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Classical-to-critical crossovers from field theory
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We extend our previous determinations of nonasymptotic critical behavior of Phys. Rev. B32, 7209~1985!
and 35, 3585 ~1987! to accurate expressions of the complete classical-to-critical crossover~in three-
dimensional field theory! in terms of the temperaturelike scaling field~i.e., along the critical isochore! for ~1!
the correlation length, the susceptibility, and the specific heat in the homogeneous phase for then-vector model
~n51 to 3! and~2! the spontaneous magnetization~coexistence curve!, the susceptibility, and the specific heat
in the inhomogeneous phase for the Ising model (n51). The present calculations include the seventh-loop
order of Murray and Nickel and closely account for the up-to-date estimates of universal asymptotic critical
quantities~exponents and amplitude combinations! provided by Guida and Zinn-Justin@J. Phys. A31, 8103
~1998!#.
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I. INTRODUCTION

Asymptotic critical behavior characterized by univers
quantities~exponents and amplitude combinations! is now
theoretically well established@1,2# with accuracy@3#. How-
ever, the comparison of the theoretical results with exp
mental or numerical data is made easier when the theore
expressions are extended into regimes where the asymp
pure scaling breaks down@4–7# ~calculations done far awa
from the critical point, characterized by nonuniversaliti
and including eventually crossover phenomena; see the
views @1,8–11#!. This extension appeared necessary nota
when measurements on colloids@12#, but also on complex
systems such as ionic fluids@13# and polymers@14#, seemed
to yield strong nonuniversalities in approaching the criti
point. Indeed, theoretical studies have suggested tha
some cases, those nonuniversalities could be due to the
nomenon of ‘‘retarded criticality’’ which characterizes me
surements done outside the asymptotic critical dom
@15,16#. Several recent theoretical~and/or numerical! studies
have also explicitly considered the evolution of effective e
ponents with emphasis on their monotonic or nonmonoto
character@11,17–21#. Furthermore, although recent wor
@22# satisfactorily compares experimental data on3He with
the renormalization-group-~RG-! basedw4 model following
the scheme developed by Dohm and co-workers@23#, the
description of the classical-to-critical crossover for Ising s
tems is not yet clear-cut@24,25#. For these reasons and b
cause our previous determination of nonasymptotic crit
behavior from field theory@6,7# did not yield continuous
functions covering an entire crossover region, it seems to
useful to consider again those calculations in order to~see
also@18,26,27#! ~1! extend them to a complete account of t
classical-to-critical crossover which characterizes the fra
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work of field theory @28,29#, and ~2! include the seventh
order series for the critical exponents determined by Mur
and Nickel@30# in order to account as closely as possible
the up-to-date estimates of universal asymptotic criti
quantities~exponents and amplitude combinations! provided
by Guida and Zinn-Justin@3# ~referred to in the following as
GZ!.

In the previous work@6,7#, and contrary to an initial at-
tempt@5# regarding the homogeneous phase (n51), we pro-
vided only continuous expressions fort valid for t&1022 ~t
is the temperaturelike scaling field which is proportional
the absolute value of the reduced critical temperat
uT2Tcu/Tc!. The crossover was not completely described
cause it was thought at that time that the field theoret
framework had a range of validity strictly limited to the fir
correction to scaling term. Consequently, the practical lim
of physical validity of the functions was imposed by th
range oft where the second correction to scaling term s
cific to field theory becomes non-negligible, and this occ
at aboutt.1022 @6,7#. Since then, it has appeared that t
range of validity of field theory could be much larger tha
that and even could cover the entire classical-to-criti
crossover region@16# that it describes. Thus it is interestin
to give expressions valid in the entire crossover region
only because they may be compared to other kinds
classical-to-critical crossover, either experimental@10# or
from numerical studies@11,20,24,31,32#, which, under some
particular conditions, are identical@18,19,26,31,33# to the
field theoretical form~but see also our comment in@25#!.

For technical reasons, in the previous work@6,7# we did
not constrain our theoretical expressions to include v
closely the estimates of universal asymptotic critical qua
ties of that time~with their error bars! so that uncertainties
were underestimated and thus our estimates of the correc
amplitude ratios were, presumably, also not firmly det
mined. Moreover, small errors existed in the previous stu
of the inhomogeneous phase@7# ~as indicated elsewher
@18,34,35#! which have been eliminated from the prese
©2002 The American Physical Society32-1
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C. BAGNULS AND C. BERVILLIER PHYSICAL REVIEW E65 066132
work. Nevertheless, we explicitly verified~see Fig. 1 of Ref.
@35#! that the errors had no important consequence on
final results, as can be clearly deduced from a compariso
our estimates of universal amplitude combinations@7# with
those of Guida and Zinn-Justin@36,3#.

II. PRINCIPLE OF THE CALCULATIONS

A. Brief reminder

As in the previous work@6,7#, and using the same resum
mation method, we have considered the correlation len
j(t) ~in the homogeneous phaseT.Tc for the n-vector
model with n51 to 3!, the susceptibilityx(t) and the spe-
cific heat C(t) ~in the homogeneous phaseT.Tc with n
51 to 3 and in the inhomogeneous phaseT,Tc with n51!,
and the coexistence curve~spontaneous magnetization! M (t)
~in the inhomogeneous phase withn51!.

