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Structure of electromagnetic field excited by an electron bunch
in a semi-infinite dielectric-filled waveguide

I. N. Onishchenko, D. Yu. Sidorenko, and G. V. Sotnikov
Institute of Plasma Electronics and New Methods of Acceleration, National Scientific Center ‘‘Kharkov Institute of Physics an

Technology,’’ 1 Akademicheskaya Street, Kharkov 61108, Ukraine
~Received 3 December 2001; published 10 June 2002!

The exact solution of a problem on electromagnetic field excitation by a thin annular charged bunch in a
semi-infinite round cylindrical waveguide with metal sidewalls and solid homogeneous dielectric filling is
obtained. Expressions for all components of electromagnetic field are derived. These formulas describe the
excited field at any point and any moment of time. In contrast to previous works, where asymptotic methods
~saddle-point technique! were used, we applied a number of successive conformal transformations of integra-
tion area in order to carry out the inverse Fourier transformation. Integration along the initial infinite straight-
line contour was substituted by integration along the closed circular contour. This allowed us to separate out
the integral presentation of the cylindrical Bessel function of first kind and obtain the final solution in the form
of infinite converging series. The process of integration is presented in detail. Both cases, when the Cherenkov
resonance condition is satisfied and when this condition is not satisfied, are considered. Spatial pictures of field
excited by a finite-size electron bunch are calculated numerically and discussed. In the case of the Cherenkov
resonance the drift of excited wake field after the bunch with group velocity is demonstrated, and in the
nonresonance case the appearance of impulse of transition radiation and the presence of precursor of the signal
are shown.
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I. INTRODUCTION

A round cylindrical waveguide with metal sidewalls an
dielectric filling is often used in experiments on excitation
electromagnetic oscillations by electron bunches. The
cited waves can be applied for wake-field acceleration
charged particles@1–5# or for radiation sources@6,7#. For a
theoretical examination of field excited by moving charge
such waveguide it is usually supposed that a waveguid
infinite along thez axis. Consequently, if the Cherenko
resonance condition is satisfied, the excited field will be
tained in the form of the Cherenkov wave, which occup
the whole region behind the charge@8#. If there is no reso-
nance, then only the exponentially decaying quasistatic fi
of moving charge can be obtained.

The semi-infinite waveguide, which is shorted with me
wall at the input end, can be considered as a first approxi
tion for theoretical description of finite-length system wit
out reflections. For the first time the field of uniformly mo
ing point charge in such a waveguide was considered
Burshtein and Voskresenskij@9#. They presented the excite
field as a sum of three components. The first componen
the Cherenkov wave, the same as in an infinite wavegu
The second one is the ‘‘quenching wave,’’ which compe
sates the Cherenkov wave in the region between the
wall z50 and the ‘‘group wave front’’z5vgrt, wherevgr is
the group velocity of synchronous electromagnetic wave
the round dielectric-filled waveguide. The third compone
ensures smooth passage across the group wave front re
It corresponds to the transition radiation, which arises du
presence of boundaryz50 irrespective of satisfaction o
Cherenkov resonance condition. This additional field was
1063-651X/2002/65~6!/066501~11!/$20.00 65 0665
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termined with the help of the saddle-point technique. T
obtained approximate solution contains Fresnel integrals
is valid for the moments of time, which are large in compa
son with the wave period.

Propagation of transition radiation can be described w
the help of formalism, applied for study of pulsed sign
propagation in dispersive medium. The expansion of ph
of incoming signal in series@10,11# or asymptotic methods
@12,13# were usually applied for that. In a number of partic
lar cases of dispersive media with dispersion equation of
form kz}Av22vp

2, wherekz is the longitudinal wave num-
ber,v is the wave frequency,vp is some critical frequency
the exact solutions were obtained: for the ionosphere
Denisov@14# and for the flat waveguide by Wait and Spie
@15#.

As the dispersion equation of round cylindrical me
waveguide with solid dielectric filling has similar form, ther
is the possibility to obtain exact solution for the field
transition radiation in such waveguide. So, in the pres
paper for approximation of prescribed uniform motion
charged bunch, the expressions for the field, which are v
at any point and any moment of time, will be derived. Bas
on these expressions the structure of field excited by elec
bunch in the semi-infinite waveguide will be described.

This paper is organized as follows. Section II gives a d
tailed description of calculation of field of elementary th
charged ring. We considered in parallel the case when
Cherenkov resonance condition is satisfied, and the c
when this condition is not satisfied. All values, which rela
to the nonresonance case, are marked with tilde. In Sec
the computed pictures of spatial two-dimensional~2D! dis-
tribution of field of finite-size electron bunch are present
and discussed.
©2002 The American Physical Society01-1
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II. FIELD OF A THIN CHARGED RING

A. Integral expressions for the field components

Consider the cylindrical metal waveguide with radiusb,
filled with homogeneous dielectric with relative dielectr
constant«. Along the longitudinal direction the waveguide
semi-infinite (0<z,`), at the endz50 it is shorted with a
metal wall that is transparent for electrons. The axially sy
metric monoenergetic electron bunch flies into the wa
guide through this wall, and then it moves with consta
velocity v0 along thez axis. We neglect the necessity o
presence of vacuum transit channel and its influence
waveguide electrodynamics, and for simplification of calc
lations the dielectric filling is considered to be solid.

