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This paper continues a numerical investigation of the statistical properties of “figzenbits,” i.e., orbits
evolved in frozen, time-independeNtbody realizations of smooth density distributiomsorresponding to
both integrable and nonintegrable potentials, allowing fot*sIN<10°®. The focus is on distinguishing
between, and quantifying, the effects of graininess on initial conditions corresponding, in the continuum limit,
to regular and chaotic orbits. Ordinary Lyapunov expongntio not provide a useful diagnostic for distin-
guishing between regular and chaotic behavior. Fratesrbits corresponding in the continuum limit to both
regular and chaotic characteristics have large positiegen though, for larghl, the “regular” frozenN orbits
closely resemble regular characteristics in the smooth potential. Alternatively, viewed macroscopically, both
regular and “chaotic” frozerN orbits diverge as a power law in time from smooth orbits with the same initial
condition. However, convergence towards the continuum limit is much slower for chaotic orbits. For regular
orbits, the time scale associated with this divergenge NY%,, with ty a characteristic dynamical, or
crossing, time; for chaotic orbitis;~ (In N)tp. For N>10*—10*, clear distinctions exist between the phase
mixing of initially localized ensembles, which, in the continuum limit, exhibit regular versus chaotic behavior.
Regular ensembles evolved in a frozdndensity distribution diverge as a power law in time, albeit more
rapidly than ensembles evolved in the smooth distribution. Chaotic ensembles diverge in a fashion that is
roughly exponential, albeit at a larger rate than that associated with the exponential divergence of the same
ensemble evolved in smoogh For both regular and chaotic ensembles, filNteffects are well mimicked,
both qualitatively and quantitatively, by energy-conserving white noise with amplifgdeN. This suggests
strongly that earlier investigations of the effects of low amplitude noise on phase space transport in smooth
potentials are directly relevant to real physical systems.
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I. INTRODUCTION tions between “regular” and “chaotic” behavior in such
frozenN systems and2) to determine the extent to which
This is the second in a series of papers, the aim of whiclfliscreteness effects can be mimicked successfully by a suit-
is to understand the role of discreteness effects, i.e., grain@bly defined noise acting on orbits evolving in an otherwise
ness, in the gravitation&l-body problem. Particular empha- SMooth potential. _ L
sis is placed on the meaning of chaos and various manifes- S€ction Il provides an overview of the motivations for,
tations of chaotic behavior. As discussed in the first pappr 2nd scope of, this paper. Section Ill describes the potentials
(hereafter Paper),l this problem can be divided into two that were con5|dereq and the n_umerlcal experlments that
separate components, namely, first understanding how graini‘ere performed. Sect|'on IV. describes t'hg results derived for
ness alters the motions of representative orbits in a fixedldividual frozenN trajectories, determining how these re-

gravitational potential and only then considering how these®Ults scale wittN and demonstrating the extent to which they
changes are manifested in the context of a fully self-C&n be mimicked by a suitably defined white noise. Section

consisteniN-body evolution. As in Paper I, the focus here is V describes the results derived for the phase mixing of orbit
on the former issue. ’ ensembles, again considering both how things scale Mith

One is thus led naturally to effect a statistical comparisorf"d the degree to which discreteness effects can be mim-
between(1) orbits evolved in a froze-body density distri- |c_k_ed by noise. Section VI focuses_ on the pOSS|b|I|ty of tran-
bution generated by randomly sampling some specifie&'t'ons between regular and chaotlc_behawor, a phenomenon
smooth density distributiop and (2) orbits evolved in the that, especially for smalN, can be important for systems

smooth potential® related top by Poisson’s equation where the smooth potential allows a coexistence of large
V2D =47Gp. " measures of both regular and chaotic orbits. Section VII con-

cCludes by summarizing the principal conclusions and specu-

In this setting, the present paper has two specific objec="" LY
lating on potential implications.

tives, namely(1) to implement precise, quantitative distinc-

Il. OVERVIEW
*Electronic address: sideris@astro.ufl.edu Implementing useful distinctions between regular and
"Electronic address: kandrup@astro.ufl.edu chaotic behavior in frozei orbits is not completely trivial.
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For example, ordinary Lyapunov exponents computed for inscopic, at which point the divergence become slower than
dividual orbits do not provide a useful diagnostic. Even forexponential, albeit still more rapid than what is observed for
density distributions corresponding to integrable potentialsregular orbits. One might, therefore, expect that, when acting
N-body orbits have large positive Lyapunov exponents.on chaotic initial conditions, discreteness effects associated
Moreover, even though there is a precise sense in which, agith a finiteN system would inducél) an initial exponen-

N increases, frozeit orbits come to more closely resemble tial divergence at a ratd that is comparable tgg, a num-
regular orbits in the smooth potential, the values of theser typically much smaller than the “true” Lyapunov expo-
exponents donot decrease systematically with increasingnent y associated with orbits in the frozeéw-system,
N[1,2]. followed by (2) a slower subexponential divergence that is

Viewed macroscopically, a frozeM-orbit and a smooth  still faster than the divergence associated with regular orbits.
orbit evolved from the same initial condition in density dis-  The simulations summarized in this paper provided an
tributions, corresponding to an integrable potential, will typi- unambiguous confirmation of the second of these expecta-
cally divergelinearly in time on a time scalég<NY% As  tions. Viewed macroscopically, frozév-orbits correspond-
discussed in Paper I, this superficially surprising result wouldng in the continuum limit to chaotic orbits typically diverge
appear to reflect the fact that the chaos is associated with |mearly from smooth orbits with the same initial condition,
large number of encounters with neighboring particles, eachut for largeN, the time scaleé g (In N)ty associated with
of very short duration, which tend to cancel systematically sahis divergence is much shorter than the time sdale
as to have a comparatively minor macroscopic effect. « N2, associated with regular orbits.

Following the pioneering work of ChandrasekHa4], Unperturbed orbits in a smooth integrable potential are
one might anticipate that discreteness effects act in much thewultiply periodic and, as such, have Fourier spectra with
same way as friction and white noise, so that they can bgower concentrated at a countable set of discrete frequencies.
modeled in the context of the Fokker-Planck description. ToFriction and noise destroy this exact periodicity, resulting in
the extent that this intuition is correct, earlier work probinga more complex Fourier spectrum. To the extent that the
the effects of friction and noise on smooth potential orbitsfriction and noise are weak, the orbit should remain nearly
translates into specific predictions as to the expected effect@gular and the spectrum should remain “similar to” the
of graininess. spectrum associated with the unperturbed orbit. However,

The amplitude» associated with friction and noise de- when the friction and noise become larger in amplitude, the
fines a characteristic relaxation timig=1/7 on which, e.g.,  orbit should become less nearly periodic, and the spectrum
the perturbation will induce significant changes in conserveghould become more complex than the spectrum associated
quantities such as energy. However, modeling discretenesgith the unperturbed orbit. In the same sense, one might
effects as a sequence of close binary encounters leads to thgpect that, adl decreases, frozelN-orbits corresponding to
prediction [4] that tge<(N/InN)tp, with tp a characteristic  regular orbits in a smooth potential will become “less regu-
dynamical, or crossing, time. One might, therefore, anticidar” and be characterized by Fourier spectra that are more
pate that discreteness effects in a systerhNl diodies can be complex. This intuition can be made precise by computing
reproduced by friction and noise with amplituee:In N/N. from an orbital time series such quantifiable measures of

