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Effective Hamiltonian for a microwave billiard with attached waveguide
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In a recent work the resonance widths in a microwave billiard with attached waveguide were studied in
dependence on the coupling strendth Perssoret al, Phys. Rev. Lett85, 2478 (2000], and resonance
trapping was experimentally found. In the present paper an effective Hamiltonian is derived that depends
exclusively on billiard and waveguide geometry. Its eigenvalues give the poles of the scattering matrix pro-
vided that the system and environment are defined adequately. Further, we present the results of resonance
trapping measurements where, in addition to our previous work, the position of the slit aperture within the
waveguide was varied. Numerical simulations with the derived Hamiltonian qualitatively reproduce the ex-
perimental data.
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I. INTRODUCTION [15-18. The interferences show clearly that at low level
density the individual properties of the resonance states play
In every measurement of the spectroscopic properties of an important role.
guantum mechanical system, the system must be coupled to For isolatedresonances the widths of the states are much
an environment, unavoidably disturbing its properties. Thissmaller than the distances between them. Therefore the cou-
is true even without performing a direct measurement, sinceling matrix elementsv,, are well approximated by the
most systems such as atomic nuclei are embedded in a coaverlap integrals between the wave functiahs of the dis-
tinuum of decay channels due to which the states of therete states and the channel wave functions in the leads. The
system have a finite lifetime. As a consequence, the measurenergiesE,, are given by the eigenvalues, of the real part
ment always yields a combination of the system propertie®f Ho¢, and the widthd, are ~23,(V,,)? [19]. This ap-
and those of the environment. proximation is justified as long as the poles of enatrix
An efficient tool to tackle this problem is provided by are close to the real axj8]. These poles appear as isolated
scattering theorysee[1]). The scattering matrix can be de- resonances of Breit-Wigner shape in the reaction cross sec-
scribed by(see, e.g., Ref.2], Chap. § tion. This approach, which is the basis of random matrix
theory, can be used also at low level density far from thresh-
olds.
Vv, ) The situation changes considerably, however, when, as in
E—Hes many physical situations, the resonanoeerlap[8,19,20.

In such a case, the widths exceed the energetical distance
where between the resonances, thus causing a mixing of the reso-
nance states via the continuum. Solving the eigenvalue equa-
tion

S=1-21V°'

Heg=H—1VV'. 2)

Heff aa:z—a&a ’ (3)
H is the Hamiltonian of the system with discrete eigenvalues ) ) )
e,. Vis the coupling matrix between the discrete states of'€ Pole representation of the scattering matrix re&s9]

the system and the channel wave functions of the environ-

ment. — odir _ VaVar ~_g _!'%
Scattering theory was originally introduced in nuclear S =Sy 2'; E-¢ ' €a=Ea ZF“' @

a

physics(see Ref[3]). In recent years it has been applied to

numerous other systems like quantum desy., [1]) and  whereS|; describes the smooth part of the scattering matrix,
microwave cavitieg4]. For spectra with high level density, o?ndvm are the elements of the coupling matiixbetween

Stc;':}telztlicnalthrgectg%dsle))/(lelldarrgLéatst;gcsf:a%s;titgse c?flsrterlst:)ur:fnncse the resonancestates and the channel wave functions. A simi-
P piex p o lar representation of th& matrix was considered in Ref.

poles, and delay timg¥]. But for low level densities devia-
tions have been observed and discusgedl4]. These re- [21]. In general thev,,; depend on the energy of the system

sults suggest quantum mechanical interference effects b&d thes, are complex. Thus, the, andV,, are energy
tween the quantum states. They are displayed, e.g., in tHfi€Pendent and complex as well. The eigenvalues of the ef-
transport through quantum dots and microwave cavitiesfeCtive HamiltoniarH e yield the poles of th& matrix lying
when the leads support only one or few propagating modeat the solutionsEa=Ea|E:Ea, Fa=Fa|E:Ea of the fixed-
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point equations, when the system and environment are de- r

fined adequately. Th¥, have to be calculated by means of Q
the eigenfunctionsp, of Hey as discussed above; see Eq. “
(4). Indeed, the\~/a| are complex and energy dependent in a —l—
nontrivial manner, as shown numerically for nudi2g]. =9 10

Dramatic changes were found in the wave functions of = I
states with increasing resonance overlapping in a numerical
study for the two-channel case in nuclear reacti@®. As a FIG. 1. Sketch of the billiard with attached waveguide and slit
result, two states of the system align with the channels andithin the waveguide §=285 mm,b=200 mm,r=70 mm,L,
become short lived while the remaining ones decouple more 204 mm,D=23.2 mm,L=5.5 mm, 16 mm, and 26 mm
or less strongly from the continuum of decay channels. This ) o . )
decoupling from the continuum is calleesonance trapping effective Hamiltonian for the billiard with an attached wave-
[8]. Similar results have been found in calculations for mol-guide and in Sec. Ill A the slit is included into the scattering
ecules[24—26 and atomg27-29. In microwave cavities theory. Numerical simulations and experimental results are
resonance trapping has been studied theoretically as a funeresented in Secs. Il B and Ill C. The results are summa-
tion of the opening of the cavity to an attached waveguide ifized in the last section.
the time delay function and in the mixing and biorthogonal-
ity of the eigenfunctions of the effective Hamiltonian and in Il. WAVEGUIDE WITHOUT SLIT
its eigenvalue$30—-32.