For determination of field, excited by the bunch with a
bitrary distribution of density, it is necessary to find at fir
the field of infinitely thin and short charged ring, coaxi
with the waveguide. The densities of charger and currentj
of such ring in the case of uniform straight-line motion a

r52
q

2pr 0v0
d~r 2r 0!d~ t2tL!,

j5rv0ez , ~1!

where 2q is the charge of the ring,v0 and r 0 are, corre-
spondingly, the constant velocity and radius of the rin
tL(t0 ,r 0 ,z)5t01z/v0 is the Lagrangian time of the ring,t0
is the moment of ring’s arrival into the waveguide, andez is
the unit vector in the direction along thez axis. The bunch of
finite size can be represented as a set of such ann
bunches~macroparticles! with different charges, radii, and
arrival times.

The electromagnetic field excited by the charge in
semi-infinite waveguide satisfies the Maxwell’s equatio
with the source function in form~1! and the following
boundary conditions:

Ezur 5b50,

Er uz5050. ~2!

After carrying out the Fourier transformation we obtain t
following equation of excitation for the Fourier compone
of azimutal magnetic fieldHw

v :

F ]2

]r 2
1

1

r

]

]r
2

1

r 2
1

]2

]z2
1

«v2

c2 GHw
v5

4p

c

]

]r
j z
v , ~3!

wherec is the speed of light in vacuum, and

j z
v52

q

4p2r 0

d~r 2r 0!exp~ ivtL!.

Fourier components of longitudinal (Ez
v) and radial (Er

v)
electric fields are expressed viaHw

v :

Ez
v5

ic

v«r

]

]r
~rH w

v!2
4p i

v«
j z
v , ~4!
06650
-
-
t

n
-

t

,

lar

e
s

Er
v52

ic

v«

]

]z
Hw

v . ~5!

In order to solve Eq.~3! we presentHw
v as a series of

eigenfunctions of waveguide,

Hw
v5 (

n51

`

awn~z,v!J1S ln

r

bD , ~6!

whereJ1 is the Bessel function of first kind of first order,ln
is thenth root of the Bessel function of zero order (J0). After
substituting Eq.~6! into Eq. ~3! and also taking into accoun
Eqs.~2! and ~5!, we obtain the following expression for th
Fourier component of azimutal magnetic field:

Hw
v5

2q

pcb (
n51

`

R1n~r ,r 0 ,b!
v0n

2 exp~ ivt0!

ln~v22v0n
2 !

Fexp~ ivz/v0!

2
v

kznv0
exp~ ikznz!G ,

where Rmn(r ,r 0 ,b)5J0(lnr 0 /b)Jm(lnr /b)/J1
2(ln), v0n

2

5ln
2/(b2«/c22b2/v0

2), kzn
2 5«v2/c22ln

2/b2, andkzn is the
longitudinal wave number ofnth radial harmonic of free
electromagnetic oscillations in the dielectric-filled wav
guide.

After carrying out the inverse Fourier transformation f
Hw

v and taking into account Eqs.~4! and ~5!, we obtain

Ez~ t,r ,z,t0 ,r 0!52
2q

pb2«
(
n51

`

R0n~r ,r 0 ,b!

3S ]

]t
I 1n1

iv0n
2 c

A«v0

I 2nD , ~7!

Er~ t,r ,z,t0 ,r 0!5
2q

pb«v0
(
n51

` v0n
2

ln
R1n~r ,r 0 ,b!

3S I 1n1 i
]

]j
I 2nD , ~8!

Hw~ t,r ,z,t0 ,r 0!5
2q

pbc (
n51

` v0n
2

ln
R1n~r ,r 0 ,b!

3S I 1n2
ic

A«v0

]

]t
I 2nD . ~9!

Heret5t2t0 , j5zA«/c, and

I 1n5E
2`

1`

dv
exp~2 ivt1 ivz/v0!

v22v0n
2

, ~10!

I 2n5E
2`

1`

dv
exp~2 ivt1 i jAv22an

2!

Av22an
2~v22v0n

2 !
, ~11!
1-2
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STRUCTURE OF ELECTROMAGNETIC FIELD EXCITED . . . PHYSICAL REVIEW E65 066501
wherean5lnc/(bA«). For the integration in Eqs.~10! and
~11! it is necessary to go above the singular points at the
axis, because in this case the excited field is equal to zer
the regionz.0 whent,t0.

B. Calculation of integrals

Thus, the problem of determination of electromagne
field is brought to the calculation of integrals~10! and ~11!.
The process of calculation essentially depends on whe
v0.c/A« or v0,c/A«. In the first case the charged bunch
in Cherenkov resonance with eigenwaves of waveguide.
sides the Cherenkov radiation the transition radiation w
arise due to the presence of the boundaryz50. The transi-
tion radiation will interfere with the Cherenkov one. In th
second case only the transition radiation will be excit
which will superimpose on the quasistatic field of uniform
moving charged bunch. The first~resonance! case is typical
for dielectric wake-field accelerators. The second~nonreso-
nance! case can be used for obtaining wideband electrom
netic pulses. In the resonance case, the termv0n

2 , which
appears in Eqs.~7!–~11!, defines two singular pointsv5
6v0n on the real axis. In the nonresonance case, the t
v0n

2 becomes negative and it is convenient to change it

ṽ0n
2 [2v0n

2 . This substitution will define two singula

pointsv56 i ṽ0n on the imaginary axis.
Integral ~10! describes the field of moving charge in th

infinite waveguide. Ifv0.c/A« this is the Cherenkov wake
wave field. Ifv0,c/A« this is simply the quasistatic field. In
both cases integral~10! can be easily calculated with the he
of the theorem of residues because the initial contour of
tegration can be transformed into the closed one by
circles of infinite radii, as is shown in Fig. 1. Integratio
along these half circles will give zero. Notice that, in contr
to the resonance case, the value of Eq.~10! is nonzero in
front of the charge in the nonresonance case:

I 1n5H 2
2p

v0n
sin@v0n~ t2t02z/v0!#

for t2t02z/v0>0,

0 for t2t02z/v0,0;

~12a!

