocity the fastest high-
frequency part of transition radiation—the so-called
precursol{ 11]—propagates. The envelope of each harmonic
of transition component is maximal near the group wave
front [line A in Fig. 8] and decreases as one moves away
from it. In precursor{line B in Fig. 8c)] it tends to zero,
coordinate of precursor ig,= (t—tg)v,,. Near the metal
end wall the envelope OE, is small, but nonzero and it
decreases with time. Transition components undergo a sud-
den discontinuous change at the plane of group wave front
[see Fig. &)]. This occurs due to the fact that we artificially
split the continuous total fielfEgs.(30), (33), and(36)] into
components, and the separated Cherenkov comp¢kest
(31), (34), (37)] turns to zero abruptly also when crossing the
plane of group wave front, as it is shown in Fighg

As a result, at certain moment of tinbéhe spatial pattern
of single harmonic of total field looks like that represented in
Fig. 8@). In front of the bunchline C) the field is equal to
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FIG. 8. Longitudinal structure of the first harmonic of the lon-
gitudinal electric fieldin relative unit$ given by Eqs(30)—(32) in
the fixed moment of timg(a) Total field, (b) Cherenkov component,
and (c) transition component. Liné\ marks the position of the
group wave front, lineB marks the position of the precursor, and
line C marks the position of the chargec/b=40, r/b=0, t,
=0, v¢/c=0.9798, £=2.6.

zero. To the left from precursor’s positi
field's envelope disturbs and starts to
wave front (line A) it is equal to the half of Cherenkov
amplitude. In the regioz<z,, the field is small and it de-
creases with time.

. (line B) the

E. Final expressions for the field in nonresonance case

In the case when the Cherenkov resonance condition is
not satisfied, we write the field, excited by the thin ring-

shaped chargél), in the form of superposition of quasistatic
field of uniformly moving charged ring and field of transition
radiation. The longitudinal electric field:

EgStattyrazat01rO) + Etzranityryzatoyro)a
(39

EZ(tirazatoer):
E®?(t,r,2,t9,r0)

b2 E Ron(rF0,b){— ex won(t—to—2/vo)]
Xﬁ[Z,(t_to)on(t_tO)Upr]
+eXF[_Z)0n(t_tO_Z/l)0)]
X 9[z,0,(t—tg)vol}, (40)

EVa"t,r,2,t0,ro)

—E®(t,r,z,t,, r0)+ E Ron(.To,b)

W z,(t=to)vo,(t—to)vp]

ecrease, at group
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3,

m_r2 ng(yn)+ﬁ[20(t to)vo]
Jo(yn) + 2 | T3" =m sz(Yn)“-
m=1 r2

(41
The radial electric field:

E (t,r,2,ty,ro) =E®®t,r,z,t0,ro) + EF2™t,r,z,ty,ro),
(42)

2q

b%e \/1—81)02/02

E?Statt,r,z,to,ro): -
X 2 Run(r.ro,bY{exdon(t—to
—2/vo)]9[z,(t—to)vo,(t—to)vyl

to—2/vg)]

X 9[2,0,(t—tg)vol},

+exd —Z)On(t—

(43

Eﬁrans(t,r 1271-0 er) = — EEStatt,r ,Z,to ,ro)

4q

—_—— Rin(r,ro,b
b%e\1—evg/c? i Z 1nlFo:)

+

X1 9z, (t=tg)vg,(t=to)vyl

o

m=0

1+2m

)J1+2m(yn)
+9[2,0(t— to)vo]E ( 1+2m

1
_F1+2m>‘11+2m(yn)] . (44)

2

The azimutal magnetic field:

Ho(t,r,2,tg,ro) =HEt,r,z,tg,r o) +HE™t,r,2,t0,10),

(49)

2qug -
HQSta t1 L !t L =T o R 1 lb
(ptrZOrO) bz\/mgﬂzl ln(rrO )
x{exd won(t—to—2/ve)]19[ 2, (t
_to)Uo,(t_to)Upr]"‘qu_

—2/vg) 19 z,0(t—to)vel},

won(t—tg

(46)

066501-8



STRUCTURE OF ELECTROMAGNETIC FIELD EXCITED. .. PHYSICAL REVIEW B5 066501

HE 2 t0,r0) = —HEALr,2,t0.10) 0 A
| I
| |
4qvo ¥ -5F : :(a)-
————— > Ryn(r.ro,b W ! !
i 3, Rt ‘
0f ]
X{ﬁ[Z,(t—to)Uo,(t_to)Upr] B 0 : :
2 I 1 (b) ;
&t -h | [
:x: w i
NG SN 10} SN
1- T T | T T i
+9[2,0(t—to)vo] 2 i /\ /\m ©
Ex O T
om, 1 o LV
XZ ( pram r1+2m)\]1+2m(yn)]- At 1A |B ]
5 N sl " 1 i

