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Variational perturbation theory for Markov processes
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We develop a convergent variational perturbation theory for conditional probability densities of Markov
processes. The power of the theory is illustrated by applying it to the diffusion of a particle in an anharmonic
potential.
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I. INTRODUCTION

Variational perturbation theory@1# transforms divergen
perturbation expansions into convergent ones, with the c
vergence extending to infinitely strong couplings. The the
has been developed for the path integral representation o
free energy and the density matrix in quantum statistics,
has been tested for many systems, in particular, the an
monic oscillator and the hydrogen atom, with and withou
homogeneous magnetic field@1–7#. The procedure is base
on approximating a potential by a local trial oscillator who
frequency is optimized order by order for each set of exter
end points. Recently, variational perturbation theory has a
been successfully extended to statistical field theory to
culate highly accurate critical properties of second or
phase transitions@8#.

In this paper we develop a similarly convergent var
tional perturbation theory for the path-integral representa
of the conditional probability density of Markov processe
In close analogy with the previous method, we approxim
a given stochastic process by a trial Brownian motion wit
linear drift coefficient, and optimize the damping consta
We illustrate the procedure by calculating the time dep
dence of the conditional probability density for a nonline
stochastic model. After some introductory remarks on M
kov processes in Sec. II, the path integral for the conditio
probability density is treated perturbatively in Sec. III, a
evaluated variationally in Sec. IV.

II. MARKOV PROCESSES

We start by summarizing the basic properties of Mark
processes@9–12# needed in the sequel.

A. Fokker-Planck equation

A Markov process for a single stochastic variablex is
characterized by the conditional probability dens
P(xbtbuxata) that the eventxb is realized at the timetb once
the eventxa has taken place at timeta . It has the initial
condition
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P~xbtauxata!5d~xb2xa! ~1!

and obeys, for additive noise, the Fokker-Planck equatio

]

]tb
P~xbtbuxata!5L̂FP~xb!P~xbtbuxata! ~2!

with the Fokker-Planck operator

L̂FP~xb!"52
]

]xb
@K~xb!"#1D

]2

]xb
2 ", ~3!

whereK(x) andD denote the drift coefficient and the diffu
sion coefficient, respectively. An important example is p
vided by the overdamped motion of a Brownian particle w
massM and friction constantk in an external potentialV(x).
In this case, the drift coefficient reads

K~x!52
V8~x!

Mk
, ~4!

and the diffusion coefficient is proportional to the tempe
ture T via Einstein’s relation

D5MkkBT. ~5!

Since the spatial derivatives in the Fokker-Planck equa
~2!, ~3! are all on the left-hand side, they guarantee the pr
ability conservation

]

]tb
E

2`

1`

dxbP~xbtbuxata!50, ~6!

such that the normalization integral, which is unity at t
initial time tb5ta due to Eq.~1!, remains so for all times:

E
2`

1`

dxbP~xbtbuxata!51. ~7!

In the long-time limit tb→`, the conditional probability
densityP(xbtbuxata) becomesstationary:

lim
tb→`

P~xbtbuxata!5Pst~xb!, ~8!

wherePst(xb) denotes the time-independent solution of t
Fokker-Planck equation~2!, defined by

L̂FP~xb!Pst~xb!50. ~9!
©2002 The American Physical Society28-1
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By applying the Fokker-Planck operator~3!, we verify that
the solution is

Pst~xb!5N expF 1

D Exb
dx K~x!G , ~10!

where the normalization constantN follows from Eqs.~7!
and ~8!:

N5H E
2`

1`

dxb expF 1

D Exb
dx K~x!G J 21

. ~11!

