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Torus fractalization and intermittency
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The bifurcation transition is studied for the onset of intermittency analogous to the Pomeau-Manneville
mechanism of type I, but generalized for the presence of a quasiperiodic external force. The analysis is
concentrated on the torus-fractalizati@rF) critical point that occurs at some critical amplitude of drivigt
smaller amplitudes the bifurcation corresponds to a collision and subsequent disappearance of two smooth
invariant curves, and at larger amplitudes it is a touch of attractor and repeller at some fractal set without
coincidence.For the TF critical point, renormalization grodBG) analysis is developed. For the golden mean
rotation number a nontrivial fixed-point solution of the RG equation is found in a class of fractional-linear
functions with coefficients depending on the phase variable. Universal constants are computed that are respon-
sible for scaling in phase space£2.89008 ... andB=—1.61803l...) and inparameter spaces(
=3.13422 ... and$,=1.61803 ...). An analogy with the Harper equation is outlined, which reveals
important peculiarities of the transition. For amplitudes of driving less than the critical value the transition
leads(in the presence of an appropriate reinjection mechanisnmtermittent chaotic regimes; in the super-
critical case it gives rise to a strange nonchaotic attractor.
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[. INTRODUCTION intervals. As a result, we arrive at some universal operator,
which describes the long-time evolution of the system at
It is commonly believed that under parameter variationcriticality. It is often represented by a fixed point of the RG
the turbulent dynamics in multidimensional systems maytransformation. Studies of this fixed-point operator together
arise via quasiperiodicity, in the course of subsequent crewith consideration of its relevant perturbations reveal prop-
ation of oscillatory components with incommensurate fre-erties of universality and scaling for the transition. Origi-
guencies, followed by chaotizatioisee, e.g., the works of nally, this approach was developed by Feigenbaum for the
Landau, Hopf, and Ruelle and Takeis-3)). period-doubling scenario of the onset of cha@s|; after-
Now it is well known that the actual details of the transi- ward it was applied to many other situations, including qua-
tion from quasiperiodicity to chaos are very subtle and comsiperiodicity at the chaos bordgt0-12 and some cases of
plicated. Some of them can be revealed if we turn to a kindhe creation of SNA14-16.
of restricted problem: Suppose that the system can be de- Finally, we have to mention here a concept of intermit-
composed to a master subsystem with quasiperiodic behavitency suggested by Pomeau and ManneYild. It occurs in
and a driven slave subsystem, and the latter can demonstratery general circumstances near a saddle-node bifurcation
transition to chaos. So, we may ask, what are possible scgalso called a tangent bifurcation, preferably in the context of
narios for the onset of chaos in the second subsyst&lo2  one-dimensiona{1D) mapg. It was studied in different as-
the analogy with the approach to the problem of three bodiepects by many authors. In particular, the RG approach was
in celestial mechanics: Although difficult in a general formu- applied to intermittency in Ref$18,19.
lation, it allows an essential advance in a restricted version, The goal of the present article is to consider a generaliza-
under the suggestion that one of the bodies is of negligibléion of the Pomeau-Manneville mechanism for the case of
mass) One of the important results from this line of reason-the presence of quasiperiodic driving, and to reveal details of
ing was a formulation of the concept of a strange nonchaotithe bifurcation transition, which is an analog of the tangent
attractor(SNA), which typically appears in an intermediate bifurcation in this case. It is natural to regard the situation as
region between order and chags-6]. In the phase space one possible scenario of transition from quasiperiodicity to
this is an object of fractal geometrical structure, but withoutchaos in the context of the mentioned “restricted problem.”
instability with respect to the initial conditions in the driven At small amplitudes of driving, the transition is rather trivial
system. and consists in collision with coincidendand subsequent
One more essential idea consists in the application of thdisappearangeof a pair of smooth stable and unstable tori;
renormalization grougRG) approach, proven to be very ef- see, e.g.[20,21]. However, at a definite value of the ampli-
ficient for understanding dynamics in critical states betweernude a nontrivial critical situation occurs. It allows applica-
order and chaose.g.,[7-16]). Starting with an evolution tion of the RG approach that will be developed. Also, the
operator for some definite time interval we are able to conassociated scaling properties will be revealed and discussed.
struct the evolution operator for a larger interval. Then, we In Sec. Il we introduce the basic model map and review
try to produce an appropriate variable change to make thiés dynamical phenomena in the presence of the external qua-
new operator as close as possible to the original. This is judiperiodic driving. In Sec. Il we consider some details of
one step of the RG transformation, and it may be repeatedynamics in terms of rational approximations of the fre-
again and again to obtain operators for larger and larger timgquency parameter and locate numerically the critical point
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associated with the threshold of fractalization at the moment
of collision of the invariant curves. In Sec. IV we discuss the
link between the problem under study and the Harper Unstabie fed “Channel"
equation—the lattice version of the one-dimensional Schro SN . \
dinger equation, well known in the context of solid-state x' X (a)
physics[22-27. In Sec. V the RG analysis is developed for

the situation of tori fractalization: The RG equation is de- Steont Abranch” ]
rived, and results of its numerical solution are presented. In for remcton
Sec. VI we discuss scaling properties of the dynamics at the X X

critical point. In Sec. VIl the linearized RG equation is de-

I«

rived, the spectrum of eigenvalues is obtained, and two rel- 22_837

evant eigenvalues responsible for scaling in the paramete

plane are distinguished. In Sec. VIII we consider the conse- Torus repelier

quences of these results concerning dynamics in a neighboly./ _. x' (b)

hood of the critical point in the parameter space. In particu-
lar, we extract from the RG results the critical exponents for
the duration of the laminar stages of intermittency and com-
pare them with empirical numerical data. In conclusion, we
discuss some perspectives of further studies in the context or
the general problem of understanding the transition from the FIG. 1. Onset of chaos via the Pomeau-Manneville intermit-
usual quasiperiodic regimgésmooth torus”) to SNA and tency of type | in the model mafi) at e=0 (a), and the transition
chaos. via collision and disappearance of smooth closed invariant curves,
attractor and repelletb). The diagrams are shown in the plane
II. THE MODEL AND BASIC PHENOMENA (x,x"), wherex' relates to the momer!t of _time one unit Iate_r than_
The left panels correspond to the situation before the bifurcation,
Let us start with an example of a quasiperiodically forcedand the right panels to the situation after the transition.
1D map

