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Torus fractalization and intermittency
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The bifurcation transition is studied for the onset of intermittency analogous to the Pomeau-Manneville
mechanism of type I, but generalized for the presence of a quasiperiodic external force. The analysis is
concentrated on the torus-fractalization~TF! critical point that occurs at some critical amplitude of driving.~At
smaller amplitudes the bifurcation corresponds to a collision and subsequent disappearance of two smooth
invariant curves, and at larger amplitudes it is a touch of attractor and repeller at some fractal set without
coincidence.! For the TF critical point, renormalization group~RG! analysis is developed. For the golden mean
rotation number a nontrivial fixed-point solution of the RG equation is found in a class of fractional-linear
functions with coefficients depending on the phase variable. Universal constants are computed that are respon-
sible for scaling in phase space (a52.890 053 . . . andb521.618 034 . . . ) and inparameter space (d1

53.134 272 . . . andd251.618 034 . . . ). An analogy with the Harper equation is outlined, which reveals
important peculiarities of the transition. For amplitudes of driving less than the critical value the transition
leads~in the presence of an appropriate reinjection mechanism! to intermittent chaotic regimes; in the super-
critical case it gives rise to a strange nonchaotic attractor.

DOI: 10.1103/PhysRevE.65.066209 PACS number~s!: 05.45.Df, 05.10.Cc
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I. INTRODUCTION

It is commonly believed that under parameter variat
the turbulent dynamics in multidimensional systems m
arise via quasiperiodicity, in the course of subsequent
ation of oscillatory components with incommensurate f
quencies, followed by chaotization~see, e.g., the works o
Landau, Hopf, and Ruelle and Takens@1–3#!.

Now it is well known that the actual details of the trans
tion from quasiperiodicity to chaos are very subtle and co
plicated. Some of them can be revealed if we turn to a k
of restricted problem: Suppose that the system can be
composed to a master subsystem with quasiperiodic beha
and a driven slave subsystem, and the latter can demons
transition to chaos. So, we may ask, what are possible
narios for the onset of chaos in the second subsystem?~Note
the analogy with the approach to the problem of three bod
in celestial mechanics: Although difficult in a general form
lation, it allows an essential advance in a restricted vers
under the suggestion that one of the bodies is of neglig
mass.! One of the important results from this line of reaso
ing was a formulation of the concept of a strange noncha
attractor~SNA!, which typically appears in an intermedia
region between order and chaos@4–6#. In the phase spac
this is an object of fractal geometrical structure, but witho
instability with respect to the initial conditions in the drive
system.

One more essential idea consists in the application of
renormalization group~RG! approach, proven to be very e
ficient for understanding dynamics in critical states betwe
order and chaos~e.g., @7–16#!. Starting with an evolution
operator for some definite time interval we are able to c
struct the evolution operator for a larger interval. Then,
try to produce an appropriate variable change to make
new operator as close as possible to the original. This is
one step of the RG transformation, and it may be repea
again and again to obtain operators for larger and larger t
1063-651X/2002/65~6!/066209~13!/$20.00 65 0662
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intervals. As a result, we arrive at some universal opera
which describes the long-time evolution of the system
criticality. It is often represented by a fixed point of the R
transformation. Studies of this fixed-point operator toget
with consideration of its relevant perturbations reveal pro
erties of universality and scaling for the transition. Orig
nally, this approach was developed by Feigenbaum for
period-doubling scenario of the onset of chaos@7,8#; after-
ward it was applied to many other situations, including qu
siperiodicity at the chaos border@10–12# and some cases o
the creation of SNA@14–16#.

Finally, we have to mention here a concept of interm
tency suggested by Pomeau and Manneville@17#. It occurs in
very general circumstances near a saddle-node bifurca
@also called a tangent bifurcation, preferably in the contex
one-dimensional~1D! maps#. It was studied in different as
pects by many authors. In particular, the RG approach
applied to intermittency in Refs.@18,19#.

The goal of the present article is to consider a general
tion of the Pomeau-Manneville mechanism for the case
the presence of quasiperiodic driving, and to reveal detail
the bifurcation transition, which is an analog of the tange
bifurcation in this case. It is natural to regard the situation
one possible scenario of transition from quasiperiodicity
chaos in the context of the mentioned ‘‘restricted problem
At small amplitudes of driving, the transition is rather trivi
and consists in collision with coincidence~and subsequen
disappearance! of a pair of smooth stable and unstable to
see, e.g.,@20,21#. However, at a definite value of the ampl
tude a nontrivial critical situation occurs. It allows applic
tion of the RG approach that will be developed. Also, t
associated scaling properties will be revealed and discus

In Sec. II we introduce the basic model map and revi
its dynamical phenomena in the presence of the external
siperiodic driving. In Sec. III we consider some details
dynamics in terms of rational approximations of the fr
quency parameter and locate numerically the critical po
©2002 The American Physical Society09-1
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SERGEY P. KUZNETSOV PHYSICAL REVIEW E65 066209
associated with the threshold of fractalization at the mom
of collision of the invariant curves. In Sec. IV we discuss t
link between the problem under study and the Har
equation—the lattice version of the one-dimensional Sch¨-
dinger equation, well known in the context of solid-sta
physics@22–27#. In Sec. V the RG analysis is developed f
the situation of tori fractalization: The RG equation is d
rived, and results of its numerical solution are presented
Sec. VI we discuss scaling properties of the dynamics at
critical point. In Sec. VII the linearized RG equation is d
rived, the spectrum of eigenvalues is obtained, and two
evant eigenvalues responsible for scaling in the param
plane are distinguished. In Sec. VIII we consider the con
quences of these results concerning dynamics in a neigh
hood of the critical point in the parameter space. In parti
lar, we extract from the RG results the critical exponents
the duration of the laminar stages of intermittency and co
pare them with empirical numerical data. In conclusion,
discuss some perspectives of further studies in the conte
the general problem of understanding the transition from
usual quasiperiodic regimes~‘‘smooth torus’’! to SNA and
chaos.