In many theoretical studies, the coupling mati¥/" is
assumed to be real and energy independent and the eigenv

. : mod__ py T R
ues of the model HamiltoniaH e ™=H ~15VV" are studied i)'\ eq1ide and billiard have the same width. In this

aﬁ atf:gnc(tjlor’: ?f m_creasmﬁﬁ. In sulc[l e:hcase, tge nufmber 0(; case the wave can propagate freely into the billiard. There
short-lived states IS exactly equal 1o the humber of open de; . only small corrections from the evanescent modes in the
cay channels and the widths of the trapped states approa reshold regiori38]

zero for largegB values; see, e.g[5,21,24. In realistic sys-
tems, however, the paramej@icannot increase without limit

[8,33-34. Furthermore, the number of short-lived statesat the energies of the resonance states. Now the widjtf

may be much Iarggr than the_ number of open ch_a_nnels, 4Re statese are small and théS matrix poles are well de-
has been shown in calculations for quantum billiards Ofscribed by Eq(1)

Bunimovich type with different positions of the leads at-

tached to the bl|ll|arc[17]. L . tension is much smaller than the billiard width and a slit is
Since there is much confusion in the literature about th?ntroduced into the lead that can be closed

concept of resonance trapping, let us first define in what way Figure 1 shows the setup used in the experiment. We start

the term is used In this paper: Resonance trapping Is a ph@\iith the case that there is no slit within the waveguide. One

nomenon appearing in open quantum systems. Itis caused l%\én show that the scattering mat®of the billiard is given

the interaction of overlapping resonance states via the con: :
tinuum of scattering states by which some of the states aligrhy (see Appendix A

with the channels by trapping other states. Therefore the total

Let us consider the situation of a billiard coupled by a
aveguide to an environment. There are two limiting cases
or the propagation of the channel modes inside the cavity.

(i) The width of the waveguide is much smaller than the
width of the cavity. In this case the wave can propagate only

In this paper we investigate the case where the lead ex-

coupling strength is given by S=1—2|W‘LE WK, (6)
- ff
N M N e
r=>r,~>7"r, ie, > T,~0, (5 Where
a=1 a=1 a=M+1
Heg=H—IWKW!, 7

where N is the number of states considered, avidis the
number of short-lived states. Due to the reordering processeé# is the coupling matrix between the billiard and waveguide
taking place in the system, the widths of the statesIgye eigenfunctiongsee Eq.(A16)] and K is a diagonal matrix

=1~"a|E:Ea. Resonance trapping occurs at fixed total cou-With the wave number,= yk“—(nw/D)“ for the wave-

pling strength between the system and environment as @Uide modes on the diagonal, whebeis the width of the

function of some parameter and can be observed if the totgyayegwde. In the experiment only the lowest mode is propa-
coupling strength is varied. gating, and all others are evanescent, kg= I\, for n=2

{(EQ. (A12)]. We thus have a mapping of the billiard with

Hitherto there is only one experimental realization tha hed i ) bl ith ffecti
has shown resonance trapping. It was found in a microwav8ttached waveguide to a scattering problem with an effective

biliard with attached waveguide, where the coupling Hamiltonian. In the basis of billiard eigenfunctions the ma-

strength could be controlled by means of a variable8f. U1 €lements ofHeq read
It is the purpose of this paper to show that the situation o

met in this experiment is indeed properly described by an H —E 5 kW - Wa+ S LW W )
effective Hamiltonian of typ&2). In Sec. Il we derive the (He)op=Eedup™ ki Waa Wi n§2 WarnWpn - (&)
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The last term X _,\ W,,Wy,, describes the influence of 100 g g
evanescent modes. It is nonvanishing only close to a thresh- - E ]
old, as was shown in Ref$38,39 where a very similar 0E K T
approach was applied. = _of ]

It remains to rewrite Eq(6) as a sum of pole terms ac- g 10 2" p P ’\ ’] "\ 0\ E
cording to the original definition of th& matrix, Eq.(4), by E 10-3 _" ‘ : ﬁ . ]
which the physical meaning of th8 matrix poles is ex- = .
pressed. In order to stress the differences from the Hamil- 104k ! 1
tonian approach to scattering used in the literaterg., Ref.
[33]), we call this representatigoole representationf the S 10730 L . L . L