For practical reasons, it is useful to fix our notation re
tive to the actual asymptotic critical behaviors@i.e., in terms
of the physical variablet5(T2Tc)/Tc→06 instead of t
→0; see also Sec. III#:

j~t!5j0
6utu2n@11aj

6utuD1O~ utu2D!#, ~1a!

x~t!5G6utu2g@11ax
6utuD1O~ utu2D!#, ~1b!

C~t!5
A6

a
utu2a@11aaC

6utuD1O~ utu2D!#1Bcr , ~1c!

M ~t!5Butub@11aMutuD1O~ utu2D!#, ~1d!

in which a, b, g, and n are the critical exponents,D ~also
denoted byu5vn by GZ! is the correction exponent,j0

6 ,
G6, A6, andB are the leading critical amplitudes, andaj

6 ,
ax

6 , aC
6 , andaM are the~confluent! first-correction ampli-

tudes; finally,Bcr is a critical background. One usually re
stricts consideration of the critical singularities to small v
ues oft}utu as is implicitly assumed in Eqs.~1!. Obtaining
nonasymptotic critical behavior supposes the explicit con
eration of not necessarily small values oft.

Let us suppose that we want to calculate the susceptib
x as a function of the~not necessarily small! temperaturelike
scaling fieldt. Calculations of such a nonasymptotic critic
behavior from~the massive! field theory ~in three dimen-
sions! @5–7# present the following features~additional details
may also be found elsewhere@37#!.

~1! The functionx(t) is primarily determined in implicit
form because the quantitiesx and t are primarily given as
perturbation series in powers of the renormalized coup
parameterg ~up to fifth @38,6# or sixth @7# order!: the func-
tionsx(g) andt(g) are resummed forg varying in the range
]0,g* @ whereg* is the zero of the Wilson function~or the
‘‘ b function’’! W(g), also primarily given as a power serie
of g ~up to sixth order@39#; g* is the fixed point value ofg!.

~2! The consideration of discontinuous values ofg is a
compelling need of the numerical resummation procedu
Consequently, fitting anad hocfunction of t to the calculated
points eliminates the auxiliary variableg and provides us
06613
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with the final expression ofx(t) as the explicit continuous
function of t we are looking for in the rangeutuP]0,1`@ .

~3! The actual calculation of the quantities of interest@like
x(g)# for values ofg close tog* , at which point they are
singular~due to the critical singularity we expect to close
reproduce!, requires expressing them under an integral r
resentation like

x~g!5x~y0!expF2E
y0

g

dx
g~x!

v~x!W~x!G , ~2!

in which g(g) andv(g) are not singular atg* and are pri-
marily given as power series ofg ~up to seventh order@30#!.
In particular,g(g* ) andv(g* ) provide field theoretical es
timates of the critical exponentsg andn. Only the elemen-
tary seriesg(g), v(g), and W(g) are resummed using th
sophisticated method mentioned in the following step@the
value y0 is chosen small enough to allow a direct simp
summation of the seriesx(y0)#.

~4! To sum perturbation series likeg(g), v(g), or W(g)
for a given value ofg a Borel-Leroy transformation is used
combined with a conformal mapping. An estimation of t
error is deduced from the observation of the converge
properties of the series when the free parameters of the tr
formation are varied. This leads us to fix those parame
~resummation criteria! in such a way as to obtain a comb
nation of the error bounds on, e.g.,g(g), v(g), andW(g),
which gives a kind of envelope forx(g) via two functions
xmax(g) andxmin(g) @and similarly fort(g)#.

~5! Since the critical singularities are similar in the tw
phases of the transition, the calculations in the inhomo
neous phase (T,Tc) do not require consideration of new
series for the exponents compared to the homogeneous p
(T.Tc). Hence the same three seriesg(g), v(g), andW(g)
express the critical singularities via integrals similar to th
given in Eq.~2!; only new critical amplitude functions ofg
~hence not singular atg* ! must be calculated@38,7# and
summed using the transformation mentioned in step 4.

B. Improvements to the previous work and presentation
of the results

1. The fitting procedure

In the present work, the fitting procedure of step 2 of S
IIA is performed in the entire range of values ofg
P]0,g* @ . Consequently, the entire classical-to-critical cro
over specific to the field theoretical framework is complete
accounted for by our final functions@see Eqs.~4!,~5! and
Tables I–IV#. This is illustrated, for the Ising model (n
51), by Fig. 1, which displays the evolution of two effectiv
exponentsgeff(t) and aeff(t), which are defined as, for ex
ample@see Eqs.~1!#,

geff~ t !52
d ln x~ t !

d ln t
. ~3!

