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Variational perturbation theory for Markov processes
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We develop a convergent variational perturbation theory for conditional probability densities of Markov
processes. The power of the theory is illustrated by applying it to the diffusion of a particle in an anharmonic
potential.
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I. INTRODUCTION P(Xpta|Xata) = 8(Xp—X,) 1

Variational perturbation theorjl] transforms divergent and obeys, for additive noise, the Fokker-Planck equation
perturbation expansions into convergent ones, with the con- P
vergence extending to infinitely strong couplings. The theory Pt Xt ) = L e X ) P (Xt Xt 2
has been developed for the path integral representation of the oty o olXata) = Leplxe) P(Xpto|Xala) @)
free energy and the density matrix in quantum statistics, and
has been tested for many systems, in particular, the anhafith the Fokker-Planck operator
monic oscillator and the hydrogen atom, with and without a P 52
homogene_ous_ magnetic fi_eﬂdl—?]. The pr_ocedure is based [Fp(xb).: — T[K(Xb)']"'D — (3)
on approximating a potential by a local trial oscillator whose Xp IXpy
frequency is optimized order by order for each set of external

end points. Recently, variational perturbation theory has als&vhereK(x) andD denote the drift coefficient and the diffu-

been successfully extended to statistical field theory to cal§!3n dcgeftf;luent, rg:spectglely.tAn |r;1poB[tant gxamplg :S pffh'
culate highly accurate critical properties of second order/'@€d by the overdamped motion of a brownian particie wi
phase transitionEs]. massM and friction constank in an external potential(x).

In this paper we develop a similarly convergent varia-In this case, the drift coefficient reads
tional perturbation theory for the path-integral representation V' (%)
of the conditional probability density of Markov processes. K(x)=— M’ (4)
In close analogy with the previous method, we approximate K
a given stochastic process by a trial Brownian motion with 84 the giffusion coefficient is proportional to the tempera-
linear drift coefficient, and optimize the damping constant. .« T via Einstein’s relation
We illustrate the procedure by calculating the time depen-
dence of the conditional probability density for a nonlinear D=M«kkgT. )

stochastic model. After some introductory remarks on Mar-

kov processes in Sec. II, the path integral for the conditionaPince the spatial derivatives in the Fokker-Planck equation
probability density is treated perturbatively in Sec. I, and(2); (3) are all on the left-hand side, they guarantee the prob-

evaluated variationally in Sec. IV. ability conservation

Jd (*=
EJ dxpP (Xptp|Xata) =0, (6)
Il. MARKOV PROCESSES bJ—ee

We start by summarizing the basic properties of Markovsuch that the normalization integral, which is unity at the
processe$9—12 needed in the sequel. initial time t,=t, due to Eq.(1), remains so for all times:

+
A. Fokker-Planck equation f_w A% P (Xpty|Xata) = 1. @)
A Markov process for a single stochastic variablés
characterized by the conditional probability density
P(Xptp|Xats) that the evenk, is realized at the timg, once
the eventx, has taken place at timg,. It has the initial lim POxutilxat) = Pa(X 8
condition (Xp b| a a) s Xp), (8)

In the long-time limit t,—, the conditional probability
density P(Xptp|Xata) becomesstationary:

tb~>:x:

where Pg(x,) denotes the time-independent solution of the

*Email address: kleinert@physik.fu-berlin.de Fokker-Planck equatiof®), defined by
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By applying the Fokker-Planck operat(8), we verify that
the solution is

: (10

1 (x
Pst(xb)zNex;{Bf dx K(x)

where the normalization constaht follows from Egs.(7)

and(8):
+ o X -1
N=[f dxbexp{%J bdx K(x) J .

B. Path integral

(11)

The solution of the Fokker-Planck initial value problem

(1)—(3) has the path-integral representation

X(tb) =

X
P(Xptp|Xata) = J °Dx e AX] (12

X(ta) =Xa

with the generalized Onsager-Machlup functional

B 1 tbd . ) 1 tbd ,
AX]= 55 ft At K07+ 5 ft ati (x(v),
(13

where all paths(t) contribute in connecting the spacetime

points (x,,t,) and ,,t,). The extra term in Eq(13) is
needed since the path integfaPR),(13) is by definition sym-
metrically ordered in the product of(t) and K(x(t)), cor-
responding to a midpoint discretizatidh]:

N Lo 1 \N+12
P(XgtolXata) = lim [ 11 f ) dxn](m)
><exp{ < Nil XXt
4D =1 €
B Xn+Xn1) _fNil K Xn+xnl)]
2 2n=1 2
(14

Making use of the stationary solutigia0), the path integral
(12),(13) can be factorized as

Py -
P(Xptp|Xata) = \/%P(thdxata)

with the remaining path integral

(19

~ X(th) =Xp 1 [t 1o
P(xbtb|xata)=J' Dx ex ——f dt{5%4(t)
X(tg) =X4 2D ty

+ 3K2[x(t) ]+ DK'[x(t)]} |. (16)
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X(A.8) =Xy 1 (w8 M
(Xph B]X,0) = f Dx exp( - %J dT[?XZ(T)
0

X(0)=X4
+U[X(T)]]>, 17)
in which we identify
h
t,=0, t,=AapB, D= oM (18
and set
M h
U(x)= EKZ(X)-F EK’(X). (19

To the path integra(17), we can directly apply the known
variational perturbation theofyl], which, in the present con-
text, will lead us to a solution of the Fokker-Planck initial
value problem(1)—(3).

C. Brownian motion

A solvable trial path integral is provided by the Brownian
motion with a linear drift coefficient

K(X)= — kX, (20
where the stationary solutiai10),(11) reads
Pos(X)= \/ 5= exg — 2 x 21

Therefore, according to E@15), the conditional probability
density factorizes as

K K 2 2
P (Xptp|Xata) = €X 5 (th—ta) — E(Xb_xa)

X P(Xptp|Xata), (22
and the remaining path integral is simply

X(tb) = Xb

. 1 J’tbd 1.2
X eX D 5 [ 3X(1)

+%K2X2(t)]).

P (Xptp|Xata) = f

X(tg)=Xq

(23

This describes a quantum-statistical harmonic oscillator with
the potentialU (x) =M «?x?/2. Inserting the imaginary-time

This coincides with the quantum-statistical, imaginary-timeevolution amplitude of the harmonic oscillafdr3], and tak-

evolution amplitudd 1]

ing into account the identificatiofL8), we obtain
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_ K The coupling constang describes the interaction between
P (Xptp|Xata) = 47D sinh(ty— 1) light and matter within the dipole approximation, and the
b ‘a diffusion constanD characterizes the spontaneous emission
— K of radiation. For such a stochastic process, the stationary
% . :
eXP 1D Sinhr(ty—t,) solution(10),(11) reads

2
X[ (X2 +x2)coshi(t,—ta) —2X.Xp] . (24) oxd - [ 2 e
29 2D \4g
. L . . . Psi(x)= 2 , (30
The resulting conditional probability density of the Brownian K K K
motion (20) follows from Eqgs.(22),(24) and leads to the well 14 8Dg
known Gaussian distribution
1 whereK ,(z) denotes a modified Bessel functiph5]. The
P (Xptp|Xata) = 5 path integral for the conditional probability density corre-
V21a“(Xa,ta3th) sponding to(12),(13) reads
Xp— X(Xq,ta:tp) 12
artarth P(Xptp|Xata) = j Dx exp( - ﬁf dit[x(t) + xkx(t)
with the average point Xta)=xa a
1t
X(Xatait) =X~ 071, (26) +3(t)]%+ Eft dtf«+3gx*(t)]|. (31
and the width
5 The decomposition of typ€l5) leads to
o(Xa,taity) = \/?[1_ e_ZK(tb_ta)]- (27)
_ K Ko 2 2
It can easily be verified that the conditional probability den- P(Xpto|Xata) =€XH 7 (to—ta) = 75 (Xo—Xa)
sity (25)—(27) satisfies the initial conditiofil), and obeys the
Fokker-Planck equation associated with the drift coefficient g ~
(20) q - @ug‘—xi)) P(xptp|Xata) ~ (32)
J Jd
EPK(thanta): a—)%[KXbPK(thanta)] with the remaining path integral
92 1
I _ X(tp) =X t .
TP PelxotiXata). (28 P(Xptp|Xata) = f "Dx exp( - Ef At L)
X(tg) =Xq ta
In general, the drift coefficieri (x) of a Markov process is +1i2x2(t) + grex(t) + L g2x8(t)

a nonlinear function irx, and the corresponding conditional

probability density P(x,t,|X,ta) cannot be calculated ex- )