II. THE MODEL AND BASIC PHENOMENA

Let us start with an example of a quasiperiodically forc
1D map

xn115 f ~xn!1b1e cos 2pnw, ~1!

wheree andw are the amplitude and frequency paramet
of the external force, respectively. We assume that the
quency parameter, also called the rotation number, is take
be equal to the inverse golden meanw5(A521)/2. As to
the functionf (x), let us define it here as

f ~x!5H x/~12x!, x<0.75,

9/2x23, x.0.75.
~2!

@One branch of the mapping is selected in the form of
fractional-linear functionx/(12x), which appears naturally
in the analysis of dynamics near the tangent bifurcation
sociated with intermittency; see, e.g.,@18,19#. The other
branch is attached somewhat arbitrarily to ensure presenc
the reinjection mechanism in the dynamics.#

At zero amplitude of driving what we have is the usu
transition to chaos via the Pomeau-Manneville intermitten
of type I, controlled by the parameterb @see Fig. 1~a!#. At
b,0 the map has two fixed points on the left branch, o
stable and one unstable. Under increase ofb these points
approach one another, collide, and then disappear. After
at b.0, a narrow ‘‘channel’’ remains at the place of form
existence of the pair of fixed points, and travel across
channel is a slow process—the laminar stage of interm
tency. Closer to the bifurcation pointb50, a larger number
of iterations is required to pass the channel. After visiting
right-hand branch~the turbulent stage of the intermittenc!
the orbit quickly returns to the left, and travels through t
channel again and again.
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If the amplitude of driving is finite~although sufficiently
small!, then instead of the fixed points we observe a pair
closed smooth invariant curves, attractor and repeller@see
Fig. 1~b!#. ~A closed invariant curve may be thought of as
cross section of a torus. For brevity, it is convenient som
times to speak about stable and unstable tori rather t
about the invariant curves.! With increase ofb, the attractor
and repeller come nearer to each other and collide, and
localized attractor-repeller pair disappears. After that an
tended attractor arises of a form shown in the right pane
Fig. 1~b!. On the diagram the degree of darkness reflects
relative duration of the presence of the orbit in different pa
of the attractor.

While we remain close to the point of bifurcation, th
laminar stages of dynamics may be distinguished, which
cupy an overwhelming part of the observation time, as in
case of the usual Pomeau-Manneville intermittency. In F
1~b! they correspond to the domain of the most long-livi
residence—along the left branch of the map, at the place
location of the former attractor-repeller pair. In our study w
will concentrate on the analysis of the laminar stages in
same way as is commonly accepted in the case of con
tional intermittency. For this, it is sufficient to use the ma

xn115xn /~12xn!1b1e cos~2pnw!. ~3!

As the numerical simulations clearly demonstrate, the c
lision of the attractor-repeller pair is of a different nature
small and at large amplitudes of driving. Similar observ
tions were reported earlier in computations for the driv
circle map@21,28#.

At e less than some critical valueec ~in our mapec52)
we observe that the invariant curves remain smooth until

FIG. 1. Onset of chaos via the Pomeau-Manneville interm
tency of type I in the model map~1! at e50 ~a!, and the transition
via collision and disappearance of smooth closed invariant cur
attractor and repeller~b!. The diagrams are shown in the plan
(x,x8), wherex8 relates to the moment of time one unit later thanx.
The left panels correspond to the situation before the bifurcat
and the right panels to the situation after the transition.
9-2
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TORUS FRACTALIZATION AND INTERMITTENCY PHYSICAL REVIEW E65 066209
collision, and they precisely coincide with one another at t
moment@Fig. 2~a!#. For e5ec they also coincide at the col
lision, but here the form of the invariant curve appears to
wrinkled @Fig. 2~b!#. Finally, ate.ec , one can see that th
collision takes place only at some fractal subset of points
the invariant curves, and no coincidence of the entire cur
is observed@Fig. 2~c!#.

The essential change in the nature of the transition w
passage frome,ec to e.ec may be demonstrated also b
computations of the Lyapunov exponent. Figure 3~a! shows
the behavior of the Lyapunov exponent along the bifurcat
border ~at the collision of the attractor-repeller pair! as a
function of the amplitude of driving. Observe that fore
,ec the Lyapunov exponent has constant zero value, but
e.ec it becomes negative and decreases with growth oe
according to a visually perfect linear law. Figure 3~b! depicts
a diagram for the Lyapunov exponent dependence onb at

FIG. 2. Bifurcation of collision of the closed invariant curves
subcritical ~a!, critical ~b!, and supercritical~c! situations, ate
51.7, 2, and 2.3, respectively. The invariant curves representing
attractor are shown by solid lines, and those for the repeller
dashed. The parameterb grows from left to right, and the last pane
in a row corresponds to the moment of collision.

FIG. 3. The Lyapunov exponent at the bifurcation border ver
the amplitude parametere ~a! and dependence of the Lyapuno
exponent on the parameterb at critical e52 ~b! for the fractional-
linear map with quasiperiodic driving.
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fixed e5ec ; it shows essentially distinct behavior; appa
ently a power law with a nontrivial exponent.

The intriguing fact that the change of character of t
bifurcation in the model map~3! takes place precisely atec
52 will be explained in Sec. IV.

III. METHOD OF RATIONAL APPROXIMATIONS

As is well known, the irrationalw5(A521)/2 taken as
the frequency parameter in the driven map is a limit o
sequence of rationalswk5Fk21 /Fk , whereFk are the Fi-
bonacci numbers (F050, F151, Fk115Fk1Fk21).
Let us change the rotational numberw to its approximant
wk , and introduce a parameter of initial phaseu into the
equation:

xn115xn /~12xn!1b1e cos 2p~nwk1u!. ~4!

Now, below the transition, at any fixedu we have a pair of
cycles of periodFk , one stable and the other unstable. T
Floquet eigenvalue, or multiplierm, which characterizes the
decrease of a perturbation over one period of the sta
cycle, will depend onu. This dependence appears to be p
riodic, with period 2p/Fk . For a givene we may select
numerically suchb that the maximal value ofm at some
phase reaches 1, andm is less than 1 at other phases.
corresponds just to the first tangent bifurcation, that is
collision of the earlier stable cycle of periodFk with its
unstable partner. Technically, the computations are simpli
by two observations: first, the maximum of the multipli
occurs atu50, and, second, the initial condition for th
cycle at the situation of collision may be expressed explic
@see Eq.~16! in Sec. IV#.

