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Classical-to-critical crossovers from field theory
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We extend our previous determinations of nonasymptotic critical behavior of Phys. RBy.7209(1985
and 35, 3585 (1987 to accurate expressions of the complete classical-to-critical crosqavethree-
dimensional field theonyin terms of the temperaturelike scaling fidice., along the critical isochoydor (1)
the correlation length, the susceptibility, and the specific heat in the homogeneous phase-feedtee model
(n=1 to 3 and(2) the spontaneous magnetizati@moexistence curyethe susceptibility, and the specific heat
in the inhomogeneous phase for the Ising modet (). The present calculations include the seventh-loop
order of Murray and Nickel and closely account for the up-to-date estimates of universal asymptotic critical
guantities(exponents and amplitude combinatippsovided by Guida and Zinn-Just[d. Phys. A31, 8103
(1998].
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I. INTRODUCTION work of field theory[28,29, and (2) include the seventh
order series for the critical exponents determined by Murray
Asymptotic critical behavior characterized by universaland Nickel[30] in order to account as closely as possible for
guantities(exponents and amplitude combinatipis now  the up-to-date estimates of universal asymptotic critical
theoretically well establishefl,2] with accuracy[3]. How-  quantities(exponents and amplitude combinatippsovided
ever, the comparison of the theoretical results with experiby Guida and Zinn-Justif8] (referred to in the following as
mental or numerical data is made easier when the theoretic&2).
expressions are extended into regimes where the asymptotic In the previous work6,7], and contrary to an initial at-
pure scaling breaks dowd —7] (calculations done far away tempt[5] regarding the homogeneous phase=(L), we pro-
from the critical point, characterized by nonuniversalitiesvided only continuous expressions fovalid for t<10 2 (t
and including eventually crossover phenomena; see the rés the temperaturelike scaling field which is proportional to
views[1,8—11). This extension appeared necessary notablyhe absolute value of the reduced critical temperature
when measurements on colloifts2], but also on complex |T—T/T,.). The crossover was not completely described be-
systems such as ionic flui§3] and polymerg14], seemed cause it was thought at that time that the field theoretical
to yield strong nonuniversalities in approaching the criticalframework had a range of validity strictly limited to the first
point. Indeed, theoretical studies have suggested that, icorrection to scaling term. Consequently, the practical limit
some cases, those nonuniversalities could be due to the phef physical validity of the functions was imposed by the
nomenon of “retarded criticality” which characterizes mea- range oft where the second correction to scaling term spe-
surements done outside the asymptotic critical domairtific to field theory becomes non-negligible, and this occurs
[15,16. Several recent theoretic&nd/or numericalstudies  at aboutt=10"2 [6,7]. Since then, it has appeared that the
have also explicitly considered the evolution of effective ex-range of validity of field theory could be much larger than
ponents with emphasis on their monotonic or nonmonotonithat and even could cover the entire classical-to-critical
character[11,17-2]. Furthermore, although recent work crossover regiofil6] that it describes. Thus it is interesting
[22] satisfactorily compares experimental data®te with  to give expressions valid in the entire crossover region if
the renormalization-grougRG-) basede* model following  only because they may be compared to other kinds of
the scheme developed by Dohm and co-work@3)], the classical-to-critical crossover, either experimenta0] or
description of the classical-to-critical crossover for Ising sysfrom numerical studiefl1,20,24,31,3R which, under some
tems is not yet clear-cy24,25. For these reasons and be- particular conditions, are identic4ll8,19,26,31,3Bto the
cause our previous determination of nonasymptotic criticafield theoretical formbut see also our comment [@a5]).
behavior from field theonf6,7] did not yield continuous For technical reasons, in the previous wéék7] we did
functions covering an entire crossover region, it seems to usot constrain our theoretical expressions to include very
useful to consider again those calculations in ordefsee  closely the estimates of universal asymptotic critical quanti-
also[18,26,27) (1) extend them to a complete account of theties of that time(with their error barsso that uncertainties
classical-to-critical crossover which characterizes the framewere underestimated and thus our estimates of the correction
amplitude ratios were, presumably, also not firmly deter-
mined. Moreover, small errors existed in the previous study
*Email address: bagnuls@spec.saclay.cea.fr of the inhomogeneous phagé&] (as indicated elsewhere
TEmail address: bervil@spht.saclay.cea.fr [18,34,39) which have been eliminated from the present
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work. Nevertheless, we explicitly verifigdee Fig. 1 of Ref. with the final expression of(t) as the explicit continuous
[35]) that the errors had no important consequence on theunction oft we are looking for in the rang| €]0,+ o[ .
final results, as can be clearly deduced from a comparison of (3) The actual calculation of the quantities of interfgise
our estimates of universal amplitude combinatipdswith  x(g)] for values ofg close tog*, at which point they are

those of Guida and Zinn-Justfi36,3]. singular(due to the critical singularity we expect to closely
reproducg, requires expressing them under an integral rep-
IIl. PRINCIPLE OF THE CALCULATIONS resentation like
A. Brief reminder v(X)
As in the previous work6,7], and using the same resum- x(g)=x(y0)exr{ - JyodXU(X)W(X) ’ @