. 0.15 0.20 0.25 0.30 0.35 0.40 0.45

matrix. E [em™]

The diagonal coupling matrix element; W W 4 of Hgg
induces an uncertainty in the energy of the statelue to FIG. 2. The trajectories of the eigenvalugs(k) — (1/2)T" ,(K)

which it becomes a resonance state with a certain width. Asf the effective Hamiltonian for different statesobtained by vary-
long as the resonance states are isolated, the resonances iatgethe energy. The open circles denote the solutions of the fixed-
of Breit-Wigner type with maximum aE, and widthT", point equations. The geometry is that of Fig. 1 with=D
=2k{W,1W,4. In this regime, the Hamiltoniai o is al- =91.6 mm.

most diagonal and the pole representation ofSineatrix (6)

can be well approximated by

Ti=k1 X WoaW,1=ki > Wo W,y (13
kW1 W, “ “
S=1-21>, — ol (9)
« E-E,+(2Q)T, describes the coupling of the cavity to channel 1 at the en-
ergyE.
Numerically it has been shown that EE) is valid as long as In Fig. 2, we show the trajectories of the eigenvalues of
the poles are in the near neighborhood of the real axithe Hamiltonian for a simulation wittD=91.6 mm (at
[33,40. maximum openingd=D). The solutions of the fixed-point

As soon as the resonance states are overlapping, a redisquations12) are marked on the eigenvalue trajectories. As

tribution in the spectroscopic properties of the system takeg increases, first all (k) increase, while at largeE most
place due to the nondiagonal termgW,,;Wp,; of Heg. The  ~ “ i ' ~
HamiltonianH o has to be diagonalized, I' ,(K) decrease with mcr_easnt'gand only thel“_a(k) of one

of the resonance states increases further &itffhe results

~ e ~ o~ show resonance trapping when the endggyf the system is
Hett ba=[Ea=(112)T o] ¢q- (10 parametrically varied. Moreover, they show clearly that the
resonances are not of Breit-Wigner shgperresponding to

E (k) ~ Const,fa(k)~ consi. In many cases, the energy
dependence is quite strong. It is caused by the unitarity of the

The pole representation of tf&matrix now reads

klwalwal

S=1—2|E (11) S matrix leading to a narrowing of most resonances at full
« E-E,+(1/2T, opening of the cavity.
where Wa1 <W1|¢a> and W, is the first column ofW. ll. WAVEGUIDE WITH SLIT
W,,, E,, andT, depend on the energy of the system and A. Theory

W, are complex. The poles of th® matrix are obtained

- . . . In Eq. the billi tteri tri i
from the solutions of the fixed-point equations n Eq. (6) the billiard scattering malrix was expressed in

terms of an effective Hamiltonian for the case that the wave-
guide is coupled directly to the billiard. Now we proceed to

EQ=EQ|E:EQ and FQ=T“QIE:Ea. (120 the situation met in the experiment that a slit aperture with
variable opening is placed within the waveguigdee Fig. 1

They determine the energi&s, and widthsI', of the reso- The scattering matri is now given by
nance states. The eigenfunctiafs of H are biorthogonal. 1+ A 1+A
The resonances are no Iongfr of Breit-Wigner type because =g+geft—— 3 e'ktg— 2|ge'K'-TGK(1
of the energy dependencies \&f,; andI', (see[8,20]).

Therefore the reflection probabilities at the energieof N |AGK)‘1ﬂe'KLg, (14)
the resonance states are determined byctimaplex energy- 2
dependentvalues W,; and not by the real energy-
independent coupling matrix elemeé,;. The energy de- where
pendence ofV,; ensures the unitarity of th® matrix (12). . A
The total coupling strength A=1+ (e 'Kt—ge'Kt)~12get (15)
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(see Appendix B The matricegy and ézl_g depend on the slit is opened, the coupling vectdrsare changing from
the opening of the slifsee Eq.(B8)]; with increasing slit VKAW, showing a resonant behavior as a function of energy,
width g increases from 0 to 1. to VKW, while is smoothly dependent on energy. In other
Proceeding in the same way as before, we end up with words, the relation between the direct and resonant processes
changes on varying. In the case of a fully open slitg(

5':é+gelKLﬁelKLg =1A=1), the Widthsl:ﬁe of all the cavity states are inde-
2 pendent of the position of the slit.
The eigenvalues oH.; have a physical meaning only
1+A 1 1+A ) e X
—21ge'kt wt WK e'ktg, (16)  when the total function space is divided into the two sub-
2 E=Herr 2 spacegsystem and environmenaccording to the following

criteria: the system containall resonancelike phenomena
while the environment describes the smofthiect) reaction

