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Analytic solution for low-frequency rf sheaths in pulsed discharges
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The equations governing the evolution of rf-driven sheaths are solved analytically in the regime where the
rf frequency is small compared to both the ionic plasma frequency and the ion transit time in the sheaths.
Poincarés map of first return is used to gain geometric insight into the dynamics of the circuit-sheath system.
The requirements of minimizing wall bombardment while maximizing the efficiency of the coupling to the
substrate sheath are shown to lead to an optimum value for the blocking capacitance in asymmetric discharges.
This optimum value is also favorable for rapid relaxation to the steady state in pulsed discharges. The analytic
solution is applied to the problem of negative-ion extraction in afterglow plasmas.
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[. INTRODUCTION nal circuit elements, and the relaxation behavior of sheaths in
pulsed plasma.
Radio-frequency-driven plasma sheaths are widely used Previous investigations of sheath dynanit3—24] have
to produce anisotropic fluxes of energetic ions for a varietyidentified two separate regimes distinguished by the relative
of applications[1]. In recent years, efforts to improve the magnitudes of the frequency of the applied rf signal and the
efficacy of the related plasma processes have shown that seien plasma frequencgor equivalently{17], the inverse of the
eral advantages accrue from pulsing the heating power userhnsit time for ions crossing the sheathin the high-
to sustain the discharge. In particular, pulgsduare-wave frequency regimé¢l8], the ion properties remain constant in
modulated power has been shown to reduce dust productionime throughout the sheath, and the current is dominated by
during etchind 2], to allow control(through variation of the the displacement current associated with the tidal motion of
duty cycle of the radical composition and thus of etch se-the electrons in the ion “beach.” The high-frequency regime
lectivity [3], and to enable increased plasma densities at conis thus unsuited to negative-ion energization. In the low-
stant heating powef4,5]. Pulsed or modulated power has frequency regimé¢19-21,25-27, by contrast, the instanta-
also been used as a diagnostic method to infer reaction kiheous electron and ion profiles are the same as those in a dc
netics from observations of density decay rdt2$,7], and  sheath and they evolve adiabatically with the changing bias
to allow measurements of the electric charge of particulatesoltage. For sufficiently high electronegativities it is thus
[8]. Most importantly perhaps, pulsed-power discharges havpossible to alternate the sign of the sheath bias and succes-
been shown to produce, during the afterglow phases, plasmassely accelerate negative and positive ions towards the sub-
with extremely high electronegativities approximating purestrate.
ion-ion plasmas. In such plasmas rf biasing leads to the ex- In this paper we restrict our consideration to the low-
traction of equal negative and positive ion charges. Thidrequency regime. We begin in Sec. Il by describing the
avoids the differential charging of the surface of the substratelouble-probe model for electron-ion sheaths and deriving a
with respect to the bottom of the trenches and consequentiieduced version of this model valid for low frequencies. The
improves etch anisotropy@—13). reduced model describes the discharge in terms of a single
The use of pulsed power raises more questions, howevsiirst-order ordinary differential equation. Our analysis ex-
concerning the relaxation of the rf-driven sheath oscillationstends previous treatments for largfi9,20,25—-27 and small
External circuit elements are known to play an important rold17] values of the blocking capacitance, and provides a
in determining sheath dynami¢$4,15, but the mechanics method for studying relaxation in pulsed discharges. We note
of this role is complicated by the nonlinear nature of thethat negative ions are confined to the plasma core by ambi-
sheaths. Numerical simulations have proven useful for invespolar and sheath potentials even for moderately high elec-
tigating sheath dynamics, but the disparity in time and spatiajronegativities. The electron-ion double-probe model thus
scales between core transport phenomena and the rf frepplies whenever the electronegativity is insufficient to cause
quency requires the use of separate codes for the sheaths agitkath inversion. In Sec. Ill we solve our model equation
the plasma cor¢ll,16. Even with this separation, simula- analytically under the assumption that the applied potential is
tions remain onerous. The aim of the present paper is tenuch greater than the electron temperature. This assumption
construct an analytic solution of the equations for the sheaths well satisfied in practice. This leads us to introduce the
substrate bias circuit. In addition to providing a highly flex- phase-return map, describing the times at which the ground
ible method for solving sheath dynamics problems in pulsednd chuck(powered electrodesheaths terminate their suc-
discharges, the analytic solution yields insight into thecessive saturation periods. We use this map in Sec. IV to
mechanisms governing sheath motion, the role of the exteinvestigate the steady-state properties as well as the rate of
relaxation to steady state in pulsed discharges. In Sec. V we
extend the double-probe model to highly electronegative and
*Email address: flw@mail.utexas.edu ion-ion plasmas by using results from the theory of elec-
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A The determination of the sheath capacitances in double-
probe models has received considerable attention in the lit-
B L C. erature. Metzeet al. [21] and Vallinga and de Hoo{25]
(/\ Vi Vp calculated these capacitances assuming that the ion current at
the substrate is constant. This assumption had been ques-
tioned earlier by Smy and co-workel33,34], who pointed
T out that the ion continuity equation implies variations in the
J_ ion conduction current at the electrode. Smy and co-workers
were unable to identify this effect experimentally, but more
FIG. 1. Equivalent circuit diagram for the MEO model]. recent investigations have succeeded in demonstrating the
effect both through numerical simulatiofd5] and experi-
tronegative sheat28—-31. We derive conditions for sheath mental measuremeni&4,36. Sobolewski, in particular, has
inversion and discuss the sheath dynamics and the role of thgoposed an improved model of the sheath capacitance that
blocking capacitance. We conclude in Sec. VI by summariztakes into account changes in the ion conduction current, and

