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Interaction of a relativistic soliton with a nonuniform plasma
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By using a relativistic fluid model, a nonlinear theory for the propagation of an intense laser pulse in an
inhomogeneous cold plasma is developed. Assuming that the radiation spot size is larger than the plasma
wavelength, we derive an envelope equation for the momentum of the electron fluid, taking into account
relativistic electron mass variation and finite amplitude electron density perturbations that are driven by the
relativistic ponderomotive force of light. Localized solutions of the envelope equation are discussed from an
energy integral containing an effective potential. Numerical results for envelope solitons are obtained in a
quasistationary approximation. The dependency of these localized solutions on the amplitude and the group
velocity of the laser pulse is discussed. Also derived is an equation that governs the dynamics of the pulse
center.
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[. INTRODUCTION ization front, and(f) single particle acceleration in a laser
pulse.

The interaction of relativistically intense short laser pulses Among the other important phenomena in this area is the
with plasmas has been an area of vigorous research for thmeation of solitons. It is known that a soliton moving in an
past several years. For ultraviolet wavelengths, on the ordédnhomogeneous plasma will be accelerat@tbcelerated
of 200—300 nm, the intensity region of interest in which[14—-17. In a nonrelativistic one-dimensional treatment, it
relativistic ~ effects become important lies abovehas been shown that a Langmuir soliton when accelerated
~10' W/cn?. The propagation of radiation in such media, can, like a particle, emit ion-sound waves. An appropriate
for intensities greater thar 10'® W/cn?, naturally causes a approach for the investigation of such a problem can be
strong nonlinear ionization in all matters. Hence, the pulsdound in Ref.[18]. When the energy of the electrons in the
itself, even in regions where the intensity is relatively low laser field becomes comparable to, or exceeds, the electron
compared to the peak value, removes many electrbrS] rest mass energy, the dependency of the electron mass on the
from the atomic or molecular constituents, creating a plasmamplitude of the pumping wave becomes importgh@].
column in which the main high-intensity component of the This leads to considerable changes in the dynamical plasma
pulse propagates. Therefore, in a reasonable first approximaehavior.
tion, the investigation of the resulting propagation can be In this paper we present a fully relativistic nonlinear
divided into two separate and distinct areas. Thesdéiptee  model that describes self-consistent interactions of an intense
atomic and plasma physics occurring in the field of an in-laser pulse with a nonuniform cold plasma. Thermal effects
tense electromagnetic wave leading to ionization, @ndhe  are neglected because the electron quiver velocity is much
subsequent nonlinear propagation of the radiation in théarger than the electron thermal speed, and the thermal en-
plasma that is generated. The work described below concerrsgy spread is sufficiently small such that the electron trap-
the latter issue. ping in the plasma wave is avoided. Also, the ions are as-

The interaction of ultra-high-power laser beaswith a  sumed to be stationary. The radiation spot size is larger than
plasma is rich in describing a variety of nonlinear phenom-the plasma wavelength, i.eg>\,=27/k,, wherer, and
ena[5]. The latter become particularly interesting and in-\, denotes the radiation spot size and the plasma wave-
volved when the laser power is high enough to cause th&ength, respectively. According to this approximation, the
electron oscillationquiver velocity to become highly rela- variation of the spot size is negligible over integration space.
tivistic. Some of the interesting laser-plasma processes that order to continue with analytical calculations, a smooth
are discussed include) relativistic optical guiding6—9] of  plasma inhomogeneity is assumed, and therefore a weak ac-
the laser beam(b) the excitation of coherent radiation at celeration for the pulse is expected. In this case, the condi-
harmonics of the fundamental laser frequency,the gen- tion for a quasistationary approximation is fulfilled. That
eration of large amplitude plasma wavgs0—12 (wake means, in a frame moving at the speed of the center of the
fields), (d) a frequency shift induced in the laser pulse bylaser pulse, the plasma fluid experiences a nearly steady state
plasma wavefl3], (e) frequency amplification using an ion- radiation field. An analysis of the wave equation leads to

explicit formulas that are numerically evaluated for examin-
ing the effects of the relativistic light ponderomotive force
*Email address: saeed@theory.ipm.ac.ir and relativistic electron mass variation in the laser fields.
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Specifically, we derive an envelope equation for the momen- 1
tum of the electrons, and discuss localized solutions of that p=—=(e+ig)p(r, zt)e koz~ o)
equation by expressing it in the form of an energy integral V2