Hegr=H— IWKAW (17) part in the energy region considered. This division was used

successfully by means of statistical methods for heavy nuclei

In expression(17), the properties of the billiard and the slit about 50 years agfet1,42. In light nuclei also division into
enter at different places. The eigenvalues and eigenfunctiortee two subspaces is crucial for giving the eigenvalues of
of the billiard have therefore to be calculated only once. ToH . a physical meaning. This point is discussed in detail in
study the eigenvalues &f.4 in dependence on the width and Ref. [8]. Due to the low level density, the resonance states
position of the slit, onlyA has to be recalculated. The cou- keep most of their individual features, and cannot be treated
pling vector between the system and lead with the slit at thdy statistical methods.

where the effective Hamiltonian now is given by

positionL is, according to Eq(17), V¥'= JKAW, while it is The numerical data fo, which will be discussed below,
V=KW in the case without a slfisee Eq(7)]. exhibit resonancelike features A{E) by which the division

The position of the slit inside the lead introduces someof the complete function space into the two subspaces is
arbitrariness in the separation of the complete function spad@fluenced. Sincé\ is complex, the term IWKAW') gives
into the subspace of the functions of the billiard and theanother contribution to Ré{cs) which causes shifts of the
supplementary subspace of the functions of the environmentesonances in the energy. In the following sections we
The part of the lead between the slit and the billiard maypresent results of numerical simulations as well as of experi-
belong to both subspaces: in the case of full opening it is parmental studies which support the above discussion.
of the channel while it is part of the cavity if the slit is
closed. In order to keep the physical meaning of the eigen- B. Numerical studies
e ol o, For the numercs we use & wid=229 o e
tem and environment uniquely. Since Bnly the first mo>:je isvyaveguidg, Whi(.:h s close to the experimental value. Three
oropagating, only the behavio} of the compongat is of dlfferent_sllt positions were taken at% 5.5, 16,_ and 26 mm,
relevance in’ the present context whereL is the distance between_ cavity Qnd slit. Only the first

. ’ channel moden=1 was considered, i.e., 1.8&/cm ?

According to Eq.(15), A;; has poles at the complex val- ~752
uesk, =k +kj=mm/L+iIn(g1p)/2L (m intege). The case In Fig. 3 we show the real part & A,; [see Eq(15)] for
L=0.WI|| not be dlscussed here in deta_ll because experimenyifferent g as a function of the energg for the three differ-
tally it cannot be realized and theoretically some problemsnt sit positions. First we note that with increasing slit width
with the boundary conditions appear. Ho# 0, the condition (g—1) the curves approach a single curve for all slit posi-
kn=mm/L describes a standing wave within the waveguidetions. For smally, however, the structure changes. The poles
with momentumk;, appearing as an additional pole of t8e of A;; at Ep=(mm/L)?+ (7/D)? cause a resonancelike de-
matrix. It may be looked upon as an additional statédgf  pendence as a function & for g<<1 (slit partly openejl
mixing with the other resonance states. The imaginary part of his resonancelike behavior is an indication of the fact that
the momentum may be related to the width of the state. Fothe boundary between the subspaces of the discrete and scat-
g— 0, corresponding to closing the slit, the imaginary ggrt tering states changes. For full opening of the sjit=(1), A;;
vanishes and the state becomes discrete. approaches 1, and the standing wéthe additional pole of

When the slit opens totally, i.eg—1, from Eq.(15) it  the Smatrix) vanishes and becomes part of the environment
follows that A—1, and the imaginary part d€; diverges. of the system consisting of the scattering wave functions. An
The extra peak iA;;, arising from the resonance state lo- analogous situation is discussed in detail for nuclei in Ref.
calized in the waveguide between the billiard and the slit af8]. As a result, the fixed-point solutions follow trajectories
g=0, thus disappears and the state is immersed in the sul? energy space with increasing openitighat are different
space of channel wave functions representing the envirorfor the different positiond. of the slit.
ment of the system. Thus, not only the subspace by which In the case oL=5.5 mm[Fig. 3], the resonancelike
the system is define@the first termH of H4) changes in  behavior takes place &7 cm 2. ThereforeA increases
varying g from 0 to 1; the subspace of channel wave func-monotonically with increasing opening of the slitorre-
tions into which the system is embeddedyat1l (open cav- sponding to increasing) for almost allE. As a consequence,
ity) is also different from that aj=0 (closed cavity. When the components of the coupling vectov§'= JKAW also
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FIG. 4. The calculated eigenvalues for=5.5 mm(a), 16 mm
FIG. 3. Rek;A;) defined by Eq.(15 for different g (b), and 26 mm(c). The open circles denote the eigenvalues at full
(0.1,0.3,0.5,0.7,0.9) as a function of the eneEgfor L=5.5 mm  opening @=D).
(@), 16 mm (b), and 26 mm(c). The width of the channel i®
=22.9 mm. In Fig. 4, the motion of the fixed-point solutiots, and
I',, in the energy region 5.0 cnt<E_<6.0 cm ? is plot-
ted in dependence on the slit widthfor the three different
‘positions of the slit (=5.5, 16, and 26 min For small
a . . . openingsd, the widths of allN states increase with increas-
. In thhe cr?se oL=16 mm, t?? first resznaﬁcellke behavior ing d for all values ofL. If d is further increased, however,
I(jse\(/:vrltea:gets estergﬁgi;l rvii%ori]n?:relgt;;zs%p;r:inz riiotﬂzﬁgﬁt (5different behavior is observed for the three cases considered.
<E/cm2<6.6). The width of the resonance 8{(E) in- At L=5.5 and 26 mm resonance trapping can clearly be seen
o in the resonances. At=16 mm, on the other hand, there