[gp P

ing and discussing our results. has shown that this model yields a better agreement with
experiment than the static-sheath capacitaf2ép
Il. REDUCED DOUBLE-PROBE MODEL In the present paper we will neglect the sheath capaci-

] ) tance entirely. This is consistent with the low-frequency as-
Double-probe models were introduced by Poift8,20  symption, and is a good approximation whenever the sheath
and Metze, Ernie, and OskatMEO) [21] to replace phe- capacitances are smaller than the blocking capacitance. This

nomenological models of capacitively driven rf sheaths byis generally the case. With the neglect of the capacitances,
models based on the known physical properties of plasmge circuit equations become

sheaths. The central assumption of the double-probe models
is that the drive frequency is sufficiently small, so that the

instantaneous properties of the sheath are approximately the ‘"CB§(Vn‘_VT)+ =0, (3a

same as in a stationary or dc sheath. The MEO model is

more general than that of Pointu, in that it considers a finite I, +1_=0. (3b)

blocking capacitanc€g and allows a consideration of ape-

riodic or transient conditions. Introducing the ratica of the ion saturation currents at the
The equations of the MEO model follow from a straight- electrodesa=1;_/I,. , the second circuit equation takes the

forward application of Kirchoff’s law to the circuit described form
in Fig. 1. They are
1—e P ¢p= _a(l_e‘PTfﬁPp*‘Pf),

d d
“’C—ﬁ(vp_VTHwCBa(Vrf_VT)“—:0’ (18 where pp=eV, /T, and or=eV;/T,. We may solve this
equation for the plasma potential in terms of the potential of
d d the powered electrode,
wC+&Vp+ wc,&(vp—vT)Hﬁ I_=0. (1b) .

1+a

4

ep(e7)= =i tIn
HereV,, is the plasma potential and is the potential on the
target(powered electrode. The time has been normalized g ptityting this result into Eq(2) for the current in the
to the inverse of the angular frequeney The subscripts+ owered electrode yields
and — denote quantities describing the grounded and thg

target sheath, respectively. This notation is motivated by fact 1—e®T
that in asymmetric discharges the target electrode plays the I _(ep)=1;_ ) (5)
role of the cathode during most of the rf period. The 1+aer

whereo = *, represent the conduction currents in the sheath. L . .
They are given by The above solution is illustrated in Fig. 2. We will see that a

graphical analysis is particularly helpful for determining the
L=, (1—ePo91), (2)  conditions for sheath inversion.

We may now substitute the target current found in €&.
whereg,=eV, /kT, are the normalized electrode potentialsinto the first circuit equatiori3a) to obtain a single, first-
with respect to the plasmay, = 1/2In(2rm,/m) is the float- ~ order differential equation describing the evolution of the
ing potential,l;,=A,en,ug are the ion saturation currents, target potential in terms of the applied bias:
ug= vkT./m; is the Bohm velocity, and, are the densities

at the entrance of the sheaths. Finally, @gV,) describe %:d‘Prf _ 1-e7 ©6)
the sheath capacitances. We note that Sobolewski has dem- dt dt B 1+ et

onstrated a noninvasive method for measuring the ion cur-

rent[32]. where
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For these parameteis;;/w,;j=3%. We have used a small
blocking capacitance to accentuate the effects of the dis-
placement current: thus, the floating sheath capacitance is an
order of magnitude larger than the blocking capacitance for
small sheath bias/~kT./e, but becomes comparatively
small for sheath biases comparable to the rf bias.

We conclude this section by showing how Pointu’s results
[19,2Q follow from Eq. (6) in the limit Cz—, or equiva-
lently ®z_—0. We expand the solution in powers®g_ as
or(t)= (1) + Pg_oP(t) + - - -. To lowest order, Eq(6)

FIG. 2. Determination of the plasma potential and current in aaqyces to
double-sheath system with asymmetry faader0.2. The two con-
tinuous lines represent the current-voltage characteristics for the

.
[ N R N =

()
two electrodes, and the horizontal dashed line represents the target ¢ (D= en(1),
current.
where the dot indicates derivation with respect.tintegra-
oel, tion yields
(o8
= 7
Bo kTewCB ( )