FIG. 1. Contours for calculation of integralsI 1n , Ĩ 1n in com-
plex planev. L is the initial contour of integration. Dashed lin
closes L if t2t02z/v0,0, dash-dotted line closesL if t2t0

2z/v0.0. Here and hereinafter white circles mark the po
v56v0n related to the casev0.c/A«, and white squares mark th

polesv56 i ṽ0n related to the casev0,c/A«.
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Ĩ 1n55
p

ṽ0n

exp@2ṽ0n~ t2t02z/v0!#

for t2t02z/v0>0,

p

ṽ0n

exp@ṽ0n~ t2t02z/v0!#

for t2t02z/v0,0.

~12b!

Integral ~11! corresponds to the free electromagnetic o
cillations in cylindrical waveguide. Terms withI 2n appeared
in Eqs. ~7!–~9! due to the finiteness of system along thez
axis. These terms allow the fields to satisfy the bound
condition~2! at the metal plane at input end. Exact analytic
solution for similar integral was found, e.g., in Refs.@14# and
@15#.

The functionkzn5(A«/c)Av22an
2 is double valued and

has branch points atv56an . Make the branch cut in com
plex planev along the segment (2an ; an) and choose tha
branch of square root, which is determined by condition
,arg(v6an),2p ~see Fig. 2!. In this case the signs of rea
and imaginary parts ofkzn(v) are equal to that of real an
imaginary parts ofv, correspondingly. This condition mus
be satisfied, because we consider only the waves propag
in the positive direction of thez axis. Such waves have
sgn@Re(kz)#5sgn@Re(v)#.

Integral ~11! can be easily calculated whent2t0

2zA«/c,0. In this case the initial contour of integrationL
can be closed by the half circle of infinite radius in the upp
complex half planev ~see Fig. 3!. Integration along this half
circle gives zero. Ifv0.c/A« there are no singular point
inside the closed contour, and ifv0,c/A« there is one sin-
gularity, v5 i ṽ0n , inside the closed contour. That is wh
when t2t02zA«/c,0,

I 2n50, ~13a!

Ĩ 2n52
ipA«v0

ṽ0n
2 c

exp@ṽ0n~ t2t02z/v0!#. ~13b!

When t2t02zA«/c.0, the integral along the contou
Cinf , which is the half circle of infinite radius in the lowe

FIG. 2. The selection of branch of functionkzn

5(A«/c)Av22an
2. w15arg(v1an), w25arg(v2an), and q

5arg(kzn)5(w11w2)/2. Here and hereinafter black circles ma
the branch pointsv56an , the thick line depicts the branch cu
between the branch points.
1-3
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half planev, is equal to zero. After closing the initial contou
L by contourCinf , we obtain the domainD1 that contains the
branch cut (2an ;an). We transformD1 into the doubly
connected domain by including contourCcut into its bound-
ary, as is depicted in Fig. 3. According to the theorem
residues

I 2n1I cut522p i @ResF~2v0n!1ResF~v0n!#,
~14a!

Ĩ 2n1 Ĩ cut522p i ResF~2 i ṽ0n!. ~14b!

Here I cut and Ĩ cut are the integrals along the contourCcut,
and ResF(v0) denotes the residue of subintegral function
Eq. ~11! at corresponding singularityv0. For determination
of integrals along the banks of branch cut we consider
doubly connected domainD2

v , represented in Fig. 4. Con
tour Ccut is the inner boundary ofD2

v . The outer boundary o
D2

v is ellipseCel
v , focuses of which are situated at the bran

pointsv56an . The equation ofCel
v is

~Rev!2

X2
1

~ Im v!2

Y2
51, ~15!

FIG. 3. Contours for calculation of integralsI 2n , Ĩ 2n in com-
plex planev. L is the initial open contour. The dashed line mar
the way of closing of this contour whent2t02zA«/c,0. The
dash-dotted line marks the contour of infinite radiusCinf . Ccut is the
closed contour, which encloses the branch cut (2an ;an). Region
D1 is hatched.

FIG. 4. Doubly connected domainD2
v ~hatched!. Cel

v is the el-
liptic contour ~15!. LettersA–L mark the typical points of region
D2

v in order to trace its transformation on the subsequent figure
06650
f

e

where X22Y25an
2 . In the casev0.c/A«, it must beX

.v0n , and in the casev0,c/A« , it must beY.ṽ0n . The
direction of circulation of contourCel

v is negative. According
to the theorem of residues,

I cut1I el522p i @ResF~2v0n!1ResF~v0n!#,
~16a!

Ĩ cut1 Ĩ el522p i @ResF~2 i ṽ0n!1ResF~ i ṽ0n!#,
~16b!

whereI el and Ĩ el are integrals along the contourCel
v . Com-

paring Eqs.~14! and ~16! we obtain

I 2n5I el , ~17a!

Ĩ 2n5 Ĩ el2
ipA«v0

ṽ0n
2 c

exp@ṽ0n~ t2t02z/v0!#. ~17b!

The second term in Eq.~17b! corresponds to the residue
singularity i ṽ0n . Expressions~17! allow to pass from inte-
gration along the infinite straight lineL to integration along
the closed contourCel

v .
The calculation ofI el in the casev0.c/A« and the

calculation ofĨ el in the casev0,c/A« are almost identical.
The difference is that the line, along which the singularit
of first order are situated ifv0.c/A«, is perpendicular to the
line along which similar singularities are situated
v0,c/A«. That is why we describe below only the proc
dure of calculation ofI el .