actly. We must then resort to approximation methods. In this —3gDx(1)]]. (33
paper we want to show that variational perturbation theory is

a very efficient one. For this we first need an ordinary per-

turbation expansion, which will be derived in the next sec-For zero coupling constagt we obtain the conditional prob-

tion for a typical example. ability density(23) of the Brownian motior{20). Expanding
the exponential in powers aj, we find the first-order ap-
lll. PERTURBATION THEORY proximation
Consider the nonlinear drift coefficient 3 ft
~ ~ b
K(X)=— kx—gx3 (29) P(Xptp|Xata) = PK(thb|Xata)‘ 1+9/5 ft dt(x?(1)) .
with a coupling constarg. Such a stochastic model is useful, Kk (to .
for instance, to describe the statistical properties of laser light - Ejt dt(x* (1)) |+ ¢ (34)

near the threshold in semiclassical laser thddrg,14. In
this case, the stochastic variabiés identified with the elec-
tric field. The parametek is proportional to the difference On the right-hand side, we have denoted the harmonic ex-
between the pump parameterand its threshold valuey,, . pectation value of any function&[x] of the pathx(t) by
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which has the explicit fornj13]

1 X(tp) =Xp
FIxl) e ———— [ DxFix ) .
P (Xptp|Xats) Xt =%a P (Xptp|Xata)[]]

1 (6 [1 1 % Lo -
X ex __f dt| =x2(t) + = k(1) | | =P (Xpto|Xata) XY 55 t dtyXe(t)j(t)
2D Jt, |2 2 a
(35) 1 tp tp ) )
* D2 t dty t dt,G(ty,t5)j(t1)j(to) |. (37
The latter is evaluated with the help of the generating func- ? ?
tional for the quantum-statistical harmonic oscillator The quantityTDK(xbtb|xata) is the same as in Eq24), and
Xq(t1) denotes the classical path
P (Xptp|Xata)[i ] IX(tb)_Xbeexp< ! ftbdt[l>‘<2(t) inh ) h )
«(Xplp = ~on 2 Xo Sinhk(ty—1t1) + X, sinhk(ty—t
ala X(t) =Xq 2D t, Xg(ty) = a K( b- 1 b k(ty—ty (39)
sinhx(ty—t,)
+ %xzxz(t)—j(t)x(t)]), (36)  The quadratic term in Eq37) contains the Green function
|
D t;—ty)sinhk(ty—ty)sinhk(t,—t,) + O (t,—ty)sinhk(ty,—t,)sinhk(t;—t
Gty ty) = [O(t;—1y) (thb—1ty) (2. a) _(2 1) (th—t2) (t a)]. (39
K sinhk(t,—t,)
|
We evaluate harmonic expectation values of polynomials in <X3(71)>K=Xc|( T)(X3(711)) +2G (71, 7)X( 1), (42)

arising from the generating function@?7) according to a

slight generalization of the standard Wick theorfs,17.  and

The generalization is required by the presence of the linear 2 2 G 43
term in Eq.(37). The evaluation is most economically done O} = Xal(12) +C(71,70). 43
in a recursive procedure that we illustrate with the harmoniacCombining Eqs(41)—(43), we obtain in first order

expectation value . 4 ) )
(XH(71)) e =Xe(T1) + 6Xg(7) G(71,71) +3G(7q,71).
(XMT)XT(72)) - (40) (44)

The procedure is as follows. The contractions can be represented graphically by Feynman

(i) Contractingx( ;) with X"~ %(7,) andx™(,) leads to a diagra!ms with the following rules. Vertices represent the in-
Green functionG(r,,7;) andG(ry,7,) with multiplicity n ~ tégrations ovet:

—1 andm, respectively. The rest of the factors remains in-
side the expectation symbol, leading ('~ 2(74)X™(75)) /t” dt >< b dt
and(x" (7)™ (7)), . ] e

(i) If n>1, we extract one(7;) from the expectation (45)
value, givingxq(71) multiplied by (x"~1(7)x™(7,)), .

(iii) Add the termd(i) and (ii).