mation method, we have considered the correlation length ) ) )
£(t) (in the homogeneous phase>T, for the n-vector in which y(g) andv(g) are not singular ag* and are pri-
model withn=1 to 3, the susceptibilityy(t) and the spe- Marily given as power series gf(up to seventh orde30]).
cific heatC(t) (in the homogeneous phade>T, with n  In particular,y(g*) andv(g*) provide field theoretical es-
=1 to 3 and in the inhomogeneous phdseT, with n=1), timates of the critical exponentg and v. Only the elemen-
and the coexistence curyspontaneous magnetizatiod (t) ~ tary seriesy(g), v(g), andW(g) are resummed using the
(in the inhomogeneous phase withk= 1) Sophisticated method mentioned in the fO”OWing SEG‘FE

For practical reasons, it is useful to fix our notation rela-value yo is chosen small enough to allow a direct simple
tive to the actual asymptotic critical behavigi., in terms ~ summation of the serieg(yo) .

of the physical variabler=(T—T.)/T.—0" instead oft (4) To sum perturbation series likg(g), v(g), or W(g)
—0; see also Sec. IH for a given value ofy a Borel-Leroy transformation is used,
combined with a conformal mapping. An estimation of the
&n) =&l T1+az |74 +0(| 7], (1a  error is deduced from the observation of the convergence
properties of the series when the free parameters of the trans-
X(7)=Fi|r|‘7[1+a§|r|A+O(|r|2A)], (1p)  formation are varied. This leads us to fix those parameters
(resummation criterjain such a way as to obtain a combi-
+ nation of the error bounds on, e.g«g), v(g), andW(g),

C(r)= A—|q-|*a[1+ aaé|r|A+O(|r|2A)]+Bcr, (1c) which gives a kind of envelope foy(g) via two functions
“« Xmax9) and xmin(9) [and similarly fort(g)].
(5) Since the critical singularities are similar in the two
M(7)=Bl7|?[1+ay|7*+O(|7**)], (1d)  phases of the transition, the calculations in the inhomoge-
_ _ N neous phaseT(<T.) do not require consideration of new
in which a, B, v, and v are the critical exponents) (also  series for the exponents compared to the homogeneous phase
denoted by0=(1)1) by GZ) is the correction exponenf,a , (T>TC) Hence the same three Seriﬂg)' U(g), andW(g)
I'*, A*, andB are the leading critical amplitudes, and,  express the critical singularities via integrals similar to that
a)f , ac, anday, are the(confluenj first-correction ampli-  given in Eq.(2); only new critical amplitude functions af
tudes; finally,B,, is a critical background. One usually re- (hence not singular ag*) must be calculated38,7] and
stricts consideration of the critical singularities to small val-summed using the transformation mentioned in step 4.
ues ofte|7| as is implicitly assumed in Eqg¢l). Obtaining
nonasymptotic critical behavior supposes the explicit consid- B. Improvements to the previous work and presentation
eration of not necessarily small valuestof of the results
Let us suppose that we want to calculate the susceptibility
x as a function of thénot necessarily smaltemperaturelike
scaling fieldt. Calculations of such a nonasymptotic critical  In the present work, the fitting procedure of step 2 of Sec.

1. The fitting procedure

behavior from(the massive field theory (in three dimen- 1IA is performed in the entire range of values @f
siong [5-7] present the following featurg¢additional details  <]0,g*[. Consequently, the entire classical-to-critical cross-
may also be found elsewhef87]). over specific to the field theoretical framework is completely

(1) The functiony(t) is primarily determined in implicit accounted for by our final functionsee Egs.4),(5) and
form because the quantitiggandt are primarily given as Tables I-IV]. This is illustrated, for the Ising modeln(
perturbation series in powers of the renormalized coupling=1), by Fig. 1, which displays the evolution of two effective
parameteq (up to fifth [38,6] or sixth [7] ordep: the func-  exponentsyg(t) and aex(t), which are defined as, for ex-
tions x(g) andt(g) are resummed fog varying in the range ample[see Eqgs(1)],

10,g*[ whereg* is the zero of the Wilson functiofor the
“ B function”) W(g), also primarily given as a power series dlnx(t)
of g (up to sixth ordef39]; g* is the fixed point value of)). Yer(D=~"qnt - ()

(2) The consideration of discontinuous valuesgfs a
compelling need of the numerical resummation procedure. Figure 1 shows the effective exponeritalculated from
Consequently, fitting aad hocfunction oft to the calculated the crossover functions of Tables | angl Which interpolate
points eliminates the auxiliary variablg and provides us between critical and classicahean field values following a
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TABLE |I. Numerical values of the parameters of the generic crossover fun&tion [Egs. (4),(5)]
corresponding to the three quantities calculated in the homogeneous(fpha$g and forn=1): the corre-
lation length¢, the susceptibilityy, and the specific hea®. For each parameter two values are provided
which correspond to the bounds “maxtpper ling and “min” (lower ling) of the error treatment. These
bounds have been determined so as to reproduce as closely as possible the error estimates of GZ on the
asymptotic universal quantiti¢see Tables V and VI and the text for more dejadlsd provide two exclusive
sets of functions$-,,,, andF ;. The first row of the table displays the estimate of the universal value of the
correction exponemk common to all the quantities for the respective bounds “max” and “min.” The values
of the parameters have been determined by a careful adjustméfittlofto the discrete evolution of the
respective quantities primarily calculated by resummation of perturbation series using a Borel-Leroy
+conformal mapping method. The specific notations of the two leading paraneetersversal critical
exponent and Z (leading critical amplitudeare recalled for each quantifgee Eq.(1)]. The symbol “—"
means that the term is absent.