Let us change the variablep52 iv. This results inp/2
turn of domainD2

v relative to the pointv50 ~see Fig. 5!.
ContourCel

v transforms into the contourCp in complex plane
p. The equation ofCp is

~Rep!2

Y2
1

~ Im p!2

X2
51.

The direction of circulation ofCp is negative. Expression fo
I el is.

FIG. 5. Hatched regionD2
p in complex planep is the image of

D2
v after the transformationp52 iv.
1-4
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I el5E
Cp

dp
2exp~pt2jAp21an

2!

Ap21an
2~p21v0n

2 !
.

Next variable isz5(Ap21an
22p)/an . Function z(p) is

double valued, so we choose that branch of function wh
0,arg(p6 ian),2p. In this case the signs of real an
imaginary parts of square root will coincide with the signs
real and imaginary parts ofp. Such function transforms th
banks of branch cut (2 ian ; ian) into the circle with unitary
radius in complex planez, and the elliptic contourCp into
the circular contourCz ~see Fig. 6!. Direction of circulation
of contourCz is positive. The equation ofCz is

~Rez!21~ Im z!25
~X2Y!2

an
2

.

The integral transforms in the following way:

I el5
4

an
2ECz

dz

z expH 2
an

2 Fz~t1j!2
t2j

z G J
~z2z1!~z2z2!~z2z3!~z2z4!

,

where z15 i @(A«v02c)/(A«v01c)#1/2, z25 i @(A«v0

1c)/(A«v02c)#1/2, z352z1, andz452z2. The appeared
additional couple of singularities is situated beyond the u
tary circle, because (X2Y)/an,uz1u. So, inside the contou
Cz there is only one singular pointz50.

Let us make the last change of variablez52bw, where
b5A(t2j)/(t1j). ContourCz transforms into the circula
contourCw with positive direction of circulation~see Fig. 7!.
The equation ofCw is

~Rew!21~ Im w!25
~X2Y!2

b2an
2

.

Inside the contourCw only one singular pointw50 is con-
tained. The integral takes the form

FIG. 6. Hatched regionD2
z is obtained fromD2

p after transfor-

mation z5(Ap21an
22p)/an . PointsM , N, and M̃ , Ñ mark the

additional couples of poles that appear in the subintegral funct
06650
re

f

i-

I el5
4

an
2b2ECw

dw

w expF1

2 S w2
1

wDanAt22j2G
~w2w1!~w2w2!~w2w3!~w2w4!

,

wherew1,2,3,45z1,2,3,4/b, respectively. The subintegral func
tion can be transformed as follows:

I el5
A«v0

2v0n
2 c

E
Cw

dw expFanAt22j2

2 S w2
1

wD G
3H 1

w2w1
2

1

w2w2
1

1

w2w3
2

1

w2w4
J . ~18!

As the contourCw does not contain the singularitiesw
5w1,2,3,4, at this contour the following expansions are vali

2
1

w2wj
5

1

wj
(
k50

` S w

wj
D k

, ~19!

where j 51,2,3,4. Let us notice also that@16#

1

2p i ECw
dw wk expF x

2 S w2
1

wD G5~21!k11Jk11~x!.

~20!

After substituting series~19! into ~18!, interchanging the or-
der of integration and summation, and taking into acco
Eq. ~20!, we obtain

I el5
2p iA«v0

v0n
2 c

(
m50

`

~21!m~r 2
212m2r 1

212m!J212m~yn!,

~21!

where r 15b@(A«v02c)/(A«v01c)#1/2, r 25b@(A«v0

1c)/(A«v02c)#1/2, yn5anAt22j2.
The Lommel function of thenth order of two arguments

Un(q,x) is defined as@17#

Un~q,x!5 (
m50

`

~21!mS q

xD n12m

Jn12m~x!. ~22!

.

FIG. 7. Final form of integration contourCw in complex plane
w, into which contourCz transforms after substitutionz52bw.
1-5
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Finally, after taking into account~17!, ~21!, and~22!, we can
write in resonance and nonresonance cases fort2t0

2zA«/c.0:

I 2n5
2p iA«v0

v0n
2 c

@U2~r 2yn ,yn!2U2~r 1yn ,yn!#, ~23a!

Ĩ 2n52
2p iA«v0

ṽ0n
2 c

H U2~ i r̃ 2yn ,yn!2U2~ i r̃ 1yn ,yn!

1
1

2
exp@ṽ0n~ t2t02z/v0!#J , ~23b!

where r̃ 1,2
2 [2r 1,2

2 , respectively.

C. Some properties of Lommel functions

Now the integralsI 1n and I 2n are calculated. But before
one will turn to Eqs.~7!–~9!, let us notice, first, that using
the properties of Lommel functions@17# the following nec-
essary expression must be obtained:

d

dx
Un~ry ,y!5

d

dx S ry

2
1

y

2r DUn21~ry ,y!

2
d

dx S y

r D r n21

2
Jn21~y!, ~24!

where r 5r (x), y5y(x). Second, ifuqu<uxu, the Lommel
function Un(q,x) can be easily calculated with the help
Eq. ~22!. If uqu.uxu, the number of membersm of series in
Eq. ~22!, which must be accounted for obtaining the co
verging result, is approximately defined by conditionn
12m.x, that is why in the case of biguxu@1 the direct
summation of series~22! seems to be rather problemati
Hence, if uxu.1, the following property of Lommel func-
tions must be used@17#:

Un~q,x!5cosS q

2
1

x2

2q
2

np

2 D
1 (

m50

`

~21!n1mS x

qD 2n1212m

3J2n1212m~x!. ~25!