()= (1) + ... 9

is the potential that would build across the blocking capaci-

tance if it were charged with the Bohm current of the  The constant of integratiob.. in Eq. (9) is a self-bias po-

electrode during 1 rad or a M2fraction of an oscillation tential that is produced so as to equalize the total charge

cycle. Note thatby_ <0< ®g, . variation in each sheath during an oscillation period. The
Equation(6) is the central governing equation for low- subscript indicates the fact that this integration constant

frequency capacitively driven sheaths and is the principagpplies to the fully relaxed, steady-state solutién. can be

subject of attention in the remainder of this paper. We emevaluated from the first-order equation

phasize that no accuracy has been lost in going from the

original equationg1a and (1b) of the MEO model21] to ) 1_e¢<T°)(t)
our Eqg.(6), since the original equations did not account for <P(Tl)(t)= PP ORE
all the first-order effects in the small paramet&f/w,;. A 1+ae‘r

comparison of the solution of E¢6) with the solution of the

original MEO equation, shown in Fig. 3, nevertheless gives dn order for this equation to have a periodic solution, the
qualitative idea of the effects of the displacement currentfight-hand side must satisfy the solubility condition

The parameters are

é 1— ¢+ P

M=40 amu (argon, Cg=0.5 uF, m=0

(10

no=10° cm 3,  w;=27x100 kHz,
This equation expresses conservation of charge, and is the

T.=23200 K, V;=300siqwt) V, (8) equation used by Pointu in his analysis. It specifies implicitly
the self-bias potentiab,, in terms of the amplitude of the rf
a=1, A_=1007 cn?. drive and the asymmetrg. We will consider its solution for

large ¢, along with the more general solutions for pulsed

100 conditions in the following section.

50 IIl. ANALYTIC SOLUTION FOR LARGE BIAS

POTENTIAL

A. Saturated and unsaturated regimes

Vo (V) and T (mA)

In practical applications, the bias potential is invariably
much greater than the electron temperatef®/|>kT, or
||>1. We may use this fact to obtain an analytic solution.
Inspection of Eq(6) leads to the conclusion that two regimes
may occur for largep,s, corresponding to unsaturated and
FIG. 3. Comparison of the solution of the MEO equatidha) saturated sheaths.

and (1b) for the target potential\(;, solid line and current [y, In the first,.unsatgr.ated regime, the potential drop across
dotted ling with the solution of Eq.(6) for the target potential both sheaths is negligible compared to that across the block-

(dashed ling and current(dash-dotted line The parameters are ing capacitance antkor|<|¢y| in Eq. (6). We may then
given in Eq.(8). solve for the target potential algebraically,

-100 +
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(pT‘ X q)Tmax ;

1 ou(t)—Pg_
1 ont)” e} (11) sk =00

2 P, —pr(t)
In this regime an electron conduction current flows through !

each of the sheaths. The solution given by Ed) clearly :
requires that A
I
I

<PT(t)=|n(

o

Pg_<py(t) <Pp. . (12 by ]

In the case where the above condition holds fot,dHq. (11)
remains valid during the entire cycle. The sheath potentials
never exceed a few volts, so that negligible ion acceleration
occurs. This case is clearly of little practical interest. -20

For larger values of the blocking capacitarismaller val-
ues of|®g,|), we see that the solution given by E@.1)
becomes singular when

-40

. FIG. 4. Analytic solution of the low-frequency sheath equation
e(t) =Dg, . (13)  in the saturation regime showing the relation between the earliest

. . L . saturation start time, the time of maximupg , and the latest return
Since ¢ is periodic, the above equation has two roots;me.

(modulo 27) for eacho= *: we denote these roots lty,,

andt; ,, wherets , <t ,. At the smallestearlies} of these  coynt when the sheath capacitance dominates. Second, in the

roots,ts ., the system_makes a transition to a second regimgresent work we determine the constaditsso as to allow

characterized by eithes<®g_ (target sheath saturajesr  for the possibility that the saturation periods succeed each

¢s=®g, (ground sheath saturaje§he second root of Eq. other without any intervening period of time during which

(13), t,,, represents the earliest possible time at which EqEQ- (12) holds and neither sheath is saturated. We discuss the

(12) is satisfied and the unsaturated regime may resume. Agetermination of theb;, presently.

we will see below, however, the unsaturated period generally

resumes much later thap,,, if at all, due to charge accu- B. The phase-return map

mulation by the blocking capacitor. . . o
In the s)écond, satur?itedpregime the current through th% We determine the constants of integratin in Eq. (14)

plasma is equal to the ion saturation current for the saturateo™ ok hc_oad;}thnhqu(te,j)fO, WgereNte,j r(ra]pre“sents" ;he
sheath and is constant in time. This makes it possible t§M€ at which thejth saturation ends. Note that “zero” here
integrate Eq(6): means much smaller than the driving potential. The complete

solution is thus specified by the sequence of end tifheg.
e1(t) = @(t) — P, t+ ;. (14) We next show how to calculate these end times iteratively.
We wish to determine the end time for thpH1)th satu-
Here @; is the integration constant for thgh saturation  ration period knowing that thith saturation period ended at
period, wheregj=0,1,2,3. .. indexes the successive satura-timet, ;. Three cases arise, depending on whether the pre-
tion periods. We adopt the convention that odd and gven ceding saturation period ends before, during, or after the pe-
label, respectively, the target and ground sheath saturationgod of time when conditior{12) is violated for the electrode
so thato=(—1)'. Assuming a sinusoidal driving voltage  under consideration. We consider each case in turn.
) If te;<tsj+1, both sheaths remain in the unsaturated re-
¢r=Psint, gime until the beginning of the subsequent saturation period
attp;+1=ts;+1. The end of this subsequent saturation pe-