0 2 4 6 8 10 12
47
(47) 2Ib
We defined quasistatifEgs. (40), (43), and (46)], and FIG. 9. Longitudinal structure of the first harmonic of the radial

transition[Egs. (41), (44), and(47)] components of field as  electric field(in relative unit$ given by Eqs(42)—(44) in the fixed

nonzero in the region€z<(t—to)v . As in the waveguide moment of time.(a) Total field, (b) quasistatidCoulomb compo-

the electromagnetic signal cannot propagate with the velocityient, and(c) transition component. Liné marks the position of

higher thanv,;, at the moment of timé>t, neither quasi- charge, lineB marks the position of precursotc/b=10, r/b

static, nor transition radiation fields exist in front of the point =0.25, t,=0, v,/c=0.5, e=1.

zZ,,. At the same time, as the velocity of charge<uv,, the

excited field outruns the charge in contrast with the Cheren- Consider at first the Cherenkov resonance case. In Fig.

kov resonance case. In order to illustrate the qualitative pic10(@ with the help of level curves the 20n the planez-r)

ture of propagation of radiation in the nonresonance case, thgicture of distribution of longitudinal electric field excited by

longitudinal distributions of first harmonic of total radial relativistic electron bunch with densit48) is represented

electric field and its Coulomb and transition components arésee the parameters in caption of Fig).10he bunch sizes

represented in Fig. 9. are small in comparison with those of waveguide, so we can
Even in the structure of single harmonic the wide set ofthink that position of group wave front ig,~15.6 cm, co-

frequencies can be observed and the most short-wavelengatidinate of precursor ig,~24.8 c¢m, and bunch coordinate

and high-frequency oscillations are in the precursor regionis z,~38.7 cm. In the regioa, <z<z, the intense Cheren-

The amplitude of oscillations decreases as one moves to th@v wake wave exists. Structure of this wave is formed as a

precursor, and at the poiat=z, (line B in Fig. 9 the total  result of periodic reflections of Cherenkov cone from the

field becomes zero. sidewalls of waveguide. The angle at the vertex of this cone,
4
Ill. FIELD TOPOGRAPHY OF FINITE-SIZE sl
ELECTRON BUNCH E o
Expressiong30)—(47) allow us to investigate the spatial " ;

structure of electromagnetic field in the semi-infinite wave-
guide. Notice that the sums over indaexn these formulas

are divergent, because they describe the field of the chargeg 44 |
whose density is determined by tl#efunction. The diver- 2
gence is removed if one sums the contributions from all mac-_; 4,
roparticles that form the finite-size bunch. For subsequent

numerical calculations, we have chosen the electron bunct

with the distribution of current density,
FIG. 10. Topography of field, in the semi-infinite waveguide
2t, 2 in the case of Cherenkov resonan¢a. Level curves of fieldE,
ex;{ 4(T__ 1) , (48 and (b) respective dependence Bf vs z obtained ar =0. Level
b curves of field are drawn with a step of 0.4 kV/cm in the range
o ) ) from —4 kV/cm to 4 kV/cm. Dash-dotted lines itb) mark the
where j, is the maximal value of current density<Qy |imits of this range. The electron bunch moves from left to right. 20
<Tp, Ty isthe bunch durationT,=L,/vo, WhereLy isthe  radial harmonics are taken into account. The moment of observation
length andv, is the bunch velocity O<ry<R;,, andR, iS  tc/b=10. System's parameterdh=4 cm, ¢=2.6, L,=1 cm,
the bunch radius. R,=0.5 cm,vy/c=0.9798, and bunch charg@=1.6 nC.