with an effective potential. It is further shown that finite
amplitude localized light pulses suffer acceleration when

they propagate through an inhomogeneous plasma. wheree, ande, are the unit vectors in theandy directions,
The manuscript is organized in the following fashion. In 54 ko is the laser pulse wave number. For, >Az the
Sec. Il we present basic equations and deduce an enveloggyitude of the pulse in the perpendicular direction changes
equation for the nonlinear laser pulse propagation in an inpych smoothly than in thedirection. Therefore, the diffrac-
homogeneous plasma. The equation for the envelope pulse g, of the pulse is negligible, which, in turn, means that the
further de_veloped in Sec. Il to include f|_n|f[e _electron dens'?ytransverse spreading time,= wr(z)/()\oc), is longer than the
perturbations that are created by a relativistic ponderomotlvBlalsma period; =27/ w,. This condition is satisfied for
force of intense laser light. Localized solutions for envelope - Th e b pr
light pulses are obtained in Sec. IV. Section V deals with arf 0> Ap- TheN,p can be rewritten as
acceleration of solitary light pulses in a nonuniform plasma. 1
Section VI contains a summary of our investigation. Pi=—— (e Fi ey)e—rf/zrgp(z t)el(koz—woh)
A .

+complex conjugate,

1. BASIC EQUATION .
Q +complex conjugate, (5)

We investigate the propagation of high-frequency circu-
larly polarized electromagnetic waves in a plasma by usingvhich dictates that we are assuming a Gaussian profile in the
the Maxwell equations and relativistic fluid equations for thelransverse direction of the pulse propagation. Substituting for
electrons. In the field of short laser pulses, the ions do nop, from Eq. (5) into Eq. (2), multiplying the resultant equa-
respond and they form only the neutralizing background. Weion by exp(-r2/2r3)2#r dr, , and integrating over, we
consider the case in which the frequenoy of the laser finally obtain
pulse is much larger than the electron plasma frequangy,
and decompose all the physical quantities into short and long . (3& Ko 3D¢) ((92pi azpi)

iwg| ——+— —— -

: i +
timescale components, i.e., we express rt " wy oz 2 o2

a=(a>+5, N 1 (= 7rf/rg
= (1+An)—f ———2ar  dr;

mr2lo (¥)

where the angular bracket denotes an averaging over a laser
period 7= 27/ wy. The time-averaged quantities are expected

to vary over much longer time scales. The equations govern- 1 _,2,2 6N

ing the fast time varyingshort time scalequantities ar¢20] + 2/, Omzﬂhdh— llp., (6
0

25— @ — @5 ?) where the average electron number density is of the form
t > = t
atz ()
(n)=1+An(z)+én. (7)
B=Vxp, 3

Here An(z) is the inhomogeneity profile in the medium and
on is the density variation from the equilibrium value.
Throughout this paper we maintain the conditidm<1
~ (small inhomogeneity limjt It is convenient to transform
% =_E (4) from laboratory variablesz(t) to new variables{, 7), where
dt ' é=z—vg4t, 7=t andvyg=Kq/w,. Using these variables we
~ _ can transform Eq(6) into the form
wherep; is the transversal part of the electron momentBm,
andE are the laser magnetic and electric fields, respectively, . dp, 1 4%p, 7°p,
(n) is the average plasma number density, and the relativistic 21 W0~ H + ? (9_§z+ U@Jﬁ
gamma factor is denoted by. Furthermore, in Eq92)—(4) g

the momentum is normalized by c, the density by the equi- \yhere . =1/\/1— 12 andw?, contains the two integrals in
o . . g . . g g NL

librium valuen,, the electric and magnetic fields are in units ¢ right-hand side of Eq6). As was mentioned before, we
of mcw,/e, and the space and time are normalizedcby,  consider a very short laser pufs@hat means we expect that
and w,;l, respectively. Herem is the rest mass of the elec- during a transit time of the plasma through the laser pulse,
trons, ¢ is the speed of light in vacuum,w,