Figure 1 shows the effective exponents~calculated from
the crossover functions of Tables I and II! which interpolate
between critical and classical~mean field! values following a
2-2
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TABLE I. Numerical values of the parameters of the generic crossover functionF(t) @Eqs. ~4!,~5!#
corresponding to the three quantities calculated in the homogeneous phase~T.Tc and forn51!: the corre-
lation lengthj, the susceptibilityx, and the specific heatC. For each parameter two values are provid
which correspond to the bounds ‘‘max’’~upper line! and ‘‘min’’ ~lower line! of the error treatment. Thes
bounds have been determined so as to reproduce as closely as possible the error estimates of G
asymptotic universal quantities~see Tables V and VI and the text for more details! and provide two exclusive
sets of functionsFmax andFmin . The first row of the table displays the estimate of the universal value of
correction exponentD common to all the quantities for the respective bounds ‘‘max’’ and ‘‘min.’’ The valu
of the parameters have been determined by a careful adjustment ofF(t) to the discrete evolution of the
respective quantities primarily calculated by resummation of perturbation series using a Borel-
1conformal mapping method. The specific notations of the two leading parameterse ~universal critical
exponent! andZ ~leading critical amplitude! are recalled for each quantity@see Eq.~1!#. The symbol ‘‘—’’
means that the term is absent.

n51, homogeneous phase,D at ‘‘max’’ 50.498 62, at ‘ ‘min’’50.505 16
j21 x21 C

e n 0.631 678 g 1.240 887 5 2a 20.104 967 5
0.629 0975 1.238 30 20.112 71

Z (j0
1)21 2.150 817 (G1)21 3.759 27 A1/a 1.871 810

2.091 612 3.660 588 1.580 112
S1 32.248 78 34.050 96 30.377 45

17.485 96 13.388 14 33.659 19
S2 32.204 34 34.004 04 30.335 59

17.576 65 13.457 58 33.833 77
X1 11.024 52 23.279 15 33.318 14

10.480 05 2.853 295 31.940 41
Y1 20.524 718 7 20.310 165 27 3.476 590

20.128 321 4 22.547 26031022 0.220 018 5
X2 10.415 13 1.257 832 9.400 643

28.756 34 11.510 61 7.017 899
Y2 0.377 515 2 28.204 16331023 28.344 21731023

29.269 70131022 20.276 600 8 29.616 86931023

X3 2.315 848 8.313 963 33.065 08
2.014 284 30.259 94 0.246 291 8

Y3 21.307 93931022 20.163 405 6 23.258 311
26.897 43631023 20.174 526 6 27.002 60931025

X4 39.950 28 – –
53.077 16 76.393 66

Y4 20.103 073 1 – –
23.027 91731022 1.508 83531022

X6 – – 24.048 544
23.548 035
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form of crossover dictated by the framework of field theo
Indeed the~massless or critical, i.e., fort50! scalar field
theory in three dimensions is defined on a special trajec
of the renormalization group@a renormalized trajectory@28#
~RT!# which takes its origin at the Gaussian fixed point~char-
acterized by classical values of the ‘‘critical’’ exponents! and
joins the Wilson-Fisher fixed point~where the critical expo-
nents take on their critical values according to the univer
ity class considered!. Of course, the crossover so induced
not universal, it is specific to the framework used. In fa
strictly speaking, only the extreme asymptotic moving aw
from the Wilson-Fisher fixed point induced by small nonze
values oft is universal~critical exponents and critical ampli
tude combinations!; even the first-correction amplitude~de-
fined in the close vicinity of the fixed point whent is not
06613
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very small! is not universal. For example, in the prese
work, a specific definite sign of the first-correction amplitu
is imposed due to the RT chosen; however, in actual syst
that kind of correction may well be of the opposite sign a
even absent@40#. Fortunately, nonuniversal does not me
necessarily absent in actual critical behaviors. It may w
occur that actual systems~or models! display, more or less
partially, the kind of crossover calculated from field theo
@16,18,19,26,31,33#. See Sec. III for a practical use of th
crossover functions.

Let us now give some technical information about t
fitting procedure of step 2 of Sec. IIA that must be appli
twice for each quantity considered because of the two e
bounds ‘‘max’’ and ‘‘min’’ ~see Secs. II A and II B 2 for the
meaning of these bounds!.
2-3
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TABLE II. Same as Table I for the coexistence curveMS , the susceptibilityx, and the specific heatC
calculated in the inhomogeneous phase~T,Tc and forn51!. Notice that for each bound the critical expo
nentsg,a and the subcritical exponentD take on the same values as in Table I~as they must according to th
theory!. An indication of the accuracy of the present work is provided by the parameterX6 ~the critical
background of the specific heat! which should take on the same value as in Table I and differs slightly for
bound ‘‘max.’’

n51, inhomogeneous phase,D at ‘‘max’’ 50.498 62, at ‘ ‘min’’50.505 16
MS x21 C

e b 0.327 073 5 g 1.240 887 5 2a 20.104 967 5
0.324 495 4 1.238 30 20.112 71

Z B 0.938 046 91 (gG2)21 18.386 609 A2/a 3.366 498 8
0.937 009 52 17.160 196 3.048 908 6