B. Path integral

The solution of the Fokker-Planck initial value proble
~1!–~3! has the path-integral representation

P~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDx e2A@x# ~12!

with the generalized Onsager-Machlup functional

A@x#5
1

4D E
ta

tb
dt$ẋ~ t !2K~x~ t !!%21

1

2 Eta

tb
dtK8~x~ t !!,

~13!

where all pathsx(t) contribute in connecting the spacetim
points (xa ,ta) and (xb ,tb). The extra term in Eq.~13! is
needed since the path integral~12!,~13! is by definition sym-
metrically ordered in the product ofẋ(t) andK(x(t)), cor-
responding to a midpoint discretization@1#:

P~xbtbuxata!5 lim
e→0

H )
n51

N E
2`

1`

dxnJ S 1

4pDe D N11/2

3expH 2
e

4D (
n51

N11 Fxn2xn21

e

2KS xn1xn21

2 D G2

2
e

2 (
n51

N11

K8S xn1xn21

2 D J .

~14!

Making use of the stationary solution~10!, the path integral
~12!,~13! can be factorized as

P~xbtbuxata!5APst~xb!

Pst~xa!
P̃~xbtbuxata! ~15!

with the remaining path integral

P̃~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDx expS 2
1

2D E
ta

tb
dt$ 1

2 ẋ2~ t !

1 1
2 K2@x~ t !#1DK8@x~ t !#% D . ~16!

This coincides with the quantum-statistical, imaginary-tim
evolution amplitude@1#
06612
~xb\buxa0!5E
x~0!5xa

x~\b!5xbDx expS 2
1

\ E
0

\b

dtH M

2
ẋ2~t!

1U@x~t!#J D , ~17!

in which we identify

ta[0, tb[\b, D[
\

2M
~18!

and set

U~x![
M

2
K2~x!1

\

2
K8~x!. ~19!

To the path integral~17!, we can directly apply the known
variational perturbation theory@1#, which, in the present con
text, will lead us to a solution of the Fokker-Planck initi
value problem~1!–~3!.

C. Brownian motion

A solvable trial path integral is provided by the Brownia
motion with a linear drift coefficient

K~x!52kx, ~20!

where the stationary solution~10!,~11! reads

Pk,st~x!5A k

2pD
expS 2

k

2D
x2D . ~21!

Therefore, according to Eq.~15!, the conditional probability
density factorizes as

Pk~xbtbuxata!5expFk2 ~ tb2ta!2
k

4D
~xb

22xa
2!G

3 P̃k~xbtbuxata!, ~22!

and the remaining path integral is simply

P̃k~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDx expS 2
1

2D E
ta

tb
dt@ 1

2 ẋ2~ t !

1 1
2 k2x2~ t !# D . ~23!

This describes a quantum-statistical harmonic oscillator w
the potentialU(x)5Mk2x2/2. Inserting the imaginary-time
evolution amplitude of the harmonic oscillator@13#, and tak-
ing into account the identification~18!, we obtain
8-2
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P̃k~xbtbuxata!5A k

4pD sinhk~ tb2ta!

3expH 2k

4D sinhk~ tb2ta!

3@~xa
21xb

2!coshk~ tb2ta!22xaxb#J . ~24!

The resulting conditional probability density of the Brownia
motion~20! follows from Eqs.~22!,~24! and leads to the wel
known Gaussian distribution

Pk~xbtbuxata!5
1

A2ps2~xa ,ta ;tb!

3expH 2
@xb2 x̄~xa ,ta ;tb!#2

2s2~xa ,ta ;tb! J ~25!

with the average point

x̄~xa ,ta ;tb!5xae2k~ tb2ta!, ~26!

and the width

s~xa ,ta ;tb!5AD

k
@12e22k~ tb2ta!#. ~27!

It can easily be verified that the conditional probability de
sity ~25!–~27! satisfies the initial condition~1!, and obeys the
Fokker-Planck equation associated with the drift coeffici
~20!:

]

]tb
Pk~xbtbuxata!5

]

]xb
@kxbPk~xbtbuxata!#

1D
]2

]xb
2 Pk~xbtbuxata!. ~28!