In Table I we present numerical data for the values ob
corresponding to the cycle collision atu50 for the critical
amplitudee52. Figure 4 shows the multiplier as a functio

he
y

s

TABLE I. The values ofb for the first attractor-repeller collision
at the critical amplitude«52.

wk b

8/13 -0.5989496730498198
13/21 -0.5993564164969890
21/34 -0.5975700101088623
34/55 -0.5977371349948819
55/89 -0.5975077597293093
89/144 -0.5975427315192966
144/233 -0.5975125430279679
233/377 -0.5975187094612125
377/610 -0.5975146415227064
610/987 -0.5975156490874847
987/1597 -0.5975150899217102
1597/2584 -0.5975152478940331
2584/4181 -0.5975151698106684
4181/6765 -0.5975151939749183
6765/10946 -0.5975151829388339
10946/17711 -0.5975151865779841
9-3
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SERGEY P. KUZNETSOV PHYSICAL REVIEW E65 066209
of the phaseu in an interval of periodicity at the moment o
the first tangent bifurcation. The diagrams are plotted at th
subsequent levels of the rational approximation for the a
plitude parameter less than, equal to, and larger than 2.

For e,2 the dependencies become more flat under
crease of the order of the rational approximation~the bifur-
cation tends to become ‘‘phase independent’’!. In contrast,
for e.2 the curves tend to become sharper. Ate52 the
form of the curves looks to be stabilized at subsequent le
of the rational approximation.

It is interesting to discuss the relation of these obser
tions with the behavior of the Lyapunov exponent at t
transition. As we consider the attractor for the irrational
tation number in terms of a certain rational approxinm
wk5Fk21 /Fk , it looks like a collection~continuum set! of
periodic orbits, each of which is associated with a particu
initial phaseu and has a value the of Lyapunov expone
L(u)5(1/Fk)ln m(u). To obtain in this approximation an es
timate for the Lyapunov exponent of the whole attractor,
have to perform averaging over the initial phases,L
5^L(u)&. From the behavior of the multipliers in the su
critical case we conclude that the value ofL will tend to zero
under increase of the order of rational approximation. In
supercritical case only a very pure subset of the orbits
have multipliers distant from 0 and close to 1, so the aver
value of L is negative. These arguments are in agreem
with the observed dependence of the Lyapunov exponen
the parameterb along the bifurcation curve@see the previous
section, Fig. 3~a!#.

As seen from Table I, the bifurcation sequence conver
to a well-defined limit

b5bc520.597 515 185 376 121 . . . ~5!

~see also a remark in the final part of Sec. VI!. It is a nu-
merical estimate for the parameter value associated with
critical point of fractalization of the colliding tori. It will be

FIG. 4. Floquet eigenvalue or multiplierm computed at three
subsequent levels of rational approximation versus phase variau
at the values ofb corresponding to the moments of the first cyc
collision for subcritical~a!, critical ~b!, and supercritical~c! ampli-
tudes.
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referred to as the torus-fractalization~TF! critical point. The
dynamics at this point and in its vicinity is the main subje
of our study in Sec. V and further.

IV. A LINK WITH THE HARPER EQUATION

The Schro¨dinger equation in normalized form for a qua
tum particle in a one-dimensional discrete lattice with ad
tional quasiperiodic potential reads

i
]cn

]t
5cn111cn2122cn1~e cos 2pnw!cn , ~6!

wheren is the spatial index,e is the amplitude of the quasi
periodic potential, andw defines its wave number. Alterna
tively, one can speak of a wave process in a lattice med
with supplied sustained quasiperiodic perturbation. For
oscillatory solution of frequencyV ~which corresponds to a
state of the quantum particle of definite energy! the exponen-
tial substitutioncn}exp(iVt) yields

cn111cn2122cn1~V1e cos 2pnw!cn50. ~7!

This is the so-called Harper equation well known in the co
text of solid-state physics@22–27#.

Let us return to our fractional-linear map~3! and perform
the variable change

xn512cn /cn21 . ~8!

The result is exactly the Harper equation~7! with V changed
to b:

cn111cn2122cn1~b1e cos 2pnw!cn50. ~9!

The link between the Harper equation and the fraction
linear mappings was noticed and exploited earlier by Ket
and Satija@25#, although they were interested in differe
problems than that of our concern here. Recently, the s
idea was effectively used for analysis of spectral proper
of the Harper equation in Ref.@27#.

At rational approximants of the wave numberw the ex-
pression~7! becomes an equation with periodic coefficien
Together with the Floquet condition

cn1q5mcn5cnei b̃q,

b̃5~argm12pm!/q, q5Fk , ~10!

it gives rise to an eigenvalue problem: At any given wa
numberb̃ one can obtain~say, numerically@24#! a spectrum
of frequencies

V5V~b̃!. ~11!

It is called a dispersion equation for the waves in the medi
governed by Eq.~6!. If the equation has a real rootb̃ at a
given V, it corresponds to wave propagation, or a transm
sion band. If the equation has no real but only complex
lutions, we say thatV is in a forbidden zone, or in a non
9-4
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TORUS FRACTALIZATION AND INTERMITTENCY PHYSICAL REVIEW E65 066209
transmission band. In this case there are no propaga
waves, but spatial exponential decay occurs at the given
quency.

To understand the relation between the nature of solut
of the Harper equation and those of our original problem,
us turn to a particular case of slow spatial variation ofcn ,
use the continuous limit, and sete50. That yields

C91bC50. ~12!

Now, at b,0 we have solutions of the formCn5C exp
(6Aubun), and, according to Eq.~12!, xn512cn /cn2151
2exp(6Aubu). It corresponds to the presence of two fix
points. At b.0 we obtainCn5C cos(Abn). Then, xn51
2cn /cn21→` as n→p/(2Ab); this means that no local
ized attractor is present. In the same manner, a forbid
zone of the Harper equation must be associated with
existence of a localized attractor-repeller pair of the driv
fractional-linear map, while a transmission band correspo
to the presence of the ‘‘channel’’ and to the laminar stage
intermittency~see also@27#!.

