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Dissipation of kinetic energy in two-dimensional bounded flows
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The role of no-slip boundaries as an enstrophy source in two-dimeng@ibaflows has been investigated
for high Reynolds numbers. Numerical simulations of normal and oblique dipole-wall collisions are performed
to investigate the dissipation of the kinetic eneifgft), and the evolution of the enstropiy(t) and the
palinstrophyP(t). It is shown for large Reynolds numbers tlE(t)/dt= — 2Q(t)/Rex1/\/Re instead of the
familiar relationdE(t)/dt>=1/Re as found for 2D unbounded flows.
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Theoretical and numerical studies of two-dimensionalmental issue, an alternative numerical setup has been ap-
(2D) turbulence on unbounded domains have yielded manplied: the dipole-wall collision experiment as shown in Fig.
important results on energy spectiaoth for decaying and 1. This setup enables the study of the interaction of two
forced 2D turbulence on vortex statistics and quasistation- intense vortices with a no-slip wall, yielding a scaling rela-
ary final states of decaying turbulence, on tracer transport ition for the amount of small-scale vorticity produced near
forced 2D turbulence, et¢for an overview see Ref§l,2)). rigid no-slip boundaries.

Attempts to experimentally confirm the presence of the in- Two different dipole-wall collision experiments are con-
verse energy cascaflE(k)«k >?] and the direct enstrophy sidered: a normal collision, i.e., the translation of the dipole
cascade[ E(k)>k %], the decay properties of the vortex being perpendicular to the no-slip wall, and a collision with
population in decaying turbulence, and the characterizatioan angle of incidence of 30°. The numerical simulations of
of the quasistationary final states of the flow have been cathe 2D Navier-Stokes equations on a 2D bounded square
ried out recently by using different experimental set(sg., cavity with size[ —1,1] X[ —1,1] were performed with a 2D

in thin, magnetically forced, fluid layers, in soap films, or in dealiased Chebyshev pseudospectral metH@], with a
stratified fluid$ [3—7]. Some of the experimental data ob- maximum of 601 Chebyshev modes in each direction. The
tained in these investigations revealed the special role of nantegral-scale Reynolds number of the flow is=RéW/v,

slip boundaries, and initiated numerical simulations of 2Dwith U,W, andv as defined above. This integral-scale Rey-
turbulence on bounded domains with no-slip wdlts-10| nolds number is a well-defined number for our simulations,
(although the reversed order of events also occurred: the exa contrast with Rg, the Reynolds number based on the
periments in stratified fluids on circular domains by Maassercharacteristic velocity and length scale of the dipole, which
et al. [7] were initiated by numerical studies of decaying can only be estimated after the dipole has been forfa¢d
turbulence in a disk with stress-free or no-slip boundaries~0.1). As will be shown later on, for the present runs Re
[11,12)). These simulations have shown that the production~=Re;. Numerical experiments with the same initial condi-
of small-scale vorticity in the boundary layers modifies thetions as the normal collision experiment are also carried out
1D energy spectra near no-slip boundaries and the evolutiofor flows with periodic boundary conditions. This enables
of vortex statistics differs considerably from the unboundedseparation of the dissipation of kinetic energy of the flow due
case[9,10!. to the vortex-wall interaction and the slow dissipation of the

The production of small-scale vorticity in the boundary traveling dipole due to diffusion. This latter effect accounts
layers immediately raises the question how the dissipation dfor a small decrease of the kinetic energy of the flow with
kinetic energy of the flow, for the case of flow on approximately 1% for Re20000 (and ~0.1% for Re
(un)bounded domains expressed by the following dimension= 160 000) during the time needed for the dipole to travel to

less relation the wall.
The initial (scalay vorticity field w= (dv/dx) — (duldy),
dE() EQ ) 1) With uando the velocity components in theandy direc-
dt  Re (0, @ tions, respectively, should vanish at the boundary. This con-