In general, the drift coefficientK(x) of a Markov process is
a nonlinear function inx, and the corresponding condition
probability densityP(xbtbuxata) cannot be calculated ex
actly. We must then resort to approximation methods. In
paper we want to show that variational perturbation theor
a very efficient one. For this we first need an ordinary p
turbation expansion, which will be derived in the next se
tion for a typical example.

III. PERTURBATION THEORY

Consider the nonlinear drift coefficient

K~x!52kx2gx3 ~29!

with a coupling constantg. Such a stochastic model is usefu
for instance, to describe the statistical properties of laser l
near the threshold in semiclassical laser theory@12,14#. In
this case, the stochastic variablex is identified with the elec-
tric field. The parameterk is proportional to the difference
between the pump parameters and its threshold values thr .
06612
-

t

is
is
-
-

ht

The coupling constantg describes the interaction betwee
light and matter within the dipole approximation, and t
diffusion constantD characterizes the spontaneous emiss
of radiation. For such a stochastic process, the station
solution ~10!,~11! reads

Pst~x!5A2g

k

expF2
1

2D S k2

4g
1kx21

g

2
x4D G

K1/4S k2

8DgD , ~30!

whereKn(z) denotes a modified Bessel function@15#. The
path integral for the conditional probability density corr
sponding to~12!,~13! reads

P~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDx expS 2
1

4D E
ta

tb
dt@ ẋ~ t !1kx~ t !

1gx3~ t !#21
1

2 Eta

tb
dt@k13gx2~ t !# D . ~31!

The decomposition of type~15! leads to

P~xbtbuxata!5expS k

2
~ tb2ta!2

k

4D
~xb

22xa
2!

2
g

8D
~xb

42xa
4! D P̃~xbtbuxata! ~32!

with the remaining path integral

P̃~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDx expS 2
1

2D E
ta

tb
dt@ 1

2 ẋ2~ t !

1 1
2 k2x2~ t !1gkx4~ t !1 1

2 g2x6~ t !

23gDx2~ t !# D . ~33!

For zero coupling constantg, we obtain the conditional prob
ability density~23! of the Brownian motion~20!. Expanding
the exponential in powers ofg, we find the first-order ap-
proximation

P̃~xbtbuxata!5 P̃k~xbtbuxata!H 11gF3

2 Eta

tb
dt^x2~ t !&k

2
k

2D E
ta

tb
dt^x4~ t !&kG1¯J . ~34!

On the right-hand side, we have denoted the harmonic
pectation value of any functionalF@x# of the pathx(t) by
8-3
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^F@x#&k5
1

P̃k~xbtbuxata!
E

x~ ta!5xa

x~ tb!5xbDxF@x#

3expH 2
1

2D
E

ta

tb
dtF1

2
ẋ2~ t !1

1

2
k2x2~ t !G J .

~35!

The latter is evaluated with the help of the generating fu
tional for the quantum-statistical harmonic oscillator

P̃k~xbtbuxata!@ j #5E
x~ ta!5xa

x~ tb!5xbDx expS 2
1

2D E
ta

tb
dt@ 1

2 ẋ2~ t !

1 1
2 k2x2~ t !2 j ~ t !x~ t !# D , ~36!
in

e
e
ni

in

ex

a

06612
-

which has the explicit form@13#

P̃k~xbtbuxata!@ j #

5 P̃k~xbtbuxata!expS 1

2D E
ta

tb
dt1xcl~ t1! j ~ t1!

1
1

4D2 E
ta

tb
dt1E

ta

tb
dt2G~ t1 ,t2! j ~ t1! j ~ t2! D . ~37!

The quantityP̃k(xbtbuxata) is the same as in Eq.~24!, and
xcl(t1) denotes the classical path

xcl~ t1!5
xa sinhk~ tb2t1!1xb sinhk~ t12ta!

sinhk~ tb2ta!
. ~38!