creases with increasing openifigig. 3(b)]. It is difficult to - :
. . ) el are only a few cases of resonance trapping. Obviously, the
decide whether this behavior 8fwill increase or reduce the ..t 1Co of the pole i decreases the probability for trap-

s have 1o be perormed fo the moton of the fxea-poinE2"d- AL full opening of the slit A1), theE, andr”, of a
solutions. P POINthe resonance states are the same for all three posltiofs
In the case of. =26 mm{[Fig. 3(c)], the first resonance- the siit
like behavior becomes narrower and the second is approach-
ing. In between there is a broad minimum. Due to the broad
minimum and the narrow maximum we expect a similar situ- A microwave reflection measurement was performed on
ation to that forL=5.5 mm, at least in the range 4 the system shown in Fig. 1. The system can be considered as
<E/cm ?<6.2. two dimensional, as long as the frequenay<c/2zh

increase monotonically with increasing opening for practi-
cally all E. We therefore expect resonance trapping in ap
proaching the full opening.

C. Experimental studies
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LB L B B R TABLE I. The resonance&nalyzed with CTDA divided into
three groups “trapped’(T), “broad” (B), and “others” (O). For
details see text.

T T T T
Q
~

N

P T Y
L. 4

=]
‘ 1 Length Numerics/ Numberof T B (0] T/
- L (mm) experiment resonances(%) (%) (%) B+O

i E 55
il 16

26

r/2 [em™)

90 50 19 31 0.98
127 37 13 50 0.58
86 23 24 53 030
107 26 8 66 0.35
86 44 17 39 0.79
102 32 12 56 047
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. widths due to the wall absorption that was not taken into
a : account in the simulations.
L Due to these differences, we cannot expect a quantitative
a4 agreement between simulation and experiment. We will find,
however, qualitative agreement for the influence of the
lengthL on the degree of resonance trapping.
To show the qualitative agreement we divided the experi-
mental and the numerical resonances into three groups ac-
—2 g cording to their behavior as a function of the opening of the
10 s ‘ slit (Table ). The groups are defined as follows.
!' \ (1) Trapped: resonances decreasing in width at large
} ‘ openings.
. (2) Broad: resonances gaining width at the cost of the
trapped ones at some openidgf the slit. A resonance is
= T T N classified as broad even if that resonance gets trapped by
5.0 5.2 5.4 5.6 5.8 5.0 another resonance at larger
E [em™?) (3) All others.
The energy interval analyzed is 2.95 ch<E

FIG. 5. The experimental eigenvalues, obtained by fitting the<g.85 cni 2. The experimental resonances could only be
data to Lorentzians, fdr=5.5 mm(a), 16 mm(b), and 26 mmc).  gnalyzed for 0.001 cAf<I,/2<0.1 cm 2. We restricted
The open circles denote the eigenvalues at full openihgd). the analysis of the numerical ones to the same width window.

(Due to the wall absorption the experimental resonances
=18.75 GHz(or E/cm ?<15.4), whereh=8 mm is the have some extra width. Hence we analyzed more resonances
resonator height. In this case there is a one-to-one correspotit the experiment than in the numerics. This can be seen
dence between the wave functiah and the electric field from the number of analyzed resonances in Table I.
strengthE, (see, e.g.[2]) The d|V|S|on into the th_ree groups is dong on the basis of

.z e . . a careful tracing of all eigenvalue trajectories of the reso-

In Fig. 5 experimental results for the three slit positions at nces as a function aof
L=5_.5, 16, anq 26 mm are shown. The resonances have peen Most notably, both experiment and theory agree with re-
obtained by direct fitting of the complex reflection coeffi- spect to the. dependence of the trapping phenomenon: more
cients R(k) by a superposition of Lorentzians. Using the ;esonances get trapped Bt=5.5 and 26 mm than at
centered time-delay analysi§TDA) described if37] simi-  _16 mm in the experimental data as well as in the numeri-
lar results are obtained. _ _ cal ones as is evident from Table I.