we may write the target potential as riod will then occur at the time, ;. , specified by

er(t)=Pr(sint=r 0+ b;, (19 ei(tejr1) = @rltsj+1) = Pgjraltejri—tsj+1) =0,
wherer ,=®g,. /P . The above solution, sketched in Fig. 4,
contains all the information needed to assemble complete tej<tsj+1- (163
solutions of the sheath equation for arbitrary initial condi-
tions. If tg;+1<te;<tij+1, by contrast, conditiori12) is violated

We note that a solution similar to E¢L5) was obtained ~at the end of th¢th saturation and the subsequent saturation
previously by Kawamuraet al. [17]. Our solution differs begins immediately. It will end at the tintg;, ; determined
from theirs in two respects. First, E(L5) applies to the case by
where the blocking capacitance dominates over the sheath

capacitancesCg>C,. Kawamuraet al, by contrast, con- eitej+1) = @ulte ) —Pgjr1(tejr1—tej) =0,
sider the opposite ordering. As pointed out earlier, correc-
tions to the ion conduction currents must be taken into ac- toj+1<tej<tijs1- (16b
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2 FIG. 6. Analytic solutionp for r=0.369, corresponding to the
solid line in Fig. 5.
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region to the left of this dashed line, successive saturation

periods are separated by an unsaturated regime. In this region

) the onset of the saturation periods is given by @@) and is

_ FIG. 5. Phase-return maps for a series of values @otted  hqependent of the end of the previous saturation period,

lines). The_caser=0.369 is shown as a continuous line. The $80-hance the curves for, . ., are horizontal.

mented splrz_all rep_resents the sequence of_end times for a symmetric The phase-return ’Jmap gives a straightforward way of

discharge with this value af The dashed line represents the locus } . . .

of times such that the precedingtlf) saturation period ends at the charting grgphlcally the.evo'lutlon of the sheath blgses. The

natural onset timer, defined by Eq(13), i.e., 7o;= 7. procedure is illustrated in Fig. 5 for a symmetric discharge,
where &g =&, =dz. Assuming thatd,>>dg, the

Finally, if t,;.1<te;, the (+1)th saturation period is ground sheath saturates immediatelyrat0 and we may

avoided entirely. Equivalently, it may be considered to endake 7, _;=0. The first saturation period will then end at

immediately upon the end of thjeh saturation period, Te 0, given by the intersection of the vertical at 0 with the
curve corresponding to the appropriate valuedgf for the
tejr1=tej,  Trj+1<lej. (160  discharge. We refer to this as the first intersection point. The

end time for the first saturation period may then be carried
back to the abscissa by finding the intersection of the hori-
endt, .., of the (j+1)th saturation period in terms of the zontal line going through the first intersection point with the

ejtl P diagonal line going through the origin. The return time for

endt, of the jth saturation period for different values of the the second saturation period is how given by the intersection
blocking capacitance and asymmetry. This allows the com- P 9 y

plete solution to be constructed for arbitrary initial condi- of the vertical line going through the second starting time

tions by concatenating successive instances of the saturatéfith the appropriate phase-return curve. This process may be
solution given in Eq(15) . repeated indefinitely and is easily automated. For an asym-

It is convenient to divide the oscillations into half cycles Metric discharge, one needs only to alternate between the
and to record the return times modutg so as to measure WO curves corresponding to the ground and target sheaths.
their time of occurrence relative to a reference half cycle. Welhe analytic solution constructed by piecing together the
thus define the relative end timg by 7 ;. 1=te 11— j . In successive saturation solutiofib) is shown in Fig. 6. For
terms of the relative times and for a sinusoidal drive, Eq.®1>50 it is almost indistinguishable from the numerical so-

Equations(15) and(169—(160 constitute the main result of
this section. Together, Eq&l6a—(160) uniquely specify the

(16a—(16¢ take the form lution of Eq. (6).
In the following sections, we will show how the phase-
SIN(7e 1) +SIN(7g ;) +|F o (Tej+1t 7= 75))=0, return map can be used to evaluate the steady-state param-
eters, and we will consider the relaxation behavior of pulsed
Tei<Ts,o (178 discharges.
Sin(Te’jJrl)-i-Sin(Te,j)-i-|rg|(7'e,j+1+ m—7ej) =0, Lo
T
TS,0'< TE,j<Tt,¢Ti (17b) E 038
2 06 ://_T
Tej+1tT—7ej=0, 7 ,<7ej, (179 fig 04 ¥'(t,,) of
whereo=(—1)'"1. Equationg17a and(17b) may be visu- ® 02
alized as a map 1= ¢(7e;) from the reference period