When subjected to friction and white noise, regular orbitsorbital complexity[6] as (1) the number of frequencies in a
in a smooth potential typically diverge as a power law fromdiscrete Fourier series that contain more than some fixed
unperturbed orbits with the same initial condition. Onefractionj of the power in the peak frequency @) the mini-
might, therefore, conjecture that discreteness effects will inmum number of frequencies required to capture a fixed frac-
duce a power law divergence between frodemrbits and  tion k of the total power.
smooth characteristics with the same initial condition, and By contrast, chaotic orbits in a smooth potential are, in
that the divergence time scalg for a system ofN bodies general, aperiodi¢7]. This implies that, even in a discrete
can be mimicked by noise with amplitudg=<InN/N. As  time series, their power should be spread over a larger num-
noted in Paper |, frozeN orbits and smooth regular charac- ber of frequencies, so that the orbit will have substantially
teristics do indeed tend to diverge linearly on a time scaldarger complexity[6]. For very smallN, where the qualita-
texN¥%y, and, as will be seen below, this linear divergencetive character of the orbits is dominated by close encounters
is well reproduced by an appropriately defined white noiseand distinctions between chaotic and regular motions are dif-
with amplitude < 1/N. (Given the limited dynamical range ficult to identify, one might expect that frozéM-orbits cor-
in particle number for the simulations described in thisresponding in the continuum limit to regular and chaotic or-
paper—168°<N<=10>°—it would seem impossible to distin- bits would have comparable complexities, much larger than
guish unambiguously between scalingg<1/N and »  the typical complexity associated with a smooth regular orbit
«|n N/N. The simulations are consistent with both. and larger even than the complexity associated with a

When subjected to friction and white noise, chaotic orbitssmooth chaotic orbit. AN increases, discreteness effects
behave very differently. Comparatively weak perturbationswill presumably become less important and the complexity
typically induce an initial exponential divergence from the of both the regular and chaotic froz&herbits will decrease.
unperturbed orbit at a ratk that is comparable to the largest For the case of regular frozé¥-orbits, the complexity
(finite time) Lyapunov exponenjs for the unperturbed or- should eventually converge towards the comparatively small
bits [5]. For stronger perturbations, the separation betweemalue associated with a smooth regular orbit. For the case of
perturbed and unperturbed orbits quickly becomes macrcehaotic frozenN orbits, the complexity should instead con-
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verge towards the substantially larger value associated with same way as these perturbations.
smooth chaotic orbit. Perhaps the most important conclusion of the work de-

To the extent that discreteness effects associated with gcribed here is the apparent need to distinguish between two
fixed numberN can be successfully modeled in terms of adistinct types of chaos. Short-ranggcroscopic chaossso-
suitably defined noise with amplitudg, one might also ex- ciated with close encounters between individual masses is a
pect that the typical complexity(N) associated with a ubiquitous phenomenon for thé-body problem, which ap-
frozenN orbit with givenN will be comparable to the com- pears to be present irrespective of the bulk properties of the
plexity n(#n) associated with a smooth orbit with the samedensity distribution. In addition, however, there is the possi-
initial condition evolved in the presence of perturbations ofbility of macroscopic chagseasily identified in the con-
amplitude o 1/N. As described below, both these intuitions tinuum limit, which has predictable implications for motions
were in fact confirmed. in the N-body problem.

Discreteness effects can also be explored in the context of
the phase mixing of initially localized orbit ensembles, alll. DESCRIPTION OF THE NUMERICAL EXPERIMENTS
subject that has received considerable attention in both ga-
lactic astronomy[8—10] and accelerator dynamid41,12]
since Merritt and Vallur{13] coined the term chaotic mixing
to characterize the much more efficient phase mixing assoc
ated with ensembles of chaotic orbits.

Localized ensembles of regular initial conditions evolve
in a smooth potential will initially diverge as a power law in

The numerical experiments described here focused on or-

bits and orbit ensembles evolved in froz¥nealizations of

f_our different time-independent density distributions. In the

continuum limit, two of these correspond to integrable po-

dtentials, the other two correspond to potentials that admit
large measures of chaos. These orbits and orbit ensembles

time and, when viewed over much longer time scales, exhibif'€"® also com'pared with orbits With. the same initial c;ondi—
a coarse-grained evolution, again proceeding as a power lafiPns evolved_ In t_he _sm_ooth potent|a_1ls assomgted W'th. the
in time, towards a time-independent equilibrium state. Thesmooth density dlstr|but|o_ns, both with and without noise.
introduction of friction and noise accelerates the original di-Ea_Ch system was normalized to haye _mMssl, and the
vergence, but that divergence still proceeds as a power law jjjnits were so_cho_ser_1 thfit the gravitational _constaml.
time. Quantifying the later time evolution is more subtle, | "€ four density distributions were the following. .
because the perturbations allow the orbits to access phase (1) A spherically symmetric Plummer sphere, for which
space regions that would otherwise be inaccessible. How- 5
ever, whatis clear is that, as probed by various lower order pp(r)=( 3M ) ( 1+ r
moments, the ensemble evolves exponentially in time to- b3 b?
wards a well-mixed state that manifests the symmetries of

the unperturbed potential. If, e.g., the potential admits a reThis corresponds via Poisson’s equation to a potential
flection symmetry® (—x) =®(x), the mean valuéx) asso-

—5/2

(3.9

ciated with the ensemble will converge exponentially to- Bo(r)=— GM 3.2
wards zero. P 2+b2 :

By contrast, localized ensembles of chaotic orbits evolved
in a smooth potential initially diverge exponentially at a rateUnits were chosen such thbt& 1.
A that is comparable to the value of the largest Lyapunov (2) A constant density triaxial ellipsoid, for which
exponentys and, when viewed over somewhat longer time

scales, exhibit a coarse-grained evolution, exponential in _ 3M m? if m’<1, 3.3
time, towards a time-independent, or nearly time- pe(n)= 4abc” |0 if m?>1, 33
independent, state. The rake associated with this subse-

quent evolution is typically much smaller thanand is not ~ with

directly related toys, although loose correlations between

and s often exist[13]. Subjecting these same ensembles to 5 x* y? 7

friction and noise typically increases the rateassociated m== ;JFEJF 2] 34
with the initial divergence, making the orbits behave in a

fashion that is even more chaotic. Over sufficiently long timeFor m=< 1, this yields a potential of the form

scales, these perturbations will drive the ensemble towards a

thermal state with a temperatuf® set by the friction and 1

noise. However, on time spcales much sg/orter than the natural Pe(r)=Po+ E(‘*’§X2+ wpy*+ w¢z%) (3.9

time scaletg associated with the friction and noise, the en-
semble will again evolve towards a nearly time-independentith frequenciesv,, ,, ., related to the axis values
distribution, and, in many cases, the perturbations will in-a, b, c, in terms of incomplete elliptic integralsl4].
crease the rate associated with this convergence towards aAttention focused primarily on the specific parameter values
near-equilibrium rat¢18]. a=1.95 b=150, and c=1.05 which imply &y~
The simulations described here demonstrate that, both 1.006 08,w,~0.4663, w,~0.5508, andv.~0.6753.
qualitatively and quantitatively, discreteness effects impact (3) A constant density ellipsoid perturbed by a supermas-
phase mixing for both regular and chaotic orbits in much thesive black hole, corresponding to the potential
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GMgy were ggnerated by randomly sampling the smpoth density
Gpy=>b— \/ﬁ (3.6)  distributionsp. These correspond t§-body potentials
1 1
with e=10"2. Attention here focused on a black hole mass O\(r)=—— e 3.9
Mgy=10"15M~0.031622 8. This yields[15] a potential MOTTR z’l V(r=r)?+e (39
for which, for orbits restricted energetically tm<1, the
phase space is almost completely chaotic. which incorporate a tiny softening parameter with vakie
(4) A triaxial generalization of the Dehndi6] potential, <103
for which Orbits were integrated in frozel- realizations with
10°7°<N=<10>5. The integrations were performed with a
M(3— 1) variable time step integration scheme that was guaranteed to
po(N=—7—pc M "+ m)~ =) (8.7 conserve the energy of each particle to at least one part in

