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25th-order high-temperature expansion results for three-dimensional Ising-like systems
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25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising
model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials
characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-
temperature series specialized to improved potentials, obtainirgl.23732), »=0.63012(16), «
=0.109§5), »=0.036 39(15),8=0.326 53(10), and=4.78 938). Moreover, biased analyses of the 25th-
order series of the standard Ising model provide the estithat8.52(3) for the exponent associated with the
leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helm-
holtz free energy. The results are then applied to the construction of parametric representations of the critical
equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of
several universal amplitude ratios are also presented.
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I. INTRODUCTION wheret=(T—T,)/T, is the reduced temperature andis a
noninteger exponend =~ 0.5 in the Ising case. In the analysis
The Ising model is one of the most studied systems in theéf HT expansions these nonanalytic terms introduce large

theory of phase transitions, not only because it is the simplegind dangerously undetectable systematic deviations in the
nontrivial model that has a critical behavior with nonclassi- egits.

cal exponents, but also because it describes the critical be-
havior of many physical systems. Indeed, many system
characterized by short-range interactions and a scalar ord

parameter undergo a continuous phase transition belongi w for the confluent non_analync correctiofi—9]. How-
to the Ising universality class. We mention the liquid-vapor€Ver: the extensive numerical work that has been done shows

transition in simple fluids and the critical transitions in mul- that in practice, with the series of moderate length that are
ticomponent fluid mixtures, in uniaxial antiferromagnetic @vailable today, no unbiased analysis is able to take effec-
materials, and in micellar systems. Continuous transitionéiVely into account nonanalytic correction-to-scaling terms.
belonging to the three-dimensional Ising universality clasdn order to treat them properly, one should use biased meth-
are also expected in high-energy physics, for instance in theds in which the presence of the leading nonanalytic term
electroweak theory at finite temperature and in the theory oWwith exponentA is imposed(see, e.g., Refd.10-17). An
strong interactions at finite temperature and finite baryonalternative approach to this problem consists in considering
number chemical potential. For a recent review, see, e.gmodels—we call themimproved—that do not couple the
Ref.[1]. leading irrelevant operator that gives rise to the confluent
The high-temperaturéHT) expansion is one of the most correction of ordett®. Therefore, such correction does not
efficient approaches to the study of critical phenomena. Vergppear in the expansion ahy thermodynamic quantity near
precise results have been obtained by performing careful exhe critical point: for instanceg, =0 in Eq.(1). In this case,
trapolations to the critical point, by using severa_l differentyye expect standard analysis techniques to be much more
methods, see, e.g., R¢R]. For moderately long series, such gffective, since the main source of systematic error should
as those available for models in the three-dimensional Isinggyve peen eliminated. There are no methods that allow us to
universality class, the nonanalytic confluent corrections argietermine exactly improved models, and one must therefore
the main source of systematic errors. For instance, accordingse numerical techniques. One may use HT expansions, but
to renormalization-group theory, the critical behavior of thej, this case the improved model is determined with a rela-
magnetic susceptibility is given by the Wegner expansion, tjyely large error[1,6,8,9,18,19s0 that the final results do

In order to obtain precise estimates of the critical param-
}ers, the approximants of the HT series should properly al-

X=Ct7(1+at +apt?+ ... +bt2+ ... +eyt+e,t? not significantly improve the estimates obtained from stan-
dard analyses using biased approximants. Recgh®ly-27,
+ee), (1) it has been realized that Monte CafMC) simulations using

finite-size scaling techniques are very effective for this pur-
pose, obtaining accurate determinations of several improved

