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Quantum-classical correspondence in perturbed chaotic systems
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We discuss the behavior of fidelity for a classically chaotic quantum system. We show the existence of a
critical value of the perturbation above which the quantum decay, exponential or power law, follows the
classical one. The independence of the decay rate of the perturbation strength, discussed in the literature, is a
consequence of the quantum-classical correspondence of the relaxation process.
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Quantum chaos, namely, the attempt to understand clasditere ¢ is the initial state which evolves for a timevith the
cal dynamical chaos in terms of quantum mechanics, has ledamiltonian A, while A=H,+V is the perturbed Hamil-
to a much better understanding of some properties of quanpnian. The analysis of this quantity has shown that, under
tum motion which go beyond simple integrable models andsome restrictions, the decay ft) is exponential with a rate
perturbative treatments. A simple property of quantum CoNgiven by the classical Lyapunov expondii. This result
servative Hamiltonian systems with a finite number of Par-appears to be consistent with recent experiments on the po-
tion is a typical feature_ of integrable systems, while chaotiche problen{7,9—11, including the relation to the local den-
systems are characterized by a continuous spectrum and ety of state§12] and the use of the semiclassical approach
ponential local instability. This fact has cast doubt on the[g]. The analysis of this quantity has some delicate aspects
possibility of dynamical chaos in quantum mechanics. Orconcerning attempts to characterize quantum chaos via the
the other hand, the correspondence principle requires transitassical Lyapunov exponent and the role of the above men-
tion to classical mechanics of all properties, including dy-tioned time scales. It is therefore highly desirable to have
namical chaos. As discussed on several occadibhshis  very accurate numerical results, and to this end it is neces-
apparent contradiction is resolved by taking into account thagary to consider simple systems which display the generic

a sharp distinction between the discrete and continuous spefeatures of classical and quantum chaotic systems and which
trum becomes meaningful only in the lintit>. For finite  can pe easily treated numerically.

times, there exist different time scales below which the quan- | this paper we consider the behavior of fidelity for a

tum motion can display chaotic properties like the corre-cjassically chaotic system, in the delocalized regime of quan-
sponding classical one. These time scales tend to infinity agm ergodicity, in which the wave functions have a complex
the effective Planck constafity— 0. Two time scales are of pattern that can be described within the framework of ran-
particular importance: the random or Ehrenfest time stale dom matrix theory. We show that the type of decay and its
and the relaxation or Heisenberg time sdgle Fort<t, the  rate depend on the strength of the perturbation. In particular,
quantum motion is exponentially unstable like the classicahbove a critical border, the quantum decay mimics, up to the
one, while the quantum relaxation process takes place during|axation time scale, the classical one, which, in turn, can be
the timet<tg. Since typicallyt,<tg, the quantum relax- exponential or power law. The independence of the decay
ation process takes place in the absence of exponential inSt@‘[e of the perturbation, discussed in several papers, S|mp|y

bility. A clear illustration of this peculiar feature of quantum reflects the properties of the underlying classical motion.
motion is shown i 2]. It should be remarked that this lack  \We consider the classical sawtooth map

of exponential instability does not prevent exponential decay
of dynamical quantities like correlation functions or survival
probability [3]. n=n+ko(6—m), 6=6+Tn, )
Recently the problem of the stability of quantum motion
has attracted much interest, also in relation to the field of
quantum computation. A quantity of central importancewhere (,0) are conjugated action-angle variables<(@
which has been the focus of many stud{ds-12] is the  <2s), and the overbars denote the variables after one map
so-called fidelityf (t), which measures the accuracy to which iteration. Introducing the rescaled momentum variaple
a quantum state can be recovered by inverting, at titfee  =Tn, one can see that the classical dynamics depends only
dynamics with a perturbed Hamiltonian: on the single parametd¢,=k,T. We consider the maf?)
on the torus— wL<p<L, wherelL is an integer. FoKg
. N >0 the motion is completely chaotic and diffusive, with
f(t)=|(y|e'Hte Hol| y). (1)  Lyapunov exponent given by =In{(2+Ky+[(2+Ko)?
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—4)12]/2}. For Ko>1 the diffusion coefficient is well ap-
proximated by the random phase approximatioD,
~(7I3)K3.