One can show analytically that whenx5q, formulas ~22!
and~25! can be transformed to the identical expressions.
we are interested in functions withn51 andn52, finally
we write that

U2~ry ,y!55
2 (

m51

`

~21!mr 2mJ2m~y! if ur u<1,

2cosS ry

2
1

y

2r D1 (
m50

`
~21!m

r 2m
J2m~y!

if ur u.1;
~26!
06650
-

s

U1~ry ,y!55 (
m50

`

~21!mr 112mJ112m~y! if ur u<1,

sinS ry

2
1

y

2r D2 (
m50

`
~21!m

r 112m
J112m~y!

if ur u.1.
~27!

We shall need also the following relations:

r 2yn

2
1

yn

2r 2
[v0n~ t2t02z/v0!, ~28a!

i r̃ 2yn

2
1

yn

2i r̃ 2

[ i ṽ0n~ t2t02z/v0!. ~28b!

Let us introducevpr5c/A« and vgr5c2/«v0. When t2t0
2z/vpr>0 we have

0<r 1,1,

0<r 2<1 for t2t02z/vgr<0, ~29a!

r 2.1 for t2t02z/vgr.0;

0< r̃ 1,1,

0< r̃ 2<1 for t2t02z/v0<0, ~29b!

r̃ 2.1 for t2t02z/v0.0.

Inequalities~29! define the regions where the various prese
tations~26!, ~27! of Lommel functions will be used for the
field structure description. In the casev0.c/A« the har-
monic terms in Eqs.~26! and ~27! will give the electromag-
netic wave that will be equal to the Cherenkov wake wa
but with the opposite sign. This is the so-called ‘‘quenchi
wave’’ @9#, which compensates the Cherenkov radiation fi
in the region 0,z,(t2t0)vgr . In the casev0,c/A« the
sine and cosine in Eqs.~26!, ~27! will become the hyperbolic
ones and will compensate the exponentially growing term
Eq. ~23b! in the region 0,z,(t2t0)v0.

D. Final expressions for the field in resonance case

In order to obtain the expressions describing the exc
fields, one must substitute Eqs.~12!, ~13!, and~23! into Eqs.
~7!–~9! by taking into account Eqs.~24! and ~26!–~29!.

In the case of Cherenkov resonance the field, excited
the thin charged ring~1! in the semi-infinite waveguide, ca
be written, similar to Ref.@9#, in the form of superposition of
spatially limited Cherenkov radiation field and transition r
diation field. The longitudinal electric field:
1-6
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Ez~ t,r ,z,t0 ,r 0!5Ez
Cher~ t,r ,z,t0 ,r 0!1Ez

trans~ t,r ,z,t0 ,r 0!,
~30!

Ez
Cher~ t,r ,z,t0 ,r 0!5

4q

b2«
(
n51

`

R0n~r ,r 0 ,b!cos@v0n~ t2t0

2z/v0!#q@z,~ t2t0!vgr ,~ t2t0!v0#,

~31!

Ez
trans~ t,r ,z,t0 ,r 0!5

4q

b2«
(
n51

`

R0n~r ,r 0 ,b!H q@z,~ t2t0!

3vgr ,~ t2t0!vpr# (
m51

`

~21!m~r 1
2m2r 2

2m!

3J2m~yn!1q@z,0,~ t2t0!vgr#F J0~yn!

1 (
m51

`

~21!mS r 1
2m1

1

r 2
2mD J2m~yn!G J .

~32!

The functionq is defined as

q~z,z1 ,z2!5H 1 if z1<z,z2

0 if z,z1 or z2<z.

The radial electric field:

Er~ t,r ,z,t0 ,r 0!5Er
Cher~ t,r ,z,t0 ,r 0!1Er

trans~ t,r ,z,t0 ,r 0!,
~33!

Er
Cher~ t,r ,z,t0 ,r 0!52

4q

b2«A«v0
2/c221

(
n51

`

R1n~r ,r 0 ,b!

3sin@v0n~ t2t02z/v0!#q@z,~ t

2t0!vgr ,~ t2t0!v0#, ~34!

Er
trans~ t,r ,z,t0 ,r 0!5

4q

b2«A«v0
2/c221

(
n51

`

R1n~r ,r 0 ,b!

3H q@z,~ t2t0!vgr ,~ t2t0!vpr#

3 (
m50

`

~21!m~r 1
112m1r 2

112m!

3J112m~yn!1q@z,0,~ t2t0!vgr#

33 (
m50

`

~21!mS r 1
112m2

1

r 2
112mD

3J112m~yn!J . ~35!

The azimutal magnetic field:
06650
Hw~ t,r ,z,t0 ,r 0!5Hw
Cher~ t,r ,z,t0 ,r 0!1Hw

trans~ t,r ,z,t0 ,r 0!,
~36!

Hw
Cher~ t,r ,z,t0 ,r 0!52

4qv0

b2A«v0
22c2 (

n51

`

R1n~r ,r 0 ,b!

3sin@v0n~ t2t02z/v0!#

3q@z,~ t2t0!vgr ,~ t2t0!v0#, ~37!

Hw
trans~ t,r ,z,t0 ,r 0!52

4qv0

b2A«v0
22c2 (

n51

`

R1n~r ,r 0 ,b!

3H q@z,~ t2t0!vgr ,~ t2t0!vpr#

3 (
m50

`

~21!m~r 1
112m2r 2

112m!