S1 35.738 988 2.339 529 5 1.603 646 2
11.312 578 231.579 11 4.788 502 6

S2 35.689 736 2.336 305 4 1.601 43 62
11.371 253 232.780 25 4.813 339 5

X1 303.216 96 76.549 557 79.538 017
241.516 62 23.010 983 123.828 99

Y1 21.768 756 531023 23.486 562 8 7.864 347 831022

25.705 693 331022 0.889 159 51 20.261 712 36
X2 9.377 963 0 59.838 911 4.063 154 231022

13.371 447 61.975 912 0.420 993 75
Y2 0.172 041 03 216.395 572 9.152 242 431025

0.209 263 22 4.009 672 4 23.631 256 931023

X3 1.392 122 9 3.690 451 2 16.574 905
248.398 69 316.290 79 10.791 900

Y3 6.087 771 131023 4.789 405 831022 20.280 632 52
27.722 652 931023 20.153 613 87 7.207 294 131022

X4 30.597 947 63.029 796 14.361 662
82.917 148 50.582 996 86.921 949

Y4 0.171 440 92 19.215 714 0.130 702 58
0.157 956 60 25.259 510 5 0.414 997 82

X5 6.506 418 0 9.380 739 8 19.477 188
4.793 997 8 2.590 992 1 0.579 824 84

Y5 21.947 962 631023 0.136 751 56 0.281 129 94
4.856 896 731022 3.769 243 331022 3.692 856 631023

X6 – – 24.048 153 2
23.548 035 0
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In order to analytically reproduce the functions calcula
point by point, we use the following general form@5#:

F~ t !5Zte)
i 51

K

~11Xit
D~ t !!Yi1X6 ~4!

in which K is the maximum number of factors~in a prelimi-
nary work@5# we hadK53; in the present workK can be as
large as 5!, and with

D~ t !5D211
S1At11

S2At11
, ~5!

in whichD is the correction exponent. We have adjusted e
of the parametersZ, e, $Xi ,Yi% ( i 51,...,K), S1 , S2 , X6 , and
D so as to fit the discretized evolution of the quantities c
sidered (j,x,C,MS) as continuous functions of the temper
06613
d

h

-

turelike variablet in the rangetP@10217,1014#. Of course,
there are some external constraints on the values of th
parameters which facilitate their adjustment:~1! The expo-
nentse andD must take on values already known from th
resummation of the corresponding elementary series;~2! The
amplitudeZ is easily determined with few points correspon
ing to very small values oft; ~3! To make it easy to get a
close reproduction of the crossover toward the classical
havior whent→`, there are the following constraints.

~a! On S1 , so that we have@see, for example, Eqs.~A9!
and ~A10! of @21##

D~ t ! →
t→`

1/2. ~6!

This leads to
2-4
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TABLE III. Same as Table I for the correlation lengthj, the susceptibilityx, and the specific heatC
calculated in the homogeneous phase~T.Tc and forn52!. Comparing with Tables I and IV, one may notic
the correlation of the value of the parameterX6 ~the critical background of the specific heat! with the values
of leading amplitudeA1/a and of a: when a vanishes,A1 and aX6 take on opposite values so as
transform the power law behaviorutu2a into the logarithmic singularity lnutu.

n52, homogeneous phase,D at ‘‘max’’ 50.525 51, at ‘ ‘min’’50.529 86
j21 x21 C

e n 0.671 810 82 g 1.318 898 5 2a 1.544 031022

0.668 789 32 1.314 895 2 6.37031023

Z (j0
1)21 2.628 991 8 (G1)21 5.561 290 9 A1/a 255.881 907

2.549 612 5 5.346 421 6 2121.130 56
S1 15.963 748 96.831 346 4.048 092 0

33.474 847 60.160 224 28.884 078
S2 16.381 644 99.366 178 4.154 062 2

34.505 171 62.011 900 29.773 102
X1 28.529 734 16.310 867 1.191 160 2

111.527 36 11.716 728 37.837 491
Y1 29.096 376 431022 20.573 581 94 5.570 405 331022

22.849 143 131022 24.121 347 931022 3.543 470 6
X2 9.111 249 7 3.661 569 4 1.267 516 4

13.427 180 15.104 245 59.951 524
Y2 20.223 118 36 5.695 036 031022 25.849 955 731022

215.783 043 20.536 305 10 21.767 701 231022

X3 0.113 260 11 0.326 692 57 27.562 173
24.100 833 3.105 188 3 1.384 730 0

Y3 3.834 787 731024 24.853 531 831024 27.724 392 931023

1.861 202 831023 23.853 626 031022 2.276 906 031024

X4 72.907 613 430.167 27 46.806 723
13.360 107 239.951 79 37.714 984

Y4 25.016 674 031022 26.779 346 331023 22.036 010 331022

15.603 262 21.373 556 431022 23.538 761 2
X5 10.299 474 – –

7.396 055 8
Y5 2.024 374 031022 – –

20.131 168 17
X6 – – 50.158 572

115.951 04
t

e-

ro-

r
e-
S15S2S 3

2
2D D . ~7!

~b! On one of the couple$Xi ,Yi% by requiring that a
known classical behavior is reached in the limitt→`. Thus

e1
1

2 (
i 51

K

Yi5ec , ~8!

Z)
i 51

K

~Xi !
Yi5Zc , ~9!

with ec andZc the classical values of the critical exponen
and amplitude, respectively. This leads to the constraints
one of the$Xi ,Yi% ’s:
0661
s
for

Yi 0
52~ec2e!2 (

iÞ i 0
Yi , ~10!

Xi 0
5FZc

Z )
iÞ i 0

~Xi !
2YiG1/Yi 0

, ~11!

with the classical valuesec51, 1/2, 1/2, or 0 andZc52, 1,
A6, or Bc2X6 for, respectively, the susceptibility, the corr
lation length, the coexistence curve, and the specific heat@X6
is the additive critical part of the specific heat andBc its
classical value;Bc53 in the inhomogeneous phase (T
,Tc), while Bc50 in the homogeneous phase (T.Tc)#.