The differences in the trapping behavior are not as pro- - gymmarizing, we state the following: given the differ-
nounced as in the case of the numerics and it is hard t0 Sg,ces between the experiment and the assumptions for our
them in Fig. 5. This is due to some differences between theegretical study, the agreement between theory and experi-
experiment and the simulation arising from the external parfhent can be considered as good.
of the waveguide extending beyond the slit. In the experi-
ment a small antenna induces the microwaves, and beyond IV. SUMMARY AND CONCLUSIONS
that the waveguide is closed by a reflecting wall. This leads '
to additional interferences between the broad resonances An effective HamiltoniarH .4 has been derived for a bil-
(whose wave functions extend into the external waveguideliard coupled to a waveguide with a slit, depending exclu-
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sively on geometrical quantitiebl . has complex eigenval- , ,

ues, immediately giving the poles of ti&matrix when the Pl(r')=— JSG(” )Vog(r)dr, (A4)
resonances do not overlap. The opening of the slit enters

multiplicatively in the coupling matrix elements between bil- where the integration is over the width of the lead. All other
liard and waveguide. The eigenfunctions and eigenvalues &ontributions to the surface integral disappear due to the
the billiard without Waveguide have therefore to be CalCU-boundary conditions. Equat|dﬂ4) holds for the case that
lated only once. For overlapping resonances, the two sulis a point within the billiard. For’ on the boundary there is
spacegsystem and environmentnust be carefully defined an additional factor 1/2 on the right-hand side.

before the energy-dependent eigenvaluesigf can be re- Applying a coordinate system with the positiveaxis

lated to the poles of th& matrix by solving the fixed-point pointing along the waveguide and thexis on the boundary,
equations. TheS matrix in pole representation is therefore gq. (A4) reads

different for the different positions of the slit inside the lead.
The theoretical formulas predict resonance trapping to oc- D/2

cur more strongly at certain distande®etween billiard and w(Oy)= Eff DlzG(O’y; 0y")

slit than at others. The numerical results show resonance

trapping to depend ob as predicted, and the experiments on\yhere we have specialized Ed4) to x’ = 0. Equation(A5)
a microwave billiard agree qualitatively with the numerics establishes a relation between the wave function and its nor-
results and theoretical predictions. The phenomenon of resgna| derivative over the width of the lead. In the next step we

nance trapping thus generically entails deviations from th@xpand the wave function within the lead in terms of channel
randomness of the system properties. eigenfunctions

d¢(0y)
X

dy, (A5)
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2 nmw
APPENDIX A: S MATRIX OF A BILLIARD ATTACHED \[BCOTV’ n even,
TO A WAVEGUIDE $=\ (A7)
nmw
If an infinitely long waveguide is coupled to a billiard \/;smﬁy, n odd,

(similar to the setup shown in Fig),lit is suitable to intro-

duce a Green’s functio®(r,r’) with mixed boundary con- gnd

ditions. If r or r’ is located on the billiard wall, one has

G(r,r')=0, andV,G(r,r')=0 if they are located on the nar\ 2
opening.V, is the normal derivative pointing in the direction K= kz—( )
of the waveguide. The Green’s function is defined by

(A8)

In the situation realized in our experiments only the first

, , Yo (D) Pa(r’) mode can propagate, and all others are evanescents.e.,
G(r.r ,E)=<f e—al’ >=§ T E-e, (AL —\\,, where
2
where H is the Hamiltonian, with discrete eigenvalueg A= (n_Tr) —k2  for n=2. (A9)
and corresponding eigenfunctiogig(r). It obeys the inho- D

mogeneous Helmholtz equation . i
Putting the ansatZA6) into Eq. (A5) we have

(A+KHG(r,r")y=68(r—r"). (A2)
a,~b,=12 Gpukm(@m+bm), (A10)
The wave function describing the field distribution within m
both the billiard and the channel obeys the homogeneOL\:]?Ihere
Helmholtz equation
1 (D2 D/2
(A+K)p(r)=0 (A3) Gom=> f Y] LAY () dn(y)G(0Y;0y).