Torus attractor

X X

If the amplitude of driving is finitgalthough sufficiently
Xnt1=f(X,) +b+ ecos 2mnw, (1) small, then instead of the fixed points we observe a pair of
closed smooth invariant curves, attractor and repgkee
where e andw are the amplitude and frequency parameters=ig. 1(b)]. (A closed invariant curve may be thought of as a
of the external force, respectively. We assume that the freeross section of a torus. For brevity, it is convenient some-
guency parameter, also called the rotation number, is taken times to speak about stable and unstable tori rather than
be equal to the inverse golden mean-(y/5—1)/2. As to  about the invariant curvgsWith increase ob, the attractor

the functionf(x), let us define it here as and repeller come nearer to each other and collide, and the
localized attractor-repeller pair disappears. After that an ex-

x/(1—x), x=<0.75, tended attractor arises of a form shown in the right panel of

f(x)= (2 Fig. 1(b). On the diagram the degree of darkness reflects the

Ix=3,  x>0.75. relative duration of the presence of the orbit in different parts

L . of the attractor.
[One branch of the mapping is selected in the form of the While we remain close to the point of bifurcation, the

fracuonal—llne_ar functlorx/_(l—x), which appears ”atufa”y laminar stages of dynamics may be distinguished, which oc-
in the analysis of dynamics near the tangent bifurcation as-

. AT . . cupy an overwhelming part of the observation time, as in the
E?;]actﬁ (ijs xﬁgcﬁrétdersrgﬁimét Saerzgi,trgr.i(]il'?(),le%.s;ge roeTeerrlce case of the usual Pomeau-Manneville intermittency. In Fig.
y P (ffb) they correspond to the domain of the most long-living

the reinjection mechanism in the dynamics. g -
At zero amplitude of driving what we have is the usual residence—along the left branch of the map, at the place of

- . - . location of the former attractor-repeller pair. In our study we
transition to chaos via the Pomeau-Manneville intermittency .." . - ~entrate on the analysis of the laminar stages in the

of type |, controlled by the parametér[see Fig. 1a)]. At same way as is commonly accepted in the case of conven-

b<0 the map has two fixed points on the left branch, one. . . SR -
stable and one unstable. Under increasebdhese points Sional intermittency. For this, it is sufficient to use the map

approach one another, collide, and then disappear. After that, Xns1=Xn/(1—X,) +b+ e cog2mnw). 3
atb>0, a narrow “channel” remains at the place of former

existence of the pair of fixed points, and travel across this As the numerical simulations clearly demonstrate, the col-
channel is a slow process—the laminar stage of intermitlision of the attractor-repeller pair is of a different nature at
tency. Closer to the bifurcation poibt=0, a larger number small and at large amplitudes of driving. Similar observa-
of iterations is required to pass the channel. After visiting thetions were reported earlier in computations for the driven
right-hand branchthe turbulent stage of the intermittency circle map[21,28.

the orbit quickly returns to the left, and travels through the At e less than some critical valug. (in our mape.=2)
channel again and again. we observe that the invariant curves remain smooth until the
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x Repeller__ __ TABLE I. The values ob for the first attractor-repeller collision
0 ) W at the critical amplitude:=2.

2 8/13 -0.5989496730498198
) b—-04237078 13/21 -0.5993564164969890
x' 21/34 -0.5975700101088623
0 34/55 -0.5977371349948819
| 55/89 -0.5975077597293093
(b) 89/144 -0.5975427315192966
144/233 -0.5975125430279679
-3 b=-0.5975152 233/377 -0.5975187094612125
» 377/610 -0.5975146415227064
610/987 -0.5975156490874847
0 987/1597 -0.5975150899217102
(c) 1597/2584 -0.5975152478940331
2584/4181 -0.5975151698106684
3 08109053 4181/6765 -0.5975151939749183
6765/10946 -0.5975151829388339
10946/17711 -0.5975151865779841

FIG. 2. Bifurcation of collision of the closed invariant curves in
subcritical (a), critical (b), and supercritical(c) situations, ate
=1.7, 2, and 2.3, respectively. The invariant curves representing thfixed e=¢; it shows essentially distinct behavior; appar-
attractor are shown by solid lines, and those for the repeller b)enﬂy a power law with a nontrivial exponent.
dashed. The parameteigrows from left to right, and the last panel  The intriguing fact that the change of character of the
in a row corresponds to the moment of collision. bifurcation in the model maB) takes place precisely at.

=2 will be explained in Sec. IV.
collision, and they precisely coincide with one another at that

moment[Fig. 2(a)]. For €= €. they also coincide at the col-
lision, but here the form of the invariant curve appears to be
wrinkled [Fig. 2(b)]. Finally, ate>¢., one can see that the As is well known, the irrationalv=(y/5—1)/2 taken as
collision takes place only at some fractal subset of points othe frequency parameter in the driven map is a limit of a
the invariant curves, and no coincidence of the entire curvesequence of rational&,=F,_,/Fy, whereF, are the Fi-
is observedFig. 2(c)]. bonacci numbers Ky=0, Fi=1, F, =F+F1).
The essential change in the nature of the transition with_et us change the rotational numberto its approximant
passage frone<e, to e>e€. may be demonstrated also by w,, and introduce a parameter of initial phasénto the
computations of the Lyapunov exponent. Figufe) 3hows  equation:
the behavior of the Lyapunov exponent along the bifurcation
border (at the collision of the attractor-repeller paias a Xnt+1=Xn/(1—X,)+b+€cos 2r(nw,+Uu). (4)
function of the amplitude of driving. Observe that fer
<€ the Lyapunov exponent has constant zero value, but for Now, below the transition, at any fixadwe have a pair of
€> €. it becomes negative and decreases with growtle of cycles of periodF,, one stable and the other unstable. The
according to a visually perfect linear law. FiguréBdepicts  Floquet eigenvalue, or multipliex, which characterizes the
a diagram for the Lyapunov exponent dependencéd@t  decrease of a perturbation over one period of the stable
cycle, will depend oru. This dependence appears to be pe-
A A riodic, with period 27/F,. For a givene we may select
0 numerically suchb that the maximal value ofx at some
phase reaches 1, and is less than 1 at other phases. It
corresponds just to the first tangent bifurcation, that is, a
collision of the earlier stable cycle of peridg, with its
unstable partner. Technically, the computations are simplified
20.5 by two observations: first, the maximum of the multiplier
(@) (b) occurs atu=0, and, second, the initial condition for the
cycle at the situation of collision may be expressed explicitly
FIG. 3. The Lyapunov exponent at the bifurcation border versudsee Eq(16) in Sec. IV].
the amplitude parameter (a) and dependence of the Lyapunov  In Table | we present numerical data for the values of
exponent on the parameterat critical e=2 (b) for the fractional-  corresponding to the cycle collision at=0 for the critical
linear map with quasiperiodic driving. amplitudee=2. Figure 4 shows the multiplier as a function