It is easy to find that fore50 the transmission band in th
Harper model occupies an interval ofV from 0 to 4. At
nonzero e the forbidden zones~‘‘gaps’’ ! arise inside the
band, and they become wider ase grows. Under increase o
the order of rational approximationk, new and narrower gap
appear inside the transmission bands. Fore,2 in the limit
k→` the transmission bands of higher orders dominate o
the forbidden zones~i.e., they have a larger total width!, but
for e.2 the situation is opposite@23,24#. The transition from
one type of behavior to another is known as the localizati
delocalization transition. The structure of the transmiss
bands at the transition appears to be a kind of Cantor-like
Figure 5~a! shows the transmission and forbidden zones c
ored, respectively, gray and white in the parameter pl
(e,V).

The fact that the transition in the Harper equation m
take place ate52 follows from the argument of Aubry
@29,24#. By means of the Fourier-like transformation

FIG. 5. Transmission bands~gray! and forbidden zones~white!
in the parameter plane (e,V) for the Harper equation~a!, and the
chart of dynamical regimes~phase diagram! for intermittency under
quasiperiodic driving~b!. The bifurcation curve of the attractor
repeller collision in the panel~b! exactly corresponds to the bottom
border of the gray area in the diagram~a!.
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cne2p inkw ~13!

one obtains from Eq.~7! an equation of similar form,

fk111fk2122fk1@V81e8 cos~2p ikw!#fk50,
~14!

but with parameters

V85212~V22!/e, e854/e. ~15!

Localization of a wave function implies delocalization of i
transform, and vice versa. So the transition has to occu
e52, which corresponds to a fixed point of the equation
e.

In Fig. 5~a! one can find a forbidden zone in the botto
part of the diagram. Obviously, its top border must cor
spond to the threshold of intermittency in the fraction
linear map. As may be observed from comparison of Fi
5~a! and 5~b!, this is indeed the case. The TF critical poi
found in the previous section corresponds exactly to the lo
est frequency associated with the appearance of wave pr
gation at the localization-delocalization transition in t
Harper equation~at e52).

The Harper equation~9! possesses an evident symmet
being invariant with respect to the spatial reflectionn→2n.
Hence it is possible to construct a symmetric solution. F
this we have to setc15c215@12(b1e)/2#c0. According
to Eq. ~8!, the corresponding orbit of the fractional-linea
map ~3! has an initial condition

x05~b1e!/~b1e22!. ~16!

If this orbit is localized~which occurs at one special value o
b for each e), it will correspond to the situation of the
attractor-repeller collision. This is also true for periodic o
bits corresponding to rational approximantswk at u50 @see
Eq. ~4!#, and this notion is technically useful for computatio
of the sequence of parameterb values converging to the criti
cal point TF~Sec. III!.

V. RENORMALIZATION GROUP ANALYSIS

Let us develop now the RG approach to the dynamics
the TF critical point. Here we prefer to write out the origin
model in the form of a two-dimensional mapping

xn115xn /~12xn!1b1e cos~2pun!,

un115un1w mod 1, ~17!

and assume, for convenience, that the phase variableu is
defined in such a way that it always belongs to the inter
(20.5,0.5).

As the frequency parameter is the inverse golden mea
is natural to deal with the evolution operators correspond
to Fibonacci’s numbers of iterations.

We need to introduce here a new variableX ~it differs
from x by a u-dependent shift, but details will be explaine
below!. Let f Fk(X,u) and f Fk11(X,u) be the functions rep-
9-5
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resenting transformation ofX after Fk and Fk11 iterations,
respectively. To construct the next operator, forFk12 steps,
we start from (X,u) and perform first theFk11 iteration to
arrive at„f Fk11(X,u), u1Fk11w…, and then the remaining
Fk iterations with the result

f Fk12~X,u!5 f Fk
„f Fk11~X,u!, u1wFk11…. ~18!

To have a reasonable limit behavior of the sequence
evolution operators we change scales forX and u by some
appropriate factorsa andb at each step of the constructio
and define the renormalized functions as

gk~X,u!5akf „X/ak, ~2w!ku…. ~19!

Note thatwFk1152(2w)k11(mod 1), so it is natural to se
b521/w. Rewriting Eq.~18! in terms of the renormalized
functions we come to the functional equation

gk12~X,u!5a2gk„a
21gk11~X/a,2wu!,w2u1w….

~20!

The same equation was obtained in the RG analysis of
critical points TDT~torus doubling terminal! and TCT~torus
collision terminal! @15,16#. Here we will deal with another
solution of that equation, associated with the TF~torus frac-
talization! critical point. To find out of what kind this solu
tion is, we may attempt to compute the functionsgk from
direct iterations of the map~17!.

As mentioned, the variablex in the original map must be
distinguished fromX used in the derivation of the RG equ
tion. In other words, we have to produce a variable chang
pass to an appropriate ‘‘scaling coordinate system’’ in
two-dimensional phase space (u,x). The new coordinates
may be defined as

X}x2xc1Pu1Qu2, U5u, ~21!

wherexc is obtained from Eq.~16! with the substitutionse
5ec52, b5bc ; P, andQ are some coefficients.

To evaluate the coefficientsP and Q we can act as fol-
lows. Let us perform iterations of the map~17! at the critical
point e52,b5bc , starting fromu050 andx05xc @see Eq.
~16!#, and compute the values ofu andx after Fk andFk11
iterations. Let these be (uFk

,xFk
) and (uFk11

,xFk11
), respec-

tively. Three points (0,xc), (uFk
,xFk

), and (uFk11
,xFk11

) de-

termine a parabola on the (u,x) plane, and its equation i
given byx2xc1Pu1Qu250. The coefficients may be eas
ily evaluated from coordinates of the three points. Of cour
the result will depend on the level numberk, and we must
estimate the asymptotical limits for the coefficients; they
P55.926 67 andQ52210.629.~In fact, the convergence i
rather slow, but it is possible to guess its character, and
tain sufficiently good estimates.!