(iv) Repeat the previous steps until only products of ex- _
pectation value¢x (7)) =X (1) remain. 2 = Gltuh), (46)
With the help of this recursive procedure, the first-order harand a line ending with a cross represents the classical path:
monic expectation valugx*(r;)), is reduced to

(XH(1)) =X (T1)(X3(71)) e+ 3G( 71, T)(XP(71)) 1 - a1

—.—

I

a line denotes the Green function:

1

——-1 = zalt1). (47)

Inserting the harmonic expectation valuUd8) and(44) into
the perturbation expansio34) leads to the first-order dia-
Similarly, we find grams

P(wbtbmata):Isn(wbtb|mata){1+g [g‘ (F‘ﬁ( + Q) _% ( + 6 ><_Q*><+3 %):I +} .

(48)
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Evaluating the diagrams, the conditional probability density )

for the drift coefficient(29) following from Egs.(32) and
(48) becomes, to first order in the coupling constgnt

P(Xpto|Xata) = P(Xpto|Xata){ 1+ [ €66 (7) + bt (7)X
+ 57 (T)XaXp+ €53 (T) X2+ Clg (T) X4

+ P (1)3x,+ ¢ (1) x3XE+ B (T) XX
g1+, (49)

where the expansion coefficient§"”(r) are the following
functions of the dimensionless variable= x(t,—1t,) (see
Fig. 1):

(), 3D[1+4e” 21(1-27)—e 4"(5+471)]
Coo (T 4(1-e 27)2 '
" 3[e 2"(47—5)+4e *(1+27)+e °7]
Cyg(7)= —
20 2K(1_e 27')3

=cy3(7),

1) 3le (2—n)+2e *(1-47)—e *(37+4)]
CZl K(l—e 27)3 ’
" 2e 2"+3e 4 (1—471)—6e 87+ 8"
C4O(T): 4D(1_e*27)4 4
" e "+3e % (47-3)+3e > (3+4r)+e "

Car(7)= 2D(1-e 2)*
=cyy(7),
" 3[e ?"(3-27)—87e "~ ®7(3+27)]
Cpy(7)= — ,
42 2D(1_e 27')4
" —1+6e ?7—3e Y (1+47)—2e °"
Cag(T)= (50)

4D(1—e 274

It is easy to verify that the conditional probability density

(49),(50)

(i) obeys the corresponding Fokker-Planck equation fol-

lowing from Egs.(2), (3), and(29):

J J
— P(Xptp|Xata) = =— [ (kXp+ X0 P(Xptp|Xata) ]
&tb &Xb

2

J
+D N P(Xptp|Xata) , (51)
Xb

with the initial condition(1), because of
Chio = C56(0) =c'(0) =53 (0) = ¢4 (0) =l (0) =c{F(0)
:O’

clg(0)=—ci¥(0)= (52)

8D’
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FIG. 1. Temporal behavior of the expansion coefficigb® of
the conditional probability density49) as a function ofr= «(t,
—t,) for D=«k=1.

(i) is normalized according to Eq7) for all timest,;
and

(iii) approaches the stationary soluti@80) in the long-
time limit (8).
All of these properties oP(X,tp|Xat,) are satisfied to first
order in the coupling constamf As such, the perturbative
result (49),(50) is only applicable for small values of the
coupling constang. This limitation is eliminated by a varia-
tional evaluation that enables us to find an approximate con-
ditional probability density for all values of the coupling
constantg.

IV. VARIATIONAL PERTURBATION THEORY

In quantum statistics, variational perturbation theory ap-
proximates a given potential by adding and subtracting a
local trial harmonic oscillator whose frequency is then sys-
tematically optimized1]. Here we transfer this procedure to
Markov processes and modify the nonlinear drift coefficient
(29 by adding and subtracting a trial Brownian motion with
an as-yet unknown damping constéat

k—K
K(x)=—Kx—g X+ X

(53

After this, we treat the combined second term as being small,
of the order of the coupling constagtThe result is obtained
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most easily by replacing the damping constaim the origi- @ Pankat (b)  Plstelzata)
nal drift coefficient(29), according to the substitution rule
(compare with Chap. 5 in Refl])

k—K(1+gr), (549
where we have introduced the abbreviation " o
-2 1 2
k—K . . )
r= . (55) FIG. 3. Conditional probability densit?(xpt,|X,t,) above the
9K laser threshold ak=—-1, D=1, andx,=t,=0. For the coupling

constantgg=0.1 in (@) andg=10 in (b) the distribution is shown
for timest,=0.1, 0.2, 0.5, 1, 1.5, 2, 3, 4 ang=0.05, 0.1, 0.2, 0.5
P(thb|xata)= exd W(Xpty : Xata) ], (56) from top to bottom at the origin, respectively.