= (47nye?/m)*? is the electron plasma frequency, amibs

the magnitude of the electron charge. The circularly polar- The criteria for this claim will be given when the width of the
ized electromagnetic waves are represented as solution is defined.

and

=(wd —1)p,, (8
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the plasma changes very little. Moreover, a smooth plasmaeed to knowsn in the quasistationary approximation. This
inhomogeneity is assumed and, therefore, a quasistationagan be done by using the equations for slowly varyilogg
approximation would yield appropriate solutions for thetime scalé variables[20]

pulse region. To solve Ed8) we use standard methods in

which p, is expressed in the form, =a(é, 7)exdi(& )] op) _
Accordingly, usingda/aésaaldt and dylaEs apldt, we ot BV, (12
obtain after some straightforward algebra
and
ga®> 1 | ¢
@ogr " V2 0€ a ag)_o’ © V(E)=(n)-1. (13

From Eqs.(12) and(13) we easily deduce the expression for

and the density variation in a quasistationary approximatieee
1 5% oy 1 [op\? , the Appendiy. We have
T2 2&)054——2 07_5 a=(wN|_—1)a. (10) "
Yg € Yq I=y)
on=—-". (14)
Solutigns for Egs(9) and (10) can be sought in the form 9

a(é—¢) and y(é,1), whereg(t) is the coordinate of the Substituting Eq. (14) into Eq. (10), using ()

pulse center. The time evolution @f is determined in the _ n — 7 N2 . : 2
following way. Since the amplitude is assumed to have a V1+exl(—riirga’], and performing the integrals ing,

functional dependency only on the self-similar argument with respect tr, , we obtain

=§—€(t), and also retaining only solutions that vanish at Iny?|s%a 11 Iny?\(oa\?
infinity, i.e. the localized solutionf— *«~, a—0), we con- —v§+ 5 a2 )\ g
clude from Eq.(9) that[18] Y2—1]9g aly? y2-1)10¢
YED) = Yawo€(DETF (1), (11) | 20oF + w328
whereF(t) is a function of time that can be considered ar- 5
bitrary, but it will be specified later according to the behavior + 2w2y2§‘5+ (1+An)—1|a
of a at its maximum. 079 +1
IIl. EQUATION OF PULSE ENVELOPE =0, (15

The low-frequency modulation of the pulse amplitude,wherey=\1+aZ. Integrating Eq(15) once and assuming a
which is a result of the nonlinear response of the plasma, ifcalized solitary pulse whose amplitude and its derivative
described throughuﬁ,L in Eq. (10). To determinew,z\‘L, we tend to zero asymptotically, we have

Iny* ,|[da)\? . , 5 A(1+An) 1+y )

'yz—l_vg (?_f - 2w0F+woyg§ +2w0yg§§+? ’y—l—h"IT —1]a
+F ag'| 2029754220 1 1-in 2 [az=0 16
g 2uEra | v 1o a0 (16)

If we assume that the maximum value of the amplituate,a,,,, corresponds to the poir§t=€where Pal o) —¢=0, then
from Eq. (16) we obtain the unknown functioR(t),

. . A1+ An) 1+
2woF+w3'y§§2+2w3'y§§§:1—2—<'ym—l—ln > i
')/m_l
1F _ dAn 1 ( 1+
+ " d¢'|20iy2e+4— —1-In—==]|a? (17
aﬁq o g 0795 dg, 2_1 Y 2

where y,= 1+aZ andAn is the value ofAn at £= . If we replaceF(t) in Eq. (16) we finally obtain an equation for the
pulse envelope as
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Iny?  |[da)\? 4(1+An)
warLlvriie 205756~ §)§—T Ym~
azf§ 0 §+4dAn ( - Il—l—y
—_— n_
a2l T A L
=0.