Ill. METHOD OF RATIONAL APPROXIMATIONS

b=b(®)
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=18 R 1 NEE 1 VANELEL referred to as the torus-fractalizati¢fiF) critical point. The
/ AR S \ dynamics at this point and in its vicinity is the main subject
K / B N R T @ of our study in Sec. V and further.
/ N —— pa—
S u w13 w2t u w21 " w34 IV. A LINK WITH THE HARPER EQUATION
1 1 1
=20 813 /\ 13721 /ﬂ 21734 The Schrdinger equation in normalized form for a quan-
" \ " / \ M J \ ®) tum particle in a one-dimensional discrete lattice with addi-
\ ' \ tional quasiperiodic potential reads
07// R | L N
—w/13 u w/13 —n/21 u w21 —%/34 u /34 awn
e=2.2

! f 21/34 i—— =1t ¥n_1— 2+ (eCOS2mNW) 1, , (6)
|

1 1
\ 8/13 /k 13/21 ot

* //\ * N . )l © wheren is the spatial indexe is the amplitude of the quasi-
0 S\ 0 J \\ 0 & periodic potential, anav defines its wave number. Alterna-
/13 “ w13 —n21 “ /21 ~n/34 “ m/34 tively, one can speak of a wave process in a lattice medium

FIG. 4. Floquet eigenvalue or multipligx computed at three W'th_ supplied S,USta'ned quas'pe”Od!C perturbation. For an
subsequent levels of rational approximation versus phase variable@Scillatory solution of frequenc{) (which corresponds to a
at the values ob corresponding to the moments of the first cycle State of the quantum particle of definite enerthe exponen-
collision for subcritical(a), critical (b), and supercriticalc) ampli-  tial substitutiony,,>exp(€t) yields
tudes.

Uni1t ¥n_1— 24+ (Q+ecos2rnw)y,=0. (7)

of the phasai in an interval of periodicity at the moment of L ) . . i
the first tangent bifurcation. The diagrams are plotted at thre%—;‘('tS cl)? g;ﬁ ; Ztg?ellepdh;'s?gzrfg% ation well known in the con

sqbsequent levels of the rational approximation for the am- Let us return to our fractional-linear ma@) and perform
plitude parameter less than, equal to, and larger than 2. the variable chan
! . ge

For e<2 the dependencies become more flat under in-
crease of the order of th(—:." rationa}l approximatitme bifur- Xo=1— [ ihr_1. )
cation tends to become “phase independénti contrast,
for e>2 the curves tend to become sharper.é&2 the  The result is exactly the Harper equatidh with Q changed
form of the curves looks to be stabilized at subsequent levelg p:
of the rational approximation.

It is interesting to discuss the relation of these observa- Uni1t ¥n_1—2¢,t(b+ecos2mnw)y,=0. (9
tions with the behavior of the Lyapunov exponent at the
transition. As we consider the attractor for the irrational ro-  The link between the Harper equation and the fractional-
tation number in terms of a certain rational approxinmantinear mappings was noticed and exploited earlier by Ketoja
w,=F,_1/F,, it looks like a collection(continuum setof ~ and Satija[25], although they were interested in different
periodic orbits, each of which is associated with a particulaProblems than that of our concern here. Recently, the same
initial phaseu and has a value the of Lyapunov exponentidea was effectively used for analysis of spectral properties
A(u)=(1/F,)In w(u). To obtain in this approximation an es- Of the Harper equation in Reff27].
timate for the Lyapunov exponent of the whole attractor, we At rational approximants of the wave numberthe ex-
have to perform averaging over the initial phases, pression(7) _becomes an equati(_)r_1 with periodic coefficients.
=(A(u)). From the behavior of the multipliers in the sub- Together with the Floquet condition
critical case we conclude that the valuefofvill tend to zero

under increase of the order of rational approximation. In the Un+q= Hiln= Une'P?,
supercritical case only a very pure subset of the orbits will 5
have multipliers distant from 0 and close to 1, so the average B=(argu+2mm)/q, q=F,, (10

value of A is negative. These arguments are in agreement _ _ _
with the observed dependence of the Lyapunov exponent ol gives rise to an eigenvalue problem: At any given wave
the parametelb along the bifurcation curvisee the previous numberB one can obtairisay, numericallf24]) a spectrum

section, Fig. 8)]. of frequencies
As seen from Table I, the bifurcation sequence converges
to a well-defined limit 0=0(B). (12)
b=b,=-0.597515185376 112. . . (5) Itis called a dispersion equation for the waves in the medium

governed by Eq(6). If the equation has a real rogt at a
(see also a remark in the final part of Sec).Mt is a nu-  given(}, it corresponds to wave propagation, or a transmis-
merical estimate for the parameter value associated with thgion band. If the equation has no real but only complex so-
critical point of fractalization of the colliding tori. It will be Ilutions, we say thaf) is in a forbidden zone, or in a non-
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Localization - delocalization l
transition

@ ’ B=Fin= 2 e (13

n=-—o

one obtains from Eq.7) an equation of similar form,

St o1 e brrrt dr—1— 2+ Q' + €' cog2mikw)] =0,
A\L (14)
Intermittency
0 0 .
taatzes o but with parameters
orus attractor point
0 2 e 0 2 ¢ O'=2+2(Q-2)/e, €' =4le. (15)
(a) (b)