10°. The energy of a typical orbit was conserved to within a
few parts in 16. Estimates of the largestfinite time)
Lyapunov exponent orbits were obtained in the usual way by
simultaneously tracking the evolution of a small initial per-
turbation, periodically renormalized at fixed intervald

20]. The finite time Lyapunov exponents derived in this

with m again given by Eq(3.4). Attention focused on the
parameter valuesy=1 and a=1.0, b=5.0/8.0, andc
=0.5, values first considered by Merritt and Fridnjai] as

a prototype for a cuspy triaxial galaxy. The phase space a

sociated V(‘j"th .th'i potentrllal has be_elr; sftud||ed extensivelyashion typically exhibited rapid convergence towards near-
[17,18 and it is known that, especially for low energies, .qnstant” values—much more rapid convergence than has

there exist large measures of both regular and chaotic orbit§Jreen observefil5,18 for the smooth potentials—so that a
The smooth potentiabp, associated witlyp cannot be writ- 0 100 times the dynamical, or crossing, timgswas

ten analytically, so that integrations '(_hD were performed sufficient to yield reasonable estimates.
using a 32nd order Gauss-Legendre integration scheme writ- gyme of the orbital data were Fourier analyzed to deter-

ten by Siopig19]. o . __mine their orbital complexitf6]. This entailed determining
Independent of energy, the characteristical orbital timeq. oach orbit the quantities, , ny, andn,, defined as the
scale for motion in the constant density ellipsoid, with or .nivqum number of frequencies required to capture a fixed

without a black hole, corresponds to a dynamical titBé  fractionk of the power in each direction, and then assigning
~10. (The quantity 1{/Gp~3.6.) The experiments with the g (5ta) complexity

Plummer potential described in this paper were performed
for intermediate energies for which, agaig;~10. The De-
hnen potential exhibits a much larger degree of central con-
centration and, as sucty exhibits greater variability.

The ellipsoid potential3.3) is particularly simple in the
sense that, in the continuum limit, all orbits oscillate with the
same periodicities so that there m® phase mixingAny
phase mixing observed in a frozéh-simulation must be

attributed to discreteness effects. Given, moreover, that th%rming integrations of orbit ensembles comprigeubstly)

statistical properties Qf.n0|sy orb|t§ in a harmomc poten'qalof 1600 initial conditions localized within a phase space hy-
are well understood, it is comparatively simple to determine

. _3 . .
whether these discreteness effects can be well represented %ercube of size-10 “the size of the accessible phase space

noise. The Plummer potential is more realistic in that there}élon. For each cell of initial conditions, experiments were

orbits oscillate with different periodicities so that, even in theiﬁgfglgzsregaeg:esa;?r I?:V?rzzl Sd;fr:féesnr;frofbihgnglgxg';’ét
continuum limit, phase mixing occurs. ' ping 00

. . . . 5
The nonintegrable potentidB.6) is simple in the sense improved statistics. The experiments whth= 105 1C°, and

that for the energies and black hole masses considered he 03.5lwe.re each performed for six d'ﬁe;e”t frozﬁhgien_sny
almost all smooth orbits are chaotic. This implies that, when_'st”buuons’ those wittN=10" and_ m.l' fc_)r four distribu-
consideringN-body realizations, one need not be much con-1ons, and_ those dezl.Os for two d|str|_but|9ns. Begause of
cerned about the possibility of graininess in converting ar{:omputatlonal constramts'—each orbit W'Nh:. 10° aver-
initially chaotic orbit into a regular orbit. By contrast, the aged rought 3 h on aPentium 200 workstation—the long

. . . _ .5
smooth Dehnen potential admits large measures of botHMe €nsemble integrations fé¢= 10°° were performed for

regular and chaotic orbits, so that graininess could well in-Only one ensemble, comprised of 800, rather than 1600, or-

duce numerous transitions between regular and chaotic b@ItS: However, the first fifth of each integration, in many
havior. respects the most interestingjas repeated for a second

frozenN distribution.
To test the intuition that discreteness effects can be mim-
N icked by friction and white noise in the context of a Fokker-
pNzi 2 So(r—r)) (3.9 Planck descrip_tionj, orbit ensembles were also evo_lved in t_he
i=1 smooth potential in the presence of a suitably defined white

n=n,+ny+n,. (3.10

In order to obtain a reasonably sharp Fourier spectrum, or-
bital data were typically recorded at intervais=0.01tp or

less, and each orbit was represented by a time series contain-
ing at least 4096 points.

Phase mixing in frozeMN systems was explored by per-

FrozenN density distributions of the form
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noise. Ordinarily, discreteness effects are modeled by consid-  1.0f ]
ering a Langevin equatiof21] 0.8F ]
dr, dr, 0o ]
e ——VaCID—nWJrFa (a=x,y,z). (3.1) 0.4 ]
02k (o) ]
Here ndr,/dt represents a dynamical friction afq repre- 0.0F , ,
sents Gaussian white noise, which is characterized com- 3 4 5 6
pletely by its first two moments logy N
(Fa(t))=0 (a,b=x,y,2) FIG. 1. Estimates of the largest Lyapunov exponent for orbits
evolved in frozerN realizations of a homogeneous ellipsoid: inte-
and grable initial conditions evolved wittMg,=0 (solid line), sticky
initial conditions evolved withMg,=10"1° (dashed ling and
(Fa(t)Fu(t2)) =290 8,55 (t1—t5), (3.1  wildly chaotic initial conditions withMg,=10""° (dot-dashed
line).

where D=270 represents the diffusion constant entering

into a Fokker-Planck description. Choosifily equal to the  mean value extracted by averaging over four different initial
initial energy then ensures that the average energy of thgonditions. The three curves correspond to regular initial
orbits remains unchanged. conditions evolved in an ellipsoid withg,=0 (solid line)

Such an equation is unsatisfactory here. Energy is comgnd “sticky chaotic” (dashed linesand “wildly chaotic”
served absolutely for frozeN-orbits, so that one must also (dot-dashed lingsinitial conditions evolved in an ellipsoid
impose energy conservation on any scheme that aims t@ith My, =10"15 (Recall[23] that sticky chaotic orbit seg-
mimic its effects.(For very smally, the energy remains al- ments correspond to segments of a chaotic orbit that are con-
most conserved for very long times. However, comparativelytined temporarily near a regular island and behave in a nearly
small N should correspond to relatively largg which im-  regular fashion. Three points are immediately apparefi
plies large changes in energy and, as such, significanthe estimates of computed for these three different sets of
changes in the phase space regions accessible to the noigtjal conditions are very nearly equal in magnitud@)
orbit.) For this reason, the noisy integrations described hergonsistent with the results described in Paper I, one observes
were performed USing a modified energy'ConserVing nOise.no Systematic dependence Nn(s) The typ|ca| value of)( is

This entailt_ed(_l) eliminating the C!ynamic_al friction alto-  comparatively large, much larger than the typical valyes
gether,(2) again imparting random kicks as in €8.12), but  associated with motion in the smooth potential. For the val-
(3) renormalizing the modified velocity at each time step by,es of energ)E and masiM gy used to generate theges,
an overall factor, i.ey(t+ ot) —av(t+ dt), with & so cho-  wjidly chaotic orbit segments in the smooth potential typi-
sen thatE(t+ 6t)=E(t). Modulo this complication, the ¢ally haveys~0.055 and sticky segments hayg~0.022.
hoise was integrated using a standard algorif@aj based That regular orbits withVlg,=0 and chaotic orbits with
on a fpurth order Run_ge-Kuttg integration scheme with AW 5>0 havey’s that are approximately equal, and that this
fixed time stepst. The integrations were performed fét  yajue is much larger thalys suggests strongly that these
=2x10"*, it having been confirmed that the statistical ef- exponents reflect almost completely the effects of micro-
fects of the noise were insensitive to the precise valugtof scopic chaos associated with close encounters, and that the