The quantum evolution in one map iteration is described
by a unitary operatot, acting on the wave functiog:

J: O N iTﬁzlzeiko(E)— 7)2/21% 3)

wheren=—id/d6 (we seth=1). We take—N/2<n<N/2,
ko=(Ko/27L)N, T=2wL/N. The classical limit corre-
sponds tdN— <. We note that in this simple quantum model
one can observe important physical phenomena like dynami-
cal localization and cantori localizatidd4]. Our aim is to
study the fidelity decay in the delocalized regime of quantum
ergodicity. .Moreover_, we S.ta}r.t by Con§|der|r1g p_arameter _val— FIG. 1. Decay of classical fidelity for the classical sawtooth map
ues for which there is no initial transient diffusive behavior, ;i Ko=1, L=1, v=2m/10%, and perturbation strength=10"3
which may considerably affect the decay of fidelity. (circles, 10 (squarel 10°° (diamonds, 107 (triangles, and

In order to compute the fidelity we choose to perturb ouryo-7 (starg. The straight lines show the decdy(t)>exp(—\t),
system by slightly varying the kicking strengki=Ko+€,  with Lyapunov exponenh=0.96. The dashed line indicates the
with e<K,. Correspondingly, the perturbed quantum kicking saturation valug . .= v/(27L)=10"*. Here and in the following
parameter ik=Kky+ o, with o=eN/(27L). Since we want figures the logarithms are decimal.
to compare classical and quantum evolution, we compute the

plassical fidelity” fo(t) ir) the foIIOV\_/ing way: we cqnsider .This theoretical prediction is confirmed in Fig. 2, which
in the phase space a uniform density of points inside a St”%hows the decay of quantum fidelity @ 5x 10> and dif-

of areaA=2 v (0<0<2m,—v/2<p<v/2). We then de- f . ; : .
. i : , erentN values, witho>o,. The nice scaling behavior of
fine f.(t) as the overlap of the initial areawith the areaA Fig. 2 confirms the predicted exponential deddy)~exp

obtained by evolvinga for t iterations of the mag(2) and (—Cd?t), with the numerically determined constabit=2.2.

Lrbed sizengtik —K o - ¢.In practice, we fallow the evory- O e other hand, as stated in the troductin, one ex
tion of 1¢° trajectori(e):s u.niformly ana randomly distributed pects that in the semiclassical regime the quantum motion
o . . mimics the classical one up to the relaxation time scale
inside the ared and define the fidelity o(t) as the percent- which is determined by the density of quasienergy eigen-
age of orbits Fhat return back to the areat timet, after the ._states that significantly contribute to the wave function dy-
above reversing procedure. The corresponding guantum "Nhamics. To this end it is necessary that the perturbatiés

tial condition is given by a uniform mixture of momentum .
states located inside the arBaWe note that this choice, in strong enough to allow the quantum motion to follow, on the

addition to giving the correct classical limit whey— oo,
introduces a convenient averaging procedure. Moreover, we 0r ' T '
have checked that the same fidelity decay rates are obtained
if one starts from pure states, like momentum eigenstates or I
coherent states. -1r Sy

The behavior of the classical fidelity is shown in Fig. 1, '
for Ko=1, L=1, and different values of the perturbation y— I
strengthe. In this particular regime, characterized Gy uni- 8" -2 r
form local exponential instability an¢di) absence of diffu- -
sive regime, the fidelity decay is ruled by the Lyapunov ex- [
ponent A. The exponential decay starts after an initial -3
transient timet~In(v/€)/\, which is required to amplify the I
perturbation up to the scale[15].

a—?f

20

The decay of the quantum fidelity is Gaussian below a 4L — L —L '
perturbative borddf7,8]. This border is given by the value of 0 1 22 3 4
the perturbation at which the typical transition matrix ele- ot

mentU between quaSIGn.ergy elgenState$ bepomes 'afger than FIG. 2. Decay of the fidelity for the quantum sawtooth map at
the average Igvel spacmgpllFor ergodlc elgenfungtloqs, Ko=1, L=1, e=5x10"5 N=8192 (dotted line, o=0.065),
U~ /N, while the density of quasienergy states is given;g 3g4 (dashed liner—0.13), and 32 768solid line, o= 0.26).

by p=N/27. Therefore the perturbative border is given by The straight line gives the decafi(t)=exp(-Tt), with rate T
op~1/\N. Above this border one typically expects an expo-=2.242. As initial state we take a momentum eigenfunction with
nential decay of fidelity, with a rat€ =27pU?~0? given  n=0. The inset shows a magnification for small times. Circles give
by the width of the Breit-Wigner local density of stafgd.  the classical decay for=10"%.
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FIG. 3. Classical and quantum fidelity decay fidp=1, L
=1, v=27/10°. Left curves:e=10"2, N=16 384 (dashed line,
0=2.61), N=131072(solid line, 0=20.9), and classical decay
(circles. Right curve:e=10%, N=131072(solid line, o=2.09)
and classical decaftriangles.