*Electronic address: Massimo.Campostrini@df.unipi.it models in the IsingXY, and G3) universality classes.
TElectronic address: Paolo.Rossi@df.unipi.it As shown in Refs[19,25,27-29 analyses of the HT se-
*Electronic address: Ettore.Vicari@df.unipi.it ries for the improved models lead to a significant improve-
SElectronic address: Andrea.Pelissetto@romal.infn.it ment in the estimates of the critical exponents and of other
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infinite-volume HT quantities. Our working hypothesis is where the variables; take the values & 1. An improved
that, with the series of current length, the systematic errorsspin-1 model is obtained fdi32]

i.e., the systematic deviations that are not taken into account

in the analysis, are largely due to the leading confluent cor- D=D*=0.6418). (8)
rection, so that improved models give results with smaller

and, more importantly, reliable error estimates. This hypothThe comparison of the results obtained using the above-
esis can be checked by comparing the results obtained usingentioned improved Hamiltonians represents a strong check
different improved models: if correct, they should agreeof the expected reduction of systematic errors in the HT re-
within error bars. In the fO”OWing we shall I’eport results that SUItS, and provides an estimate of the residual errors due to
confirm our hypotheSiS. Indeed, the estimates obtained frorfhe Sub'eading confluent corrections to Sca“ng_
three different improved Hamiltonians are perfectly consis- \we also extend the HT expansion of the zero-momentum
tent. Moreover, they are very stable with respect to the ordeg.point correlation functionsy,. In particular, we compute
of the series considered in the analysis, W|t_hout showmgml Ye, and yg to 21st, 19th, and 17th order, respectively.
dangerous trends, but only an apparent reduction of the ermofne analysis of such series provides information on the
The results obtained in Reff19] using 20th-order series are gmall-magnetization expansion of the Helmholtz free energy
fully consistent with the 25th-order analysis that we presentiy the HT phase. These results are used to determine approxi-
We consider scalar models on a simple-cubic lattice withyate representations of the equation of state that are valid in
Hamiltonian the critical regime in the wholet(H) plane. For this pur-
pose, following Ref[19], we use a systematic approximation
H= _32 &; ¢j+z V(¢i2), 2 scheme based on pglynomigl_ parametric representations and
(.5 [ on a global stationarity condition. This approach allows us to
o _ _ obtain an accurate determination of the critical equation of
where=1/T, (i,j) indicates nearest-neighbor site,are  state in the whole critical region up to the coexistence curve.
real variables, and/(¢?) is a generic potential satisfying  |n Table | we anticipate most of the results that we shall
appropriate stability constraints. These models are expecteshtain in this paper. We report HT estimates of the critical
to have either a critical transition belonging to the Ising Uni'exponents and of the coefficients parametrizing the small-
versality class or a first-order transition between a disordereﬁqagnetization expansion of the Helmholtz free energy: they
and an ordered phase, apart from special cases that corigre denoted by IHT, where the “I” stresses the fact that we
Spond to multicritical pOintS. USing the linked-cluster expan'are using improved models. Then' we report several amp“_
sion technique, we compute, for an arbitrary potential, theyde ratiogdefinitions are given in Sec.)VThose appearing
HT expansion of the tWO-pOint correlation function to 25th in the column IHT-PR are obtained from an approximate
order on a simple-cubic lattice. These results extend those ggpresentation of the equation of state that uses the HT re-
Ref. [19] that reported the two-point function to 20th order syjts as inputs, those labeled by LT are obtained from the
[30]. In particular, we consider three classes of models degnalysis of low-temperature expansions, while those reported
pending on an irrelevant parameter, which is fixed by requirynder IHT-PR-LT are obtained combining the IHT-PR and
ing the absence of the leading scaling correction. The firstT results. The comparison with the corresponding Table

one is theg* lattice model with potential X1l of Ref. [19] shows that the estimates obtained from the
o 2 5 5 25th-order series are essentially identical to those obtained
V(#7) = ¢+ hy("— D)% 3 by using the shorter 20th-order series. However, the longer