The quadratic term in Eq.~37! contains the Green function
G~ t1 ,t2!5
D@Q~ t12t2!sinhk~ tb2t1!sinhk~ t22ta!1Q~ t22t1!sinhk~ tb2t2!sinhk~ t12ta!#

k sinhk~ tb2ta!
. ~39!
man
in-

ath:

-

We evaluate harmonic expectation values of polynomialsx
arising from the generating functional~37! according to a
slight generalization of the standard Wick theorem@16,17#.
The generalization is required by the presence of the lin
term in Eq.~37!. The evaluation is most economically don
in a recursive procedure that we illustrate with the harmo
expectation value

^xn~t1!xm~t2!&k . ~40!

The procedure is as follows.
~i! Contractingx(t1) with xn21(t1) andxm(t2) leads to a

Green functionG(t1 ,t1) andG(t1 ,t2) with multiplicity n
21 andm, respectively. The rest of the factors remains
side the expectation symbol, leading to^xn22(t1)xm(t2)&k
and ^xn21(t1)xm21(t2)&k .

~ii ! If n.1, we extract onex(t1) from the expectation
value, givingxcl(t1) multiplied by ^xn21(t1)xm(t2)&k .

~iii ! Add the terms~i! and ~ii !.
~iv! Repeat the previous steps until only products of

pectation valueŝx(t1)&k5xcl(t1) remain.
With the help of this recursive procedure, the first-order h
monic expectation valuêx4(t1)&k is reduced to

^x4~t1!&k5xcl~t1!^x3~t1!&k13G~t1 ,t1!^x2~t1!&k .
~41!

Similarly, we find
ar

c

-

-

r-

^x3~t1!&k5xcl~t1!^x2~t1!&k12G~t1 ,t1!xcl~t1!, ~42!

and

^x2~t1!&k5xcl
2 ~t1!1G~t1 ,t1!. ~43!

Combining Eqs.~41!–~43!, we obtain in first order

^x4~t1!&k5xcl
4 ~t1!16xcl

2 ~t1!G~t1 ,t1!13G2~t1 ,t1!.
~44!

The contractions can be represented graphically by Feyn
diagrams with the following rules. Vertices represent the
tegrations overt:

~45!

a line denotes the Green function:

~46!

and a line ending with a cross represents the classical p

~47!

Inserting the harmonic expectation values~43! and~44! into
the perturbation expansion~34! leads to the first-order dia
grams
~48!
8-4
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Evaluating the diagrams, the conditional probability dens
for the drift coefficient~29! following from Eqs. ~32! and
~48! becomes, to first order in the coupling constantg,

P~xbtbuxata!5Pk~xbtbuxata!$11g@c00
~1!~t !1c20

~1!~t !xa
2

1c21
~1!~t !xaxb1c22

~1!~t !xb
21c40

~1!~t !xa
4

1c41
~1!~t !xa

3xb1c42
~1!~t !xa

2xb
21c43

~1!~t !xaxb
3

1c44
~1!~t !xb

4#1¯%, ~49!

where the expansion coefficientsci j
(1)(t) are the following

functions of the dimensionless variablet5k(tb2ta) ~see
Fig. 1!:

c00
~1!~t !5

3D@114e22t~122t!2e24t~514t!#

4k2~12e22t!2 ,

c20
~1!~t !5

3@e22t~4t25!14e24t~112t!1e26t#

2k~12e22t!3

5c22
~1!~t !,

c21
~1!5

3@e2t~22t!12e23t~124t!2e25t~3t14!#

k~12e22t!3 ,

c40
~1!~t !5

2e22t13e24t~124t!26e26t1e28t

4D~12e22t!4 ,

c41
~1!~t !5

2e2t13e23t~4t23!13e25t~314t!1e27t

2D~12e22t!4

5c43
~1!~t !,

c42
~1!~t !5

3@e22t~322t!28te24t2e26t~312t!#

2D~12e22t!4 ,

c44
~1!~t !5

2116e22t23e24t~114t!22e26t

4D~12e22t!4 . ~50!