-3 . : )
for ot<10"". form of the bulk potential is largely immaterial. In both cases
the frozenN orbits are moving through an ellipsoid with the
IV. REGULAR AND CHAOTIC ORBITS same constant density; and, since the black hole mhss

=10 15<1, the presence or absence of the black hole does

A. Ordinary Lyapunov exponents: A useless diagnostic not significantly impact the natural orbital time scale.

for macroscopic chaos

In terms of Lyapunov exponents for individual orbits, it B. The divergence ofN-body orbits from smooth characteristics
appears impossible to distinguish between frokletnajecto- One way to effect MACroSCODIC COMDANSONns of froken-
d y pic comp

ries corresponding to regular orbits in a smooth potential an bi q h ch oo df h
frozenN trajectories corresponding to chaotic orbits. Regu-f)r Its and smooth characteristics generated from the same

lar and chaotic frozeN orbits have positive Lyapunov ex- mitial qondition is by_ computing such (_jiagnostics as the con-
ponents that are comparable in magnitude, and that magnfi'agur"’ltlon and velocity space separations,
tude is typically much larger than 'the magnltude o_f the Dr(t)=|rg(t)—ry(t)] and Du(t)=|vg(t)—vp(t)],
largest Lyapunov exponent for chaotic orbits evolved in the (4.
smooth potential.

This is illustrated by Fig. 1, which exhibits, as functions
of N, estimates of the largest Lyapunov exponents for frozenwhere ¢g,vs) and (y,vy) denote, respectively, phase space
N realizations of the homogeneous ellipsoid, both with andcoordinates for orbits in the smooth and fro2¢ndensity
without a central mass. Each curve in this figure represents distributions[24].
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1.0 1.0 V\WWNMI\,\,WVW initial condition as a power law in timédr = Agt. However,
L . the characteristic time scales involved are very different. For
5 05¢ 1 505 ] o S
(a) (v) regular orbits in the Plummer potential, it was foltl Eq.
0.0 0.0 (4.8 in Paper | that
0O 32 64 96 128 0 32 64 96 128
t t te~AcregN"4p  (regula, 4.3
"o 1o wheretp is a characteristic crossing time adg; ¢4 is a
S 05¢ 1 &5 o5t 1 constant of order unity. For chaotic orbits in the Dehnen
(c) (d) potential and the ellipsoid plus black hole potent&b), one
0.0 0.0 discovers instead that
0O 32 64 96 128 0 32 64 96 128
! ¢ te~Ac.chaINN)tp  (chaotio, (4.9
1.0 1.0
N N where, againAg cn, is Of order unity.
o 05¢ 1 2 99 ] The goodness of fits to such a logarithmic dependence is
0.0 (e) 0.0 ) exhibited in the final panel of Fig. 2, which exhibits growth
0 32 64 96 128 0 32 64 96 128 times tg derived from least squares fits to the data in the
t t preceding panels. This panel should be contrasted with Fig. 8
10 160 in Paper |, which exhibits an analogous curve derived for
regular orbits in the Plummer potential.
S 051 1 .2 80t
0.0 (9) 0 C. Distinctions based on orbital “complexity”
0 32 64 96 128 2 3 4 5 6 The fact that, adl increases, frozeht orbits remain close
t 0g10 N to smooth characteristics with the same initial condition for

FIG. 2. The mean separatidhr between frozemN orbits and progressively longer times implies that in terms of visual
smooth characteristics with the same initial conditions, compute@ppearance’ they also tend to more closely resemble those

for ensembles of 800 chaotic initial conditions evolved in the po-SMOOth characteristics. This visual impression is easily cor-
tential (3.6) for variableN: (8) N=10%5, (b) N=1C?, (c) N=10°5, roborated by an examination of the complexity of the Fourier

(d) N=10%, (&) N=10%5, (f) N=10P, (g) N=10°5. (h) The growth  SPectra, which characterize the extent to which the orbits are,
ratets(N) extracted from the preceding panels, assuming a lineaP! are not, nearly periodic. For comparatively smbil
growth law. The solid line overlays a least squarestgtA frozenN orbits corresponding to both regular and chaotic
+B log;N. characteristics look strongly aperiodic and wildly chaotic in
appearance. Not surprisingly, therefore, their complexities
It was found in Paper | that for individual regular orbits are very large, large compared even with the complexities
[25], Dr and Dv typically grow linearly in time. A corre- associated with ordinary wildly chaotic orbits evolved in the
sponding analysis for chaotic orbits is somewhat less conclucorresponding smooth potential. However, Msincreases,
sive, since, apparently, different chaotic orbits can exhibit éhe complexities of regular and chaotic frozsnerbits both
larger degree of variety in their behavior. However, by aver-decrease and, for sufficiently large the complexitiesi(N)
aging over an ensemble of different initial conditions and converge towards the valueg associated with orbits in the
computing the mean separation smooth potential. For frozeN-orbits corresponding to regu-
lar characteristics, thiag is typically quite small; for orbits
m corresponding to chaotic characteristiag,is typically much
> Dri(t) (4.2  larger.
i=1 Analogous results are obtained for orbits evolved in the
presence of ordinary friction and noig26] and, as such, it is
and an analogouBu (t), one can again extract an unambigu- natural to ask whether the observed variations in complexity
ous trend. As for the case of regular orbits, so also for chaotigesulting from changes ilN can also be mimicked by the
orbits, viewed macroscopicallfpr and Dv diverge linearly  energy-conserving noise considered in this paper. Overall,
in time. This is, e.g., illustrated in the first seven panels ofthe answer to this would seem to be yes.
Fig. 2, which were generated by effecting pointwise com- Figure 3 exhibits the mean complexityfor representa-
parisons of 800 smooth and froz&herbits in the potential tive samples of orbits evolved in the potentigis?2), (3.5),
(3.6) for different values oN ranging betweetN=10>°and  and (3.6). In each case, the complexities were computed
N=10>° The initial conditions, chosen identically for each from an orbital time series that sampled an orbit of duration
value ofN, were selected so as to correspond to wildly cha-T=512 at intervalf\t=0.05. The first two panels were gen-
otic orbits, for which a typical finite time Lyapunov exponent erated for the Plummer and homogeneous ellipsoid poten-
Xs~0.055. tials, both corresponding in the continuum limit to com-
Regular and chaotic frozeN-orbits are similar in that pletely integrable motion. The last two panels exhibit
they both diverge from a smooth characteristic with the sameomplexities computed for initial conditions corresponding

S|k

Dr(t)=
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160 ' ' ‘ 240 Zi\<[>' ‘ ' noisy orbits—both regular and chaotic—will also manifest a
c 120l @ © | < 180l \zg (6) degree of complexity comparable to that manifested by indi-
> N 2> vidual frozenN orbits.
S sof R S 120} 2%& 1
IS ' N IS . V. PHASE MIXING OF ORBIT ENSEMBLES
S 40t X { S 60} ‘
° A*@-@ﬂ ° %\% A. Divergence of initially localized ensembles
----.----.----‘- i =========.:m- o . . .y .
0 0 For particle numbeN< 10° or so, initially localized regu-
2 3 4 5 8 2 3 4 5 8 : : .
l0gss N logyy N lar and chaotic ensembles both phase mix extremely rapidly
200 , i , 200 , i . in a fashion that makes it virtually impossible to distinguish
® @ between them. Indeed, it would appear that, for such small
c 300 & (c) c 300f @ (d) ] N, mixing is dominated by discreteness effects and the form
2 '@A_ 2 "%@ of the bulk potential is comparatively unimportant. However,
2 200 %0@:@\ i 2 200¢ o ] for N>10*® or so, it becomes possible to make clear distinc-
5 S _Sﬁ‘_%;_ & Pggoa tions between the phase mixing of ensembles that correspond
© 100 7 © 100F-=7===777777"717 in the continuum limit to regular vis-gis chaotic orbits. It
0 0 . ‘ ‘ is, for example, evident that regular ensembles disperse as a
2 3 4 5 8 2 3 4 5 & power law in. time, whereas chagtic ensembles disperse in a
log,e N 106Gy N fashion that is roughly exponential.