With the above prescriptions, we have been able to rep
duce the original calculated points with a maximum~local in
t! relative deviation less than 1024 ~in the worst case and fo
a limited number of functions especially in the inhomog
32-5
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TABLE IV. Same as Table I for the correlation lengthj, the susceptibilityx, and the specific heatC
calculated in the homogeneous phase~T.Tc and forn53!.

n53, homogeneous phase,D at ‘‘max’’ 50.552 27, at ‘ ‘min’’50.557 02
j21 x21 C

e n 0.710 906 29 g 1.394 600 0 2a 0.132 720
0.703 810 62 1.384 510 0 0.111 435 82

Z (j0
1)21 3.172 240 3 (G1)21 7.985 610 5 A1/a 220.228 436

2.963 257 2 7.268 765 0 218.976 690
S1 31.477 107 72.301 387 17.216 858

78.590 543 52.048 362 96 640.818
S2 33.213 159 76.289 014 18.166 416

83.342 746 55.195 616 102 484.48
X1 394.952 93 13.735 280 389.178 97

10.931 307 0.158 903 96 52.385 639
Y1 25.254 562 531023 20.753 908 60 23.049 819 031023

16.025 379 1.152 513 431023 0.199 457 18
X2 0.150 789 20 1.361 677 7 4.760 746 431022

3.212 371 6 11.028 433 1179.5468
Y2 2.864 103 131023 0.469 601 31 3.252 881 331024

20.113 559 93 24.749 579 231022 1.306 210 431023

X3 11.387 266 1.386 296 9 12.991 689
505.595 21 12.528 570 22.441 166

Y3 20.359 826 58 20.490 562 04 20.165 650 10
26.979 372 631023 20.696 010 28 20.134 399 92

X4 78.089 588 437.657 47 65.185 231
11.021 201 312.819 12 36.340 773

Y4 25.669 256 031022 21.433 067 231022 20.109 482 46
216.378 555 21.881 614 731022 20.351 278 70

X5 0.195 821 93 – 1.708 027 7
2.818 836 1 0.977 486 68 11.698 778

Y5 22.902 978 631023 – 1.241 709 331022

6.609 431 331022 27.850 294 731023 6.204 359 531022

X6 – – 8.268 433 8
9.155 860 5
l
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neous phase!. However, globally~the mean value of the loca
deviations over the entire range oft!, the adjustment is much
better for all the quantities.

The results of these adjustments to the discrete calcul
points are given in Tables I–IV.

We emphasize that the large number of digits displaye
the tables lays no claim to a better accuracy than in the w
of GZ; it is simply required to obtain a careful fit of th
crossover functions to the discontinuous points primarily c
culated from the available perturbative series.

2. The resummation criteria

In our previous work@6,7#, the resummation criteria o
step 4 of Sec. II A, which gave the bounds ‘‘max’’ an
‘‘min,’’ were not chosen so as to closely reproduce the u
certainty of the~at that time up-to-date! estimates of univer-
sal asymptotic critical quantities~exponents and amplitud
combinations!. They simply proceeded from a primar
analysis of the convergences of the elementary series@i.e.,
g(g), n(g), etc.# resulting from the~unique! resummation
06613
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technique considered. This makes a notable difference
cause a given function brings several elements into play@see,
e.g., Eq.~2!# introducing a possible frustration of the ind
vidual resummation criteria. Moreover, when one determi
the error bar for an individual quantity, one often rounds it
because several resummation methods may have been
sidered, yielding answers slightly different from each oth
Since the various asymptotic critical behaviors of the fun
tions of interest@x(t), etc.# result from the combination of a
small number of elementary series@41# @namely,g(g), n(g),
W(g), and a few amplitude functions#, the individual criteria
were combined in our preceding work@6,7# so as to provide
an envelope of the error, accounting automatically for cor
lations~frustrations! between the error bounds. This induce
some underestimation of the errors when the universal c
cal exponents or amplitude combinations were~re!consid-
ered from the final expressions of the functions compared
their independent estimates.

The spirit of the present work is different. We have co
strained the resummation criteria of the elementary serie
2-6
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as to get as closely as possible the GZ estimates for
universal quantities despite the possible frustrations of
error bounds mentioned above. Thus we have taken into
count the extensions up to seven loops of the series for
critical exponents given by Murray and Nickel@30#. For the
reasons indicated just above, and also because the error
mates of the amplitude combinations of GZ are dedu
from the analysis of the parameter dependence in the e
tion of state@36# ~they were not obtained from the dire
analysis of specific series for the quantities of interest!, we
have encountered some difficulties in fixing the resumma
criteria for some amplitude series~it is likely that GZ over-
estimated the error for some quantities!. In addition, in doing
so and concerning the amplitudes we have introduced
imbalance between the error estimates of the two pha
Indeed, our criteria are adjusted so as to get universalratios
~or combinations! of amplitudes which, structurally in the
present work, express themselves as series strictly define
the inhomogeneous phase. On the contrary, the resumm
criteria in the homogeneous phase~for only one amplitude
function! have been fixed without constraint. Consequen
the resulting error estimates of the correction amplitudes
we presently obtain are larger than in the previous work
Refs. @6,7# and notably in the inhomogeneous phase ca