3J112m~yn!1q@z,0,~ t2t0!vgr#

3 (
m50

`

~21!mS r 1
112m1

1

r 2
112mD

3J112m~yn!J . ~38!

Cherenkov components~31!, ~34!, and~37! are written by
taking into account the quenching wave and are nonz
when (t2t0)vgr<z,(t2t0)v0. Within the limits of this re-
gion the amplitude of each harmonic of Cherenkov com
nent is constant@see Fig. 8~b!#. The valuevgr is the group
velocity of electromagnetic wave, which is synchronous w
the charge. Planezgr5(t2t0)vgr is the ‘‘group wave front’’
of wake field. This wave front moves behind the bunch w
group velocityvgr .

Transition components~32!, ~35!, and ~38! exist in the
region 0<z,(t2t0)vpr . The valuevpr is the maximal ve-
locity of propagation of electromagnetic signals in dielectr
filled waveguide. Exactly with this velocity the fastest hig
frequency part of transition radiation—the so-call
precursor@11#—propagates. The envelope of each harmo
of transition component is maximal near the group wa
front @line A in Fig. 8# and decreases as one moves aw
from it. In precursor@line B in Fig. 8~c!# it tends to zero,
coordinate of precursor iszpr5(t2t0)vpr . Near the metal
end wall the envelope ofEz is small, but nonzero and i
decreases with time. Transition components undergo a
den discontinuous change at the plane of group wave f
@see Fig. 8~c!#. This occurs due to the fact that we artificial
split the continuous total field@Eqs.~30!, ~33!, and~36!# into
components, and the separated Cherenkov component@Eqs.
~31!, ~34!, ~37!# turns to zero abruptly also when crossing t
plane of group wave front, as it is shown in Fig. 8~b!.

As a result, at certain moment of timet the spatial pattern
of single harmonic of total field looks like that represented
Fig. 8~a!. In front of the bunch~line C) the field is equal to
1-7
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zero. To the left from precursor’s positionzpr ~line B) the
field’s envelope disturbs and starts to decrease, at gr
wave front ~line A) it is equal to the half of Cherenko
amplitude. In the regionz!zgr the field is small and it de-
creases with time.

E. Final expressions for the field in nonresonance case

In the case when the Cherenkov resonance conditio
not satisfied, we write the field, excited by the thin rin
shaped charge~1!, in the form of superposition of quasistat
field of uniformly moving charged ring and field of transitio
radiation. The longitudinal electric field:

Ez~ t,r ,z,t0 ,r 0!5Ez
qstat~ t,r ,z,t0 ,r 0!1Ez

trans~ t,r ,z,t0 ,r 0!,
~39!

Ez
qstat~ t,r ,z,t0 ,r 0!

5
2q

b2«
(
n51

`

R0n~r ,r 0 ,b!$2exp@ṽ0n~ t2t02z/v0!#

3q@z,~ t2t0!v0 ,~ t2t0!vpr#

1exp@2ṽ0n~ t2t02z/v0!#

3q@z,0,~ t2t0!v0#%, ~40!

Ez
trans~ t,r ,z,t0 ,r 0!

52Ez
qstat~ t,r ,z,t0 ,r 0!1

4q

b2«
(
n51

`

R0n~r ,r 0 ,b!

3H q@z,~ t2t0!v0 ,~ t2t0!vpr#

FIG. 8. Longitudinal structure of the first harmonic of the lo
gitudinal electric field~in relative units! given by Eqs.~30!–~32! in
the fixed moment of time.~a! Total field,~b! Cherenkov component
and ~c! transition component. LineA marks the position of the
group wave front, lineB marks the position of the precursor, an
line C marks the position of the charge.tc/b540, r /b50, t0

50, v0 /c50.9798, «52.6.
06650
up

is

(
m51

`

~ r̃ 1
2m2 r̃ 2

2m!J2m~yn!1q@z,0,~ t2t0!v0#

3F J0~yn!1 (
m51

` S r̃ 1
2m1

1

r̃ 2
2mD J2m~yn!G J .

~41!

The radial electric field:

Er~ t,r ,z,t0 ,r 0!5Er
qstat~ t,r ,z,t0 ,r 0!1Er

trans~ t,r ,z,t0 ,r 0!,
~42!

Er
qstat~ t,r ,z,t0 ,r 0!52

2q

b2«A12«v0
2/c2

3 (
n51

`

R1n~r ,r 0 ,b!$exp@ṽ0n~ t2t0

2z/v0!#q@z,~ t2t0!v0 ,~ t2t0!vpr#

1exp@2ṽ0n~ t2t02z/v0!#

3q@z,0,~ t2t0!v0#%, ~43!

Er
trans~ t,r ,z,t0 ,r 0!52Er

qstat~ t,r ,z,t0 ,r 0!

1
4q

b2«A12«v0
2/c2 (

n51

`

R1n~r ,r 0 ,b!

3H q@z,~ t2t0!v0 ,~ t2t0!vpr#

3 (
m50

`

~ r̃ 1
112m2 r̃ 2

112m!J112m~yn!

1q@z,0,~ t2t0!v0# (
m50

` S r̃ 1
112m

2
1

r̃ 2
112mD J112m~yn!J . ~44!

The azimutal magnetic field:

Hw~ t,r ,z,t0 ,r 0!5Hw
qstat~ t,r ,z,t0 ,r 0!1Hw

trans~ t,r ,z,t0 ,r 0!,
~45!

Hw
qstat~ t,r ,z,t0 ,r 0!52

2qv0

b2Ac22«v0
2 (

n51

`

R1n~r ,r 0 ,b!