Consider, e.g., the configuration dispersipnassociated
FIG. 3. The mean complexity for orbits evolved in the poten-  \yith an ensemble,

tials (3.2), (3.5, and (3.6), considering both frozeht orbits with

variable N (diamond$ and smooth orbits perturbed by noise with g'rZE<r2>—<|’>2 (5.1

®=1.0 and variabley (triangles. » was related tdN by the rela-

tion »=e*/N, with A determined as described in the text. The with

dashed horizontal line exhibits the mean complexity of orbits with

the same initial conditions evolved in the smooth potential in the 1 m

absence of noisda) Regular orbits in the Plummer potentigh) (rPy= = > (x2+y2+7%)P?, (5.2

Regular orbits in the homogeneous ellipsoid potentigl.Wildly mi=1

chaotic orbits in the ellipsoid plus black hole potential) Sticky S _

chaotic orbits in the ellipsoid plus black hole potential. For a homogeneous ellipsoid wi¥g,, =0, which corre-
sponds in the continuum limit to integrable orbits all oscil-

to wildly chaotic and sticky chaotic orbits in the ellipsoid lating with the same natural frequencies, there is no phase
plus black hole potential. In each panel, the diamonds refleahixing in the smooth potential, so thai, exhibits no sys-
complexities computed for frozeN- orbits with different  tematic growth. If, however, the smooth potential is replaced
values ofN and the horizontal dashed line corresponds to théyy a frozenN potential, one discovers instead thatgrows
mean complexity for unperturbed orbits with the same initialast*/2. More precisely, the growth of the dispersion is well
conditions evolved in the corresponding smooth potentialfitted by a simple relation of the form

The triangles reflect complexities computed for motion in the

smooth potential perturbed by noise with=1.0 and a co- o= (t/tg) 2 (5.3
efficient » related toN via a relation logyn=.4—10g;oN.

The constants4d were not determined by using a least where
squares algorithm to make the two curves coincide, at least
approximately. Rather, as described in Sec. V, the connection te(N)=ANt, (5.9
betweenn and N was effected by demanding that, for the
case of regular orbits, noise of amplitugeand discreteness andA is a constant of order unity. That, scales ag'? is
effects associated with a system Nfparticles yield phase illustrated in Fig. 4, which plotsZ(t) for a single ensemble
mixing at the same rates. For the Plummer potential, thi®f initial conditions evolved in different frozeN- back-
requires.Ap,y~0.0. For the homogeneous ellipsoide;,  grounds withN varying betweerN= 107° andN=10". The
~0.5. Because the black hole mass in the poterii#) is  dots represent raw data recorded at internalls-0.25, the
much smaller than the total mass of the systeligg solid curves represent the result of “box-car” averaging over
=10 "M —it should have only a minimal effect on the 20 adjacent data points. In each case it is apparentatﬁat
characteristic orbital time scales, and for this reason, the lastxhibits a roughly linear growth until it saturates at a value
two panels involved fits assumindg= Agip, - ~0.06, this corresponding t@,~0.25.

The correspondence between fro2¢rand noisy com- This t2 behavior is hardly surprising, corresponding as it
plexities is quite good, except for very small and very does to the analytically predicted behavior of an ensemble of
large 7, where systematic discrepancies can be seen to occunoisy” orbits, all evolved in a harmonic potential with the
This means that if the amplitude of the noise is tuned so as teame natural frequencidsf. Ref. [3]). Thattg exhibits a
reproduce the expected macroscopic behavior associatedughly linear dependence dhis consistent with the expec-
with the regular phase mixing of orbit ensembles, individualtation[4] that discreteness effects should be manifested on a
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A &
3 A 4t &
o X o A
oy & . V4
& @ & 4
o 2 @& L zk’fg@
o 0.04 1 1 2t &
(a) (b)
(0] S . . . 1 . . . .
2 3 4 5 2 3 4 5
log,q N log;q N
0.00 [F et il , . FIG. 6. (8) The growth timetg(N) for the dispersiono, for
0 64 128 192 256 orbit ensembles evolved in frozéw-realizations of the Plummer

t potential(diamond$, and the corresponding growth timg( ») for

2 . . . ) . orbit ensembles evolved in the smooth Plummer potential in the
FIG. 4. o7, the square of the configuration dispersion assomate(bresence of energy-conserving white noise with=1.0 and

with an initially localized ensemble evolved in frozéhtealiza- logyo7=—log;N (triangles. (b) te(N) and ta(7) for orbit en-

tions of the integrable ellipsoid potentie8.5) with (from top to sembles in the homogeneous ellipsoid potential, now settin
bottom) N=10°, N=10* N=10%, N=10"", andN=10". logy07= — 10g,N + 0.6. J peold P ’ J

only a small effect on the phase mixing, so that the frolen-

relaxation timetgcN/InN. The validity of the scalin _ ; .
R y s o, exhibits the same linear dependence on time as the

«N is illustrated in Fig. 6, which will be discussed in greater . .
detail below. 9 9 smooth potentiab-, . For smallerN, discreteness effects be-
For more generic models such as the Plummer potentiaF,Ome more important and induce a larger amplitudié

where different integrable orbits oscillate with different fre- growt.h. L . .
quencies, the beha\%ior is more complex: For smallehe This behavior is illustrated in the left-hand panel of Fig. 5,

dispersion still grows as"? on a time scale consistent with whigh exhibitsg, for evolutior] in th_e smosoth Plummer_ po-
Eq. (5.4), but for largerN the growth is essentially linear. ter_mal and for frozeN evolution with 16 .gNglOS' It is
This can be interpreted as arising from a competition be-ev'(,jent thgt mele“, the overall growth is linear, at Iegst
tween two effects. Regular phase mixing, present even in thgntil the dispersion saturates at a vaige-0.4, and that this
continuum limit, results in a dispersion that grows linearly inINéar evolution is nearly indistinguishable from the smooth
time, whereas an additional noise-induced phase mixin volution. The only obvious difference is that discreteness
typic,ally induces at'? divergence between perturbed and ffects tend to “fuzz out” the systematic oscillations associ-

unperturbed orbits. For larghl, discreteness effects have ated with strictly periodic orbits in the unperturbed potential
' ' that yield the large spread in the valuesogfsuperimposed

3 : : : 5 on the overall linear growth. For smallsl, o, (t) is better
MWWMWWW represented by &2 growth law, and, quite apparently, the
spread ino, is substantially reduced. This reduction is a
MWWWW MMWWWW manifestation of the fact that, for smally the orbits in the
5 ] 5 ] ensemble exhibit significant deviations from periodicity, a
W W fact manifested by the increased complexities discussed in
o o the preceding section.
W W Implicit in the preceding is the assumption that discrete-
1 1 | ness effects really can be mimicked by noise. This was tested

W at two levels, namely(i) a qualitative, visual comparison of
plots of o,(t) generated for both frozeN-and noisy en-