FIG. 1. Respective evolutions~calculated from the crossove
functions of Tables I and II! of the effective exponentsgeff(t) and
aeff(t) in the two phases: the homogeneous~continuous line! and the
inhomogeneous~dashed line! phases. Notice, in this latter case, th
moving down of geff(t) below the classical value~51.0! in the
regime of high values oft. This nonmonotonic feature ofgeff(t) in
the inhomogeneous phase is in agreement with Refs.@18,19# and
has been numerically observed in Refs.@17,32#.
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they are presumably overestimated~see below and Sec
III B !.

Table V shows our estimates of the critical exponents~re-
sulting from our resummation criteria! compared to the GZ
estimates. One may observe some very small differences
to the fact that, in the present work, the scaling relations
automatically satisfied for each bound ‘‘max’’ or ‘‘min’’~see
step 4 of Sec. II A! while only the central values of the GZ
exponent estimates satisfy the scaling relations~the apparent
errors forg, n, b have been determined independently@3#!.
Table V shows how for the respective estimates meet
scaling relations in both cases. Tables VI and VII display
values of the universal combinations of leading critical a
plitudes as they are accounted for by our crossover functio
The degree of agreement with the GZ results is graphic
illustrated by Figs. 2 and 3.

From Tables I–IV one may observe that our bounds
the correction exponentD differ from those of GZ. This is
due to the correlation of errors mentioned above. Indeed,
have never consideredD as an independent constituent of th
asymptotic critical behavior. Instead it has been~numeri-
cally! deduced from the resummation criteria associated w
the elementary seriesn(g) andW(g) because of the defini
tion D5vn with

v5
dW~g!

dg U
g5g*

, ~12!

n5n~g* !. ~13!

The resummation criteria for the elementary seriesW(g)
have been chosen so as to yield estimates on the bound
g* very close to those of GZ~see Table VIII!.

Similarly, the present determinations of~and the uncer-
tainties in! the first correction-to-scaling terms displayed
Tables IX and X differ from our previous work@6,7# essen-
tially because of our systematic account for the up-to-d
estimates of the leading amplitude combinations~see Tables
VI and VII!. Notice the likely unrealistic smallness of th
correction amplitudeaM in the case ‘‘min.’’ This confirms
our probable overestimation of the error on the correct
terms~see Sec. III B!.

It is worth indicating that the values displayed in Tabl
IX and X are not obtained from the crossover functions
Tables I–IV by simply using the expression@see Eq.~4!#

aF5(
i 51

K

XiYi , ~14!

which would be the right expression if the correction exp
nent in Eq.~4! were the actual correction exponentD instead
of the effective exponentD(t) of Eq. ~5!. To get the values
displayed in Tables IX and X we have made specific fits
the functionsF(t) of Eq. ~4! to the theoretical points with
D(t)5D in ranges of values oft,1022 ~as in the previous
work @6,7#!.
2-7
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TABLE V. Above: Values of the~universal! critical exponents as they are accounted for by the crosso
functions defined in Tables I–IV. The numbers given in parentheses correspond to the GZ respectiv
bound estimates. Below: the scaling relations structurally satisfied for each bound of the crossover fu
defined in Tables I–IV~the expected theoretical values are zero!. Due to the practical necessity of using
small number of predefined criteria in the~unique! resummation method used, the scaling relations
~automatically! better satisfied in the present work than in the final upper and lower bounds of GZ~the
numbers in parentheses correspond to their bound estimates, which have not been determined partic
as to satisfy the scaling relations!.

Critical exponent values
n g n a b

1 1.240 887 5~1.2409! 0.631 678~0.6317! 0.104 967 5~0.105! 0.327 073 5~0.3272!
1.238 30~1.2383! 0.629 097 5~0.6291! 0.112 71~0.113! 0.324 495 4~0.3244!

2 1.318 898 5~1.3189! 0.671 810 82~0.6718! 20.015 44~20.015! —
1.314 895 2~1.3149! 0.668 789 32~0.6688! 20.006 37~20.007!

3 1.394 60~1.3945! 0.710 906 29~0.7108! 20.132 720~20.132! —
1.384 51~1.3845! 0.703 810 62~0.7038! 20.111 435 82~20.112!

Scaling relations~should be zero!

ua2213nu ua12b1g22u

1 1.531026 (1.031024) 2.031026 (3.031024)
2.531026 (3.031024) 8.031027 (1.031024)

2 7.531026 (4.031024) —
2.031026 (6.031024)

3 1.131026 (4.031024)
4.031026 (6.031024)
a
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III. PRACTICAL USE OF THE CROSSOVER FUNCTIONS

As already said above, the structural form of the classic
to-critical crossover that we produce here is not universa
is peculiar to the field theoretical framework which corr
sponds to having performed a limit~the continuum limit! in
renormalization group theory@42#. The approximation in-
duces the idea that, strictly speaking, the ‘‘nonasympto
calculations would, in fact, be only valid in the close vicini
of Tc . Hence,we do not expect our functions to reprodu
the experimental data in the entire range tP]0,1`@ . How-
ever, the widthL of the domain of agreement between e
periments and field theory is not universal: it could actua
be reduced~purely and simply! to the strict asymptotic criti-
cal region~pure scaling laws! or include exclusively the firs
correction to scaling, but, fortunately it may sometimes
much larger and could even cover the entire crossover
gion. It is our aim to allow experimentalists to determine t

TABLE VI. Values of universal combinations of leading critica
amplitudes for thermodynamic quantities combining calculation
the two phase; hence forn51 only ~from the crossover functions o
Tables I and II!. The two numbers in each column correspond to
bounds ‘‘max’’ ~upper line! and ‘‘min’’ ~lower line!. In parentheses
are the corresponding bounds of the GZ estimates.