n=1, homogeneous phask,at ‘‘max” =0.498 62, at ‘‘min”"=0.505 16

g—l X—l C
ev 0.631678 Y 1.2408875 —a —0.104 9675
0.629 0975 1.238 30 -0.11271
Z (&)t 2.150817 rHt 3.759 27 Atla 1.871810
2.091612 3.660 588 1.580112
S, 32.24878 34.050 96 30.377 45
17.485 96 13.388 14 33.659 19
S, 32.20434 34.004 04 30.33559
17.576 65 13.457 58 33.83377
X, 11.024 52 23.27915 33.31814
10.480 05 2.853 295 31.940 41
Y, -0.5247187 —0.310 16527 3.476 590
—-0.1283214 —2.547 26010 2 0.2200185
X, 10.41513 1.257 832 9.400 643
28.756 34 11.51061 7.017 899
Y, 0.3775152 —8.204 163102 —8.34421K 102
—9.269 70 102 —0.276 600 8 —9.61686% 10 2
X3 2.315848 8.313963 33.06508
2.014 284 30.25994 0.2462918
Y, —1.307 93% 10 2 —0.163 4056 —3.258 311
—6.897 436<10 2 —0.174526 6 —7.00260% 10 °
X4 39.950 28 - -
53.077 16 76.393 66
Y, —-0.1030731 - -
—3.027 91K 1072 1.508 835¢ 102
Xe - - —4.048 544
—3.548 035

form of crossover dictated by the framework of field theory.very smal) is not universal. For example, in the present
Indeed the(massless or critical, i.e., far=0) scalar field work, a specific definite sign of the first-correction amplitude
theory in three dimensions is defined on a special trajectoris imposed due to the RT chosen; however, in actual systems
of the renormalization groufa renormalized trajectory28]  that kind of correction may well be of the opposite sign and
(RT)] which takes its origin at the Gaussian fixed pdittar- even absenf40]. Fortunately, nonuniversal does not mean
acterized by classical values of the “critical” exponerasd  necessarily absent in actual critical behaviors. It may well
joins the Wilson-Fisher fixed poiriivhere the critical expo- occur that actual systemer models display, more or less
nents take on their critical values according to the universalpartially, the kind of crossover calculated from field theory
ity class considered Of course, the crossover so induced is[16,18,19,26,31,33 See Sec. Ill for a practical use of the
not universal, it is specific to the framework used. In fact,crossover functions.

strictly speaking, only the extreme asymptotic moving away Let us now give some technical information about the
from the Wilson-Fisher fixed point induced by small nonzerofitting procedure of step 2 of Sec. IIA that must be applied
values oft is universal(critical exponents and critical ampli- twice for each quantity considered because of the two error
tude combinations even the first-correction amplitudee-  bounds “max” and “min” (see Secs. Il A and |1 B 2 for the
fined in the close vicinity of the fixed point whenis not  meaning of these bounds
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TABLE Il. Same as Table | for the coexistence cuiMe, the susceptibilityy, and the specific heal
calculated in the inhomogeneous ph&§e T, and forn=1). Notice that for each bound the critical expo-
nentsy,a and the subcritical exponenttake on the same values as in Tablas they must according to the
theory). An indication of the accuracy of the present work is provided by the parariXgtéthe critical
background of the specific heathich should take on the same value as in Table | and differs slightly for the

bound “max.”
n=1, inhomogeneous phask,at ‘‘max” =0.498 62, at ‘‘min"=0.505 16
Mg x ! C
ep 0.3270735 1.2408875 —a —0.104 9675
0.3244954 1.23830 -0.11271
ZB 0.938 046 91 18.386 609 A la 3.3664988
0.937 009 52 17.160 196 3.048908 6
S, 35.738988 2.3395295 1.603646 2
11.312578 231.579 11 4.788502 6
S, 35.689 736 2.3363054 1.6014362
11.371253 232.780 25 4.8133395
Xy 303.216 96 76.549 557 79.538 017
241.516 62 23.010983 123.828 99
Y, —1.768 756 5102 —3.486 5628 7.864 3478102
—5.705693 X 10 2 0.889 15951 —0.261712 36
X, 9.377 9630 59.838 911 4.063 15420 2
13.371 447 61.975912 0.420993 75
Y, 0.172 04103 —16.395572 9.152 242410 °
0.209 263 22 4.009 672 4 —3.631256 %102
X3 1.3921229 3.6904512 16.574 905
248.398 69 316.290 79 10.791 900
Y, 6.087 771 k103 4.789405 & 10 2 —0.280 632 52
—7.722652% 108 —0.153 61387 7.207 2944102
X4 30.597 947 63.029 796 14.361 662
82.917 148 50.582 996 86.921 949
Y, 0.171 44092 19.215714 0.130702 58
0.157 956 60 —5.2595105 0.414 997 82
Xs 6.506 4180 9.3807398 19.477 188
4.793997 8 2.590992 1 0.579824 84
Ye —1.947962 610 3 0.136 75156 0.281 12994
4.856 896 K 1072 3.769243 % 10°? 3.692 856 & 1073
Xe - - —4.0481532
—3.5480350