. . (A11)

with the boundary conditios(r)=0 for r on the wall.
Multiplying Eq. (A2) by #(r), Eq.(A3) by G(r,r’"), tak- In matrix notation, Eq(A10) reads

ing the difference of the resulting equations, integrating over
r, and applying Green’s theorem, we obtain a—b=1GK(a+b), (A12)
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which follows

Y(X,Y) =2 tadpn(y)er™ (B3)
b=Sa (A13) )
where its reflected and transmitted fractions, respectively. Let us
introduce the abbreviations
1-1GK
— d/i2 —d/i2 D/2
S= 171Gk (A1) fdyzf dy, fdyz(f + )dy. (B4)
| —d/2 1l -D/2 d/i2

We have thus obtained the scattering matrix in terms of th
billiard Green'’s function at the position of the lead.
Inserting expansiofAl) for the Green function into Eq.

(:Y‘/\/e then obtain for the reflection coefficients

(A11) we get M= LI ¢e(oay)¢n(y)dy:§n]: énmemv (BS)
WenW,,
Gom=2 Ei E =, (A15)  where
where Unm= j”¢n(Y)¢m(Y)dY- (B6)
1 [DR2 . -
W= \[Ef U, (0y)da(y)dy. (A16)  Analogously we get for the transmission coefficients
—-DJ/2
Note thatE, and ¢,(x,y) are eigenvalues and eigenfunc- ty= flwe(O,y)qﬁn(y)dy:% Onmem (B7)

tions of the billiard with mixed boundary conditioridleu-
mann at the boundary to the lead, and Dirichlet elsewhere,,ere
In short-hand notation EGA15) reads

nm— n m(y)dy. B8
E—lHW' (A17) g ﬁ(ﬁ(y)cb (y)dy (B8)

G=W"

By means of Eq9B5) and(B7) it is guaranteed that the field
is zero on the walls of the slit, and continuous at the opening.
From the orthogonality of the channel eigenfunction one has

Now we expand the denominator in EGA14) into a geo-
metric series and insert expressi@il7) for G,

1 o0
S=1-21W' WK (—le
Eop WK

n R
Gnmt Inm= Onm- (B9)
E_ R WK)

Now let us assume that there is another wayéx,y) enter-

o

1 " ing from the right with reflected and transmitted fractions
—1_ T _ i
=1=2IwW E—H nZO ( IWKW E—H W) WK U (%,y) and ¢ (x,y), respectively. The total field resulting
(A18) from a superposition of all contributions is now given by
Summing up again the geometric series we end up with the > da(N(—rpt+the Kt e ] (left),
scattering matrix of Eq(6). n
h(x,y)=
_ kn et kn .
APPENDIX B: S MATRIX WHEN A SLIT IS WITHIN zn: $n(y)lene "+ (th—rp) €] (righ).
THE WAVEGUIDE (B10)

First we calculate the transmission and reflection proper

. ! Denoting as above the vector of amplitudes of the wave
ties of the slit. Let

propagating to the left and to the right on the left-hand side

by a,b, and on the right-hand side lay,b’, and introducing

lﬂe(X,Y):E enqbn(y)e"‘nx (B1) corresponding vectors for reflection and transmission ampli-
n tudes, we have from E@B10)

be a wave entering from the left, and a=t'—r, b=—e,
(B11)
(XY= =2 tado(y)e (B2) a'=e’,  b'=r'-t
Equations(B5) and(B7) and the corresponding relations for
and the primed quantities read in matrix notation
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Now we attach the waveguide to our previous billiard. Let
us denote the scattering matrix of the billiard, including the
waveguide up to the slit, bg,, i.e.,

r=ge, t=ge
) (B12)
r'=ge’, t'=ge'.

Eliminating e,e’,r,r’,t,t’ from Egs.(B11) and (B12), we b=Soa. (B16)
obtain According to Eq.(A14) S, is given by
b’ a’
1-1GK
=S, , (813) _alKLT T "KL
a) St b) So=e"t Tare (B17)
where The two additional phase factoes" account for the phase
. shifts acquired by the waves during propagation within the
_ ( g 9) (B14) waveguide. Combining Eq$B13) and (B16) we obtain
lit= ~
g b'=Sa’, (B18)

is the scattering matrix for the sl is unitary as it should \yhere
be. This is a consequence of the projector propertigsanfd

g, S'=g+9S(1-9Sy) g (B19)

g’=g, 0°=g9, gg=gg=0, (B15)  Is the scattering matrix for the complete system including
billiard, waveguide, and slit. Inserting new expressiBi7)
following immediately from the definitionéB6) and (B8). for S, into Eq. (B19), we now end up with Eq(14).

[1] T. Guhr, A. Muler-Groeling, and H.A. Weidenniier, Phys. fined in nuclear physics. They differ by a factger from the
Rep.299 189(1998. coupling matrix elementsV and W& defined in[20] as well

[2] H.-J. Stekmann, Quantum Chaos—An IntroductiofCam- as from the coupling matrix elements used in the Hamiltonian
bridge University Press, Cambridge, England, 1999 approach to scattering; see, e[@3].