Localization of a wave function implies delocalization of its
FIG. 5. Transmission bandgray) and forbidden zone&white) transform, and vice versa. So the transition has to occur at
in the parameter planes(Q)) for the Harper equatiofa), and the  e=2, which corresponds to a fixed point of the equation for
chart of dynamical regime@hase diagrajrfor intermittency under ¢,
quasiperiodic driving(b). The bifurcation curve of the attractor- In Fig. 5a) one can find a forbidden zone in the bottom
repeller collision in the paneb) exactly corresponds to the bottom part of the diagram. Obviously, its top border must corre-
border of the gray area in the diagraa. spond to the threshold of intermittency in the fractional-
linear map. As may be observed from comparison of Figs.
transmission band. In this case there are no propagatinga) and 5b), this is indeed the case. The TF critical point
waves, but spatial exponential decay occurs at the given frfound in the previous section corresponds exactly to the low-
quency. est frequency associated with the appearance of wave propa-
To understand the relation between the nature of solutiongation at the localization-delocalization transition in the
of the Harper equation and those of our original problem, leHarper equatiorfat e=2).

us turn to a particular case of slow spatial variation/qf, The Harper equatiof®) possesses an evident symmetry,
use the continuous limit, and set 0. That yields being invariant with respect to the spatial reflectior —n.
Hence it is possible to construct a symmetric solution. For
P+ =0. (12)  this we have to sef,=¢_=[1—(b+€)/2]¢,. According

to Eq. (8), the corresponding orbit of the fractional-linear

Now, at b<O we have solutions of the forn¥,=Cexp map (3) has an initial condition

(=+[bln), and, according to Eq12), Xo=1— ¢hn/thy_1=1 Xo=(b+ €)/(b+e—2). (16
—exp(\/[b]). It corresponds to the presence of two fixed
points. Atb>0 we obtain¥,=C cos/bn). Then, x,=1 If this orbit is localized(which occurs at one special value of
— i, _1— asn—w/(2yb); this means that no local- b for eache€), it will correspond to the situation of the
ized attractor is present. In the same manner, a forbiddegttractor-repeller collision. This is also true for periodic or-
zone of the Harper equation must be associated with thBits corresponding to rational approximamtg at u=0 [see
existence of a localized attractor-repeller pair of the drivenEd. (4)], and this notion is technically useful for computation
fractional-linear map, while a transmission band correspond8f the sequence of parametevalues converging to the criti-
to the presence of the “channel” and to the laminar stages ofal point TF(Sec. Il)).
intermittency(see alsd27]).

It is easy to find that foe= 0 the transmission band in the V. RENORMALIZATION GROUP ANALYSIS
Harper model occupies an interval 6f from 0 to 4. At
nonzero e the forbidden zoneg“gaps”) arise inside the
band, and they become wider agrows. Under increase of
the order of rational approximatidg new and narrower gaps

Let us develop now the RG approach to the dynamics at
the TF critical point. Here we prefer to write out the original
model in the form of a two-dimensional mapping

appear inside the transmission bands. Ear2 in the limit Xns1=X,/(1—X,)+b+ecog2mu,),
k— oo the transmission bands of higher orders dominate over
the forbidden zone€.e., they have a larger total widthbut Ups1=U,+Wmod1, (17)

for €>2 the situation is opposi{®3,24. The transition from
one type of behavior to another is known as the localizationand assume, for convenience, that the phase varialite
delocalization transition. The structure of the transmissiordefined in such a way that it always belongs to the interval
bands at the transition appears to be a kind of Cantor-like sef—0.5,0.5).
Figure 5a) shows the transmission and forbidden zones col- As the frequency parameter is the inverse golden mean, it
ored, respectively, gray and white in the parameter planés natural to deal with the evolution operators corresponding
(e,Q). to Fibonacci’'s numbers of iterations.

The fact that the transition in the Harper equation must We need to introduce here a new variabde(it differs
take place ate=2 follows from the argument of Aubry from x by au-dependent shift, but details will be explained
[29,24). By means of the Fourier-like transformation below). Let fFk(X,u) and fFx+1(X,u) be the functions rep-

066209-5



SERGEY P. KUZNETSOV PHYSICAL REVIEW B5 066209

resenting transformation of after F, and F,. ; iterations, S
respectively. To construct the next operator, g, , steps, 6
we start from K,u) and perform first thd-, ., iteration to 4
arrive at(fF«+1(X,u), u+Fy.,w), and then the remaining
F iterations with the result

-
S
Jhate! '3:3"033...§ <

55 o
’g.‘o}:’oﬁ"cz
‘:‘0‘0:‘0,.'%. e

e tent et
I
e e S

oo

optest

fRer2(X u)=fP(fFey(X,u), u+wFe, ;). (18

To have a reasonable limit behavior of the sequence of
evolution operators we change scales Xoand u by some

appropriate factora and 8 at each step of the construction, £=233,377
and define the renormalized functions as
gr(X,u)=aXf (X/aX, (—w)ku). (19 FIG. 6. 3D plots for the functions obtained from direct iterations

of the fractional-linear map a&=2, b=b.,=-0.59755...
Note thatwF, . ;= — (_W)k+ 1(m0d 1), so it is natural to set with appropriate renormalization as explained in the téx¢ arbi-

B=— 1. Rewriting Eq.(18) in terms of the renormalized trary constant mentioned in the text is choseas84). The num-
functions we come to the functional equation ber of iterations=,=233 and 377. Coincidence of both plots indi-

cates that the functions approach the fixed point of the RG

t f tion.
s 2(X,0) = a®gi@ Mgy 1(X @, —wu) W2u+w). ranstormation

(20 an arbitrary constan3= — 1w, anda = 2.89(this value has

been selected in the course of computations as the most ap-
Sropriate ong
(3) ProduceF, iterations of the maygl7).