' M sembles andii) a quantitative comparison of slopes associ-
0 ! ! ! 0 \ | ! ated with acr,2=t/tG growth law. The degree to which noise
0 128 256 384 512 0 128 256 384 512 can mimic discrete effects is evident visually from a com-
t t parison of the left-hand panel in Fig. 5, which was generated

from frozenN ensembles evolved in the Plummer potential,
initially localized ensemble evolved in frozéh+ealizations of the with the right-hand p.ar.“?" WhICh. .Were generated frqm the
integrable Plummer potentiaB.2) for (from bottom to top N same ensemb_les_ of initial conditions, now evolve(_j in th_e
=10%, N=10°5 N=10%, N=10"5 and N=1C°. The top curve smooth potentlgl in the presence of energy-csonservmg white
represents unperturbed evolution in the smooth potential. Succe§0is€. For particle number as small Hs- 109, the corre-
sive curves are staggered upwards by distance®.5. (b) o, for ~ Spondence is comparatively poor, the fro2ém; growing

the same initial conditions evolved in the smooth potential, butconsiderably more rapidly than the noisy. However, al-
perturbed by energy-conserving white noise wéh=1.0 and ready forN= 10° the correspondence is quite reasonable and,
=103, 5=1035 5=10% 5=10%5 5=10"% and 5 for N=10% the frozenN and noisy plots are essentially in-
=10"5% distinguishable.

FIG. 5. (a) The configuration dispersioa, associated with an
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FIG. 7. (&) The configuration dispersion, associated with an FIG. 8. (a) The configuration dispersioa, associated with an

initially localized ensemble of wildly chaotic orbits evolved in initially localized ensemble of sticky chaotic orbits evolved in
frozenN realizations of the nonintegrable potential6) with (from frozenN realizations of the nonintegrable potentjal6) with (from
bottom to top N=10>%, N=10°, N=10>%, N=10*, N=10*5, N bottom to top N=10?°, N=10°, N=10>5 N=10%, N=10*5 N
=10°, andN=10>. The top curve represents unperturbed evolu-=10°, andN=10°% The top curve represents unperturbed evolu-
tion in the smooth potentialb) o, for the same ensemble, now tion in the smooth potentialb) o, for the same ensemble, now
evolved in the presence of noise wih=1.0 and =102, 7 evolved in the presence of noise wih=1.0 and =102, 5
=1072% 5=10"%, =10"35 2=10"% #=10%5 =105  =102% 5=103 5=10"35 5=10"% =105 5=1075,
andp=10"5, andp=10 "5,

The preceding comparison of frozéh-ensembles with served in the smooth potential. For the case of the chaotic
fixed N and noisy ensembles evolved witjx 1/N was mo-  ensemble evolved in the potenti&B.6), even N=10>°
tivated by the fact that, at least for comparatively largehe  Yyielded phase mixing that wasuch more rapidthan that
noisy dispersions were also well fit by t42 growth law, associated with the corresponding smooth potential.
where, however, Figure 8a) exhibits an analogous plot, again generated

for the potential(3.6), but now considering an ensemble of
tg=Btp /7, (5.5 initial conditions which, in the continuum limit, correspond
to comparatively sticky chaotic orbits that initially disperse
with B a constant of order unity. A comparison of E¢8.4  much more slowly[The typical value of the largest finite

and (5.5 implies a natural identification time Lyapunov exponent for smooth orbits in this sticky en-
semble wasy(t=256)~0.022. The typical value for the
logio7=A—log;oN, (5.6 wildly chaotic ensemble wag~0.055] For N<10* or so,

Figs. @) and 8a) are comparatively similar, the stickiness
with A yet another constant. For the ellipsoid potential, themanifested in the continuum limit being largely lost. How-
best fit A=0.0=0.1. For the Plummer potentiadl=0.6 ever, for largeMN more conspicuous differences become ap-
+0.1. The identification between Figs(ab and 8b) as- parent. It is, for example, clear that for a particle number as
sumed A=0.5. The extent to which the growth rates for large asN=10°%, the dispersion for the sticky ensemble only
frozenN and noisy orbits can be related by E§.6) may be  becomes macroscopic on a time scale appreciably longer
gauged from Fig. 6, which superimposes plotsgfN) and  than the time scale for the wildly chaotic ensemble.
tg(7) for the Plummer and ellipsoid potentials, withand » To a considerable degree, the behavior exhibited by cha-
related by Eq(5.6). otic frozenN ensembles is again well mimicked by energy-

The behavior exhibited by ensembles corresponding teonserving noise. This is, e.g., evident from Fig&)7and
chaotic orbits is very different. In this case, the dispersion8(b), which, respectively, exhibit the same ensembles of ini-
associated with an ensemble evolved in the smooth potentiéial conditions as Figs. (d) and 8a), now evolved in the
typically diverges exponentially in time, and discreteness efsmooth potential in the presence of energy-conserving white
fects only serve to accelerate this growth. This is, e.g., evinoise. The lower seven curves in these panels each involved
dent from Fig. Ta), which plots Iro, for an ensemble of the same identification betwe@hand » as did Fig. 6, mo-
initial conditions evolved in the potentidB.6) that corre- tivated by the recognition that the black hole madg
spond in the continuum limit to wildly chaotic orbits. It is =10 1®is too small to significantly alter the natural time
apparent that the growth ef, is not strictly exponential, but scalety. The top curve in each panel exhibitsoinfor »
it certainly is faster than the exponential growth associated=10" ", the largest value of; that doesnot result in phase
with the smooth potential, which is exhibited in the final mixing that is significantly more rapid than that associated
panel. Another point is also evident: For the case of thewith the unperturbed smooth potential. Presuming that the
Plummer potential, a frozeN-integration withN as small as  correspondence betweéth and » established here can be
N~10*° yields phase mixing almost identical to that ob- extrapolated to largeX and smallery, it follows that, for the
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FIG. 9. The configuration dispersiarn associated with the en-

semble exhibited in Fig. 8, now restricted to a shorter time interval. FIG. 10. (@ The quantity If{z)| for an initially localized en-
The thick solid line represents an average over different runs corsemble evolved in frozeN-realizations of the integrable Plummer
responding to the lighter curveg) N=10>% (b) N=10>% (c) N potential (3.2) with (from bottom to top N=10°, N=10>° N
=10*% (d) N=10°% =10, N=10*5 andN=10CP. The top curve corresponds to evolu-
tion in the smooth potentialb) In|(z)| computed for the same initial
ensembles considered here, one would require a partickonditions, now evolved in the smooth potential in the presence of
number as large all~10% before discreteness effects be- energy-conserving noise wity=10"%, »=10"%% 7=10"*, 7

come unimportant over the time scales of interest. =10"*% =10"° and=10"°%
One important issue is the extent to which the behavior of ) o
orbit ensembles evolved in different frozéhrealizations of Similarly, one can consider the effects of graininess on

the same potential with the same numbkis, or is not, the regular orbits.. Unperturb_eq regu_lar orbits (_evolved in a
same. For the integrable Plummer and ellipsoid potentials, #M0oth potential daot exhibit a rapid exponential approach
would appear that, even for numbers as smaNaslC?, the towards (neay equilibrium corresponding to a finite phase
statistical properties of orbit ensembles are essentially th&Pace volume. Rather, what one observes is a more modest
same for different frozeiN realizations. This, however, is POWer law evolution towards a near-uniform population of
not true for chaotic ensembles. In this case, one appears f&e invariant tori to which they are restncted. Allowing for
requireN>10° or so before noticeable differences betweendiscreteness effects allows the orbits to escape from these
different realizations are suppressed. This is, e.g., evident ifivariant tori and, as such, one might again ask: is there an
Fig. 9, which exhibitsr, for the same initial conditions used gpproach towards_some more general r_1ea_reqU|I|br|um? And,
to generate Fig. 8, now focusing on a time interval only ond SO. how does this approach proceed in time?