MC simulati ing finite-si lina techni h series allows us to give error bars that are smaller by a factor
showsr:nt]rllja? ;ﬁgsmlézlglgis Ii%ﬁél/z:d ?[c):;ll]ng echniques havey 1.5-2, depending on the observable. The estimates re-

ported in Table | are in substantial agreement with, and sub-
Na=\E=1.102). 4) stantially more precise than, the best theoretical and experi-

mental results that have been previously obtaifiE@l 20—

A consistent but less precise estimate can be obtained frof3:35—50. For a comprehensive recent review of theoretical
the HT expansiofil9]. The second class of models is tié and experimental results, see REff]. On the experimental

lattice model with potential side, we mention the planned experiments in microgravity
environment described in RdbE1], which may substantially
V(2= p?+ N g(p?—1)%+ Ng(p?—1)°. (5) improve the experimental determinations of the critical quan-
tities and make the comparison with the theoretical compu-
Fixing A\g=1, the ¢® Hamiltonian is improved fof19] tations more stringent.
After completion of this work, the study reported in Ref.
Ng=\;=1.904). (6)  [17] appeared, where analyses of 25th-order series for$pin-
models are reported. Results for the critical exponents are
Finally, we consider the spin-lor Blume-Capel Hamil-  obtained by means of biased analyses, essentially by fixing
tonian A. Comparing Ref[17] with Refs.[10,13, where 21st- and
23rd-order series are analyzed, a trend appears towards better
_ < 2 agreement with improved Hamiltonian resulef. [19] and
H=-8 (izj) S'S'JFDZ S @ present paper The latest results of the authors of REf7]
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TABLE I. Summary of the results obtained in this pagenless a reference is explicitly citedy our
high-temperature calculatior$HT), by using the parametric representation of the equation of étdie
PR), by analyzing the low-temperature expansiai), and by combining the results of the two approaches
(IHT-PR+LT). The estimates of critical exponents marked by an asterisk have been obtained using scaling
and hyperscaling relations.

IHT IHT-PR LT IHT-PR+LT
Critical v 1.23732)
exponents v 0.6301216)
o 0.1102),*0.1096(5)
7 *0.03639(15)
B *0.32653(10)
5 *4.7893(8)
A 0.523)
) 0.835)
ong  2.020812) [19,33
Small-magnetization g 23.562)
expansion of le 2.0585)
the free-energy rg 2.31)
in the HT phase rio —13(4)[19] —10.6(1.8)
Universal Ug 0.5323)
amplitude U, 4.762)
ratios; U, —-9.0(2)
see Sec. V RS 0.05673)
for notations R 0.0224212)
Ry 7.8112)
v3 6.05013)
R, 93.66)
vy 16.1710)
R, 1.6604)
w? 4.754) [14]
U, 1.9547)
Q* 0.018808)
R/ 0.26594)
Q~ 0.004725)
Q¢ 0.331510)
g5 13.196)
9a 76.89)
Qg 1.0002003)
Q; 1.0324) [34]
b 1.89610)
Q: 1.0244)
Q, 1.19510)
P 1.24986)
P, 0.39337)
R, 1.966510)
are in full agreement with our estimates. point coupling and of the first few coefficients of the small-

The paper is organized as follows. In Sec. Il we report ormagnetization expansion of the equation of state, in Sec.
the HT expansions. Section Il reports on the results of outV C we explain the method, and in Sec. IV D we give the
analysis of the HT series for the critical exponents. In Secfinal results. In Sec. V we present estimates of several uni-
IV we determine approximate representations of the criticalversal amplitude ratios. In Sec. VI we determine the low-
equation of state. In Sec. IV A we give the definitions, in momentum behavior of the two-point function in the HT
Sec. IV B we give estimates of the zero-momentum four-phase.
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TABLE II. Coefficients of the HT series for the improved models. Lower-order coefficients appear ih1REf.