Now the procedure consists of the following.
~1! Fix k and the correspondingFk .
~2! For givenX andU define the initial conditions for the

map~17!: x5XAa2k1xc2PU2QU2, u5U, whereA is
06620
of

e

to
e

,

e

b-

an arbitrary constant,b521/w, anda52.89~this value has
been selected in the course of computations as the mos
propriate one!.

~3! ProduceFk iterations of the map~17!.
~4! Return to the variables (X,U) by the inverse change

X5akA21(xFk
2xc1PuFk

1QuFk

2 ), U5uFk
.

Figure 6 presents graphically a sample of the results
such computations for two Fibonacci numbersFk5233 and
377. The 3D plots of the two functions obtained are sup
imposed; observe their excellent agreement.~A yet better
degree of coincidence was found for larger Fibonacci nu
bers.! This is an indication that we are dealing with a fixe
point solution of the functional equation

g~X,u!5a2g„a21g~X/a,2wu!, w2u1w…. ~22!

Now it is worth emphasizing that the maps determini
evolution over the Fibonacci numbers of iterations are c
structed by a repetitive application of the fractional-line
mappings, and hence must relate to the same fractional-li
class. This implies that we may search for a solution of E
~20! in the form

gk~X,u!5
ak~u!X1bk~u!

ck~u!X1dk~u!
, ~23!

where the coefficientsa,b,c,d are some functions ofu.
Without loss of generality we may require them to satisfy t
additional condition~‘‘unimodularity’’ !

ak~u!dk~u!2bk~u!ck~u![1, ~24!

and set, as convenient,ck(0)521. Substituting Eq.~23!
into Eq. ~20! we arrive at the RG equation reformulated
terms of the coefficients:

FIG. 6. 3D plots for the functions obtained from direct iteratio
of the fractional-linear map ate52, b5bc520.597 515 . . .
with appropriate renormalization as explained in the text~the arbi-
trary constant mentioned in the text is chosen asA584). The num-
ber of iterationsFk5233 and 377. Coincidence of both plots ind
cates that the functions approach the fixed point of the
transformation.
9-6
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S ak12~u! bk12~u!

ck12~u! dk12~u!
D

5S ak~w2u1w! a2bk~w2u1w!

ck~w2u1w!/a2 dk~w2u1w!
D

3S ak11~2wu! abk11~2wu!

ck11~2wu!/a dk11~2wu!
D . ~25!

To find the fixed point of this functional equation nume
cally we approximate the functionsa(u), b(u), c(u),
and d(u) by finite polynomial expansions.@Actually, the
representation via Chebyshev’s polynomials on an inte
uP(21,1) has been used.# Then, we organize the RG
transformation as a computer program, which calcula
the set of expansion coefficients for the functio
ak12(u),bk12(u),ck12(u) from two previous sets
ak11(u),bk11(u),ck11(u) and ak(u),bk(u),ck(u). ~Note
that, due to the unimodularity, only three of the four fun
tions are independent.! The fixed-point conditions are

~ak12 , bk12 , ck12!5~ak11 , bk11 , ck11!

and

~ak11 , bk11 , ck11!5~ak , bk , ck!. ~26!

In terms of the polynomial representation this is equival
to some finite set of algebraic equations with respect to
unknown coefficients of the polynomials and the unkno
constanta. This problem was solved by means of the m
tidimensional Newton method. As an initial guess, a funct
obtained from iterations of the original map~see Fig. 6! was
used. The resulting coefficients for the functionsa(u), b(u),
c(u), and d(u) corresponding to the fixed point are pr
sented in Table II, and graphically in Fig. 7~a!. Figure 7~b!
shows a 3D plot of the fixed-point function; it may be com

TABLE II. The polynomial coefficients for the fixed-point solu
tion of the RG equation.

a(u) b(u) c(u) d(u)

1 3.180070169 0.329861441 -1.000000000 0.2107307
u -3.450688327 -0.003027254 -0.601533776 0.1672197
u2 -3.247090086 -8.330520346 0.443802007 3.0628316
u3 3.992032627 9.444480715 0.293604279 1.8655955
u4 1.200194704 11.133767028 -0.094027530 -1.597931
u5 -1.549680177 -13.205541847 -0.058193081 -1.044745
u6 -0.187890799 -4.313300571 0.011160724 0.3583775
u7 0.286983991 5.592822816 0.006427031 0.2233935
u8 0.016720852 0.734433497 -0.000847235 -0.044603
u9 -0.031115111 -1.104258820 -0.000457454 -0.025974
u10 -0.000950352 -0.069739548 0.000044648 0.0035335
u11 0.002215271 0.125757870 0.000022730 0.0019235
u12 0.000035770 0.004131194 -0.000001582 -0.000192
u13 -0.000110612 -0.009312156 -0.000000761 -0.000098
u14 -0.000000838 -0.000160051 0.00000691
u15 0.000003663 0.000479736 0.00000333
u16 0.000003822
u17 -0.000016158
06620
al
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pared with Fig. 6. The constanta that is the scaling factor
for the X variable is found to be

a52.890 053 525 . . . , ~27!

in good agreement with the previously mentioned empiri
estimate.2.89.

It is worth mentioning one more universal constant as
ciated with the critical point. Evaluating the derivative
g(X,u)5„a(u)X1b(u)…/„c(u)X1d(u)… with respect toX
at the origin yields g5@]g(X,u)/]X#X50, u5051/d(0)2

522.518 745 . . . . As g(X,u) represents the asymptoti
form of the evolution operator for Fibonacci numbers of
erations, andX differs from x only by theu-dependent shift,
we conclude that the constantg will appear as the
asymptotic value of the derivative]xFk

/]x0 if x0 is selected
in accordance with Eq.~17!.

This gives the foundation for a method of locating t
critical point. One composes a program to iterate the origi
map together with the recursive computation of]xn /]x0,
and tries to select an appropriate value ofb to obtain
]xFk

/]x05g. The result quickly converges to the critica

point bc as k grows. This method appears to be the mo
accurate, and the best numerical data@see Eq.~5!# have been
obtained with its help.