FIG. 4. Ratey of the exponential decay for the quantum fidelity
versus perturbation strength for Ko=1, N=2048(circles, 8192
(diamond$, and 65536(squarey Ky=2, N=8192 (stary, K,
=10, N=8192((triangles. The dashed line gives the decay rhte
=2.202. The solid lines show the Lyapunov decay, with rakes

average, the initial classical decay. In our case this may hap- 026 (@tKo=1), 1.32 K=2), and 2.48 K,=10).

pen if o is large enough to induce transitions at least betwee
nearest neighbor momentum states, namely,o.~1. If

o<0g, the quantum excitation is unable to follow the clas- "¢, 4 parameter values of Figs. 1—4, the decay of fidel-
sical spreading of the initial state. One may also argue in ?ty is exponentially fast and the saturation valde

different way: since with our choice of parameters we are in_’ . :
the metallic regime, alN quasienergy states are involved in Tn:é(tz le_rzl\llf)\rev?/(r:]?cehdi(s)nrrzll?:;ﬁsscr)]grrt]:rot;]d;r: ?;;hﬁ:gﬁgzg
the evolution of the unperturbed system. Then the effect of. ' ' g

the perturbation on the quantum motion can imitate the Cor'slztna?é li?isrr?:cretgsgrb Steoriea\t/zeaegighosflc:\r/}virH dee'iznb;rg dtgﬁ]te
responding classical one only if there are no quantum local: y y Y-

ization effects on the quasienergy states. This happens Whé\ Fig. 5 we takeK,=1 andL =50, so that we allow for a

Bon dependentsince the exponential decay starts after a
time «|In¢ (see Figs. 1 and)3

the width of the local density of states becomes comparabl aussian d|ffu5|\{e process in momentum space. Because of
to the bandwidth, that ispl'~N, which again gives the is, during the diffusion time the fidelity decays in the clas-

threshold valuer.~1. We remark that, as discussed 1], sical case as 3Dt [17]. Figure 5 shows_that for> o
in the theory of Wigner band random matrices the Breit-“l the quantum decay follows the classical one for larger

Wigner regime corresponds to a sort of partial perturbativeand larger times &l increases, in agreement with the corre-

localization. The above theoretical estimate is well confirmed
by our numerical data presented in Figs. 3 and 4. Figure 3
shows that folr>1 the quantum fidelity closely follows the
classical behavior, namely, it decays exponentially with the
classical rate given by the Lyapunov exponent. Figure 4
shows the decay ratg as a function of the perturbation
strengtho. It is clearly seen that for<<1 the decay rate is
proportional too?, that is, to the width of the Breit-Wigner.
Thereforeo.~1 is a critical value which separates two dis-
tinct regimes: a pure quantum perturbation dependent re-
gime, and a semiclassical regime. We note that the perturba-
tion o depends on the produbte. For o>1 the decay rate
does not change by increasiiat fixed e, since by doing )
this we go toward the classical limit. On the other hand, if

we increasee at fixed N (provided that the perturbation re-

mains classically small, i.ee<K,) the decay rate also does

not change, since the exponential amplification of the pertur- F|G. 5. Fidelity decay in the diffusive regime with="50, K,
bation is controlled by the parametr~K,. In both cases =1, y==, e=0.05. The dashed curve gives the classical decay, the
the decay rateof fidelity is perturbation independent. This is solid curves the quantum decay: from top to bottbi 1024 (&

a property of the classical motion which, in the semiclassicak0.16), 2048 ¢=0.33), 8192 ¢=1.30), 16 384 §=2.61), and
regime, is shared by quantum mechanics. However, w2768 (=5.22). The straight line indicates the decdyt)
would like to stress that the overall decay remaesturba-  «1/,/Dt.

0
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spondence principle. The asymptotic value i, Nevertheless, there is a regime in which the decdg (ex-
=vl/(2mL), where, according to the scaling theory of local- ponential or power layis perturbation independent: in this
ization, | = &/N=g(x), with x=Kk?/N [18]. Here¢ is the ac-  regime the quantum motion simply mimics the properties of
tual localization length of the “sample” of sizM, while k*  the underlying classical dynamics. Therefore the decay of
gives the localization length for the infinite sample, up to afidelity cannot be taken as a characterization of quantum
numerical constant of order 1. The scaling funct'gilx) is chaos, as was sometimes propo@@l@]_ We emphasize that
proportional tox for x<1 and saturates to 1 for>1. The  the quantum to classical correspondence of the average be-
transition valuex=1 corresponds t&~10°. Moreover, the  havior is valid until the Heisenberg time scale, which is
saturation value is approached after a relaxation €. much longer than the Ehrenfest time scale associated with
We stress that in the case of Fig. 5 the decay of fidelity ispe exponential instability of guantum motion.
controlled by the diffusion coefficient and not by the
Lyapunov exponent. The observation of this regime repre- This work was supported in part by the EC RTN network
sents a challenge for experiments like spin echoes. Furthé¢hrough Contract No. HPRN-CT-2000-0156, the NSF under
theoretical investigations are also desirable in order to undesrant No. PHY99-07949, the PA INFM “Quantum Transport
stand more clearly the effect of classical diffusion and quanand Classical Chaos,” and the PRIN “Caos e Localizzazione
tum localization on the behavior of fidelity. in Meccanica Classica e Quantistica.” We gratefully ac-
In summary, we have shown that the decaying behavior oknowledge the Institute for Theoretical Physics, Santa Bar-
fidelity in a classically chaotic system strongly depends orbara, California, for hospitality during the initial stages of
system parameters as well as on the perturbation strengtthis work.
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