[3] C. Mahaux and H.A. Weidentiler, Shell-Model Approach to  [20] I. Rotter, Phys. Rev. B4, 036213(2001).
Nuclear ReactiongNorth-Holland, Amsterdam, 1969 [21] V.V. Sokolov and V.G. Zelevinsky, Nucl. Phys. B04, 562

[4] H. Alt et al, Phys. Lett. B366, 7 (1996. (1989.

[5] F. Haakeet al, Z. Phys. B: Condens. Matt@8, 359 (1992. [22] S. Drozlz, J. Okolowicz, M. Ploszaczak, and I. Rotter, Phys.
[6] N. Lehmann, D. Saher, V.V. Sokolov, and H.-J. Sommers, Rev. C62, 024313(2000.

Nucl. Phys. A582, 223(1995. [23] P. Kleinwachter and I. Rotter, Phys. Rev. &2, 1742(1985.

[7] Y.V. Fyodorov and H.-J. Sommers, J. Math. Phg8, 1918  [24] F. Remacle, M. Munster, V.B. Pavlov-Verevkin, and M.
(1997). Desouter-Lecomte, Phys. Lett. 45 365 (1990.

[8] I. Rotter, Rep. Prog. Phy&4, 635(199)). [25] M. Desouter-Lecomte and V. Jaques, J. Phys2@® 3225

[9] S. Tarucheet al, Phys. Rev. Lett77, 3613(1996. (1995.

[10] R. Akis, D.K. Ferry, and J.P. Bird, Phys. Rev. 3}, 17 705 [26] F. Remacle and R.D. Levine, Phys. Lett2Al, 284 (1996.
(1996. [27] V.V. Flambaum, A.A. Gribakina, and G.F. Gribakin, Phys. Rev.

[11] J.P. Birdet al, J. Phys.: Condens. Mattér 5935(1997). A 54, 2066(1996.

[12] I.V. Zozoulenko, R. Schuster, K.-F. Berggren, and K. Ensslin,[28] A.l. Magunov, |. Rotter, and S.I. Strakhova, J. Phys38
Phys. Rev. B55, R10 209(1997. 1669(1999.

[13] L. Wirtz, J.-Z. Tang, and J. Burgdier, Phys. Rev. B56, 7589  [29] A.l. Magunov, |. Rotter, and S.I. Strakhova, J. Phys3# 29
(1997. (2009). §

[14] L. Wirtz, J.-Z. Tang, and J. Burgdier, Phys. Rev. B9, 2956  [30] E. Persson, K. Pichugin, I. Rotter, and Rb&, Phys. Rev. E
(1999. 58, 8001(1998.

[15] J.P. Birdet al, Phys. Rev. Lett82, 4691(1999. [31] P. Sbaet al, Phys. Rev. B61, 66 (2000.

[16] Y.-H. Kim, M. Barth, H.-J. Stekmann, and J.P. Bird, Phys. [32] I. Rotter, E. Persson, K. Pichugin, and Rb&, Phys. Rev. E
Rev. B65, 165317(2002. . 62, 450(2000.

[17] R.G. Nazmitdinov, K.N. Pichugin, I. Rotter, and Rl#&, Phys.  [33] K.N. Pichugin, H. Schanz, and Pela, Phys. Rev. B4,
Rev. E64, 056214(2001. . 056227(2001).

[18] R.G. Nazmitdinov, K.N. Pichugin, |. Rotter, and Pelfa,  [34] U. Peskin, H. Reisler, and W.H. Miller, J. Chem. Phg81,
e-print cond-mat/011130@npublishegl 9672(1994).

[19] The V,, and V,, stand for the partial width amplitudes of [35] I. Rotter, J. Chem. Phy4.06, 4810(1997).
isolated and overlapping resonance states, respectively, as dg6] U. Peskin, H. Reisler, and W.H. Miller, J. Chem. Ph$§86,

066211-9



STOCKMANN, PERSSON, KIM, BARTH, KUHL, AND ROTTER PHYSICAL REVIEW B55 066211

4812 (1997. [39] L.E. Reichl and G. Akguc, Found. Phy31, 243 (2002.
[37] E. Persson, |. Rotter, H.-J. Btamann, and M. Barth, Phys. [40] S. Ree and L.E. Reichl, Phys. Rev.5B, 8163(1999.
Rev. Lett.85, 2478(2000. [41] H. Feshbach, Ann. Phy$N.Y.) 5, 357 (1958.

[38] G.B. Akguc and L.E. Reichl, Phys. Rev.6, 056221(2001J. [42] H. Feshbach, Ann. Phy$N.Y.) 19, 287 (1962.

066211-10