Writing the conditional probability densit{49) as

we apply the substitution rui&4) to the cumulant expansion stantK. According to the principle of minimal sensitivity
W(Xptp, ;Xats), and re-expand up to the first order in the cou-[18], we minimize its influence oW (Xyty|X,ta;K) by
pling constantg. Afterwards, the abbreviation is re-  searching for local extrema V™M(Xytp|Xats;K) with re-

expressed in terms of andK via Eq. (55). This leads to spect toK, i.e., from the condition
WO Xty Xata s K) ={C6)(7) + ) (7)X+ €6 ()X WD (Xot Xata 1K) —0. (59
oK '
+ 5 (X3t gleh (7) +chg (1)x5 ey
+ S (1) XXy + 5 (P)X2+ CH ()X It may happen that this equation is not solvabl_e within a
certain region of the parametexg, t,, X, ty. In this case,
+eB ()X + Y (7)x2x2 in accordance with the principle of minimal sensitivity
i 3. (1) 4 [1,17], we look for turning points instead, i.e., we determine
+C43 (1)XaXp+ Cag ()X} (57 the variational parametét ) (x,t, :x.t,) by solving
where the zeroth-order expansion coefficients PWD (Xpty 1 Xata ;K| 0 60)
1 K K 1 7'8727 (?Kz |K=K<1)(X tx.t.) .
cO(n=-ihe——r—et| o1 s —— bbTaa
00 2 2aD(1-e %) \|K 2 1-e ?7) _ _
The solutionK M (xuty :Xata) from Egs.(59) or (60) yields
ke 27 (k—K)re 27 the variational result
co (1) =— +
20 2D(1—e 27) ' D(1-e %)%’ P(Xptp|Xata)
. (1) .
(0)( ) ke T (K—K)T(l‘l'e_ZT)e_T -~ eXp{W[thbaXatayK (thbrxata)]}
C T)= P —p , +o
2t D(1—-e %) D(1-e™*)? f_ dxp eXp{W[ Xptp ; Xata ; KP(Xptp 1 Xata) 1}
K (k—K)7e 27
C(Z%)(T)z - 2D(1_e—27') + D(l_e—27)2 (58) (61)

for the conditional probability density. Note that variational
and the first-order expansion coefficielti) are functions perturbation theory does not preserve the normalization of
of the dimensionless variable= K(t,—t,). Note that using the conditional probability density. Although the perturbative
Eqg. (50) in Eq. (57) necessitates the substitution by K. result(49),(50) is still normalized, in the usual sen§@), to
We now eliminate the dependence of the cumulant exparfirst order in the coupling constagt this normalization is
sion (57) from the artificially introduced trial damping con- spoiled by choosing arx,-dependent damping constant
K®(Xptp ;Xata). Thus, we have to normalize the variational
@ Pz (b)  Plevtilzate) conditional probability density, according to E@§1), at the
end(compare the similar situation for the variational ground-
state wave function in Ref$17],[19]).
We have applied variational perturbation theory to ana-
Joal A\ lyze the nonlinear stochastic mod@9) with D=1, x,=t,
/ ‘”} N =0 below and above the laser threshold, i1 and «
= > = —1, for small and strong coupling=0.1 andg=10. The
FIG. 2. Conditional probability densitf(x,ty|xata) below the ~ results for the conditional probability densig/(xyta|Xata)
laser threshold ak=1, D=1, andx,=t,=0. For the coupling are plotted in Figs. 2 and 3. On the scale of the figures, they
constantgy=0.1 in (a) andg=10 in (b) the distribution is shown show no significant deviation from numerical solutions of
for timest,=0.05, 0.1, 0.2, 0.5, 1 from top to bottom at the origin, the corresponding Fokker-Planck equation. Some minor de-
respectively. viations only occur above the laser threshald —1 for g
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=0.1[20]. Both figures illustrate how the densities, which lyzing the nonlinear mode(29). Above the laser threshold
originally peaked at the origin, turn into their stationary so-«x= —1, that method yields for all timeg a unique solution
lutions in the long-time limit. In Fig. 2, the stationary solu- of the extremal condition corresponding to E§9). How-
tion reveals one extremum below the threshold, whereas Figver, the resulting conditional probability density shows for
3 reveals two extrema above the laser threshold. larger timest,, significant deviations from our, and from nu-
merical solutions of the Fokker-Planck equation.
V. CONCLUSION
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