straint guarantees absence of artificial boundary layers due to
is modified by the presence of no-slip boundaries. It wouldenforcing the no-slip condition &t=0. In order to satisfy
be tempting to investigate the enstrophy production, and théhis constraint, two equally strong, oppositely signed, iso-
dissipation of the kinetic energy of the turbulent flow, by lated monopoles are put close to each other near the center of
performing 2D turbulence simulations on bounded domainghe container. The vorticity distribution of the isolated mono-
with increasing Reynolds numbers. However, this approacipoles is chosen as
will fail due to lack of suitable computer resources. The
maximum integral-scale Reynolds number achievable is Re o(r,t=0)=w[1—(r/ro)?lexd —(r/ry)?], (2
=UW/v~20 000, withU the rms velocity of the flow field,
W the half-width of the container, and the kinematic vis- with r the distance from the center of the monopaolg,its
cosity of the fluid. In order to be able to address this funda-dimensionless “radiustat which the vorticity changes sign
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and wq its dimensionless extremum vorticity value r dipole half. The dipole shown in Fig(ld) can be modeled by
=0). In present simulationsy=0.1 andwy~=*320. This a Lamb dipole moving with a constant velocity
particular value ofv, is determined by the condition that the [15]. The stream function distributionys is given
total kinetic energy of the dipolar flow field, by ¢=[2U43,(kr)/kJ;(kD)]sine for r<D and ¢=0
for r=D, and kD~3.83. Evaluation of the dir;wensionless
1y (1 energy and enstrophy yieldE==#(U4D/U and Q
E()= Efilfiluz(r,t)dxdy, 3) =7T(gk)I/D)2(Ud/U)2 (Ssi?’/]g)\l/v andU a(s gharac\:/t\{a)ristic length
and velocity scalesAssumingE=2 and{) =800 we obtain
with r=(x,y) andu=(u,v), is normalized toE(t=0)=2, D/W=0.2 and Uy/U~4.2, which results in: Re
for all runs (or, alternativelyU = 1). As a consequence, both = (UsD/UW)Re~0.8Re. It is important to note that only an
U and W are fixed and increasing the Reynolds number is2PProximate value for Recan be found. Hence it is prefer-

achieved by decreasing the kinematic viscositpnly. The  able to use the integral-scale Reynolds number Re. _
initial total enstrophy of the dipolar flow field, The numerical experiments have been carried out for nine

different Reynolds numbers: Re525, 1250, 2500, 5000,
10t (1, 10000, 20000, 40000, 80000, and 160000r Re
Q= Efflﬁlw (r,0)dxdy, (4 ~500,...128000). For these runs we have measured sev-
eral integral quantities during the first, and most intense col-

is 1(t=0)~800. The initial position of the two isolated liSion, such as the maximum enstropfy,,, and the maxi-
monopoles ig(x;,Y1),(X2,Y2)} ={(0,01),(0,~0.1)} for the ~ Mum pallr!stroph)Pmax (WhIlChlls ? measure of the vorticity
normal collision experiment, and(0.084,0.08Y,(0.184, gradients in the flowP(t) =3/~ 1/~ [ Vao(r,1) ]*dxdy). We
—0.087) for the oblique collision experiment. This particu- have also computed the difference in dissipatioibetween

lar choice of initial positions yields similar collision times of the no-slip runs and runs with periodic boundary conditions
the d|po|e with the wall (% 032) for both sets of numerical at te: 0.5, i.e., after the first dipOle'Wa” collision. This dif-
experiments_ An impression of the flow evolution is pre_ference, which is aCtuaIIy the difference in total enStrOphy
sented in Fig. 1 where the vorticity contour plots of a runProduction in both kinds of runs, is defined as

with Re=40000 are shown at three instants of tinte: t

=0, 0.20, and 0.33. The initial vorticity fieldcase } is Az—f [Qp(7)—Qp(7)]dT, 5)
shown in Fig. 1a). After release of the two isolated mono- 0

poles at= 0 the rings of opposite vorticity, which are clearly
visible in Fig. 1), are removed due to mutual interaction of
the vortices, and form a weak dipolar structure that slowl
moves in the negative direction. This(relatively) weak co-

with the subscriptg andns referring to the runs with peri-
odic and no-slip boundary conditions, respectively. The com-
yputed values forQ)ax,Pmax, @and A are plotted in Figs.
. ; . : ) 2(a)—2(c). An error margin of these data can be estimated by
herent structure will be ignored in further discussions al'recomputing the runs shown in Fig. 2 at lower resolution.