VI. SCALING PROPERTIES OF DYNAMICS AT THE
CRITICAL POINT

Let us consider an attractor at the critical point of o
model map~17!. Its portrait is shown in left panel of Fig. 8 in

FIG. 7. Coefficients for the fixed-point fractional-linear solutio
of the RG equation versus phase variableu ~a! and 3D plot of the
universal function~b!.

FIG. 8. Portrait of the critical attractor in natural variablesun

5nw1u,xn ~left panel! and fragments of the picture shown und
subsequent magnification in the curvilinear ‘‘scaling coordina
system. At each step the magnification is increased by a factoa
52.890 05 . . . along the vertical axis andb521.618 03 . . . along
the horizontal axis.
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natural variables (un ,xn). Depicting a part of the plot in
‘‘scaling coordinates’’ (U,X) we reveal a scaling propert
intrinsic to the attractor: The structure is reproduced ag
and again at each subsequent step of magnification by
factorsa and b along the vertical and horizontal axes, r
spectively. This scaling property follows directly from th
fact that in scaling coordinates the evolution operators
different Fibonacci numbers of iterations are asymptotica
the same, up to the scale change~recall Fig. 6!.

From the scaling property one can deduce an asymp
expression for the form of the invariant curve at small sca
near the origin. The form reproduces itself under simu
neous scale change by the factorsa andb521/w along the
axesX and U, respectively, so it must behave locally asX
}uUuk with k5 ln a/lnubu'2.2054. It follows that this is a
smooth curve, twice differentiable at the origin, but the th
derivative diverges. Due to the ergodicity ensured by irra
nality of the frequency, the weak singularity at the orig
implies the existence of the same type of singularities o
the whole invariant curve, on a dense set of points. App
ently, the observed wrinkled form of the invariant curve
the critical point~see Figs. 2 and 8! reflects the presence o
the mentioned set of dense weak singularities.

Figure 9 shows the evolution of the Fourier spectra g
erated by the map~17! as we move in the parameter plan
along the bifurcation curve that corresponds to a threshol
intermittency. These spectra may be useful for compari
with possible experimental studies of the transition. F

FIG. 9. Evolution of Fourier spectra generated by the map~3!
along the bifurcation curve that corresponds to a threshold of in
mittency.
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smalle, i.e., far enough from the critical value, the spectru
contains a few components. It is enriched by many additio
lines at intermediate frequencies as we come to the critica
supercritical values ofe. At the critical point the spectrum
has a self-similar structure. It can be revealed by the us
the double logarithmic scale~as suggested in a different con
text in Refs.@10–12#!; see Fig. 10.

VII. LINEARIZED RG EQUATION AND SPECTRUM
OF EIGENVALUES

A shift of parameters in the map~17! from the critical
point corresponds to some perturbation of the evolution
erator, and this perturbation will evolve under subsequ
application of the RG transformation~20!. Let us assume
that the perturbation retains our evolution operators in
class of fractional-linear mappings. This means that we
search for a solution of Eq.~20! in the form

gk~X,u!5
„ak~u!1ãk~u!…X1bk~u!1b̃k~u!

„ck~u!1 c̃k~u!…X1dk~u!1d̃k~u!
, ~28!

wherea(u), b(u), c(u), andd(u) correspond to the fixed
point solution, while the terms with a tilde are responsib
for the perturbation. Then the substitutio
„ãk(u), b̃k(u), c̃k(u), d̃k(u)…}dk gives rise to the ei-
genvalue problem

r-

FIG. 10. Fourier spectrum at the TF critical point presented o
double logarithmic scale. Notice visible repetition of the structure
respect to a shift along the frequency axis.
ow under
d2S ã~u! b̃~u!

c̃~u! d̃~u!
D 5dS a~w2u1w! a2b~w2u1w!

c~w2u1w!/a2 d~w2u1w!
D S ã~2wu! ab̃~2wu!

c̃~2wu!/a d̃~2wu!
D

1S ã~w2u1w! a2b̃~w2u1w!

c̃~w2u1w!/a2 d̃~w2u1w!
D S a~2wu! ab~2wu!

c~2wu!/a d~2wu!
D . ~29!

As usual, only the eigenvalues larger than 1 in modulus are of interest because the corresponding perturbations gr
repetition of the RG transformation and hence may influence the form of the long-time evolution operators.
9-8
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TORUS FRACTALIZATION AND INTERMITTENCY PHYSICAL REVIEW E65 066209
Numerically, we solved the problem by use of finite pol
nomial approximations for the functions involved, takin
into account the previously found fixed-point solution. Equ
tion ~29! then gives rise to an eigenvalue problem defined
terms of finite-dimensional matrices acting in a vector sp
of coefficients for the polynomial expansions of the fun
tions ã(u), b̃(u), c̃(u), andd̃(u), and it can be dealt with by
standard methods of linear algebra. The computations re
13 eigenvalues larger than or equal to 1 in modulus; they
listed in Table III.

Actually, only a few of them are of relevance. First, som
of the eigenvectors found are associated with infinitesim
variable changes. For example, with a substitutionX→X
1« in the map~23! we arrive at the new map

TABLE III. The eigenvalues larger than or equal to 1 in mod
lus.

Eigenvalue Designation Interpretation

3.134272989 d1 Relevant eigenvalue
22.890053625 2a Noncommutative subspace
2.890053625 a The variable changex←x1«

21.786151370 2aw21 The variable changex←x1«u
1.786151370 aw21 Noncommutative subspace
21.618033979 2w21 The variable changeu←u1«

1.618033979 d25w21 Relevant eigenvalue
1.618033979 w21 Violation of the unimodularity
1.103902257 aw22 The variable changex←x1«u2

21.103902257 2aw22 Noncommutative subspace
1.000000000 1 The variable changex←x(11«)
21.000000000 21 Noncommutative subspace
21.000000000 21 Noncommutative subspace
pl
tu
r
t a

a
b-
bl
ub

06620
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Xn115
a~u!Xn1«a~u!1b~u!

c~u!Xn1«c~u!1d~u!
2«. ~30!