n ¢* N\4=1.10 #% Ne=1),=1.90 spin-1:D=0.641
X
21 958465949.119795229380125 55356759.0258594943774739 521863527.549747127784405
22 2581828793.17418316658592 130996257.131383657648562 1367254366.70256684609648
23 6953921835.10625772660286 309956395.981892002096689 3581814299.63029965928082
24 18716342130.2600278822297 732873665.558914443007657 9376338630.49601545283933
25 50369768053.5367726030130 1732674465.68758001711514 24543094928.9205155990856
my
21 32990320251.5660972216018 1900950559.23375555678011 17908950773.4801706544197
22 94071328367.8146359923071 4762044317.91673448231502 49684326561.5439542757331
23 267461898855.689392585599 11894571003.1970044574018 137433163639.457494472451
24 758423675496.642760823002 29631147101.2512233682029 379139772127.101469600055
25 2145329356955.42924803892 73634162230.2093808561076 1043350926215.22611634874
my
20 541141652908.631074719231 35399348720.3598637148375 299758906549.791610350073
21 1643345014677.80358819408 94444621918.7858920241050 885976701269.736104292700
22 4961021084766.33884428748 250485298262.046958470064 2603026564263.78069815384
23 14895796670810.3387628037 660748522303.208118944668 7606210964865.32821158574
24 44504475774409.2126174407 1734347627024.93369651634 22115153167519.1984380502
25 132362288688779.709839376 4531641133142.45499870752 64005596692608.8036008995
X4
19 —141558376231.985023846408 —9210343000.40488445467068 —77210883309.3840433243811
20 —440895445559.088001425635 —25206881115.0765162521666 —234263398532.544236218037
21 —1363771989486.31756523825 —68511054288.5805997438372 —705801443484.646787710146
X6
18 25922773662329.4681285982 1657400403425.39611029038 13110582140461.8241625980
19 93214547843378.1420243052 5239283130720.37310719268 46080008679021.7095625364
X8
17 —3021378127745877.943411840 —188904527250502.5683919596 —1360671334948122.792253527

Il. HIGH-TEMPERATURE EXPANSION We also calculated the HT expansion of the zero-

We considered a simple-cubic lattice and computed themomentum connectedj point correlation functionsyz;,

HT expansion of several quantities for a generic lattice
model defined by the Hamiltoniai2), using the vertex- and
edge-renormalized linked-cluster expansion technique, de-  X2i~ EX (P(0)h(X2) - - - b(Xg-1) h(Xgy))e (1D)
veloped in Refs[18,52 and described in detail in R€53]. 2 ?
Some technical points that allowed us to extend the compu-
tation of Ref.[53] will be reported in a forthcoming publi- (x= x2). More precisely, we computeg, to 21st orderys
cation. We computed the 25th-order HT expansion of théo 19th orderyxg to 17th order. The correlation functiop
two-point function was computed to 15th order in R¢i.9].
It would be pointless to present here the full results for an
G(X)=((0)p(x)). 9 arbitrary potential: the resulting expressions are only fit for
further computer manipulation. They are available on re-
quest. In Table Il we give the new coefficients only for the
three improved models we ha(lsve considered, i.e., forghe
_: 2j model at\,=1.10, for the ¢° model atAg=1 and A4
Maj 2 XG0, (10 =1.90, and for the spin-1 model BX=0.641.
For the standard Ising model, we give below the coeffi-
and therefore, the magnetic susceptibili=my and the cients of the terms that extend the expansions presented in
second-moment correlation lengih=m, /(6x). Refs.[15,53 for y, m,, and y4:

In the present context we consider its moments,
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X=---+18554916 271 112 254*+ 85 923 704 942 057 238°+ O(v29),

m,=- - - +977 496 788 431 483 796"+ 4 767 378 698 515 169 384>+ O(v?9),

X4= - —6 306916 133817 628%— 34 120 335 459 595 728°
—183 166 058 308 506 108°— 976 373577 976 196 368+ O(v??), (12)
[
wherev=tanhg. A. Analysis using integral approximants