In order to analytically reproduce the functions calculatedturelike variablet in the ranget e [10™17,10'4]. Of course,
point by point, we use the following general forr: there are some external constraints on the values of these
parameters which facilitate their adjustme(it) The expo-
nentse and A must take on values already known from the
resummation of the corresponding elementary set®sthe
amplitudeZ is easily determined with few points correspond-
in which K is the maximum number of factofg a prelimi-  ing to very small values of; (3) To make it easy to get a
nary work[5] we hadK = 3; in the present worK can be as close reproduction of the crossover toward the classical be-
large as 5, and with havior whent— o, there are the following constraints.

(@ On S;, so that we havésee, for example, Eq$A9)
and (A10) of [21]]

K
Fity=zte]] (1+X,tPW)Yi+Xq (4)
i=1

Sit+1
Spt+1

in which A is the correction exponent. We have adjusted each

of the parameterg, e, {X;,Y;} (i=1,..K), S;, S;, X¢, and

A so as to fit the discretized evolution of the quantities con-

sidered €, x,C,Mg) as continuous functions of the tempera- This leads to

D(t)=A—1+ (5

t—oo

D(t) — 1/2. (6)
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TABLE lll. Same as Table | for the correlation lengéh the susceptibilityy, and the specific hea®
calculated in the homogeneous phé&Ee T, and forn=2). Comparing with Tables | and IV, one may notice
the correlation of the value of the parameXgy (the critical background of the specific hgatith the values
of leading amplitudeA*/« and of a: when « vanishes A* and aXg take on opposite values so as to
transform the power law behavitt] "¢ into the logarithmic singularity It.

n=2, homogeneous phask,at ‘“‘max” =0.52551, at ‘‘min"=0.529 86

&l X—l C
ev 0.67181082 ¥ 1.3188985 —a 1.5440< 10 2
0.668 789 32 1.3148952 6.3%a0 3
zZ(EH ! 2.6289918 rot 5.5612909 A*la  —55.881907
2.5496125 5.346 4216 —121.13056
S 15.963 748 96.831 346 4.0480920
33.474 847 60.160 224 28.884 078
S, 16.381 644 99.366 178 4.154 062 2
34505171 62.011 900 29.773102
X1 28.529734 16.310 867 1.191 1602
111.527 36 11.716 728 37.837491
Y, —9.096 376 X 10 2 —0.57358194 5.570 405810 2
—2.849143 K10 2 —4.121 347 X102 3.5434706
X5 9.1112497 3.661569 4 1.267516 4
13.427 180 15.104 245 59.951524
Y, —0.223 11836 5.695 036010 2 —5.849 955 X 10 2
—15.783 043 —0.536 305 10 —1.767701 X102
X3 0.11326011 0.326 692 57 27.562 173
24.100 833 3.1051883 1.3847300
Y, 3.834787 kK10 ¢ —4.853531&10 ¢ —7.724392% 103
1.861202 & 10 3 —3.853626 10 2 2.276 906 x 10 *
X4 72.907 613 430.167 27 46.806 723
13.360107 239.951 79 37.714 984
Y, —5.016 674X 10 2 —6.779346 X103 —2.036010% 102
15.603 262 —1.373556 410 2 —3.5387612
Xs 10.299 474 - -
7.396 055 8
Ys 2.024374 10 2 - -
—0.131168 17
X - - 50.158 572
115.951 04
3
sl=sz(§—A). (@) Yig=2(ec—e)= X Vi, (10
0
(b) On one of the coupldX;,Y;} by requiring that a Z. w;,
known classical behavior is reached in the lititc. Thus Xio= 2 ig (X))~ Y , (11
0
1 K
e+=> Yi=e., (8)  with the classical values,=1, 1/2, 1/2, or 0 an&.=2, 1,
231 \J6, or B.— Xg for, respectively, the susceptibility, the corre-
lation length, the coexistence curve, and the specific [hgat
K is the additive critical part of the specific heat aBd its
ZH1 (X)Y=2., (9) classical value;B.=3 in the inhomogeneous phasd (
=

<T,), while B.=0 in the homogeneous phase*T,)].