3$exp@ṽ0n~ t2t02z/v0!#q@z,~ t

2t0!v0 ,~ t2t0!vpr#1exp@2ṽ0n~ t2t0

2z/v0!#q@z,0,~ t2t0!v0#%, ~46!
1-8
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Hw
trans~ t,r ,z,t0 ,r 0!52Hw

qstat~ t,r ,z,t0 ,r 0!

2
4qv0

b2Ac22«v0
2 (

n51

`

R1n~r ,r 0 ,b!

3H q@z,~ t2t0!v0 ,~ t2t0!vpr#

3 (
m50

`

~ r̃ 1
112m1 r̃ 2

112m!J112m~yn!

1q@z,0,~ t2t0!v0#

3 (
m50

` S r̃ 1
112m1

1

r̃ 2
112mD J112m~yn!J .

~47!

We defined quasistatic@Eqs. ~40!, ~43!, and ~46!#, and
transition@Eqs. ~41!, ~44!, and ~47!# components of field as
nonzero in the region 0<z,(t2t0)vpr . As in the waveguide
the electromagnetic signal cannot propagate with the velo
higher thanvpr , at the moment of timet.t0 neither quasi-
static, nor transition radiation fields exist in front of the po
zpr . At the same time, as the velocity of chargev0,vpr , the
excited field outruns the charge in contrast with the Cher
kov resonance case. In order to illustrate the qualitative
ture of propagation of radiation in the nonresonance case
longitudinal distributions of first harmonic of total radia
electric field and its Coulomb and transition components
represented in Fig. 9.

Even in the structure of single harmonic the wide set
frequencies can be observed and the most short-wavele
and high-frequency oscillations are in the precursor reg
The amplitude of oscillations decreases as one moves to
precursor, and at the pointz5zpr ~line B in Fig. 9! the total
field becomes zero.

III. FIELD TOPOGRAPHY OF FINITE-SIZE
ELECTRON BUNCH

Expressions~30!–~47! allow us to investigate the spatia
structure of electromagnetic field in the semi-infinite wav
guide. Notice that the sums over indexn in these formulas
are divergent, because they describe the field of the cha
whose density is determined by thed function. The diver-
gence is removed if one sums the contributions from all m
roparticles that form the finite-size bunch. For subsequ
numerical calculations, we have chosen the electron bu
with the distribution of current density,

j z~r 0 ,t0!5 j 0J0S l1

r 0

Rb
DexpF24S 2t0

Tb
21D 2G , ~48!

where j 0 is the maximal value of current density, 0<t0
<Tb , Tb is the bunch duration (Tb5Lb /v0, whereLb is the
length andv0 is the bunch velocity!, 0<r 0<Rb , andRb is
the bunch radius.
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Consider at first the Cherenkov resonance case. In
10~a! with the help of level curves the 2D~in the planez-r )
picture of distribution of longitudinal electric field excited b
relativistic electron bunch with density~48! is represented
~see the parameters in caption of Fig. 10!. The bunch sizes
are small in comparison with those of waveguide, so we
think that position of group wave front iszgr'15.6 cm, co-
ordinate of precursor iszpr'24.8 cm, and bunch coordinat
is zb'38.7 cm. In the regionzpr,z,zb the intense Cheren
kov wake wave exists. Structure of this wave is formed a
result of periodic reflections of Cherenkov cone from t
sidewalls of waveguide. The angle at the vertex of this co

FIG. 9. Longitudinal structure of the first harmonic of the rad
electric field~in relative units! given by Eqs.~42!–~44! in the fixed
moment of time.~a! Total field, ~b! quasistatic~Coulomb! compo-
nent, and~c! transition component. LineA marks the position of
charge, lineB marks the position of precursor.tc/b510, r /b
50.25, t050, v0 /c50.5, «51.

FIG. 10. Topography of fieldEz in the semi-infinite waveguide
in the case of Cherenkov resonance.~a! Level curves of fieldEz

and ~b! respective dependence ofEz vs z obtained atr 50. Level
curves of field are drawn with a step of 0.4 kV/cm in the ran
from 24 kV/cm to 4 kV/cm. Dash-dotted lines in~b! mark the
limits of this range. The electron bunch moves from left to right.
radial harmonics are taken into account. The moment of observa
tc/b510. System’s parameters:b54 cm, «52.6, Lb51 cm,
Rb50.5 cm,v0 /c50.9798, and bunch chargeQ51.6 nC.
1-9
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determined directly from the picture, equals toa'39° that
coincides with theoretical value for infinite dielectrica
5arcsin@c/(A«v0)#539.27°. Note that in order to obtain th
Cherenkov cone the big number of radial harmonics mus
summed in Eqs.~30!–~38!, as it was pointed in Ref.@3#.
Conical structure of Cherenkov field in dielectric wavegui
was mentioned in Ref.@7# and 2D pictures were presented
Ref. @4# for the waveguide with vacuum transit channel. B
in these works infinite systems were considered. And in
semi-infinite waveguide in the region 0,z,zpr the transi-
tion radiation field superimposes on the Cherenkov fie
Weak transition oscillations in the precursor region 20
,z,23 cm still can be noticed against the intense Cher
kov field. Behindzgr the field is small and its structure i
different from that of the Cherenkov wave. The transiti
radiation field will be described in details hereinafter. In F
10~b!, for comparison, the respective dependence ofEz vs z
at the axis of waveguide (r 50) is represented. Note the hig
amplitude and small width of field spikes.Ez is maximal at
the waveguide’s axis, where the waves, reflected from s
walls, are focusing. It is evident that for the purpose of
celeration one can use the fields in the paraxial regior
,0.5 cm, and in the moment of time depicted in Fig. 10 t
accelerated particle must be behind the leading bunch
farther than 38.7218520.7 cm.