though its _remainings are Sti”. \_/isible in Figs(bl-1(c). The error margin of the data obtained for runs with Re
When the rings of opposite vorticity are removed, the vortex_ 20000 is small. The estimated error for the runs with Re
cores move closer together_and form_ a strong dipole that:40 000, 80000, and 160000 is larger and might increase
moves with a large velocity in the positivedirection[see

0, 0,
Fig. 1(b)]. A snapshot of the collision is shown in Fig(cL up 10 5% for(lmay and 10% forPpay when Re=160000.

The time at which the enstrophy reaches a maximum is d The accuracy of\, which is measured (=05 (thus after
fined as the collision time 'IE)hg dipole-wall collision thenethe intense dipole-wall interactignappears to be much
takes place at~0.32. After formation of the boundary lay- higher and not very sensitive for the resolution of the simu-

ers and subsequent detachment a complicated se uencelaﬁion' Two regimes can be recognized: for 000 a
sequer nplica quenced arp increase in the enstrophy and the palinstrophy is ob-
vortex-wall interactions take place, which will not be dis-

served for increasing Reynolds number. In this regime it ap-
cusseq herésee Ref[14] for Re§5000). . ears, both for the normal and the oblique angle of inci-
An issue so far untouched is the relation between R

=UWI/» and Rg=UyD/v, the Reynolds number based on ence, that
the dipole translation speed, and the diameteD of the Q0 RS P, #RE?S  and AxRPE  (6)
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For Re=20000 the rate of increase 6fay,Pmax, andA  scale like QxDdwixDRe¥ and PxD&(dwl/dn|p)?
with respect to Re slows down and the following relations«pRe¥2 The total dissipatiom, as defined in Eq(5),
seem to be valid: should thus scale asxRe"2

The results shown in Fig. 2 for R&20000 cannot be
understood with this simplified analysis. The numerical data
reveal that the boundary layer thickness scales approximately
with Re 2 in line with boundary layer theory, bus, and
To enable simulations with Re as large as 160 @@Re, up  dw/dn|, show no clear scaling behavior. Computation of the
to 128 000, while minimizing the influence of the left, top, circulation in the boundary layer far>0.25, thus during the
and bottom walls on the dipole evolution for the normal dipole-wall interaction, revealed thhf, depends strongly on
collision experimenisee Fig. 1, the ratioW/D~5 should the Reynolds number for Re20 000 and becomes approxi-
be used(increasing the ratioV/D enforces Rg<128000, mately Reynolds number independent for=Ra0 000. In
which is undesirable Therefore, the present results can beFig. 3@ we have plotted the total circulatidhof the flow in
interpreted as obtained from a dipole collision with an infi- the first quadrant of the domaix#0 andy=0) for a nor-
nite, planar wall. To support this conjecture, numerical ex-mal collision experiment with Re40 000. The circulation is
periments have also been carried out in a square cavity withomputed as follows:
W/D=10. Essential for this comparison is that Rshould
be the same as for the analogous run WNhD ~5, which
necessitates a twice as large integral-scale Reynolds number
[Rey=(UyD/UW)Re withU4/U constant The initial vor-
tex positions are thefi(x1,y1),(X2,Y,)}={(0.5,0.05,(0.5,
—0.05)},rq=0.05, andwg~ *=640. FurthermoreE(t=0)
=0.5 andQ(t=0)=800. These simulations revealed that
the scaling behavior 0f);,ax, Pmax @ndA is indeed inde-
pendent of the box size.