With the above prescriptions, we have been able to repro-
with e, andZ, the classical values of the critical exponentsduce the original calculated points with a maximdotal in
and amplitude, respectively. This leads to the constraints for relative deviation less than 16 (in the worst case and for
one of the{X;,Y;}'s: a limited number of functions especially in the inhomoge-
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TABLE IV. Same as Table | for the correlation lengéhthe susceptibilityy, and the specific hea®
calculated in the homogeneous ph#&§e- T, and forn=3).

n=3, homogeneous phask,at ‘‘max” =0.552 27, at ‘‘min"=0.557 02

5—1 X—l c
ev 0.710 906 29 y 1.3946000 —a 0.132720
0.703810 62 1.3845100 0.111 43582
Z (&)t 3.1722403 ro-t 7.9856105 Atla —20.228 436
2.9632572 7.268 7650 —18.976 690
S, 31.477 107 72.301 387 17.216 858
78.590 543 52.048 362 96 640.818
S, 33.213159 76.289 014 18.166 416
83.342 746 55.195 616 102 484.48
X4 394.952 93 13.735 280 389.178 97
10.931 307 0.158 903 96 52.385 639
Y, —5.254562 5107 —0.753 908 60 —3.049819x 103
16.025 379 1.152513410° 3 0.199 45718
X, 0.150 789 20 1.3616777 4.760 748 2402
3.2123716 11.028 433 1179.5468
Y, 2.864103 K102 0.469 601 31 3.252 8813810 *
—0.113559 93 —4.749579 X 1072 1.306210 & 1072
X3 11.387 266 1.386 296 9 12.991 689
505.595 21 12.528 570 22.441166
Ys —0.359 826 58 —0.490562 04 —0.165650 10
—6.979372610°° —0.696 010 28 —0.134399 92
X4 78.089 588 437.657 47 65.185 231
11.021 201 312.81912 36.340773
Y, —5.669 256 X 102 —1.433067 X102 —0.109 482 46
—16.378 555 —1.881614 K102 —0.35127870
Xs 0.195821 93 - 1.708 0277
2.8188361 0.977 486 68 11.698 778
Ys —2.9029786& 1073 - 1.241709 %10 2
6.609 431 % 10 2 —7.850294 K103 6.204 359 X 10 2
Xe - - 8.2684338
9.155 8605

neous phaseHowever, globally(the mean value of the local technique considered. This makes a notable difference be-
deviations over the entire range ©f the adjustment is much cause a given function brings several elements into [Hag,

better for all the quantitie;. _ e.g., Eq.(2)] introducing a possible frustration of the indi-
The results of these adjustments to the discrete calculataddual resummation criteria. Moreover, when one determines
points are given in Tables I-IV. the error bar for an individual quantity, one often rounds it up

We emphasize that the large number of digits displayed ithecause several resummation methods may have been con-
the tables lays no claim to a better accuracy than in the workjgered, yielding answers slightly different from each other.
of GZ; it is simply required to obtain a careful fit of the gjnce the various asymptotic critical behaviors of the func-
crossover functions to the discontinuous points primarily calyjong of interesf x(t), etc] result from the combination of a
culated from the available perturbative series. small number of elementary serigkl] [namely,y(g), »(g),
W(g), and a few amplitude functiofigthe individual criteria
were combined in our preceding wor&,7] so as to provide

In our previous work[6,7], the resummation criteria of an envelope of the error, accounting automatically for corre-
step 4 of Sec. IIA, which gave the bounds “max” and lations(frustration$ between the error bounds. This induced
“min,” were not chosen so as to closely reproduce the un-some underestimation of the errors when the universal criti-
certainty of the(at that time up-to-dajeestimates of univer- cal exponents or amplitude combinations wéreconsid-
sal asymptotic critical quantitieexponents and amplitude ered from the final expressions of the functions compared to
combinations They simply proceeded from a primary their independent estimates.
analysis of the convergences of the elementary séries The spirit of the present work is different. We have con-
v(g), v(g), etc] resulting from the(unique resummation strained the resummation criteria of the elementary series so

2. The resummation criteria
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1.25 1 they are presumably overestimatésee below and Sec.
B B).

Table V shows our estimates of the critical exponéres
sulting from our resummation critejiompared to the GZ
estimates. One may observe some very small differences due
to the fact that, in the present work, the scaling relations are
automatically satisfied for each bound “max” or “minlsee
step 4 of Sec. Il Awhile only the central values of the GZ
exponent estimates satisfy the scaling relatitthe apparent
errors fory, v, B have been determined independengy).
Table V shows how for the respective estimates meet the
scaling relations in both cases. Tables VI and VIl display the
values of the universal combinations of leading critical am-
plitudes as they are accounted for by our crossover functions.
The degree of agreement with the GZ results is graphically
illustrated by Figs. 2 and 3.

From Tables 1-1V one may observe that our bounds on
the correction exponeni differ from those of GZ. This is
due to the correlation of errors mentioned above. Indeed, we
have never considereflas an independent constituent of the
asymptotic critical behavior. Instead it has be@mumeri-
cally) deduced from the resummation criteria associated with
the elementary series(g) andW(g) because of the defini-
tion A= wv with

Yeh‘

-8 -6 4 -2 Q 2

log,q ()
dW(g)

FIG. 1. Respective evolutiongalculated from the crossover w= dg ' (12)
functions of Tables | and )lof the effective exponentg«(t) and 9=9*
ae(t) in the two phases: the homogenedesntinuous lingand the
inhomogeneougdashed lingphases. Notice, in this latter case, the v=v(g*). (13
moving down of y«(t) below the classical valué=1.0) in the
regime of high values of. This nonmonotonic feature ofgu(t) in ) o
the inhomogeneous phase is in agreement with RéB19 and The resummation criteria for the elementary seW¢g)
has been numerically observed in Rdfs7,32. have been chosen so as to yield estimates on the bounds on

g* very close to those of GZsee Table VIIJ.