A1/A2 G1/G2 RC
15A1G1/B2

0.556 01~0.556! 4.891 00~4.89! 0.059 40~0.0594!
0.518 26~0.518! 4.687 83~4.69! 0.055 41~0.0554!
06613
l-
it

’’

e
e-

width L of the domain of agreement. Notice that we do n
aim at determining~or providing! all the ingredients neede
to describe the variety of classical-to-critical crossovers t
may be produced by actual systems; this would be too d
cult ~due to the infinite variety of nonuniversal contribu
tions!. Simply, we think our calculation accurate enough
allow the determination ofL for any system allowing, in
some sense, the determination of subclasses of universa

As already explained@5–7#, the comparison of the theo
retical functions with experimental data involves a ve
small number of adjustable parameters:~1! nonuniversal glo-
bal factors;~2! the proportionality factoru between the tem-
peraturelike scaling fieldt and t5(T2Tc)/Tc ~neglecting
higher analytical contributions int which may sometimes be
non-negligible@10# but are out of the scope of our prese
aim!

t5uutu; ~15!

~3! additive regular background terms for the specific he
and ~4! eventuallyTc .

For example, the comparison with experimental measu
ments of the susceptibilityx may be made as follows:

x0x th~uutu!5xexpt~ utu! ~16!

in which xexpt(utu) represents the experimental data a
x th(t) our function for one@43# of the two bounds ‘‘max’’
and ‘‘min.’’ One generally expects theoretically thatx0 andu
will take on the same values@44# for the two sets of mea-

n

e

2-8
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TABLE VII. Values of the universal quantityRj
15j0

1(A1)1/3 combining calculations in the homogeneo
phase only; hence for three values ofn ~from the crossover functions of Tables I, III, and IV!. The two
numbers in columns 2, 4, and 6 correspond to the bounds ‘‘max’’~upper line! and ‘‘min’’ ~lower line!. In
parentheses are rounded off forms of the same estimates.

n 1 2 3

Rj
1 0.270 29

(0.269660.0007)
0.362 12

(0.360960.0012)
0.438 13

(0.435760.0025)
0.268 99 0.359 74 0.433 16
f

at

n

na-
les

m-
surements above and belowTc provided that the range o
values oft is not too large. The fact thatx0 must be un-
changed is a consequence of the universality of the r
G0

1/G0
2 with, ast→06,

xexpt~ utu!.G0
6utu2g~11G1

6utuD1¯ !, ~17!

in which G0
6 and G1

6 are related to our previous definitio
@Eq. ~1b!# as follows:

G0
65x0u2gG6, ~18!
06613
io

G1
65u2Dax

6 . ~19!

As for the stability ofu, this is because the ratioG1
1/G1

2 is
universal. The values of the universal amplitude combi
tions included in our calculated functions are given in Tab
VI, VII, IX, and X.

A. Redefinition of the role of u

If one introducesu literally as in Eq.~15!, then the fitted
leading critical amplitude involves two adjustable para
ly as

e
of
FIG. 2. The two bounds ‘‘max’’~continuous lines! and ‘‘min’’ ~short-dashed lines! have been determined so as to reproduce as close
possible the GZ estimates. This is illustrated here with the effective exponents calculated from the crossover functions forn51 determined
in the present work~see Tables I and II!. For each exponent, a partial magnification~A! of the critical region is provided to show th
agreement with the GZ estimates. A similar partial magnification~B! is also provided to show the difference from our preceding work
@6,7# ~long-dashed lines!. ~For other values ofn, see Table V.!
2-9
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eters. This is not very suitable. For practical use, we prop
to introduce the adjustable parameters as follows@compare
with Eq. ~4!#:

xexpt
21 ~ utu!5x0FZutug)

i 51

K

~11Xit
D~ t !!Yi1X6G , ~20!

t5uutu, ~21!

in which u is no longer involved in the pure scaling part
the critical behavior (Zutug). So introduced,u is a nonuni-
versal parameter which exclusively controls the magnitude
the corrections to scaling. Hence we can progressively adju
the theoretical functions to the data starting from the d
close to the critical point withu50 and then introducing
more and more data withuÞ0 ~notice thatu>0! up to the
point where consistency is lost.

The domainL of t where the experimental data and t
field theory agree may involve correction-to-scaling ter
higher than the first one and this is why it is interesting

FIG. 3. The two bounds ‘‘max’’~continuous line! and ‘‘min’’
~short-dashed line!, determined so as to reproduce as closely
possible the GZ estimates, account also for the universal ampli
combinations. This is illustrated here with the ratioG1/G2 @see Eq.
~1b!# calculated from the crossover functions forn51 determined
in the present work~see Tables I, II, and VI!. The illustration could
have been made as well with the two other universal quantitie
Table VI.