IV. SOLUTION OF THE PULSE ENVELOPE

In this section we present solutions of E¢E5) and(18).
Since a weak plasma inhomogeneity is assunea<€1), a

PHYSICAL REVIEW E 65 066406

L m| | 4(1+An) S
n 2 yz_l Y- I’]T a
¢ 1+vy
a2+f de’'| 2wiy? ( —1-In——=| |a?
_ d4¢ 079 d&' /-1 Y >
(18
|
In(1+a%)
—=v2. (23)
aC

change in the position of the pulse center as a result of the
interaction of the pulse with the inhomogeneity will be very Figure 1 depicts the effective potential for the cage<a.
small. Therefore, in Eq(18), to a good approximation, we Whenvg=0.78 and the maximum soliton amplitudg,~1.

can neglect all terms that are proportional g}(g) or An,

i.e. (- &<1 andAn<1. Furthermore, the inhomogeneity,
An, is assumed to change very smoothly and its derivative i

also small. Hence, Eq$15) and(18) take the form, respec-
tively,
In y?

y2—

Ja\?

4a
23

an

,|%a 1
9-2" 3
gé a

1  Iny? )
52

%
1+ 2a
X| Ym—1—In 27”‘)+T1—a 0, (19)

and

ga\?
0&

4a 1+ vy,

Iny
ym—l—ln 5

7—1

1+y
—4 7—1—|nT =0. (20

Equation(20) is similar in form to the Hamilton equation of
a single particle with the coordinat&" and time “¢£.” Thus,
the energy integral is written as

o e 2+V =0 21
2\ 9z (a)=0, (21)
where the effective potential is
a® 1+
V(a)= —— . (7m—1 In—m
Iny?  ,|lak 2
V1 Vg
1+

—<y—1—|n7y) . 22)

We see from Eq(22) that the denominator o¥/(a) at a

As is evident from the figure, the critical amplitude is
larger thana,,. Therefore, the assumed physical condition
(da/d¢)—0 whena—a,,] is fulfilled. A localized solution

f Eqgs.(21) and(22) is shown in Fig. 2. The behavior of the
effective potential in terms of the variation af, is shown in
Fig. 3 whenvy=0.78. In this figure, the depth of the effec-
tive potential increases as, increases. Therefore, it is ex-
pected that the descent of the soliton amplitude from its
maxima to its minima takes place more steeply and conse-
quently a shorter soliton results. The details of this behavior
will be discussed later when we describe the soliton width.

Figure 4 shows the effective potential wheg=0.8 and

am=1.2. Here the critical amplitudeag=1.15) is less than
a, at whichda/d¢ has already been assumed to be zero.
According to the potential shap@ig. 4 we can deduce
da/d¢, except at infinity, which never vanishes, and its
maximum (that isa;) is at infinite. This behavior is in con-
tradiction with the essential assumption of the problem that
(da/d¢)—0 whena—a,,. Therefore, in the case,,>a.
the pointa=a,, is forbidden. The existence of such a dis-
continuity inda/d¢ even removes the poiat,=a. from the

0.04

am

V/ a2

004 AN

. L L L ) 1 L L L | L L L
0.08 = Y

e /c

critical amplitudea, becomes zero, and this value depends

Onvg, L€,

FIG. 1. The effective potential for,,<a. andvy=0.78.

066406-4



INTERACTION OF A RELATIVISTIC SOLITON WITH . .. PHYSICAL REVIEW E65 066406

12r Effective Potential
09
o |
% 06
0.3 B
% FIG. 3. The 3D effective potential for the caag<a, andv
-5

0 =0.78. The smaller the soliton amplitudes are, the shallower the
(,op&/c potential is. This figure shows the inverse relation of the width and
the maximum soliton amplitude.

FIG. 2. The three envelope solution of the high-frequency mo-
mentum amplitude according to the effective potential shown in
Figs. 1 and 3 ¢4,=0.78). The smaller the soliton amplitudes the

larger the width will be. each case, is determined through the group velocity of the

laser pulse.

region of valid solutions. Hence, only valid localized solu- We now discuss the width of the soliton. At this stage, we
tions are situated in the region whesig<a.. The critical  introduce the criteria by which a short laser pulse is defined.
amplitude,a, is related to the group velocity,;, through  Let us introduce the width of the solutiod, through Eq.
Eq. (23). In other words, the valid region of the solutions, in (19), as follows:

1+ a? + Ym v
y—1—-In—— - Ym—1—1In
am/e 2 an, 2
AZJ' > da. (24
am Iny 5
2. Vg
y—1

The validity of the 1D model requires that the laser beamimpossible. Therefore, to compute the width, a fourth
diffraction time (transverse spreading timerq= 7 3/(\C), order Runge-Kutta method is used. Note that from the nu-
is longer than the characteristic time of the pulse propagaMerical point of view Eq.(20) is not convenient for our

tion, i.e., 7,=A/(wpv,). Hence, the criterion for the pulse PUrposes. If one begins the integration from a paig-ar,
spot size is then after integration over a step size we will hae=a,,

i.e., aq is an equilibrium point. So the starting point should
cA bea’(|a,—a’|<¢, wheree is the smallest machine number.
But the sensitivity of the solution to the value efforces us
to use the second order form of the differential equation. In
For a plasma witmg= 102 cm™3, we havewp~1010 s 1 the latter, the starting points chosen are a,, andda/d¢
(wp=5.64% 104né’2 rad s %). For a typical laser frequency = —0.0000001; the latter is our approximation for zero. The
of the order of~10'® s, the pulse spot size should satisfy resultis displayed in Fig. 5 for different valueswf (=0.78,

0.82,0.87,0.92 This figure represents two essential behav-
ra>10"A iors of the width. First, the larger the soliton amplitude the
shorter is the soliton width and visa ver¢a the linear
which, according to the width shown in Figs. 5 and 6, istheory,A is infinite). Second, for larges the soliton width
easily fulfilled for the usual laboratory data of the spot size.js smaller. The analytical solution in the nonrelativistic limit
From Fig. 2 it is qualitatively clear that the width of the jg
soliton decreases as, increases. This figure exhibits soli-
tons withv4=0.78 for three different values a,, (=0.6, A 8m 25
0.9,1.3. The description of the width behavior is analytically cosl{ygé/d)’

r> :
wowp
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0.2 0.6
— — — Relativistic
Non-relativistic
(vg=0.92)
0 8c
ol Q
04
NS
E-o.z = Q
> S
02
04}
06
L L L L 1 L L L L 1 A L bl il NS N N N TS P L)
0 0.5 1 10 -8 6 -4 -2 0 2 4 6 8 10
® pé/c @ PF: /c
FIG. 4. The effective potential for the casg,>a. and v, FIG. 6. Comparison of relativistic and nonrelativistic solitons
=0.8 and its asymptotic behavior nesy. for the case®,,=0.6 andv4=0.92.

whered=22/a,,. In Fig. 6 the numerical solution, includ- e 2 oo dAn y+1
ing the relativistic effectfor a,,=0.6 andv,=0.92) is com- gJ d¢'a’=— 5 zJ’ dé’ [ 'y—l—ln}_
pared with the case where it is neglecfed). (25)]. It is clear - WoYg? —* d¢’ 2

that in the relativistic case a shorter width for the soliton is (26)
obtained. In Fig. 7 the soliton solutions fap,=0.6 andv

:(078,082,087,092) are shown. From Flg 7 the inversgxpandingAn aroundg we can rewrite Eq(26) in a more

relation of A with respect ta is significant. convenient form as
V. ACCELERATION PROCESS + o0 [ y+1
—f dé¢'| y—1—-In——
The interaction of a localized laser pulse with the inho- -~ 2 dAnJ-= 2 27
mogeneity can accelerate the pulse. This effect is obtained N wSyZ dg S :
from Eq. (18). Let the variable¢ approach infinity. Then all g f_m dé'a

terms are zero except the integral term which gives the rela-

tion between the acceleration and the density inhomerneit}équation(Z?) is similar to the equation of motion for a single

ie., _ .
particle under the influence of a force
0.6
— — — vg=0.78
_— vg=0.82
. - vg=0.87
————— vg=0.92
<Q 04l
g Q
S
02
s
0.5 L o -f."./.'i/.”...|....|.\..|....|....|...
am/me 8 6 -4 2 0 2 4
wp& i
FIG. 5. The width of the envelope solutions for different values
of v4(=0.78,0.82,0.87,0.92The larger the 4 the smaller will be FIG. 7. The envelope solutions of the high-frequency momen-
the width. tum amplitude. This figure is in agreement with Fig. 5.
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parabolic pro_file forAn=2z%/2. In this case, we havg
=—a/(2w(2))(§+v t), the solution of which is ¢
'''''''''''''''''''''''''''''''''''''''''' =C cos{[\/a/(Zwoz()]Hcz}—vgt. Clearly, in the laboratory

frame, we observe an oscillatory behavior for the center of
the pulse.