fifth as long and including with dotted lines the results of the, Or Potentials that, in the continuum limit, correspond to
different realizations that were averaged to yield the solidntégrable systems, weak discreteness effects associated with
line. comparative largeN have only a minimal effect on such

quantities as(x). However, for smalleN systems, where
discreteness effects become more important, these moments
do converge exponentially towards zero. This is, e.g., illus-
That initially localized ensembles of chaotic orbits trated in Fig. 10a), which exhibits the quantity [¢z)| for
evolved in a smooth potential should diverge exponentially ifrozenN ensembles evolved in the integrable Plummer po-
more or less obvious; and the simulations described in thitential. Figure 1(b) exhibits the same quantity computed for
paper show that the graininess associated with fiNiteas the same set of initial conditions, but now evolved in the
the same qualitative effect as noise with characteristic amplismooth potential in the presence of energy-conserving noise.
tude »<1/N. FrozenN evolution results in a divergence that Itis evident that, at least for comparatively laf§eand small
is even faster than that associated with the unperturbed en, the curves are again extremely similar. That the conver-
semble, albeit no longer strictly exponential. gence towardgz)=0 terminates at IKz)|~—3 is a finite
Less obvious, but also true, is the fact that chaotic ensampling effect, reflecting the fact that the ensembles were
sembles integrated in a smooth potential tend to evolve tocomprised of only 1600 orbits. Even if one were to select at
wards a near-equilibrium state, and that this evolution typi+andom 1600 points from a continuous distribution with
cally proceeds exponentially in time. For systems(z)=0, one would have a sample for whi¢h)+0.
manifesting the reflection symmetries associated with the po- For the case of chaotic potentials one observes an expo-
tentials explored in this paper, this implies, in particular, thatnential decrease in such moments, even in the continuum
quantities such as the mean valdes and{v,) tend to zero limit, but discreteness effects again serve to increase the rate
exponentially. The obvious question then is whether discreteassociated with this evolution. This is, e.g., illustrated in
ness effects, which can significantly accelerate the initial rat€&igs. 11a) and 12a), which exhibit Iri(z)| for the wildly
at which ensembles disperse, also act to accelerate the rateciaotic and sticky ensembles used to generate Figs. 7 and 8.
which ensembles evolve towards a nearequilibrium. The degree to which this enhanced exponential evolution can

B. Approach towards a well-mixed state
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FIG. 11. (@ The quantity If{z)| for an initially localized en- FIG. 12. (a) The quantity If{z)| for an initially localized en-

semble of wildly chaotic orbits evolved in frozéttealizations of  semble of sticky chaotic orbits evolved in frozBhrealizations of
the nonintegrable potential3.6) with (from bottom to top N the nonintegrable potential3.6) with (from bottom to top N
=10?% N=1C°, N=10*5 N=10%, N=10"% N=1C°, and N  =10*5 N=10° N=10°5 N=10%, N=10*5 N=1C°, and N
=105 The top curve corresponds to evolution in the smooth po-=10>°. The top curve corresponds to evolution in the smooth po-
tential. (b) In|(z)] computed for the same initial conditions, now tential. (b) Inj{z)] computed for the same initial conditions, now
evolved in the smooth potential in the presence of energyevolved in the smooth potential in the presence of energy-
conserving noise withy=10"2, »=10"2% =103, »=10"3%  conserving noise witly=10"2, »=10"25 =103, »=10"3%,
7=10"% =105 =105 and»p=10""5. 7=10"% 7»=10"*% =105 andp=10""5.

energy hypersurface admits large measures of both regular
and chaotic orbits.
A hint that such transitions may be present derives from a

be mimicked by energy-conserving noise is illustrated in
Figs. 11b) and 12b). As for Figs. Tb) and 8b), the top

curve in each of these panels corresponds to noise with ar%bmputation ofDr, the mean separation between froaén
. _ — 7.5 . . . . ’ -
plitude »=10""% which, once again, is the weakest N0iSe ;s “and smooth characteristics with the same initial con-

not to occasion a significant increase in the overall efficacyyijon generated from ensembles of initial conditions corre-

of chaotic mixing. sponding to only regular or only chaotic orbits. One example
is provided in Fig. 13, which exhibitBr (t) for ensembles
VI. TRANSITIONS BETWEEN REGULAR evolved in frozenN realizations of the Dehnen distribution
AND CHAOTIC BEHAVIOR with N=10*, N=10*5 and N=10°. The three left panels

Friction and noise can convert regular orbits into Chaoticwerelgefnerateg from Te.g.“'ar |n|t|gl. conditions, the thregz .”.ght
orbits and vice versa. Suppose, e.g., that an initially chaoti anels from chaotic initial conditions. Both sets of initial
) P e onditions were selected to have very low energies, so that

orbit is evolved in a smooth potential in the presence of nOiS?hey were restricted to the central portions of the system
for some finite period and that the noise is then turned off. If[27]_

the evolution is continued in the absence of noise, one May |t js clear that the chaotic initial conditions yield a more

then find that the orbit has b_ecome regular yvith no positiws;rre(‘:]mar time dependence although, as expected, in both
Lyapunov exponents. Why this can happen is easy to undegasedDr evidences a nearly linear growth in time. However,
stand: Noise serves to Continua”y “bump" the orbit from |t iS also ObViOUS that the growth t”'r& for the Chaotic
one smooth characteristic to another and it is quite possiblgitial conditions isnot much longer than the growth time for
that such “bumps” will eventually deflect the orbit from a the regular initial conditions. For all three values Nf the
chaotic to a regular characteristic. To the extent that discretesest fit value oftg is comparable for the regular and chaotic
ness effects can be mimicked by noise, one would anticipatiitial conditions although, foN=10", it is clear thatDr
similar transitions in arN-body evolution[28]. grows somewhat more slowly for the regular orbits. The ob-
This was not an issue for orbits evolved in the potentialsvious interpretation is that, even at very early times, a sig-
(3.2) and(3.5), both of which are integrable. This possibility nificant fraction of the initial conditions have switched be-
is also unimportant for the nonintegrable black hole plustween regular and chaotic behavior.
ellipsoid potential discussed above, since for the energies Direct proof that such transitions occur, and an estimate of
and black hole masses that were considered, the energeticatlye transition time scale, is straightforward to obtain. Given
accessible phase space is almost completely chaotic. Howerbital data from frozemN ensembles integrated for a total
ever, the possibility of such transitions is a major issue fortime T, one can use snapshots at earlier timesT to gen-
the Dehnen potential, where for most energies, the constaerate new ensembles of initial conditions and integrate those
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FIG. 13. The quantityDr for two different initially localized : Mﬁ . /—o—o
ensembles of sticky chaotic orbits with the saffmv) energies, 0.00 ‘ (9 0.000 ‘ .(f)
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=10% (c) The regular ensemble withl=10*5 (d) The chaotic
ensemble withN=10*5. (e) The regular ensemble wit=10°. (f)

FIG. 14. The mean Lyapunov expon for ensembles
The chaotic ensemble with = 10°. yap ponefks)

evolved in the smooth Dehnen potential, selecting as initial condi-
tions the final phase space coordinates of orbits that had been
ensembles in the smooth potential to compute Lyapunov exvolved in frozerN potentials for some time. (a) Initially regular
ponents. Comparing the results of such integrations with in{S°lid line and chaotiddashed linglow energy orbits evolved with
tegrations of the original initial conditions in the smooth po- N=10". (b) Initially regular (solid line) and chaotiodashed ling
. . . . _higher energy orbits evolved with=10*. (c) The same aga) but

tential then permits one to quantify the extent to Wh'Chfor N=10%5. (d) The same agb) but for N= 105, (e) The same as
discreteness effects have made a regular ensemble less ré9 hut for N=1CF. (f) The same agb) but for N=1CF.
lar and/or a chaotic ensemble less chafi?ig].