The scaling behavior for Re20 000 can be understood
on basis of a simplified boundary layer theory. Consider the 25}
following schematic picture of a snapshot of the dipole-wall
collision: a vortex with circulatiol”, is situated near a no-
slip wall where it induced a boundary layer with thickness
and width D. The circulation in the boundary laydt, is
assumed to be independent of Re, but it is not necessary th:
I'y=-—T",. Assuming a finite pressure distribution along the
boundary it can be shown with the momentum equations tha
the normal vorticity gradient at the boundary satisfies the
scaling limke_..dw/dn|,=Re, with 9/dn representing the
normal derivative with respect to the boundary. The bound-
ary layer thickness scales like<Re™ 2. Combination of the

Qma@RES PraReY®  and AxRE® (7)

1 1
I“zf v(x=0,y)dy+f u(x,y=0)dx
0 0

()

4

Re=40000 and 160000

35}

1

His

1L
0.5

05}

0

0 01 02 03 04 05

(a)

[e=]

25 028 031 034

{®

0.37

t— t—

FIG. 3. The total circulation, with respect to the subdomain

large Reynolds number scaling &/dn and § yields for the
vorticity wy, at the boundaryw,>Re"? (consistent with the
alternative estimater,<I'y,/D ). The enstrophy and palin-

(x,y)=[0,1]1X[0,1]. (8 The normal dipole-wall collision with Re
=40000 and(b) a comparison of[' for Re=625 (X), Re
=2500 (*), Re=10000 (), and Re=160000(+). The data

strophy of the boundary layer induced by the dipole therfor Re=40 000 are represented by the solid line.
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(contributions from the no-slip boundaries are zefihe cir-  with ds an infinitesimal element of the boundasp and
culation of a dipole half igI",|~3.5, as can be concluded /dm the normal outward derivative. For flows in bounded
from Fig. 3@ (the increase ol for t<0.08 is due to the domains,P/Q does not need to scale with Re.

shedding of the ring of opposite vorticjtand is close tothe  The production of small-scale vorticity in the boundary
value of the vortex core as defined in E@®) (I'core layer has important implications. For unbounded flows the
=7wolj/le~3.7). At the moment of collision t( enstrophy is bounded by its initial val(izé], thus the dissi-
~0.32)T'y|~2.5 when Re=20000 [see Fig. 8)]. How-  pation of kinetic energy of the flow scales like Re[see Eq.
ever, for Re<20000 it is obvious thall",(t~0.32) varies 1], For bounded flowgwith no-slip boundariesthe present
between 1.3 (Re625)) and 2.4 (Re 10000) and is thus an - simulations indicate, by combining E€L) with the observa-
increasing function of Re. By using the relatiom, tion (cRe? that the dissipation of kinetic energy scales
«I'y/D & we can derive the following estimates for the en-|ixe Re 2 This process is entirely due to the enstrophy

strophy and the palinstrophy of the dipole-induced boundary,,qction in the boundary layers. First attempts have shown

layer: that during the initial stage of 2D decaying turbuleriagth
2 2 a setup as in Ref$9,10]) a scalingdE/dtxRe 2 is found

Qo2 pu—2 (99  in the range of Reynolds numbefisased on the vortex size

D& D&° and the rms velocity500<Re< 10 000. This intriguing phe-

WhenT i . ina f . t Re both th h nomenon should be explored in more detail in future direct
enly Is an increasing function of Re both the enstrsop Ynumerical simulation studies of forced 2D turbulence in
and the palinstrophy will increase faster tharfRand Ré=>,

respectively.

It would be tempting to estimate the rati®/Q« 5 2
«Re, as found for 2D flows in a periodic box. For Re
=20 000 this yields indeed the expected scaling, but for the
other regime (R&€20 000) this scaling is obviously absent
(see Figs. 2a and)bThis is explained by considering the  The authors gratefully acknowledge Dr. A.H. Nielsen for
following expression for the enstrophy dissipation rate of 2Dproviding the Fourier spectral code. This work was spon-

bounded domains when sufficient computer power is avail-
able.
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