It is easy to verify that the conditional probability densi
~49!,~50!

~i! obeys the corresponding Fokker-Planck equation
lowing from Eqs.~2!, ~3!, and~29!:

]

]tb
P~xbtbuxata!5

]

]xb
@~kxb1gxb

3!P~xbtbuxata!#

1D
]2

]xb
2 P~xbtbuxata! , ~51!

with the initial condition~1!, because of

c00
~1!5c20

~1!~0!5c21
~1!~0!5c22

~1!~0!5c41
~1!~0!5c42

~1!~0!5c43
~1!~0!

50,

c40
~1!~0!52c44

~1!~0!5
1

8D
; ~52!
06612
y

l-

~ii ! is normalized according to Eq.~7! for all times tb ;
and

~iii ! approaches the stationary solution~30! in the long-
time limit ~8!.
All of these properties ofP(xbtbuxata) are satisfied to first
order in the coupling constantg. As such, the perturbative
result ~49!,~50! is only applicable for small values of th
coupling constantg. This limitation is eliminated by a varia
tional evaluation that enables us to find an approximate c
ditional probability density for all values of the couplin
constantg.

IV. VARIATIONAL PERTURBATION THEORY

In quantum statistics, variational perturbation theory a
proximates a given potential by adding and subtracting
local trial harmonic oscillator whose frequency is then s
tematically optimized@1#. Here we transfer this procedure t
Markov processes and modify the nonlinear drift coefficie
~29! by adding and subtracting a trial Brownian motion wi
an as-yet unknown damping constantK:

K~x!52Kx2gS k2K

g
x1x3D . ~53!

After this, we treat the combined second term as being sm
of the order of the coupling constantg. The result is obtained

FIG. 1. Temporal behavior of the expansion coefficients~50! of
the conditional probability density~49! as a function oft5k(tb

2ta) for D5k51.
8-5
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most easily by replacing the damping constantk in the origi-
nal drift coefficient~29!, according to the substitution rul
~compare with Chap. 5 in Ref.@1#!

k→K~11gr !, ~54!

where we have introduced the abbreviation

r 5
k2K

gK
. ~55!

Writing the conditional probability density~49! as

P~xbtbuxata!5exp@W~xbtb ;xata!#, ~56!

we apply the substitution rule~54! to the cumulant expansio
W(xbtb ;xata), and re-expand up to the first order in the co
pling constant g. Afterwards, the abbreviationr is re-
expressed in terms ofk andK via Eq. ~55!. This leads to

W~1!~xbtb ;xata ;K !5$c00
~0!~t !1c20

~0!~t !xa
21c21

~0!~t !xaxb

1c22
~0!~t !xb

21g@c00
~1!~t !1c20

~1!~t !xa
2

1c21
~1!~t !xaxb1c22

~1!~t !xb
21c40

~1!~t !xa
4

1c41
~1!~t !xa

3xb1c42
~1!~t !xa

2xb
2

1c43
~1!~t !xaxb

31c44
~1!~t !xb

4#%, ~57!

where the zeroth-order expansion coefficients

c00
~0!~t !5

1

2
ln

K

2pD~12e22t!
1S k

K
21D S 1

2
2

te22t

12e22tD ,

c20
~0!~t !52

ke22t

2D~12e22t!
1

~k2K !te22t

D~12e22t!2 ,

c21
~0!~t !5

ke2t

D~12e22t!
2

~k2K !t~11e22t!e2t

D~12e22t!2 ,

c22
~0!~t !52

k

2D~12e22t!
1

~k2K !te22t

D~12e22t!2 ~58!

and the first-order expansion coefficients~50! are functions
of the dimensionless variablet5K(tb2ta). Note that using
Eq. ~50! in Eq. ~57! necessitates the substitution ofk by K.