02 0.4 0.6 0.8 1

onto itself, as shown in Fig. 5. This map is a special case of
=0p/D

Poincarés map of first return, and we will refer to it as the
phase-return map. The dashed line in Fig. 5+£epresents the FiG. 7. Amplitude of the target electrode potential/V,; and
locus of points such thate ;=75 , for o=(—1)'"", or such  convergence multiplies’(..) for a symmetric discharge as a func-
that the jth saturation ends precisely at the natural onsetion of the inverse of the blocking capacitance, parametrized by the
point for the (+1)th saturation given by Eq13). In the ratior=®g/dy
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wla

FIG. 8. Phase-return maps for an asymmetric discharge with a FIG. 10. Phase-return map for an asymmetric discharge with a
large blocking capacitandeegime ). Note that the sequence of end Small value of the blocking capacitangegime Il)). r _=0.537 and
times is found by alternating between the phase-return curves cof~+=0.906, corresponding ta=0.593.
responding to the ground and target sheaths=0.188 andr ,
=0.369, corresponding ta=0.509. COST=T.

We may eliminaterg by summing the squares of the above
two equations. This yields the marginal valuerpf

IV. STEADY-STATE SOLUTIONS AND TRANSIENT
RELAXATION

A. Symmetric electrodes I marg= (1+ %/4) " 12=0.73. (18

For symmetric discharges, Fig. 5 shows that steady-sta:‘s na 1o di ional variabl lude that f
solutions correspond to the limit points of the phase-retur everting to dimensional variables, we conclude that for
map. These limit points are found as the intersection of the
phase-return curves with the diagonal representigg, ; 1<
=Tej. Two cases must be distinguished depending on
whether the limit point is in the regime where successive . . . .

. . - the saturation periods will be separated by unsaturated peri-

saturation periods are separated by an unsaturated regim
. . . ods, as assumed by Kawamuwtal. For smaller values of

(left of the dashed lineor where saturation regimes succeed the sheaths will never saturate at all. while for large
each other without a pause. This is determined by the valugB’ ’ 9

of the blocking capacitance. The marginal value of the cayalues ofCg the saturation periods will succeed each other
ghout a pause.

Fo?g\t/z\/ig cterz]:espi?];a&r;gr; i?gseistv;?tg?s:f;(s:tiu%gp z[ tggrg:f i The maximum amplitude of the target potential is reached
Teii1=Ts . Substituting this in Eq(17a yields at the timer, correspo_ndlng to the _second root of Em3)._

AR g . The value of the amplitude at this time depends on the inte-
gration constan®.. . FOrr,<r<1,

ewrfCB

2 1/2
T <(L1+ w2H2

(19

sinrg=r/2.

o _ ) ) ) Cmax= Pl SinT,—sinTg—r(7— 79 ].
For a symmetric discharge with a sinusoidal drive, E®) mee T ° °

defining 75 takes the form Using Eq.(13) to evaluate the's yields

. z 5 Pmax= P 2(1=12)Y2=2r cos ],  pag<r<1.
z 9 z
2 2 . . .
A similar calculation forr <r 5 yields
0 0 03 |
.. . 025
e+l x = \3x st t
2 025
3 z T 05 |
2 2 o T
torl gt
-1 QT I+ i
1
-125
- =T
0 z
T j 2 FIG. 11. Time evolution of the normalized target potendia(t)
and current (t) for the parameters of Fig. 8. The continuous lines
FIG. 9. Phase-return map for an asymmetric discharge with aepresent the numerical solution and the dashed lines represent the

moderate

value of the blocking capacitan¢egime ). r_

=0.188 and . =0.810, corresponding ta=0.232.

parameters are as in E@).
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SiN(7e ) +SiN(Te _)+r_(m+ 7 - — 7 +)=0. (20

Equations(209 and(20b) may be solved for the end times.
We find that the duration of the ground sheath saturation
period is

l1-a
Te— " Te+— WlTa. (21)

-5
FIG. 12. Time evolution of the normalized target potendia(t) . . . . .
and current (t) for the parameters of Fig. 9. The continuous lines Surprisingly, the durations of the saturation periods are inde

represent the numerical solution and the dashed lines represent tﬁgnhdeanof the lvalut; of fthe leCkllng %apgcftaggez: this (rjesult
analytic solution. The driving potentid;=50 V and the plasma IS thus identical to that found earlier by Poir{l®,20 an

parameters are as in E@). Song, Field, and Klemper¢®6] for the limit Cg—oo.
The center of the saturation intervals measures the phase
shift between the applied rf signal and the target potential: it
Pmax_ _H w—cos‘lr—sin—lr—w) is given by the solution of
D 2
r [ T+ Te mar 5( 1-a\|? 22
rar sin =- co§ m——
+7_(1_r2)1/2} 0<I <[ marg: 2 l+a l+a

We see that the phase shift, unlike the duration of the satu-

The above results are plotted as a function @f Fig. 7. ration period, does depend on the value of the blocking ca-

pacitance.
In the second regime, labeled Il in Fig. 9, the target-
B. Asymmetric electrodes saturation period is preceded by an unsaturated period. In