TABLE VIII. Bounds on the fixed-point values of the renorma
ized couplingg defined as the zero of the Wilson functionW(g).
The resummation criteria forW(g) have been chosen so as to yie
values of g* as close as possible to the GZ estimates given
parentheses. The two values correspond to the bounds ‘‘max’’~up-
per line! and ‘‘min’’ ~lower line!.

n 1 2 3

g* 1.415 12~1.415! 1.406 02~1.406! 1.394 01~1.394!
1.406 87~1.407! 1.400 04~1.400! 1.386 05~1.386!
06613
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have the theoretical expression in the form of a compl
classical-to-critical crossover@45#.

Consistency test. If we consider a supplementary set
measurements like the specific heat above and belowTc ,
then, by virtue of universality, one must obtain again t
same value foru with a good fit in a range of values oft
similar to that considered withx. For the specific heat,

C0Cth~uutu!1B0~t!5Cexpt~ utu! ~22!

in which B0(t) is an additive noncritical~i.e., regular or
analytic int! background andC0 a nonuniversal multiplica-
tive factor which must be the same in the two phases.

Let us emphasize that the field theoretical form obtain
for Cth(t) involves a specific critical additive backgroun
term which reproduces the famous ‘‘classical jump’’ of th
specific heat~see Fig. 4!. Of course, the magnitude of thi
jump is not universal but in the case where an actual sys
would reproduce the entire classical-to-critical crossover
field theory, then it should also exhibit this jump@up to the
global additive backgroundB0(t) analytic int#.

If, in addition to C and x, we also possess coexisten
curve data, we have a stronger constraint since then no o
adjustable parameter is required to fit these new data. Ind
in the relation

M0M th~uutu!5Mexpt~ utu! ~23!

everything is fixed sinceM0 is related toC0 andx0 due to
the universal amplitude combination@46# RC and u must
have the same value whatever the quantity considered.

s
de

of

FIG. 4. The field theoretical form of the specific heat exhib
the classical ‘‘jump.’’

n

TABLE IX. Values of the universal ratios of the amplitudes
the first correction to scaling for thermodynamic quantities comb
ing calculations in the two phases; hence forn51 only ~not ob-
tained from the crossover functions, see text!. Same presentation a
in Table VII.

ax
1/ax

2 aC
1/aC

2 aM /ax
1

0.243
(0.21560.029)

0.893
(1.3660.47)

0.743
(0.4060.35)

0.186 1.823 0.048
2-10
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TABLE X. Values of the universal ratios of the amplitudes of the first correction to scaling for
quantities calculated in the homogeneous phase~not obtained from the crossover functions, see text!. Same
presentation as in Table VII.

n 1 2 3

aj
1/ax

1 0.699
(0.6860.02)

0.642
(0.63660.006)

0.625
(0.61260.014)

0.659 0.630 0.598
aC

1/ax
1 8.89

(8.6860.23)
6.09

(5.9760.13)
4.63

(4.5860.06)
8.43 5.84 4.52
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If we simultaneously also had access to experime
measurements of the correlation lengthj, then the constrain
would be even stronger since again the theory must a
with the data without new adjustable parameters.

In order to facilitate the use of the crossover functio
displayed in Tables I–IV, text files ofFORTRAN code are
provided@47#.

B. Account for the error bounds

We have accounted for the error estimates by provid
two sets~‘‘max’’ and ‘‘min’’ ! of functions. In general the
accuracy of the experimental measurements is much sm
than in the present theoretical calculation so that it is
very important to make a difference between the two set
functions. One or the other choice would provide essenti
the same quality of the adjustment in the fitting procedur

Sometimes accounting for the difference between
bounds ‘‘max’’ and ‘‘min’’ may have some importance s
that neither one nor the other agrees with the measurem
but a mixing of the two would. In such a case we propose
introduce the mixing via the introduction of a supplementa
adjustable parameterE.

Let us define a new theoretical function as follows:

FE~ t !5@Fmax~ t !#E@Fmin~ t !#12E, ~24!
-

l,
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which, regarding the definition of the effective exponen
corresponds to the linear weighting

eeff~ t !5Eeeff
max~ t !1~12E!eeff

min~ t !. ~25!

Then the introduction of the other adjustable paramet
such asu for example, withinFE(t) is unchanged compare
to the description given above except that the additiveX6
term mentioned in Eq.~20! is obviously excluded fromFmax
andFmin and treated as a new adjustable additive parame

As we said in Sec. II B 2 it is likely that the close accou
of the GZ estimates has led us to overestimate the un
tainty in the correction terms so that it seems to us usefu
provide the reader also with functions reproducing the co
plete classical-to-critical crossover according to the resu
mation criteria of the previous~but corrected, see@35#! work
of Refs.@6,7# although~or rather because! this time the errors
are underestimated. This is why we provide two additio
text files ofFORTRAN code@47# corresponding to the forme
resummation criteria applied to the corrected series~without
the seventh order of Ref.@30#!.
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