25 10 get a5 closly s possible the GZ estimates for i, STIY. e Mesent doenatons oo e recr
universal quantities despite the possible frustrations of th 9 play

error bounds mentioned above. Thus we have taken into a ._ables IX and X differ from our previous worl6,7] essen-

count the extensions up to seven loops of the series for th ally because of our systematic account for the up-to-date

critical exponents given by Murray and Nicke0]. For the estimates of the leading amplitude combinati¢sse Tables

reasons indicated just above, and also because the error es f. and VII). Notice the likely unrealistic smallness of the

mates of the amplitude combinations of GZ are deduce&Orrectlon amphtudeaM |n'the case “min.” This conflrms.
from the analysis of the parameter dependence in the equ8‘" probable overestimation of the error on the correction
tion of state[36] (they were not obtained from the direct erm;(see Se_c. I.” B‘. . .

analysis of specific series for the quantities of interese It is worth indicating that the values displayed in Tables

have encountered some difficulties in fixing the resummatio X and X are not obtame;d from the crossover functions of
criteria for some amplitude seri€s is likely that GZ over- ables |-V by simply using the expressigsee Eq.(4)]
estimated the error for some quantijida addition, in doing

so and concerning the amplitudes we have introduced an K

imbalance between the error estimates of the two phases. aF:E XiYi, (14)
Indeed, our criteria are adjusted so as to get univeetals =t

(or combinations of amplitudes which, structurally in the

present work, express themselves as series strictly defined which would be the right expression if the correction expo-
the inhomogeneous phase. On the contrary, the resummatiévent in Eq.(4) were the actual correction exponehninstead
criteria in the homogeneous phader only one amplitude of the effective exponerd(t) of Eq. (5). To get the values
function) have been fixed without constraint. Consequentlydisplayed in Tables IX and X we have made specific fits of
the resulting error estimates of the correction amplitudes thahe functionsF(t) of Eq. (4) to the theoretical points with
we presently obtain are larger than in the previous work oD (t)=A in ranges of values af<10 2 (as in the previous
Refs.[6,7] and notably in the inhomogeneous phase caseyork [6,7]).
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TABLE V. Above: Values of thguniversa] critical exponents as they are accounted for by the crossover
functions defined in Tables I-1V. The numbers given in parentheses correspond to the GZ respective error-
bound estimates. Below: the scaling relations structurally satisfied for each bound of the crossover functions
defined in Tables I-IMthe expected theoretical values are zeRue to the practical necessity of using a
small number of predefined criteria in thiianique resummation method used, the scaling relations are
(automatically better satisfied in the present work than in the final upper and lower bounds d¢th€z
numbers in parentheses correspond to their bound estimates, which have not been determined particularly so
as to satisfy the scaling relations

Critical exponent values

n y v o B
1 1.240887 51.2409 0.631678(0.631% 0.104 967 50.105 0.32707350.3272
1.23830(1.2383 0.629 097 50.6291) 0.11271(0.113 0.324 495 4(0.3249
2 1.31889851.3189 0.671810820.6718 —0.01544(—-0.015 —
1.3148952(1.3149 0.668 789 320.6689 —0.006 37(—0.007
3 1.394 60(1.3945 0.710906 290.7108 —0.132720(—0.132 —

1.38451(1.3845 0.703810620.7039  —0.11143582-0.112

Scaling relationgshould be zerp

|a—2+3v| la+2p+y-2|

1 1.5x10 ¢ (1.0x10 %) 2.0X10°® (3.0x10°%)
25107 (3.0x10°%) 8.0x10 7 (1.0x10™ %)

2 7.5<1075 (4.0x10°%) —
2.0x10 ¢ (6.0x10° %)

3 1.1x10 8 (4.0x10°%)

4.0x10 % (6.0x10°%)

ll. PRACTICAL USE OF THE CROSSOVER FUNCTIONS width £ of the domain of agreement. Notice that we do not

As already said above, the structural form of the classical®™ at determiningor providing all the ingredients needed

to-critical crossover that we oroduce here is not universal: i{o describe the variety of classical-to-critical crossovers that
. . . pre . ' ‘'may be produced by actual systems; this would be too diffi-
is peculiar to the field theoretical framework which corre-

sponds to having performed a linthe continuum limit in cult (due to the infinite variety of nonuniversal contribu-
P 0 having p T tions). Simply, we think our calculation accurate enough to
renormalization group theorj42]. The approximation in-

duces the idea that, strictly speaking, the “nonasymptotic"aIIOW the determination _oﬁ_for any system allowmg, n
calculations would i'n fact, be only vali'd in the close vicinity some sense, the de_term|nat|on of SUbda.S'SGS of universality.
of T.. Hence,we cio not éxpect our functions to reproduce AS already expla.medjS—?],. the comparison of the theo-
the ::->.<perimer,1tal data in the entire range J0, + o[ . How- retical functions w.|th experimental data mvplves a very
ever, the widthZ of the domain of agreeme'nt beMeen ex- small number of adjustab!e paramete(ﬂs):nonumversal glo-