Now study the case when there is no Cherenkov re
nance. To satisfy this condition we considered the vacu
waveguide. The corresponding 2D picture of level curves
radial electric fieldEr excited by electron bunch with densit
~48! is represented in Fig. 11~a!. The profile of this picture
along the liner 51 cm ~dependence ofEr vs z) is repre-
sented in Fig. 11~b!. First of all one can notice the typica
spike of Coulomb field in the region of bunch:r
,0.5 cm, 15 cm,z,16 cm. Amplitude of this spike is
10 kV/cm and it is much higher than the transition signa
level. But Coulomb field decays exponentially and its infl
ence is limited by the regionr ,1.5 cm, 14 cm,z
,17 cm. One should notice also the typical convolution
level curves of transition field. The slope angle betwe
wave front and waveguide’s axis changes from 0° to 90°
one moves from the wallz50 to the precursorzpr520 cm.
Similar behavior of transition component can be observed
Fig. 10~a!. Considering the wave propagation in the wav
guide as periodical reflections from the sidewalls we c
conclude that the smaller is the number of reflections per
length, the higher will be wave propagation velocity alo
the waveguide’s axis. This velocity will be maximal whe
the wave propagates along the waveguide’s axis or, in o
words, wave front is perpendicular to the axis. That is why
the precursor region we have the fastest waves, wave fro
which is almost perpendicular to the waveguide’s axis@re-
gion 18 cm,z,20 cm in Fig. 11~a!#. In the region close to
the wall z50 due to the boundary conditions~2! we have
Er→0, butEzÞ0. In this region (0,z,2 cm) the slowest
oscillations are localized, which fall on the sidewalls almo
perpendicularly and move along the axis very slowly. A
plitude of these oscillations is very small and their frequen
spectrum is determined by cutoff frequencies of the wa
guide.
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IV. CONCLUSION

In present paper the influence of finiteness of slow-wa
medium on the process of formation of electromagnetic fi
excited by a moving electron bunch in a semi-infinite rou
cylindrical dielectric-filled waveguide with metal walls ha
been investigated. The considered structure is a good
proximation for description of real waveguide if the last o
has no reflection at the output end or if the reflection is we
enough to be neglected. We made a number of nonprinc
assumptions that sufficiently simplify the process of obta
ing the solution. First, the velocity of motion of charge
particles is constant. Second is the absence of frequency
persion and absorption in dielectric. Third is the solid hom
geneous dielectric filling of waveguide, without vacuu
transit channel. Let us note that in the case of vacuum wa
guide only the first condition is necessary for the correctn
of obtained solution~39!–~47!. Within the limits of such ap-
proximation the exact expressions, which describe the e
tromagnetic field excited by the uniformly moving thin ring
shaped charge bunch in the semi-infinite waveguide, h
been obtained for the cases when Cherenkov resonance
dition is satisfied and when it is not. In the resonance c
the field exists only behind the bunch and it is composed
spatially limited Cherenkov field, whose trailing wave fro
moves after the bunch with group velocity, and transiti
radiation. In the nonresonance case the field outruns
bunch, it composes of quasistatic field of moving charg
bunch and transition radiation.

In obtained expressions the contributions from many
dial harmonics with different numbers are summed. Besi
that, the space and time structures of the transition com
nent have been obtained in the form of infinite series, wh
can be reduced to the Lommel functions of two variabl
Using the properties of Lommel functions, these series h
been transformed to fast converging form, suitable for n
merical analysis.

FIG. 11. Topography of fieldEr in the semi-infinite waveguide
in the nonresonance case.~a! Level curves of fieldEr , ~b! respec-
tive dependence ofEr vs z obtained atr 51 cm @corresponds to
dashed line in~a!#. Level curves of field are drawn with a step o
50 V/cm in the range from2800 V/cm to 800 V/cm. The dash
dotted line in~b! marks the lower limit of this range. The electro
bunch moves from left to right. Twenty radial harmonics are tak
into account. The moment of observationtc/b55. System’s param-
eters: b54 cm, «51, Lb51 cm, Rb50.5 cm, v0 /c50.8, and
bunch chargeQ51.6 nC.
1-10
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The 2D pictures of spatial distribution of field for res
nance and nonresonance cases have been discussed.
demonstrated the necessity of taking into account a big n
ber of radial harmonics, because only in this case the v
structure can be obtained. The qualitative structure of tra
tion field is similar for both resonance and nonresona
modes—amplitude of transition field is much smaller th
that of the Cherenkov or quasistatic field, the most hig
frequency and short-wavelength oscillations are in the p
cursor.

As applied to the wake-field acceleration of charged p
ticles in the dielectric-filled waveguide, accounting of t
boundary leads to the limitation of intense accelerating fi
region in the longitudinal direction. The appeared effect
, J
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e

e
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drift of wake field after the leading bunch will result in th
following: soon after the charged bunch passed through s
cross section of waveguide, the field in this cross section
tend to zero. That is why in future it is necessary to consi
the influence of boundary at the output end, and to inve
gate multiple reflections of excited wave packet from t
ends of waveguide. Besides, the absorption in dielectric m
be taken into account.

Transition radiation in vacuum waveguide is of particu
interest due to its properties. The impact mechanism of
citation of transition radiation by intense electron bunch
can be used for generation of superwideband electromagn
pulses. The intensity of radiation will be proportional to th
squared charge of bunch@18#.
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