We now eliminate the dependence of the cumulant exp
sion ~57! from the artificially introduced trial damping con

FIG. 2. Conditional probability densityP(xbtbuxata) below the
laser threshold atk51, D51, and xa5ta50. For the coupling
constantsg50.1 in ~a! andg510 in ~b! the distribution is shown
for timestb50.05, 0.1, 0.2, 0.5, 1 from top to bottom at the origi
respectively.
06612
-

n-

stant K. According to the principle of minimal sensitivity
@18#, we minimize its influence onW(1)(xbtbuxata ;K) by
searching for local extrema ofW(1)(xbtbuxata ;K) with re-
spect toK, i.e., from the condition

]W~1!~xbtb ;xata ;K !

]K U
K5K~1!~xbtb ;xata!

50. ~59!

It may happen that this equation is not solvable within
certain region of the parametersxb , tb , xa , ta . In this case,
in accordance with the principle of minimal sensitivi
@1,17#, we look for turning points instead, i.e., we determi
the variational parameterK (1)(xbtb ;xata) by solving

]2W~1!~xbtb ;xata ;K !

]K2 U
K5K~1!~xbtb ;xata!

50. ~60!

The solutionK (1)(xbtb ;xata) from Eqs.~59! or ~60! yields
the variational result

P~xbtbuxata!

'
exp$W@xbtb ;xata ;K ~1!~xbtb ;xata!#%

E
2`

1`

dxb exp$W@xbtb ;xata ;K ~1!~xbtb ;xata!#%

~61!

for the conditional probability density. Note that variation
perturbation theory does not preserve the normalization
the conditional probability density. Although the perturbati
result ~49!,~50! is still normalized, in the usual sense~7!, to
first order in the coupling constantg, this normalization is
spoiled by choosing anxb-dependent damping consta
K (1)(xbtb ;xata). Thus, we have to normalize the variation
conditional probability density, according to Eq.~61!, at the
end~compare the similar situation for the variational groun
state wave function in Refs.@17#,@19#!.

We have applied variational perturbation theory to an
lyze the nonlinear stochastic model~29! with D51, xa5ta
50 below and above the laser threshold, i.e.,k51 andk
521, for small and strong couplingg50.1 andg510. The
results for the conditional probability densityP(xbtauxata)
are plotted in Figs. 2 and 3. On the scale of the figures, t
show no significant deviation from numerical solutions
the corresponding Fokker-Planck equation. Some minor
viations only occur above the laser thresholdk521 for g

FIG. 3. Conditional probability densityP(xbtbuxata) above the
laser threshold atk521, D51, andxa5ta50. For the coupling
constantsg50.1 in ~a! andg510 in ~b! the distribution is shown
for timestb50.1, 0.2, 0.5, 1, 1.5, 2, 3, 4 andtb50.05, 0.1, 0.2, 0.5
from top to bottom at the origin, respectively.
8-6
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50.1 @20#. Both figures illustrate how the densities, whic
originally peaked at the origin, turn into their stationary s
lutions in the long-time limit. In Fig. 2, the stationary solu
tion reveals one extremum below the threshold, whereas
3 reveals two extrema above the laser threshold.

V. CONCLUSION

We have presented the lowest-order variational calc
tion for the conditional probability density of the nonline
drift coefficient~29!. By going to higher orders in variationa
perturbation theory, it is straightforward to systematically
crease the accuracy to any desired degree@1#.

Note Added. Since completing this work, we have becom
aware of the alternative approach@21# to variationally ana-
s,
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lyzing the nonlinear model~29!. Above the laser threshold
k521, that method yields for all timestb a unique solution
of the extremal condition corresponding to Eq.~59!. How-
ever, the resulting conditional probability density shows
larger timestb significant deviations from our, and from nu
merical solutions of the Fokker-Planck equation.
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