The same equation was obtained in the RG analysis of th
critical points TDT(torus doubling terminaland TCT(torus
CO||IS.I0n terminal [15{1@. Here we Wlll'deal with another (4) Return to the variablesx,U) by the inverse change
solution of that equation, associated with the (fétus frac- = ka1 2 N
talization critical point. To find out of what kind this solu- X=a'A (X~ X+ PUR +QUR),  U=Ur.
tion is, we may attempt to compute the functiags from Figure 6 presents graphically a sample of the results of
direct iterations of the mafi7). such computations for two Fibonacci numbé&is=233 and

As mentioned, the variabbein the Origina| map must be 377. The 3D plOtS of the two functions obtained are super-
distinguished fromX used in the derivation of the RG equa- imposed; observe their excellent agreemeAt.yet better
tion. In other words, we have to produce a variable change tgegree of coincidence was found for larger Fibonacci num-
pass to an appropriate “Sca"ng coordinate system” in thebel’S) This is an indication that we are dealing with a fixed-
two-dimensional phase space,X). The new coordinates Point solution of the functional equation
may be defined as
Xex—x.+PU+QU2,  U=u, (21) g(X,u)=a?g(a tg(X/a,—wu), wru+w). (22

Now it is worth emphasizing that the maps determining
evolution over the Fibonacci numbers of iterations are con-

- © structed by a repetitive application of the fractional-linear

To evaluate the cgefﬂc!enlB and Q we can act as fol- mappings, and hence must relate to the same fractional-linear
lows. Let us perform iterations of the mépv) at the critical 55 This implies that we may search for a solution of Eq.
point e=2b=b,., starting fromuy=0 andx,=Xx. [see Eq. (20) in the form
(16)], and compute the values afandx after F, andF, ;
iterations. Let these beuﬁk,x,:k) and (qu+1'XFk+1)’ respec-
tively. Three points (&), (Ug ,Xg,), and Ug, ,Xg, ) de- a(u)X+by(u)

] k k kfrl k+1 . . gk(X,U):—,
termine a parabola on thai(x) plane, and its equation is Cc (U)X +dy(u)
given byx—x.+ Pu+Qu?=0. The coefficients may be eas-
ily evaluated from coordinates of the three points. Of coursewhere the coefficients,b,c,d are some functions ofl.
the result will depend on the level numberand we must  Without loss of generality we may require them to satisfy the
estimate the asymptotical limits for the coefficients; they areadditional condition“unimodularity” )

P=5.926 67 and)= —210.629.(In fact, the convergence is
rather slow, but it is possible to guess its character, and ob-

wherex. is obtained from Eq(16) with the substitutions
=e.=2, b=b,; P, andQ are some coefficients.

(23

tain sufficiently good estimates. ay(u)di(u) —by(u)c(u)=1, (24)
Now the procedure consists of the following.
(1) Fix k and the correspondinig, . and set, as convenient,(0)=—1. Substituting Eq.(23)

(2) For givenX andU define the initial conditions for the into Eq. (20) we arrive at the RG equation reformulated in
map(17): x=XAa ¥+x,—PU—QU?, u=U, whereAis terms of the coefficients:
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TABLE II. The polynomial coefficients for the fixed-point solu- g
tion of the RG equation. s \\\ /cj/
\:\>(/\\\
a(u) b(u) o(u) d(w) of ==
3.180070169 0.329861441 -1.000000000 0.210730746 5 / o - ’(;)'
-3.450688327 -0.003027254 -0.601533776 0.167219763 e 5 —
2 .3.247090086 -8.330520346 0.443802007 3.062831633
3
4 3.992032627  9.444480715  0.293604279  1.865595582 kG, 7. Coefficients for the fixed-point fractional-linear solution
) 1200194704 11.133767028 -0.094027530 -1.597931152¢ 10 RG equation versus phase variablég) and 3D plot of the
-1.549680177 -13.205541847 -0.058193081 '1'04474526%niversal function(b)
6 .0.187890799 -4.313300571 0.011160724 0.358377518 '
I 0.286983091  5.502822816 0.006427031 0.223393531y5req with Fig. 6. The constant that is the scaling factor
0.016720852 0.734433497 -0.000847235 -0.04460387 or the X variable is found to be
9 .0.031115111 -1.104258820 -0.000457454 -0.025974096

-
o

-0.000950352

-0.069739548

0.000044648

0.003533563

PHYSICAL REVIEW E65 066209

a=2.89005353. . .,

cCccoccococcoccococcoccococcCccoccocccoccpE

11 0.002215271 0.125757870 0.000022730 0.001923598. . . . ..
12 (000035770 0.004131194 -0.000001582 -0.000192703" 900d agreement with the previously mentioned empirical
130000110612 -0.009312156 -0.000000761 -0.00009g574Stimate=2.89. _
14 _0.000000838 -0.000160051 0.000006910 It is worth mentioning one more universal constant asso-
15 0.000003663 0.000479736 0.000003335 ciated with the critical point. Evaluating the derivative of
16 0.000003822 g(X,u)=(a(u)X+b(u))/(c(u)X+d(u)) with respect toX
w -0.000016158 at the origin yields y=[dg(X,u)/dX]x=o u=o=1/d(0)?
=2251874% ... . As g(X,u) represents the asymptotic
form of the evolution operator for Fibonacci numbers of it-
A+2(U)  bya(u) erations, anc differs fromx only by theu-dependent shift,
Crsa(U)  dyso(U) we conc_lude that the cqnst_any will appear as the
asymptotic value of the denvauv&xpk/ dxg If Xg is selected
a(wu+w) aby(wu+w) in accordance with Eq17).

This gives the foundation for a method of locating the
critical point. One composes a program to iterate the original
map together with the recursive computation @,/dxg,
and tries to select an appropriate value lofto obtain
aka/ax0=y. The result quickly converges to the critical

To find the fixed point of this functional equation numeri- point b, as k grows. This method appears to be the most
cally we approximate the functiona(u), b(u), c(u), accurate, and the best numerical datee Eq(5)] have been
and d(u) by finite polynomial expansiongActually, the obtained with its help.
representation via Chebyshev’s polynomials on an interval
ue(—1,1) has been usddThen, we organize the RG
transformation as a computer program, which calculates
the set of expansion coefficients for the functions
. o(U),beio(u),cpio(u)  from two previous @ sets,
ay+1(U), by 1(U), ki1 (u) and ay(u),by(u),cy(u). (Note
that, due to the unimodularity, only three of the four func-

ce(W2u+w)/a?  d(wiu+w)

aby1(—wu)

(ak+ 1(—wu) (25

Chra(—WU)/a  dyiq(—wWu)

VI. SCALING PROPERTIES OF DYNAMICS AT THE
CRITICAL POINT

Let us consider an attractor at the critical point of our
model map(17). Its portrait is shown in left panel of Fig. 8 in

tions are independentThe fixed-point conditions are X
(Ak+2, Pri2, Cri2)=(Aks1, brr1, Cria) [l |
+ + + + + + o ﬁ‘f\v ‘ \A
and T
1 "
(A1, Pri1, Crr)=(ak, by, Cy). (26) \ ’f\VT’VJ \
. . . . -2 L
In terms of the polynomial representation this is equivalent Y,
to some finite set of algebraic equations with respect to the "\M\m
unknown coefficients of the polynomials and the unknown -05 0 0.5 ‘

U—

constante. This problem was solved by means of the mul-
tidimensional Newton method. As an initial guess, a function
obtained from iterations of the original mépee Fig. 8was  —nw+u,x, (left pane) and fragments of the picture shown under
used. The resulting coefficients for the functi@(s!), b(u),  subsequent magnification in the curvilinear “scaling coordinate”
c(u), and d(u) corresponding to the fixed point are pre- system. At each step the magnification is increased by a factor
sented in Table Il, and graphically in Fig(aJ. Figure 7b) =2.890@ . .. along the vertical axis and=—1.618 @ . . . along
shows a 3D plot of the fixed-point function; it may be com- the horizontal axis.