The right-hand part is represented in the first order in« as

g~X,u!1g̃~X,u!>
„a~u!1ã~u!…Xn1„b~u!1b̃~u!…

„c~u!1 c̃~u!…Xn1„d~u!1d̃~u!…
,

~31!

where „ã(u),b̃(u),c̃(u),d̃(u)…5«„12c(u),2d(u),1,0…. In
the course of the RG transformationX is rescaled asX
→X/a, and the renormalized relative coordinate shift is m
tiplied by a too. So„12c(u),2d(u),1,0… represents an ei
genvector, anda is the associated eigenvalue.@One can
verify it by a direct substitution of the eigenvector into E
~29!; moreover, the assertion has been checked also by a
rate comparison of the present eigenvector components
those found numerically as functions ofu.# So we may ex-
clude the eigenvaluea from the list, because a perturbatio
of this kind in the evolution operator can always be comp
sated by a shift of the origin. In the same way, we reg
several other eigenvectors as irrelevant; they are marke
Table III as linked with variable changes.

Second, in the derivation of the RG equation we ha
used a definite order for the evolution operators~first Fk11,
thenFk steps!. However, this order may be inverted, and
leads to a distinct alternative formulation of the eigenva
problem, namely,
d2S ã~u! b̃~u!

c̃~u! d̃~u!
D 5dS ã~2wu1w21! ab̃~2wu1w21!

c̃~2wu1w21!/a d̃~2wu1w21!
D S a~w2u! a2b~w2u!

c~w2u!/a2 d~w2u!
D

1S a~2wu1w21! ab~2wu1w21!

c~2wu1w21!/a d~2wu1w21!
D S ã~w2u! a2b̃~w2u!

c̃~w2u!/a2 d̃~w2u!
D . ~32!
the

ne
n,
The true evolution operators are in any case multi
compositions of the same original map. Thus, for the ac
perturbations Eqs.~29! and~32! must be equivalent. In othe
words, only those eigenvectors can be of relevance, tha
common to both the eigenvalue problems. This property w
verified numerically for all the eigenvectors found. As o
served, some of them do not satisfy the condition; in Ta
III they are marked as relating to a noncommutative s
space.

The remaining two eigenvalues
e
al

re
s

e
-

d153.134 272 989 . . .

and

d25w2151.618 033 979 . . . ~33!

are relevant and responsible for the scaling properties of
parameter space near the TF critical point.

If we depart from the critical point in the parameter pla
along the bifurcation curve of the attractor-repeller collisio
9-9
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the first eigenvector appears not to contribute to the per
bation of the evolution operator. In this case the only relev
perturbation is associated withd2. However, if we choose a
transversal direction, say, along the axisb, a perturbation of
the first kind appears. This means that a coordinate sys
appropriate for observation of scaling in the parameter pl
has to be defined as shown in Fig. 11. It is a curviline
system: one coordinate axis is the linee52, but the other
follows the bifurcation border, accounting for its curvatu
In the analytical expression it is sufficient to keep terms up
the second order.~This is due to the concrete relation b
tweend1 andd2 : d1.d2 andd1.d2

2, but d1,d2
3; see other

examples of scaling coordinates for different critical poin
and discussion of the role of the relation of the eigenval
in Refs.@13,16,30,31#.!

So we set

FIG. 11. Local coordinates on the parameter plane of
fractional-linear map appropriate for demonstrating scaling.
06620
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b5bc1C11pC21qC2
2 ,

e521C2 , ~34!

where

p5~22bc!/4>20.649 38, q>20.336 92. ~35!

The expression forp follows from the analogy with the
Harper equation and from the Aubry transformation ru
~15!: An infinitesimal shift ofe andb along the tangent line
to the bifurcation border must correspond to a shift ofe8 and
b8 along the same line. The value ofq is calculated numeri-
cally, from the curvature of the bifurcation border.

In addition to the obtained nontrivial solution of the R
equation there exists also a trivial, phase-independent fi
point

g~X,u![g~X!5X/~12X!, ~36!

with a51/w51.618 034 . . . . Naturally, this is the fixed
point responsible for the behavior on the subcritical part
the bifurcation border and associated with the transition
companied by a collision of smooth invariant curves. T
eigenvalue problem for the linearized RG equation may
solved analytically for this case, and it reveals a unique
evant eigenvalued51/w252.618 034 . . . .

e

p
i-
FIG. 12. The dynamical vari-
able versus time in the model ma
~1! just before and after the trans
tion: ~a! a subcritical amplitude of
driving, e50.5; ~b! the critical
case, e52; ~c! a supercritical
case,e52.3.
9-10
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VIII. DYNAMICS IN A NEIGHBORHOOD OF THE
CRITICAL POINT AND INTERMITTENCY

Let us discuss now the question of the peculiarities
intermittency in the quasiperiodically forced map. First
all, we outline the possibility of three distinct regimes at t
onset of intermittency: the subcritical,e,ec52, when col-
lision with coincidence of the smooth invariant curves~at-
tractor and repeller! takes place at the moment of bifurcatio
the critical,e5ec , which corresponds to collision and coin
cidence of the wrinkled invariant curves~the threshold of
fractalization!; and the supercritical,e.ec , where collision
of the invariant curves occurs at some fractal subset
points.

Figures 12~a!–12~c! show the time dependencies for th
dynamical variable generated by the model map~1! just be-
fore and after the transition for the three cases mentioned
the intermittent regimes the ‘‘laminar stages’’ are interrup
by ‘‘turbulent bursts.’’ The laminar stages in the right pane
reproduce approximately the patterns of the left panels.

The relative duration of the laminar phases becom
larger as we approach the transition point. In the us
Pomeau-Manneville intermittency of type I the average
ration of the laminar stages behaves as

t lam}1/uDbun ~37!

FIG. 13. Data from numerical experiments with the fraction
linear map: average duration of passage through the ‘‘channel’’
sus deflection from the bifurcation threshold for several values oe
on a double logarithmic scale. Observe the crossover phenome
the slope change from a critical to a subcritical value at some
termediate value ofDb for e51.95.