In order to estimatey and v, we analyze the HT series of
the magnetic susceptibility and of the second-moment corre-
lation length, respectively. We follow closely Appendix B of

In this section we shall report three different analyses forRef. [19], to which the reader is referred for more details.
the critical exponents. In Sec. lll A we shall use integral We use integral approximantsA's) of first, second, and
approximants and derive the estimates reported in Table I. Ithird order (see Ref.[2] for a review. Given anth-order
Secs. I B and Il C we shall use two other methods thatseries f(8)=2=[_,c;8', its kth-order integral approximant
have been recently used in the literat{t®,16,17 to con-  [m,/my_4/---/mg/l] IAk is a solution of the inhomoge-
firm the integral-approximant results. neouskth-order linear differential equation

Ill. THE CRITICAL EXPONENTS

P (B TR(B)+P_1(BFE DB+ +PBTH(B)+Po(B)F(B)+R(B)=0, (13

where the function®;(8) andR(B) are polynomials of or- for the Ising model improve if one biases the analysis by
der m; and I, respectively, which are determined by the using the very accurate MC estimate @ [47]: .
known nth-order smallg expansion off(g). Following  =0.22165459(10). Indeedy drops from 1.245 toy
Fisher and Chefg], we also consider integral approximants, = 1.240q5). However, the error obtained from the spread of
FCIAK's, in which P (8) is a polynomial in32. FCIAk's  the approximants is still incorrect. Results that are closer to
allow for the presence of the antiferromagnetic singularity athose ot_)tained by gsing .the improved Hami'ltonie(aﬂd

&~ _ 3. [54]. In our analyses we consider diagonal or qua-Substantially compatible with thenare only obAtamed by ad-
sidiagonal approximants, since they are expected to give th@itionally biasing the series, allowing fa(t") confluent
most accurate results. For each set df'swe determine the COITections, see, e.g., R¢i0].
average of the values corresponding to all nondefective
IAK’s. The error bar from each class of IAs is essentially the T T T
spread of the results, and it is given by the standard deviatior ;24| IA1’s o
of the results obtained from all nondefective IAs. In most IA2’s
cases the nondefective I1A's are more than 90%. :;%',AQ'S

) . . - s

All 1A's considered give perfectly consistent results. .| N
Moreover, the results turn out to be very stable with respect o
to the number of terms of the series, so that there is no nee:
to perform problematic extrapolations in the number of terms? 1
in order to obtain the final estimates. In Fig. 1 we show the 1240 !
estimates ofy obtained by analyzing the series pffor the IS %‘ #

4 rosn

[ PP ) S

¢* model ath,=1.10 by using IAl’s, IA2’s, IA3’s, and BNl il | i
FCIAZ2's, as a function of ordem of the series considered in 12361~
the analysis. Perfect agreement is also found among the re
sults for the three improved Hamiltonians. This is shown in
Fig. 2, where the results of the 1A2 analyses for the three 1232;—L———L L L1 L L
improved Hamiltonians are reported versusin Fig. 2 we

also show the results of the IA2 analysis applied to the series
of x for the standard Ising spin-1/2 model. The correspond- FIG. 1. Estimates of as obtained by analyzing the HT series of
ing results disagree with those obtained by using improved, for the ¢* model at\,=1.10 versus the ordar of the series
Hamiltonians: clearly, there is a large error that is not takerconsidered in the analysis. Several approximadtsined in the
into account by the spread of the approximants. The resultext) are considered.
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RO 171 T T T T T T T T substantial agreement with the MC estimategpf[23] ob-
. 0 A=L1 tained using finite-size scaling techniqueBe(\,=1.10)
1255~ PY ¢6’k=15)\'=1'9 - :0375 09%(4)
a spinf’1 D=40.641 Similarly, for the ¢° lattice model we obtain
1250 * spin-1/2 ]
Bc(A3=1.9006=1)=0.426979 15), (16)
1245 * % * -
Y | { Ye(Ng Ng=1)=1.237 2610) + 0.0055\ ,— 1.90),
1240 i (17
==Rp=rI= 1=ﬂ1='¢}=*§='&=¥#**=‘*== and, using the MC resuld) =1.904), the estimate y
1235 B =1.237 26(10)22]; for the spin-1 model
1230 - B:(D=0.641)=0.385671T710), (18
12233 1|4 1|5 1I6 117 118 |l9 2|o 2'1 zlz 213 2|4 2'5 26 7e(D)=1.2372%20)-0.012D ~0.641, (19
n and therefore, usin®* =0.6418), y=1.237 25(20)10].