FIG. 8. Portrait of the critical attractor in natural variables
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[ 104B

N

In(S/?)

-4

|
-8 w12 Wll WIU WQ WS w7 f

’ H ‘ FIG. 10. Fourier spectrum at the TF critical point presented on a
I LI double logarithmic scale. Notice visible repetition of the structure in
FIG. 9. Evolution of Fourier spectra generated by the f@p respect to a shift along the frequency axis.

along the bifurcation curve that corresponds to a threshold of inter-

mittency.

smalle, i.e., far enough from the critical value, the spectrum
contains a few components. It is enriched by many additional
lines at intermediate frequencies as we come to the critical or
r§upercritical values ok. At the critical point the spectrum
as a self-similar structure. It can be revealed by the use of

natural variables W, ,X,). Depicting a part of the plot in
“scaling coordinates” J,X) we reveal a scaling property
intrinsic to the attractor: The structure is reproduced agai
and again at each subsequent step of magnification by t o ) .
factorsa and B along the vertical and horizontal axes, re- teitdir?ulgcla?sl?ggﬂtlhg;-lcszceal(i?s sluoggested in a different con-
spectively. This scaling property follows directly from the ' ' g. 10.
fact that in scaling coordinates the evolution operators for
different Fibonacci numbers of iterations are asymptotically VII. LINEARIZED RG EQUATION AND SPECTRUM
the same, up to the scale char{gecall Fig. 6. OF EIGENVALUES

From the scaling property one can deduce an asymptotic
expression for the form of the invariant curve at small scales

near the origin. The form reproduces itself under simulta- A Shift of parameters in the mafi7) from the critical
neous scale change by the factarand 8= — 1w along the point corresponds to some perturbation of the evolution op-

axesX and U, respectively, so it must behave locally Xs erator, and this perturbation will evolve under subsequent
|U[* with x=In a/ln|B|~2.2054. It follows that this is a application of the RG transformatiof20). Let us assume

smooth curve, twice differentiable at the origin, but the thirdthat the pertl_eratiqn retains our e"o"!“on operators in the
derivative diverges. Due to the ergodicity ensured by irratio-CIaSS of fractmnal_—lmear mappings. This means that we can
nality of the frequency, the weak singularity at the origin S€arch for a solution of Eq20) in the form
implies the existence of the same type of singularities over ~ ~
the whole invariant curve, on a dense set of points. Appar- 9 X,u)= (@(u) +a(u))X+by(u) +b(u)
ently, the observed wrinkled form of the invariant curve at ' (Cp(u) +Cr (U)X +dy(u) +dy(u)
the critical point(see Figs. 2 and)&eflects the presence of
the mentioned set of dense weak singularities. )
Figure 9 shows the evolution of the Fourier spectra genwWherea(u), b(u), c(u), andd(u) correspond to the fixed-
erated by the magl7) as we move in the parameter plane Point solution, while thg terms with a tilde are resppnslble
along the bifurcation curve that corresponds to a threshold d°r ~ the  perturbation. ~ Then  the  substitution
intermittency. These spectra may be useful for comparisofa,(u), B(u), T (u), dy(u))=s* gives rise to the ei-
with possible experimental studies of the transition. Forgenvalue problem

(28)

a(w?u+w)  a?b(wlu+w)
c(Wlu+w)/a® d(wPu+w)

52(5(u) E(u)) _

(5(—Wu) aE(—Wu))
c(u) d(u)

c(—wu)/a d(—wu)

( a(wlu+w) aZB(w2u+w)> 29

a(—wu) ab(—wu))
Tcwlu+w)/e?  d(wlu+w) /\c(—wu)/a d(—wu) |
As usual, only the eigenvalues larger than 1 in modulus are of interest because the corresponding perturbations grow under
repetition of the RG transformation and hence may influence the form of the long-time evolution operators.
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TABLE lIl. The eigenvalues larger than or equal to 1 in modu- a(u)X,+ea(u)+b(u)
lus. = —e. 30
us T (WX Fec(u)+d(u) © (30
Eigenvalue Designation Interpretation
3.134272989 o1 Relevant eigenvalue ] ) . ] ]
— 2890053625 — Noncommutative subspace The right-hand part is represented in the first ordes ias
2.890053625 a The variable changg«x+¢
—1.786151370 —aw! The variable change—x+ eu ~ ~
1.786151370 aw™? Noncommutative subspace g(X,u)+g(X,u)= @(u) +f(u))Xn+ (b(u)+£>(u)) ,
—1.618033979  —w! The variable changa«—u+¢ (c(u)+c(u))Xy+(d(u)+d(u))
1.618033979 Sy=w1 Relevant eigenvalue
1.618033979 wt Violation of the unimodularity (31
1.103902257 aw ™ ? The variable change—x+ gu?
—1.103902257 —aw 2 Noncommutative subspace
1.000000000 1 The variable change-x(1+¢) where (a(u),b(u),c(u),d(u))=e(@—c(u),—d(u),1,0). In
—1.000000000 -1 Noncommutative subspace the course of the RG transformatiod is rescaled asx
—1.000000000 -1 Noncommutative subspace — X/ a, and the renormalized relative coordinate shift is mul-