TABLE IV. Comparison of the numerical results and RG pr
dictions for the critical exponent.

« n, numerics n, theory

1.7 0.508 0.5
2.0 0.424 0.42123
2.2 0.452 ?
2.3 0.456 ?
06620
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with n50.5 @17–19#.
In the presence of a quasiperiodic force the same law

valid in the subcritical regione,2. In the critical casee
52 the exponent is distinct. Indeed, as follows from the R
results, to observe an increase of the characteristic time s
by a factoru51/w51.618 03 . . . we have to decrease th
shift of the parameterb from the bifurcation threshold by a
factor d153.134 27 . . . . It follows that the exponent mus
be

n5 ln u/ ln d1>0.421 23. ~38!

@Note that substitution of thed factor associated with the
trivial fixed point~36! yields just the result for the subcritica
region,n50.5.#

Figure 13 shows the data for numerical experiments w
the fractional-linear map aimed at verifying the theoretic
predictions for the exponentn. At each fixede we empiri-

-
r-

on,
-

FIG. 14. Lyapunov exponent versus parameterb for subcritical,
critical, and supercritical constant values ofe in the map~1!. Illus-
tration of scaling for the critical case: insets are shown with c
secutive magnification byd153.134 27 . . . along the horizontal
axis, and by a factoru51.618 03 . . . ~the rescaling factor for time!
along the vertical axis.

FIG. 15. A chart of the parameter plane or the ‘‘phase diagra
in natural variables~left panel! and in scaling coordinates~right
panel!. The gray areas correspond to negative Lyapunov expon
values, with distinct tones for localized attractors~smooth tori! in
the bottom area, and to intermittent regimes associated presum
with a SNA in the top area to the right.
9-11
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SERGEY P. KUZNETSOV PHYSICAL REVIEW E65 066209
cally determined the average duration of passage through
‘‘channel’’ in dependence onDb for an ensemble of orbits
with random initial conditions, and plotted the results on
double logarithmic scale. For particulare51.7 ~subcritical!
and 2~critical! the dependencies fit straight lines of defin
slope. As seen from Table IV, the correspondence of
numerical results with the theoretical predictions is rat
good. At subcriticale slightly less than 2 one can observe
crossover phenomenon, that is, the slope changes fro
critical to a subcritical value at some intermediate value
Db.

It is interesting that the results obtained for the superc
cal region also indicate a constant definite slope,n'0.45. At
this moment it is not clear how to explain this observati
theoretically.

Figure 14 shows diagrams for the Lyapunov expone
versus the parameterb for subcritical, critical, and supercriti
cal constant values ofe in the artificial map~1!, which in-
cludes the reinjection mechanism.

For the subcritical case the intermittency threshold co
sponds to the onset of chaos: The Lyapunov exponent
comes positive immediately after the transition.

In the supercritical region the Lyapunov exponent is s
negative at the moment of the bifurcation; it cannot imme
ately become positive, and the transition will be accom
nied by creation of a SNA rather than a chaotic attractor

In the critical situation the diagram demonstrates s
similarity ~at least, in the domainb,bc): Magnification by
the factord153.134 27 . . . along the horizontal axis, and b
the factor u51.618 03 . . . ~the rescaling factor for time!
along the vertical axis gives rise to similar pictures.

Figure 15 demonstrates a chart of the parameter plan
the ‘‘phase diagram’’ in the natural variables~left panel! and
in the scaling coordinates~right panel!. The gray areas are
those of negative Lyapunov exponent; the two distinct to

FIG. 16. Portraits of attractors at several representative poin
the phase diagram.
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correspond to the domains of existence of the localized
tractors~smooth tori in the bottom area! and the intermittent
regimes~the top area to the right!. Apparently, the last is the
region of the SNA. This assertion may be deduced from
arguments of Pikovsky and Feudel@6#. Indeed, considering
the dynamics there in terms of rational approximants one
notice that phase-dependent bifurcations will occur inev
bly. In contrast, the white area of positive Lyapunov exp
nent is the domain of chaotic intermittent regimes. Figure
shows portraits of attractors at several representative po
of the phase diagram.

IX. CONCLUSION

The present study was devoted to one special situatio
transition from conventional quasiperiodicity~‘‘smooth
torus’’! to chaos or the SNA via intermittency in a mod
map under quasiperiodic external driving with the frequen
parameter defined as the inverse golden mean. The mai
tention was concentrated on the critical situation reache
one particular, sufficiently large amplitude of driving, ass
ciated with the threshold of fractalization. Here a bifurcati
transition analogous to the tangent bifurcation consists o
collision with the coincidence and subsequent disappeara
of an attractor and a repeller represented by a pair
wrinkled invariant curves. An RG analysis appropriate f
the critical situation was developed, the fixed-point soluti
of the RG equation was found in a class of fractional-line
functions, and the constants responsible for scaling in ph
space and parameter space were computed.

Some related problems yet remain open; for examp
concerning global scaling properties and dimensions of
critical attractor. Also a generalization for other irration
rotational numbers is of interest.~The last seems undoub
edly possible because of the analogy with the Harper eq
tion: there the criticality ate52 occurs at arbitrary values o
the rotational number.! One more problem is the develope
ment of an appropriate approach to analysis of the transi
in the supercritical region, which would be of the same s
nificance as is the RG method in the critical and subcriti
cases.

As is common in situations allowing RG analysis, one c
expect that the quantitative regularities intrinsic to our mo
map will be valid also in other systems relating to the sa
universality class. In particular, it may be suggested that
transition to the SNA observed in a quasiperiodically forc
subcritical circle map@28# is of the same nature. Also, i
would be significant to find this type of behavior in system
of higher dimension, for example, in quasiperiodically driv
invertible 2D maps, which could represent the Poincare´ maps
of some flow systems.

It would be interesting to reveal the details and regula
ties of the coexistence~subordination! of the type of critical
behavior discussed here with the behaviors of the dist
universality classes studied in Refs.@14–16# ~e.g., the torus-
collision terminal and torus-doubling terminal points!.
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