The results of such an analysis are summarized in Fig. 14ut weaker noise should be less effective in inducing transi-
which plots the mean finite time Lyapunov exponépg) for ~ tions. o
smooth orbit ensembles as a function ©f The three left A priori it might seem surprising that the megag for the
panels were generated for the low energy ensembles, tH€9ular orbits approaches its limiting value much more
three right panels for higher energy ensemij4. In each quu:kly th_an does the_ mean for the chaotic orbits. This, how-
case the initially chaotic ensembles are represented by di&Ver. is likely a manifestation of the phase space structure
monds and a solid line, the initially regular ensembles aré@ssociated with the Dehnen potential. For both low and high

represented by triangles and a dashed line. The three rov@ergies, the initially regular ensemble corresponds in the
again correspond, respectively, ko=10%, N=10"5 andN smooth potential to box orbits that occasionally pass quite
—10P. close to the center of the system, but in the center, the regular

In each case the meags for the initially chaotic en- and chaotic phase space regions are entangled in a very com-

sembles decreases systematically witind the mearys for plex fashion, so that it is comparative_ly simple for initially
the regular ensembles increases, exactly what would be ekegular orbits to be deflected to chaotic trajectories.
pected if, asr increases, progressively larger numbers of
transitions between regularity and chaos have occured during
the frozenN evolution. Indeed, to the extent that the two  The experiments described in this paper lead to several
ensembles of initial conditions sample the same phase spac@ambiguous conclusions regarding the behavior of orbits
regions, one would expect that the valuesygffor the regu- and orbit ensembles evolved in frozBh+ealizations of

lar and chaotic ensembles should converge to a commosmooth density distributions.

value. It is evident that, for the lower energy ensemble, con- It is, for example, clear that ordinary Lyapunov exponents
vergence or nearconvergence has in fact been achieved foomputed for individual frozeid trajectories daot provide

the largest values of, and it is also apparent that conver- a useful characterization of the degreemdcroscopic chaos
gence happens more rapidly for smallér This again is manifested by these trajectories. Different initial conditions
exactly as expected. Largét corresponds to weaker noise, with the same energy evolved in frozéhrealizations of a

VII. DISCUSSION
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specified potential typically have Lyapunov exponents thatreteness effects in terms of noise works well in predicting
are comparable in magnitude and exhibit little if any depen-both the expected complexities of individual frozMrtrajec-
dence onN, even though in terms of their bulk properties, tories and moments associated with phase mixing. This indi-
one may look very nearly regular and another wildly chaotic.cates that, at least for larde, noise can be used to model
This can be interpreted by asserting that, at least for largboth bulk statistical properties of orbit ensembles and quali-
N, one can make comparatively clear distinctions betweemative properties of individual orbitsThis suggests strongly
two types of chaos that may be associated withNHgody  that investigations of the effects of white noise on orbits in
problem. On the one hand, therenscroscopic chaosisso-  nonintegrable potentials—which are much less expensive
ciated with close encounters between nearby masses. Tr&@mputaﬁona"y than frozeh}.integrations_can provide in-
chaos, which is presumably responsible for the larg&ormation about the effects of graininess.
Lyapunov exponents associated with fro2eérorbits, is (al- That noise really can mimic the effects of graininess is
mos) always present but, at least for comparatively laXge nontrivial theoretically. The notion that discreteness effects
tends to “wash out” macroscopically. On the other hand,can he modeled using friction and white noise is based on
there may bemacroscopic chagswhich, if present in the  cajculationg3,4] of bulk properties of orbits over very long
continuum limit, will also have manifestations in frozBh- time scaleggr~ (N/InN)tp , and involves the tacit assumption
simulations. . _that the flow is regular. The effects explored in this paper
The experiments also demonstrate a clear sense in whickycus on time scales<tr, take into consideration also the

asN increases, frozeft trajectories become more similar to pehavior of individual orbits, and incorporate explicitly the
smooth potential characteristics generated from the same Inkossibility of macroscopic chaos.
tial condition. In particular, it becomes progressively easier Nevertheless, it is clear that modeling discreteness effects
to distinguish between regular and chaotic macroscopic b&gjth white noise isnot completely satisfactory. The agree-
havior. This similarity can be quantified in at least three dif- ant petween frozen- and noisy integrations is poor for
ferent ways. . _ comparatively smalN, and noisy integrations of the form
(1) The rate at which frozen-N orbits and smooth charac-gescribed in this paper cannot be used to obtain estimates of
teristics divergeFor both regular and chaotic initial condi- he Lyapunov exponents associated with frokerorbits.
tions, frozenN trajectories and smooth characteristics tendrpe development of a more realistic noise and its use to
to diverge linearly in time. However, thd dependence of ,ndel systems withN>1CP is currently underway.
the time scalég associated with this divergence differs dra-  pjscreteness effects can induce transitions between differ-
matically. For initial conditions corresponding to regular or- ant orpit types, including both transitions between regular
bits, tg<N*'% for chaotic initial conditionstg=INN. It fol-  ang chaotic behavior, which are impossible in the smooth
lows that for largeN, frozenN trajectories and smooth potential, and transitions betwedgay sticky and wildly
characteristics corresponding to regular orbits remairshaotic behavior, which in the smooth potential are not for-
“close” muqh longer tha_m do _trajectories and characteristicsyigden but typically occur only on a much longer time scale.
corresponding to chaotic orbits. Not surprisingly these transitions appear to be more common
(2) The complexity of Fourier spectra constructed fromfor smallerN. Indeed, the simulations are consistent with the
orbital time series.For smallN, both regular and chaotic interpretation that for sufficiently largé\, transitions be-
initial conditions will, when integrated into the future, yield tyeen regular and chaotic behavior become essentially im-
Fourier spectra that are much more complex than the spectigssible and transitions between sticky and wildly chaotic
associated with the evolution in the smooth potential. In parpenhavior happen no more rapidly than in the continuum
ticular, both regular and chaotic orbits will yield spectra of |jmit.
comparable complexity. However, &bincreases the com-  Finally, and perhaps most importantly, it appears that at
plexities decrease and for sufficiently large one sees a |east in terms of macroscopic propertiésjoes make sense
convergence fowards the complexities appropriate fofs speak of a smooth-N continuum limit. However, con-
smooth characteristics with the same initial conditions,yergence towards this limit is much slower for density distri-
whether these are regular or chaotic. butions, which in the continuum limit correspond to noninte-

(3) The bulk properties of phase mixing, as probed, e.9.graple potentials that admit chaotic orbits.
by lower order moment®2hase mixing of initially localized

ensembles in frozeN systems is invariably more efficient
than phase mixing in the corresponding smooth potential, but
asN increases, the observed evolution comes to more closely
resemble phase mixing of the same initial conditions evolved It is a pleasure to acknowledge useful discussions with
in the smooth potential. Court Bohn, llya Pogorelov, and Christos Siopis. Partial fi-

At least for comparatively larghl, many discreteness ef- nancial support was provided by NSF Grant No. AST-
fects can be well mimicked by energy-conserving white0070809. The computations involving orbital ensembles in
noise with amplitudey= 1/N. This is in close agreement with the Dehnen potential were performed using resources of the
naive expectations based on the modeling of discretenes¢ational Energy Research Scientific Computing Center,
effects as a sequence of incoherent binary encounters, whiathich was supported by the Office of Science of the U.S.
would suggestpe(In N)/N; and indeed, the simulations are Department of Energy under Contract No. DE-ACO03-
also consistent with the latter dependence. Modeling dis76SF00098.
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