- . ) : o bal factors;(2) the proportionality factow between the tem-
periments and field theory is not universal: it could actually

. . . . peraturelike scaling field and 7=(T—T.)/T. (neglecting
be redgcedpurely af‘d S|mpI)/t9 the strict asy.mptonc cr.m- higher analytical contributions inwhich may sometimes be
cal region(pure scaling lawsor include exclusively the first

correction to scaling, but, fortunately it may sometimes begf)g)-negllglble[lO] but are out of the scope of our present

much larger and could even cover the entire crossover re-
gion. It is our aim to allow experimentalists to determine the t=0|7; (15)

TABLE VI. Values of universal combinations of Iead|ng critical (3) add|t|ve regular background terms for the Spec|f|c heat’
amplitudes for thermodynamic quantities combining calculations ing g (4) eventuallyT,.

the two phase; hence far=1 only (from the crossover functions of For example, the comparison with experimental measure-
Tables I“and I) The twc_) numbeﬂrs _|n"each colgmn correspond to thements of the susceptibility may be made as follows:
bounds “max” (upper ling and “min” (lower line). In parentheses

are the corresponding bounds of the GZ estimates.

XoXtr( 0] 71) = Xexpf | 7) (16)
+IA— +/7- + _AtT+H/R2
ATTA o Re=ATT"'/B in which xex|7]) represents the experimental data and
0.556 01(0.556 4.891 00(4.89 0.059 40(0.0594 xin(t) our function for ong43] of the two bounds “max”
0.518 26(0.518 4.687 83(4.69 0.055 41(0.0559 and “min.” One generally expects theoretically that and 6

will take on the same valug#4] for the two sets of mea-
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TABLE VII. Values of the universal quantitR; = &; (A*)"® combining calculations in the homogeneous
phase only; hence for three valuesroffrom the crossover functions of Tables I, 1ll, and)IVThe two
numbers in columns 2, 4, and 6 correspond to the bounds “nfagper ling and “min” (lower ling). In
parentheses are rounded off forms of the same estimates.

n 1 2 3
R,  0.27029 0.36212 0.43813
¢
026809 (0:2696:0.0007) T - (0.3609:0.0012) 7o o (0.4357+0.0025)
surements above and beloly provided that the range of ri= G—Aai. (19

values of r is not too large. The fact that, must be un-
changed is a consequence of the universality of the ratio As for the stability off, this is because the ratld; /T'; is

I'o/Ty with, as7—07, universal. The values of the universal amplitude combina-
e “l A tions included in our calculated functions are given in Tables
Xexpl| T)=To | 7|~ Y(1+T1|7[*+--), A7 v, v, 1, and X.
in which 'y andT'; are related to our previous definition o
[Eq. (1b)] as follows: A. Redefinition of the role of
. o If one introduced literally as in Eq.(15), then the fitted
Fo=xot ", (18)  leading critical amplitude involves two adjustable param-
125 0.64
0.62 A
1.20
0.60
- 115 0.58 -
=4
= 8
110 ] 0.56
0.54
1.05
0.52
1.00 050
-10 4 -10 4
0.12 0.50
0.48
0.10 -
0.46
0.08 - 0.44
0.42 -
5 0.0 5
5 A 0.0 -
0.04 1 0.38
0.36
0.02
0.34
0.00 0.32 . : : : : .
-10 -8 -6 -4 -2 0 2 4 -10 -8 -6 -4 -2 0 2 4
l0gy, (1) gy (1)

FIG. 2. The two bounds “max{continuous linesand “min” (short-dashed lingdave been determined so as to reproduce as closely as
possible the GZ estimates. This is illustrated here with the effective exponents calculated from the crossover funatiehsdietermined
in the present worksee Tables | and )l For each exponent, a partial magnificati@y of the critical region is provided to show the
agreement with the GZ estimates. A similar partial magnificat®nis also provided to show the difference from our preceding work of
[6,7] (long-dashed lings (For other values oh, see Table V).
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l0g.q (1)

FIG. 3. The two bounds “max’(continuous ling and “min”
(short-dashed line determined so as to reproduce as closely a

combinations. This is illustrated here with the rdfié/T ~ [see Eq.
(1b)] calculated from the crossover functions fo=1 determined
in the present worksee Tables I, 1l, and VI The illustration could
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20

0
-0.00001

0.00000
t

0.00001

FIG. 4. The field theoretical form of the specific heat exhibits
the classical “jump.”

possible the GZ estimates, account also for the universal amplitujlaave the theoretical expression in the form of a complete

classical-to-critical crossovéa5).
Consistency testif we consider a supplementary set of
measurements like the specific heat above and bédigw

have been made as well with the two other universal quantities ofn€n, by virtue of universality, one must obtain again the

Table VI.

eters. This is not very suitable. For practical use, we propose

to introduce the adjustable parameters as follpgampare
with Eq. (4)]:

K
Xexol| ) =x0| ZI77 L] (LX) 14 X6, (20)

t=6|7, (21

in which @ is no longer involved in the pure scaling part of
the critical behavior Z|7|”). So introducedg is a nonuni-

same value for® with a good fit in a range of values of
similar to that considered witly. For the specific heat,

CoCun(0] 7)) +Bo(7) = Cexpl | 7]) (22)
in which By(7) is an additive noncriticali.e., regular or
analytic in 7) background an&, a nonuniversal multiplica-
tive factor which must be the same in the two phases.