tiplied by « too. So(1—c(u),—d(u),1,0) represents an ei-
genvector, anda is the associated eigenvalugOne can
Numerically, we solved the problem by use of finite poly- verify it by a direct substitution of the eigenvector into Eq.
nomial approximations for the functions involved, taking (29); moreover, the assertion has been checked also by accu-
into account the previously found fixed-point solution. Equa-rate comparison of the present eigenvector components with
tion (29) then giVES rise to an eigenvalue problem defined irthose found numerica”y as functions o_ﬂ So we may ex-
terms of finite-dimensional matrices acting in a vector spacg|ude the eigenvalue from the list, because a perturbation
of coefficients for the polynomial expansions of the func-of this kind in the evolution operator can always be compen-
tionsa(u), b(u), c(u), andd(u), and it can be dealt with by sated by a shift of the origin. In the same way, we regard
standard methods of linear algebra. The computations reveakveral other eigenvectors as irrelevant; they are marked in
13 eigenvalues larger than or equal to 1 in modulus; they ar&able 1l as linked with variable changes.
listed in Table III. Second, in the derivation of the RG equation we have
Actually, only a few of them are of relevance. First, someused a definite order for the evolution operat@nst F. 4,
of the eigenvectors found are associated with infinitesimathen F, steps. However, this order may be inverted, and it
variable changes. For example, with a substitutm: X  leads to a distinct alternative formulation of the eigenvalue
+¢& in the map(23) we arrive at the new map problem, namely,

52(5(u) B(u))_a( a(—wut+w aB(—Wu+W1))
c(u) d(u)

a(w?u) azb(wzu))
S—wutrw Hla  d(—wutw L) [lcwiu)le®  d(wPu)

( a(—wu+w 1) ab(—wutw?1)
(32)

c(—wutw H/a d(—wutw?)

( a(w?u) aZB(qu))

c(wu)/a?  d(wu)

The true evolution operators are in any case multiple 5,=3.13427299...
compositions of the same original map. Thus, for the actual
perturbations Eqg29) and(32) must be equivalent. In other and
words, only those eigenvectors can be of relevance, that are
common to both the eigenvalue problems. This property was 5,=w 1=1.61803399. .. (33
verified numerically for all the eigenvectors found. As ob-
served, some of them do not satisfy the condition; in Tableyre relevant and responsible for the scaling properties of the
lll they are marked as relating to a noncommutative subparameter space near the TF critical point.
space. If we depart from the critical point in the parameter plane
The remaining two eigenvalues along the bifurcation curve of the attractor-repeller collision,
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T b=b,+C,+pC,+qC3,

/

€e=2+C,, (34)

/
[/

where

p=(2—b,)/4=—-0.64938, gq=-0.33692. (35

2z £ —
The expression fop follows from the analogy with the
FIG. 11. Local coordinates on the parameter plane of theqarper equation and from the Aubry transformation rule
fractional-linear map appropriate for demonstrating scaling. (15): An infinitesimal shift ofe andb along the tangent line
to the bifurcation border must correspond to a shife'ofind
the first eigenvector appears not to contribute to the pertud’ along the same line. The value gfis calculated numeri-
bation of the evolution operator. In this case the only relevan€ally, from the curvature of the bifurcation border.
perturbation is associated wi#y. However, if we choose a In addition to the obtained nontrivial solution of the RG
transversal direction, say, along the aljsa perturbation of €quation there exists also a trivial, phase-independent fixed
the first kind appears. This means that a coordinate systefpint
appropriate for observation of scaling in the parameter plane
has to be defined as shown in Fig. 11. It is a curvilinear _ _ _
system: one coordinate axis is the liae2, but the other gX,W=g(X)=X/(1=X), (36
follows the bifurcation border, accounting for its curvature.
In the analytical expression it is sufficient to keep terms up tawith «=1A=1.61803} ... . Naturally, this is the fixed
the second ordel(This is due to the concrete relation be- point responsible for the behavior on the subcritical part of
tweend, andés,: ;> 6, and §,> &5, but 5, < &3; see other the bifurcation border and associated with the transition ac-
examples of scaling coordinates for different critical pointscompanied by a collision of smooth invariant curves. The
and discussion of the role of the relation of the eigenvaluesigenvalue problem for the linearized RG equation may be

in Refs.[13,16,30,31) solved analytically for this case, and it reveals a unique rel-
So we set evant eigenvalué=1w?=2.61803 . .. .
5 5
\ ‘ !
Rl L X MWWM (a)
5 -5
0 n 1000 0 n 1000
S 5

FIG. 12. The dynamical vari-
able versus time in the model map
(1) just before and after the transi-

X X (K [ (b) tion: (a) a subcritical amplitude of
h. I I CAER driving, €=0.5; (b) the critical
case, e=2; (c) a supercritical
5 5 case,e=2.3.
0 n 1000 0 n 1000
5 5
x Ll ]
i } “ \‘ ‘] [
it |l‘ | it
P ARk I
5
0 n 1000 O n 1000
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8 &=1.8 =2 2.2
A
Zo ;
8 s Slope change
R
t -1.2
= 5 02 0 b-b

12 10 8 6 4 =2
In Ab

FIG. 13. Data from numerical experiments with the fractional-
linear map: average duration of passage through the “channel” ver- FIG. 14. Lyapunov exponent versus paramétéor subcritical,
sus deflection from the bifurcation threshold for several values of critical, and supercritical constant valueseoin the map(1). lllus-
on a double logarithmic scale. Observe the crossover phenomenotiation of scaling for the critical case: insets are shown with con-
the slope change from a critical to a subcritical value at some insecutive magnification by, =3.1342Z ... along the horizontal
termediate value oAb for e=1.95. axis, and by a factof=1.618 B . . . (the rescaling factor for time
along the vertical axis.