jro.to)= 030(7\1R
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determined directly from the picture, equalsde-39° that
coincides with theoretical value for infinite dielectrie
=arcsific/(yevo)]=39.27°. Note that in order to obtain the
Cherenkov cone the big number of radial harmonics must be
summed in Eqs(30)—(38), as it was pointed in Ref3].
Conical structure of Cherenkov field in dielectric waveguide
was mentioned in Ref7] and 2D pictures were presented in g
Ref. [4] for the waveguide with vacuum transit channel. But S ] S N S
in these works infinite systems were considered. And in the= ~ ®
semi-infinite waveguide in the region<<z,, the transi-
tion radiation field superimposes on the Cherenkov field.
Weak transition oscillations in the precursor region 20 cm
<z<23 cm still can be noticed against the intense Cheren- FIG. 11. Topography of fiel&, in the semi-infinite waveguide
kov field. Behindz,, the field is small and its structure is in the nonresonance cage) Level curves of fieldg, , (b) respec-
different from that of the Cherenkov wave. The transitiontive dependence O, vs z obtained atr=1 cm [corresponds to
radiation field will be described in details hereinafter. In Fig.dashed line ina@]. Level curves of field are drawn with a step of
]_O(b)’ for Comparison, the respective dependencEzof/s Z 50 V/cm in the range from-800 V/cm to 800 V/cm. The dash-
at the axis of waveguide & 0) is represented. Note the high dotted line in(b) marks the_lower limit of th?s range. T_he electron
amplitude and small width of field spikeg, is maximal at _bunch moves from left to right. Twent_y radial harmonics are taken
the waveguide’s axis, where the waves, reflected from sidd'to account. The moment of observatimb=>5. System's param-
walls, are focusing. It is evident that for the purpose of acSters:b=4 cm, e=1, L,=1 cm, R,=0.5cm, vo/c=038, and
celeration one can use the fields in the paraxial region bunch charg®=1.6 nC.
<0.5 cm, and in the moment of time depicted in Fig. 10 the
accelerated particle must be behind the leading bunch not
farther than 38.7 18=20.7 cm. In present paper the influence of finiteness of slow-wave
Now study the case when there is no Cherenkov resomedium on the process of formation of electromagnetic field
nance. To satisfy this condition we considered the vacuunexcited by a moving electron bunch in a semi-infinite round
waveguide. The corresponding 2D picture of level curves otylindrical dielectric-filled waveguide with metal walls has
radial electric fieldg, excited by electron bunch with density been investigated. The considered structure is a good ap-
(48) is represented in Fig. 14). The profile of this picture proximation for description of real waveguide if the last one
along the liner=1 cm (dependence oE, vs z) is repre-  has no reflection at the output end or if the reflection is weak
sented in Fig. 1(b). First of all one can notice the typical enough to be neglected. We made a number of nonprincipal
spike of Coulomb field in the region of bunch:  assumptions that sufficiently simplify the process of obtain-
<0.5 cm, 15 cmiz<16 cm. Amplitude of this spike is ing the solution. First, the velocity of motion of charged
10 kVv/cm and it is much higher than the transition signal'sparticles is constant. Second is the absence of frequency dis-
level. But Coulomb field decays exponentially and its influ- persion and absorption in dielectric. Third is the solid homo-
ence is limited by the regionr<1.5 cm, 14 cm<z  geneous dielectric filling of waveguide, without vacuum
<17 cm. One should notice also the typical convolution oftransit channel. Let us note that in the case of vacuum wave-
level curves of transition field. The slope angle betweerguide only the first condition is necessary for the correctness
wave front and waveguide’s axis changes from 0° to 90° a®f obtained solutior{39)—(47). Within the limits of such ap-
one moves from the walt=0 to the precursoz,=20 cm.  proximation the exact expressions, which describe the elec-
Similar behavior of transition component can be observed irromagnetic field excited by the uniformly moving thin ring-
Fig. 10a). Considering the wave propagation in the wave-shaped charge bunch in the semi-infinite waveguide, have
guide as periodical reflections from the sidewalls we carbeen obtained for the cases when Cherenkov resonance con-
conclude that the smaller is the number of reflections per unidition is satisfied and when it is not. In the resonance case
length, the higher will be wave propagation velocity alongthe field exists only behind the bunch and it is composed of
the waveguide’s axis. This velocity will be maximal when spatially limited Cherenkov field, whose trailing wave front
the wave propagates along the waveguide’s axis or, in othanoves after the bunch with group velocity, and transition
words, wave front is perpendicular to the axis. That is why inradiation. In the nonresonance case the field outruns the
the precursor region we have the fastest waves, wave front dfunch, it composes of quasistatic field of moving charged
which is almost perpendicular to the waveguide's gxes  bunch and transition radiation.
gion 18 cm<z<20 cm in Fig. 11a)]. In the region close to In obtained expressions the contributions from many ra-
the wall z=0 due to the boundary conditiorf8) we have dial harmonics with different numbers are summed. Besides
E,—0, butE,#0. In this region (6<z<2 cm) the slowest that, the space and time structures of the transition compo-
oscillations are localized, which fall on the sidewalls almostnent have been obtained in the form of infinite series, which
perpendicularly and move along the axis very slowly. Am-can be reduced to the Lommel functions of two variables.
plitude of these oscillations is very small and their frequencyUsing the properties of Lommel functions, these series have
spectrum is determined by cutoff frequencies of the wavebeen transformed to fast converging form, suitable for nu-
guide. merical analysis.
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IV. CONCLUSION
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The 2D pictures of spatial distribution of field for reso- drift of wake field after the leading bunch will result in the
nance and nonresonance cases have been discussed. Tralpwing: soon after the charged bunch passed through some
demonstrated the necessity of taking into account a big nuneross section of waveguide, the field in this cross section will
ber of radial harmonics, because only in this case the validend to zero. That is why in future it is necessary to consider
structure can be obtained. The qualitative structure of transihe influence of boundary at the output end, and to investi-
tion field is similar for both resonance and nonresonancgate multiple reflections of excited wave packet from the
modes—amplitude of transition field is much smaller thanends of waveguide. Besides, the absorption in dielectric must
that of the Cherenkov or quasistatic field, the most high-be taken into account.
frequency and short-wavelength oscillations are in the pre- Transition radiation in vacuum waveguide is of particular
cursor. interest due to its properties. The impact mechanism of ex-

As applied to the wake-field acceleration of charged par<citation of transition radiation by intense electron bunches
ticles in the dielectric-filled waveguide, accounting of the can be used for generation of superwideband electromagnetic
boundary leads to the limitation of intense accelerating fieldpulses. The intensity of radiation will be proportional to the
region in the longitudinal direction. The appeared effect ofsquared charge of bun¢h8].
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