Let us emphasize that the field theoretical form obtained
for Cy(t) involves a specific critical additive background
term which reproduces the famous “classical jump” of the
specific heat(see Fig. 4. Of course, the magnitude of this
jump is not universal but in the case where an actual system
would reproduce the entire classical-to-critical crossover of
field theory, then it should also exhibit this junipp to the

versal parameter which exclusively controls the magnitude oglobal additive backgroun8,(7) analytic in 7].

the corrections to scalingHence we can progressively adjust

If, in addition to C and x, we also possess coexistence

the theoretical functions to the data starting from the datgurve data, we have a stronger constraint since then no other

close to the critical point withh=0 and then introducing
more and more data witd+# 0 (notice thaté=0) up to the
point where consistency is lost.

The domainl of 7 where the experimental data and the
field theory agree may involve correction-to-scaling terms
higher than the first one and this is why it is interesting to

TABLE VIIl. Bounds on the fixed-point values of the renormal-
ized couplingg defined as the zero of the Wilson functid¥(g).
The resummation criteria fal(g) have been chosen so as to yield

adjustable parameter is required to fit these new data. Indeed,
in the relation

MM 0| Tl):Mexpt(lTD (23
everything is fixed sincé is related toCy and yo due to
the universal amplitude combinatidd6] R: and 6 must
have the same value whatever the quantity considered.

TABLE IX. Values of the universal ratios of the amplitudes of
the first correction to scaling for thermodynamic quantities combin-

values ofg* as close as possible to the GZ estimates given inpg cajculations in the two phases; hence fior 1 only (not ob-

parentheses. The two values correspond to the bounds “rfugp<”
per ling and “min” (lower line).

tained from the crossover functions, see te8ame presentation as
in Table VII.

n 1 2 3
g* 1.41512(1.415 1.406 02(1.406 1.39401(1.399
1.406 87(1.407 1.40004(1.400 1.386 05(1.389

ala, atlag ay /a;
0.243 0.893 0.743

-
0.186 (0.215-0.029) 1823 (1.36+0.47) 0.048(0'4% 0.35)
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TABLE X. Values of the universal ratios of the amplitudes of the first correction to scaling for the
quantities calculated in the homogeneous pHaset obtained from the crossover functions, see)tesame
presentation as in Table VII.

n 1 2 3
ajlat 0.699 0.642 0.625
€75 } . . . .612+0.014
0.659 (0.68+0.02) 0.630 (0.636+0.006) 0.598 (0 )
acla; 8.89 6.09 " 4.63
8.43 (8.68+0.23) 584 (5.97+0.13) 452 (4.58+0.06)

If we simultaneously also had access to experimentalhich, regarding the definition of the effective exponents,
measurements of the correlation lengttihen the constraint corresponds to the linear weighting
would be even stronger since again the theory must agree .
with the data without new adjustable parameters. eer(t) =Eefi (1) +(1—E)egy (1). (25

In order to facilitate the use of the crossover functions_l_h he introducti f the oth diustabl i
displayed in Tables I-IV, text files ofORTRAN code are en the introduction of the other adjustable parameters,

; such asf for example, withinFg(t) is unchanged compared
provided[47]. o ; o
to the description given above except that the addiXye
term mentioned in Eq(20) is obviously excluded fronf .
andF ., and treated as a new adjustable additive parameter.
We have accounted for the error estimates by providing As we said in Sec. IIB 2 it is likely that the close account
two sets(“max” and “min” ) of functions. In general the of the GZ estimates has led us to overestimate the uncer-
accuracy of the experimental measurements is much smallégiinty in the correction terms so that it seems to us useful to
than in the present theoretical calculation so that it is noprovide the reader also with functions reproducing the com-
very important to make a difference between the two sets oplete classical-to-critical crossover according to the resum-
functions. One or the other choice would provide essentiallymation criteria of the previougut corrected, sel85]) work
the same quality of the adjustment in the fitting procedure. of Refs.[6,7] although(or rather becau$¢his time the errors
Sometimes accounting for the difference between there underestimated. This is why we provide two additional
bounds “max” and “min” may have some importance so text files of FORTRAN code[47] corresponding to the former
that neither one nor the other agrees with the measurementgsummation criteria applied to the corrected sefwaghout
but a mixing of the two would. In such a case we propose tdhe seventh order of Ref30]).
introduce the mixing via the introduction of a supplementary

adjustable parameté. ACKNOWLEDGMENT
Let us define a new theoretical function as follows:
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