o] VI. SUMMARY AND CONCLUSION

In this paper we have considered the nonlinear propaga-
tion of an intense laser pulse in a nonuniform cold plasma.
By using a fully relativistic fluid model and Maxwell-

— — — - vg=0.78 Poisson system of equations, we have derived an envelope
R zg:g;g?, equation for intense laser pulses, taking into account relativ-
——mm ~ vg=0.92 istic electron mass variation and the electron density pertur-
ob— Of4 e bations that are created by a relativistic light ponderomotive
an/mc force. An equation for the dynamics of the pulse center is
also obtained. It is found that the envelope equation can be
FIG. 8. Variation ofa against different values af. cast in the form of an energy integral with an effective po-
tential. The numerical analysis of the energy integral reveals
— the existence of a finite amplitude localized light pulses
F(t Ea )= — ia(a v )dA__” 28) yvhose maximu_m amplitude i_s restricted by the group veloc-
TsrmeTe w3 MUY gg ity of the localized pulse. It is found that the width of the
latter decreases with the increase of the group velocity and
the maximum solitary pulse amplitude. Furthermore, a local-
which generally depends on the maximum amplitude of thdzed solitary pulse suffers acceleration when it travels
envelope and the group velocity of the pulse. Figure 8 show#rough an inhomogeneous plasma. The soliton acceleration
the variation ofa with respect toa,, for different values of ~depends significantly ong (for a larger group velocity the
vg. The difference in the curves is due #g. That means acceleration becomes smallebut its dependency on the

when vy increases, the acceleration decreases. Figure @aximum amplitude is negligible. In conclusion, we stress
shows the variation ofr with a,,. By increasinga,,, « that the results of the present investigation should be useful

decreases very slowly. in understanding the nonlinear propagation of localized in-

We note that due to the transformation of the variablegense laser pulses in nonuniform plasmas such as those in
from the laboratory framez(t) to (&,7), the densityAn(z)  inertial confinement fusion and astrophysical environments.
is transformed taAn(&+vgt). First, we consider the linear

case in whichAn=z. Here we havet= — al(2wj) whose ACKNOWLEDGMENTS
solution is¢ = — a/(4wg)t*+ ¢t +c,. Second, we considera  The research of N.L.T. was supported by the Deutsche

Forschungsgemeinschaonn, Germanyto carry out the
scientific work of Project No. 436 GEO 17/5/01. N.L.T. also

4 A A vg=087 acknowledges the financial support from the grant INTAS-
| A GEORGIA 97-0052 to carry out the project entitled “Super-
A strong Electromagnetic Waves in Plasmas.”
B A
0.06 |- A
a APPENDIX: A DERIVATION OF EQ. (14)
A Here we derive Eq(14) for the electron density perturba-
S T a tion in the presence of the ponderomotive force of intense
- short laser pulsd®0]. For this purpose, we use the long time
i A scale part of the electron continuity equation
A
0.059 |- A
_ o0 o (n){pa) _ A
A ot oz m{y)y
B A
. L —_—t . 1Al
0.2 0.4 06 0.8 1 and Poisson’s equation
am/mc
FIG. 9. The coefficient for v4=0.87. A negligible dependency i(E y=—4mesn (A2)
of a on a, is evident. dz * '
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Substitutingsn from Eq. (A2) into Eq. (Al) and integrating where

once, we obtain

m(y) 4 02 = AT
_ _ PnL m

<pz> 4We<n> &t< z>- (A3) <7>

Substituting for(p,) from Eq. (A3) into the long time scale is a nonlinear plasma frequency: When'the Iatter is much
part of the momentum equation larger than the frequency associated with long time scale

plasma motions, the left-hand side in E&5) can be ne-

(AB)

d d glected. Hence, by substituting,) from Eq. (A5) in Eg.
s1(P2)= —&(B))—m&—(y), (A4)  (A2) we readily obtain
we have mc g2
on= —(), A7
4me? &22<7> (A7)

al 1 4 J
- FEe{EQ =—e<Ez>—mCZE<7>, (A5)

PNL which, in the dimensionless unit, is identical to E#4).
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