, . . . Our final estimate ofy is obtained by combining the re-
FIG. 2. Estimates of as obtained by a“"?"yz'”g the HT series of sults of the three improved Hamiltonians: as an estimate we
x for the improved models and for the spin-1/2 model, versus the[‘,:lke the weighted average of the three results, and as esti-
ordern of the series considered in the analysis. 1A2’s are consid- . !
mate of the uncertainty the smallest of the three errors. Ac-
cording to this rather subjective but reasonable procedure,

we obtain

ered.

For the ¢* lattice model we obtained
y=1.23732). (20

Be(4=1.10=0.375097%5), (14 A direct estimate of the specific-heat exponent obtained

from the singular behavior of at the antiferromagnetic criti-
Ye(Ng)=1.2373210)+0.006\,— 1.10), (15 cal pointg=— g, since[54]

. N — X=Co+Cy(B— B ait - - (2D)
where y¢(\4) is the effective critical exponent obtained in ! ¢

the 1A analysis, which has a small but nonvanishing depenwhere

dence o\, around the favorite valug,=1.10.(Here and in

the following, we write explicitly the dependence ap and Oa=1-a. (22)
equivalent couplings: should a better estimata Hfbecome
available, it can be immediately used to improve our results.
The number between parentheses is basically the spread able Ill. No error in brackets is reported since the depen-

the approximants ak,=1.10. The\, dependence is esti- . . ) : .
mated by determining the variation of the results whendence onk,,D is negligible. As the final estimate we give

changing\ , around\ ,=1.10. The best estimate gfshould @=0.11G2). (23)

be obtained ak,=\} . Thus, using the MC estimate af; ,

i.e.,A3 =1.10(2), andtaking into account its uncertainty, we  The exponent is obtained from the series of the second-
obtain the estimate/=1.237 32(10)12] (which is also re- moment correlation length, since &2~ (B8.— 8) 2*. Unbi-
ported in Table Il), where the error in brackets is related to ased analyses of the 24th-order series®f3 provide the
the uncertainty on\}} . As final error we consider, pruden- results reported in the third line of Table Ill. The correspond-
tially, the sum of these two numbers. The estim@ is in  ing estimates of3. are consistent with those derived from

FCIAK’s provide rather precise estimates @&f. The corre-
onding results fow are reported in the second line of

TABLE lll. Critical exponents obtained from the HT analysis. In parentheses we report the approximant
error at\* or D*, in brackets the uncertainty due to the error\dnor D*, in braces the uncertainty due to
the error ong;.

@* @8 spin-1
y x-series 1.237320)[12] 1.2372610)[22] 1.2372%20)[10]
Y x-series a3 0.1102) 0.1102) 0.1135)
v £-series 0.6302)[1] 0.63013)[3] 0.630G2)[1]
v £-series B.-biased) 0.63014){6}[9] 0.630091){16}[16] 0.630101){10}[9]
v x,&%-series(CPRM) 0.022943)[6] 0.022912)[10] 0.022948)[4]
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although less precise. For instance, for & model ath,  for the spin-1 model. We then obtain the results reported in
=1.10 we foundB.=0.3750982). Table IIl, which lead to an estimate af with a considerably
In order to get a more precise estimatevpfve follow the  smaller error:
procedure suggested in RE2], i.e., we use the estimate of
B. obtained fromy to bias the analysis of2. For this pur- 7=0.036 3915). (32