In the case of asymmetric discharges, steady-state sollﬁlr-"s regime, Eq(200) must be replaced by
tions correspond to limit cycles of the phase-return map. Sin(7e, ) +SiN(7s ) +r_(m+7,_—75)=0. (23
Geometrically, they appear as squares with two vertices lying ' ' ' '
on the diagonat, ;. 1= 7. (Fig. 8—109. Three regimes can The evolutions ofpr andl in this regime are shown in Fig.
be distinguished depending on the occurrence of unsaturatélc?.
periods following the target- and ground-saturation periods. Lastly, in regime Ill there are unsaturated periods preced-
These regimes can be identified graphically by the positionng both the target- and ground-saturation periods. In this
of the off-diagonal vertices of the limit cycle with respect to case the steady-state end times are determined by28y.
the locus of singular times represented by the dashed line iand
the phase-return maps. The analytic solutions for all three . :
regimes are compared to the numerical solutions of &qn Sin(7e ) +siN(7s ) +1(m+ 7 —754)=0. (24
Figs. 11-13. We used an unusually low source potential ifrhe eyolutions ofpy andl in regime Il are shown in Fig.
these figuresy =50 V, so as to accentuate the difference 3
between the analytic and numerical solutions. We next de-
scribe the three regimes in turn.

In the first regime, when the vertices of the limit cycle lie ) )
in the region labeled | and shaded in Fig. 8, one of the Ve next consider the convergence properties for nonsta-
sheaths is always saturated. The saturation end times are thipnary discharges. In the case of symmetric discharges, the
determined by applying Eq17b) at each sheath: phase—rgtum map specn‘les that the retqrn t]me for the (

+1)th time is given in terms of that for thigh time by

Tj+1= ¢( 7)),

where ¢ is the phase-return function. The stationary point is
thus the solution of

C. Relaxation rate

SiN(7e +)+SiN(7e _)+r (m+ 7+ — 7 —)=0, (208

0.5
0.25

-

To=O(To).

Linearizing about the stationary point, we see that the dis-
tance to this point is multiplied at each step $¥(7..):

OTj1=¢'(71.) 07y,
FIG. 13. Time-evolution of the normalized target potential
(1) and current ((t) for the parameters of Fig. 10. The continu- Where 67;=7;— ... It follows that for small values of the
ous lines represent the numerical solution and the dashed lines repapacitance, when the saturation period does not extend over
resent the analytic solution. The driving potentig}=50 V and  the entire half-period r(,,¢<r<1),¢’=0 and the steady
the plasma parameters are as in ). state is reached in a single half-period. In the opposite limit

-0.25
-0.5
-0.75
A1k

op/Pand I/,
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FIG. 14. Variation of the time-averaged power with the param- 2 Tej 2
eterr _ proportional to the inverse of the blocking capacitance for :
four values of the asymmetry coefficieat FIG. 15. Map of first(dotted ling and secondcontinuous ling

returns forr =0.12. The fact that both maps have the same steady-

of large capacitance¢’ ——1 and convergence becomes state solution, represented by their point of intersection with the

. . diagonal, shows that there is no period 2 orbit for capacitively
slow. For |ntgrmed|ate values of0<r <r 4, the conver- coupled sheaths.
gence factor is

@' (1) =r—1-r?7/4. (25  The variation of the power with the blocking capacitance for
_ o different values of the asymmetry factaris shown in Fig.
The convergence factgg’(7..)| is shown in Fig. 7. 14. In general, the beginning and end times of the saturation

In asymmetric discharges, the convergence factor is obperiods must be obtained numerically. For symmetric dis-
tained simply by multiplying the convergence factors for charges without saturation periods, however, the power may

each of the two sheaths. be given in the closed analytic form
OTj41= @' (71) @' (7-) 67, 2Vl w4
j+1 + j W= :ru 1- o (29

where 7. are the asymptotic end times for the ground- and
target-saturation periods. In general, as can be seen from the o . ,
phase-return diagram of Fig. 7, the ground sheath falls in & the limit of large blocking capacitance, the power may
regime wherep’ (7.)=—1. The convergence factor is thus &!S0 be written in the closed analytic form

approximately given byp'(7_). ta

1 [ am
W=Vl _ ar sin
an

1+a)’ (30

D. Power dissipation

The power dissipated in the sheaths is easily calculateghe apove results are in excellent agreement with those ob-
from the analytic expressions for the target poterifid and  (4ined by direct integration of the numerical solutions of Eq.
current(5). Integrating the power dissipated from the begm—(6)_

ning timet,, to the end time,, of a saturation period, we find

Weat+ = F Vgl sof COStg + —COSE, ), (26) E. Period doubling

Period doubling has been demonstrated in capacitively
coupled sheaths driven by a resonantly tuned circuit by
iller et al.[37]. For the simple capacitive coupling consid-
ered here, however, we find no occurrence of period dou-
bling. This is easily seen by examining the map of second
return obtained by applying the phase-return map to itself
(Fig. 195. The second-return map has only one steady-state
solution, corresponding to its single point of intersection
with the diagonal. This steady state is identical to that for the
wheret,. =t,- in the absence of the corresponding unsatur-Single-period map. This shows that period doubling does not
ated period. Summing the above two expressions for th@ccur in the absence of resonant tuning, in agreement with
saturated andeventual unsaturated periods with the appro- the results of Milleret al. [37].