VIll. DYNAMICS IN A NEIGHBORHOOD OF THE
CRITICAL POINT AND INTERMITTENCY with »=0.5[17-19.
In the presence of a quasiperiodic force the same law is

. . L valid in the subcritical regionre<2. In the critical casee
Let us discuss now the question of the peculiarities of

intermitt o th ineriodically f d First f=2 the exponent is distinct. Indeed, as follows from the RG
intermittency In the quasiperiodically forced map. Hirst o results, to observe an increase of the characteristic time scale
all, we outline the possibility of three distinct regimes at the

. . . f ro=1w=1.61 ... wehav r h
onset of intermittency: the subcriticad<e.=2, when col- by a factorg=1/=1.618® ehave to decrease the

lision with coincidence of the smooth invariant curvs- shift of the parameteb from the bifurcation threshold by a

: . factor §,=3.1347 ... . It follows that the exponent must
tractor and repellertakes place at the moment of bifurcation; be 1 P

the critical, e= €., which corresponds to collision and coin-
cidence of the wrinkled invariant curveshe threshold of
fractalization; and the supercriticak> €., where collision v=In6/In §;,=0.42123. (38
of the invariant curves occurs at some fractal subset of
pOIE;[;[JreS 12a)—12(c) show the time dependencies for the [the _that substitutior_l of t_heS factor associated With_ _the
dynamical variable generated by the model nipjust be- tr|V|_aI fixed point(36) yields just the result for the subcritical
fore and after the transition for the three cases mentioned. IFf9!0N, v=0.5] _ _ _
the intermittent regimes the “laminar stages” are interrupted  Figure 13 shows the data for numerical experiments with
by “turbulent bursts.” The laminar stages in the right panelsthe fractional-linear map aimed at verifying the theoretical
reproduce approximately the patterns of the left panels. ~ Predictions for the exponent. At each fixede we empiri-
The relative duration of the laminar phases becomes
larger as we approach the transition point. In the usual p
Pomeau-Manneville intermittency of type | the average du- 43/
ration of the laminar stages behaves as

0.5
tiam* 1/ Ab]” (37
0.7
TABLE IV. Comparison of the numerical results and RG pre-
dictions for the critical exponent. 5%
€ v, humerics v, theory
FIG. 15. A chart of the parameter plane or the “phase diagram”
17 0.508 0.5 in natural variablegleft pane) and in scaling coordinategight
2.0 0.424 0.42123 pane). The gray areas correspond to negative Lyapunov exponent
2.2 0.452 ? values, with distinct tones for localized attractgssnooth torj in
2.3 0.456 ? the bottom area, and to intermittent regimes associated presumably

with a SNA in the top area to the right.
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3]

correspond to the domains of existence of the localized at-
tractors(smooth tori in the bottom ar¢and the intermittent
regimes(the top area to the rightApparently, the last is the
region of the SNA. This assertion may be deduced from the
arguments of Pikovsky and Feuddl]. Indeed, considering
the dynamics there in terms of rational approximants one can
notice that phase-dependent bifurcations will occur inevita-
bly. In contrast, the white area of positive Lyapunov expo-
nent is the domain of chaotic intermittent regimes. Figure 16
shows portraits of attractors at several representative points
of the phase diagram.

xn+l

IX. CONCLUSION

The present study was devoted to one special situation of
transition from conventional quasiperiodicity“smooth
torus”) to chaos or the SNA via intermittency in a model
map under quasiperiodic external driving with the frequency
Jparameter defined as the inverse golden mean. The main at-
tention was concentrated on the critical situation reached at
one particular, sufficiently large amplitude of driving, asso-
ciated with the threshold of fractalization. Here a bifurcation
cally determined the average duration of passage through ttigansition analogous to the tangent bifurcation consists of a
“channel” in dependence othb for an ensemble of orbits collision with the coincidence and subsequent disappearance
with random initial conditions, and plotted the results on aof an attractor and a repeller represented by a pair of
double logarithmic scale. For particular=1.7 (subcritica) ~ wrinkled invariant curves. An RG analysis appropriate for
and 2(critical) the dependencies fit straight lines of definite the critical situation was developed, the fixed-point solution
slope. As seen from Table 1V, the correspondence of thef the RG equation was found in a class of fractional-linear
numerical results with the theoretical predictions is ratheffunctions, and the constants responsible for scaling in phase
good. At subcriticale slightly less than 2 one can observe aspace and parameter space were computed.
crossover phenomenon, that is, the slope changes from a gome related problems yet remain open; for example,
critical to a subcritical value at some intermediate value Ofconcerning global scaling properties and dimensions of the
Ab. o ] ) _.critical attractor. Also a generalization for other irrational

Itis .|nterest|rllg t.hat the results obta_mgd for the supercritiotational numbers is of interestThe last seems undoubt-
C?' region alsp |.nd|cate a constant deﬁmtg slope,0.45. Al ._edly possible because of the analogy with the Harper equa-
this moment it is not clear how to explain this ObS(_:‘rv""t'ontion: there the criticality at=2 occurs at arbitrary values of

theo'retlcally. . the rotational number.One more problem is the develope-
Figure 14 shows diagrams for the Lyapunov exponents . ; .
- - .. ment of an appropriate approach to analysis of the transition

versus the parametérfor subcritical, critical, and supercriti-

cal constant values of in the artificial map(1), which in- in the supercritical region, which would be of the same sig-
cludes the reinjection mechanism ' nificance as is the RG method in the critical and subcritical

For the subcritical case the intermittency threshold corre£ases.

sponds to the onset of chaos: The Lyapunov exponent be- AS IS common in situations allowing RG analysis, one can

comes positive immediately after the transition. expect_that the quantitative regularities intrinsic to our model
In the supercritical region the Lyapunov exponent is stillmap will be valid also in other systems relating to the same

negative at the moment of the bifurcation; it cannot immedi-universality class. In particular, it may be suggested that the

ately become positive, and the transition will be accompatransition to the SNA observed in a quasiperiodically forced

nied by creation of a SNA rather than a chaotic attractor. subcritical circle mag28] is of the same nature. Also, it
In the critical situation the diagram demonstrates self-would be significant to find this type of behavior in systems

similarity (at least, in the domaib<b.): Magnification by  of higher dimension, for example, in quasiperiodically driven

the factors;=3.134 7 . . . along the horizontal axis, and by invertible 2D maps, which could represent the Poincasgs

the factor 9=1.618@ ... (the rescaling factor for time of some flow systems.

along the vertical axis gives rise to similar pictures. It would be interesting to reveal the details and regulari-
Figure 15 demonstrates a chart of the parameter plane, dies of the coexistencésubordination of the type of critical

the “phase diagram” in the natural variablésft pane) and  behavior discussed here with the behaviors of the distinct

in the scaling coordinate@ight pane). The gray areas are universality classes studied in Ref$4-16 (e.g., the torus-

those of negative Lyapunov exponent; the two distinct tonesollision terminal and torus-doubling terminal points

FIG. 16. Portraits of attractors at several representative points
the phase diagram.
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