priate start and end times and dividing by the period yields

where Wgy+ and Wqy - are, respectively, the work done
during the ground- and target-saturation periods. During th
unsaturated periods, by contrast, the circuit current is foun
by neglecting the target potential in E@). The integrated
power is then

2

Vv
Wons - = 0Cg - (SiMfty . —siPte ), (27)

the average power F. Optimal blocking capacitance
Vol For electron-ion sheaths, the optimal blocking capacitance
W= 1= [(COSTq, +COSTy . )/a+ COSTy_ +COST, is determined by maximizing the coupling of the source to
2m the target sheath while avoiding ground sheath saturation. At

first sight this is accomplished by taking the largest capaci-
tance such that the saturation of the ground sheath is impos-
(28 sible (even transiently

+ (sin 74 — SiMP7e, + SirPr,_ —sinf7e_)/r _].
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FIG. 16. Optimum value of , as a function of the aspect ratio

FIG. 17. Current-voltage characteristics in a negative-ion domi-
nated plasma with electronegativitw=100 and mass ratio
m,/m,=2 (appropriate for Ci-Cly).

a.

it
Cpg= oV (31)
I

strongly electronegative discharges that approach, in some
cases, pure ion-ion plasm#g,6,7,42,43 Equal doses of

If transient ground sheath saturation is acceptable, howaegative and positive ions can then be extracted by applying
ever, the self-bias potential may allow a larger capacitance tan rf bias to the substrate during the afterglow phase. Of
be used while avoiding ground sheath saturation in theourse, the rf frequency must be smaller than the ion plasma
steady state. This larger capacitance improves the rf couplingnd transit frequencies to allow the ions to respond to the rf
to the target sheath. The reason ground saturation is avoiddigI|d.
in steady state is that the saturation period for the target In order to extend the analysis presented in Secs. Il and IlI
sheath lasts so long that it overshoots the range of time® electronegative plasmas, one needs only to know the
when ground sheath saturation could occur. The optimuneurrent-voltage characteristics for such plasmas. In principle,
value ofr ., when transient ground saturation is tolerated,determination of the current-voltage characteristics requires
follows by equating the steady-state end time for the targetthe use of kinetic theory, since the negative and positive ions
saturation period,_ to the upper limit, of the range of time have comparable temperatures. Fortunately, we have seen in
during which ¢(t)>®g, . In the absence of a ground- the preceding section that for strong bias, the dynamics of
saturation period, the end of the target sheath saturation € sheath is dominated by periods in which one of the

7o = ¢(7s_). The optimal capacitance is thus determined byshea}ths is saturatgd. The ion currents, in particular, are es-
sentially always either saturated or cut off due to the high

Ter = P(Ts), values of the bias compared to the ion temperature. This
makes it possible to draw some useful conclusions from a

where 7, and r_ are determined by Eq13). The corre-  simple fluid model.
sponding optimal value af, is plotted as a function of the We thus extend the model of Sec. Il to negative ions by
aspect ratio in Fig. 16. Note that the steady-state optimunasing the following fluid-theory-based expression for the
for r . differs from unity only for sufficiently small values of current characteristics:
a. Specifically,r ; o, reaches unity for tan,_+7=175_, or
ts- =—1.352. Evaluating the correspondirgyields anarg A,
=r_=cost;_=0.217. For larger values &,a>an,g, the |
optimum capacitance is given by E@1).

1 -
npequ—Zneeveexp(go,,)}, e<—1ly

1
—A, ZneeveJr n,euUg, l/y<e,
V. NEGATIVE-ION EXTRACTION (32

A persistent problem when using rf-driven sheaths forwhere ug, and ug, are the Bohm saturation currents for
etching is that comparatively few electrons reach the bottonpositive- and negative-ion extraction, respectively,
of large aspect-ratio trenches d_ue to the isotropy of the elec= n,/ne is the electronegativityy=T,/T; is the temperature
tron flux as opposed to the anisotropy of the ion f[G8— ratio (we assume her@,=T,=T;), andv,= m is

41]. This results in differential charging of the surface of thethe electron thermal velocity. The Bohm fluxes in electrone-
substrate with respect to the bottom of the trenches. Thﬁative plasma§28,31 are

consequent ohmic heating and the perturbation of the io

trajectories caused by the field are a significant source of 2 :FkTs ﬂ 1+ta

fabrication damage. B m¢ mg 1+ay
An approach to solving the charging problem is to force

the inversion of the sheath potential so as to attract negativeherel is the adiabatic expansion constant and where the

ions into the trenches. Numerical simulatigid4] and recent approximate form on the right holds fer>1. The above

experiments9,10,12,13 have demonstrated that negative- current-voltage characteristics are shown in Fig. 17.

ion extraction is achievable in the afterglow of pulsed dis- We next obtain the condition for sheath inversion. From

charges. During the power-off phase, negative ions ar&ig. 17, we see that sheath inversion occurs when the nega-

formed by dissociative attachment, thereby producingive saturation current at the target electrode is of a lesser

KT,
=(1+T) = (33)
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magnitude than the ion saturation current at the ground eledn the presence of a large blocking capacitancg>Cs.
trode, The system can then be described by a single first-order dif-
ferential equation, Eq6).

We have solved analytically E¢6) governing sheath dy-

where we have included sheath indices to allow for the postlam'cS in the limit eV /kTe>1. Our solution may be

sibility that the density and temperatures are different at th viewed as a generalization of the analytic solutions of Pointu

two electrodes. For strong electronegativity,€n,), the ?19,2(] (Cg—) to finite values of the blocking capaci-
o S tances satisfyingCg>C, and to nonstationary conditions.
above criterion simplifies to

We have shown that the properties of the dynamics are most

A-(Np-Ugn-+Ne- 0B <ANp gy, (34

myTe easily understood in terms of the phase-return map describ-
a 2 ing the times at which successive saturation periods end.
7TmeTi . . . . - .
a>— = (35  This map is a special case of Poincammap of first return,
m, and provides a convenient way of predicting the properties of
1-a m. the solutions and the role of factors such as the blocking
n

capacitor and asymmetry.

We see that inversion is helped by low electron temperature, | "€ blocking capacitance has two effects on the sheath-
and by high reactor asymmetry. Note that fop,=m,,a circuit dynamics. First, it determines the duration of the

<1 is necessary for sheath inversion. Experimental observa€ath saturation periods. Second, it determines the rate of

tions have shown that the electron temperature falls rapidh?elaxation to steady state in pulsed discharges. The magni-

in the afterglow phase, facilitating sheath inversion. In inductude of these effects is most conveniently measured by com-
tively coupled chlorine discharges, for example, Adiral. paring the blocking cap_acnance to a ch_aractenstlc capaci-
[42] have shown that at the beginning of the power-oﬁtance for the system.d.eflned as the capacitance that would be
phase, the electron temperature drops at time of the order §farged up to the driving voltagé; by the negative satura-
10 us, while the electron density drops somewhat mordion current to the target electrodiey;, in a time equal to
slowly, at time of the order of 25s. The density of CI  1/2m of the source period,
ions rises concomitantly with the fall of the electron density  sar
due to dissociative attachment. Cchar_w_\/rf'
The results of Sec. Il remain applicable when the sheath
inversion criterion(35) is satisfied, provided that the proper For electron-ion sheathk,, is equal and opposite to the
values of the saturation currents are used. Specifically, thpositive-ion saturation current for tlggoundsheath. For ion-
ground sheath ion saturation current must be replaced by then sheaths, by contrast, it is given by the negative-ion satu-
target sheath negative saturation current, and the “ground-ation current for thaarget sheath.
saturation” period must now be reinterpreted as a target In asymmetric discharges, the most salient effect of relax-
sheath inversion period. We may then use these results tation is the buildup of a self-bias potential ensuring conser-
discuss the role of the blocking capacitance. vation of current across the discharge. In symmetric dis-
When the sheath inversion criterion is only marginally charges, by contrast, there is no self-bias, so that the
satisfied, large values of the capacitance favor negative-iorelaxation is observed more subtly as a phase adjustment.
extraction by drawing more negative current out of the target For electron-ion sheaths, the optimum capacitance is de-
electrode[11]. When the sheath inversion criterion is well termined by maximizing the rf coupling to the sheath while
satisfied, by contrast, the choice of the blocking capacitancavoiding ground sheath saturation. Ground sheath saturation
is governed by the need to maintain good response time undesirable, as the attendant wall bombardment by ener-
while ensuring that both positive and negative saturations argetic ions results in impurity release and wall damage. For an
achieved. The response time is of concern, since the afteasymmetry factora>0.217, the optimum capacitance is
glow period typically lasts for only a few rf periods, and equal to the characteristic capacitance defined in (B6)
failure to relax to the steady-state condition would result inabove. Fora<0.217, by contrast, the ratio of the character-
differential charging, precisely the condition that negative-istic capacitance to the optimal capacitance becomes less
ion extraction seeks to remedy. Examination of the results ofhan unity, as shown in Fig. 16.
Sec. lll shows that relaxation is achieved in a single cycle if For negative-ion dominated sheaths, ground saturation
the saturation periods are separated by(lamwever brief  must be avoided by adopting a reactor asymmetry such that
unsaturated period. We conclude that the optimum capac'a<\/mn/mp [cf. Eq. (35)] [13]. The optimum blocking ca-
tance in this case is such as to place the system at the bounglacitance is then determined by balancing the requirements
ary between regimes | and (Fig. 9). of good sheath coupling and rapid relaxation so as to avoid
substrate charging.

(36)

VI. SUMMARY
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