pose we use IA's that hqve a singularity at a fixed value .Otl'hen, by using the scaling relations we obtain
¢, or, in order to take into account the antiferromagnetic

singularity, a pair of singularities at 8. ; the two choices 5—7
give equivalent results. This analysis provides the following 6= lT=4.789$8), (33
effective exponents for the three classes of models.Ngor 7
%)\Z , "
B:§(1+ 7)=0.326 5310), (34)

ve(N4)=0.630141){6}+0.00451,—1.10 (29
4 . . where the error o8 has been estimated by considering the
for the ¢® model, where the number in braces gives the

. fth . h . ithi bar- errors of v and » as independent.
variation of the estimate wheg, varies within one error bar; Finally, we estimate the exponeit For this purpose, we

analyze the HT expansion ofy that behaves like

(25 tx=CT(1+ati+ ), (35)

ve(Ag.Ag=1)=0.630091){16} +0.004\,— 1.90

for the ¢® model; for t=1—B/B.—0. We consider the spin-1/2 model—here
improved models are not useful sinag~0—fix the expo-
vo(D)=0.630101){10}—0.01XD—0.64) (26) nenty to our best estimatey=1.2373, and use biased IAs
that are singular g8.=0.221 654 59(10), which is the most
for the spin-1 model. Then, using the MC estimates ofprecise MC estimate of the critical poif¢7]. We obtain
»,D*, one obtains the results reported in Table Ill, where
the error due to the uncertainty o and D* is reported A=0.523), (36)

between brackets. They are perfectly consistent with the 'S here the error takes into account the uncertainty3grand
sults of the unbiased analysis, but more precise. Combining}' Correspondingly, we obtaia=A/v=0.835). Consistent
the results of Table Iil as we did foy, we obtain results are obtained from the analysis of the serie€’aR,

»=0.6301216). (27 Xing v andpc.

. . . . B. The ratio method
Using the hyperscaling relatiom=2—3v, we derive '

In order to check the above-reported results, we consider
«=0.10965), (28)  the ratio method proposed by Zinn-Justin in Ref] (also
see Ref[2]). Such a method has been recently employed in

which is fully consistent with, but more precise than, theRefs.[10,17 to analyze the 25th-order HT expansions of

direct estimat&23). spin-S models on the simple cubic and on the body-centered-
Using the above-reported results fpand v and the scal- ~ cubic lattice. _ _ _
ing relation y=(2— )v, we obtain »=0.03646), where According to this method, given a quantity

the error is estimated by considering the errorsyaandv as
independent, which is of course not true. We can obtain an 5= ¢ g"~AqB.—B) {1+ag(Bc—B)+ -1,
estimate ofy with a smaller, yet reliable, error by applying n

the so-called critical-point renormalization meth@PRM) (37
[55] to the series ofy and £2. This method provides an

: L . one considers the sequences
estimate for the combinatiopv. Proceeding as before, we d

obtain (n):(cnzcn3>1’4 F{ Sn+Sn_2 } 39
_ ¢ CnCn_1 25,(Sh—Sn-2)]’
[77]e(As) =0.022943)+0.003\,—1.10 (29
+S,_
for the ¢* model, (M= 1+Z%, (39)
Sn—Sh-2
=1)=0. +0. —1.
[ 79]e(A s hg=1)=0.022912)+0.0025\ ,— 1 90)(30) where
for the ¢°® model, and = L ! n ! _
2 In(cncn_4/cﬁ_2) ln(cn—lcn—S/Cﬁ—S)
[7v](D)=0.022948)—0.005D—0.64)  (31) (40)
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FIG. 3. Sequencg" for the ¢* model at\ ,=1.10 using the
series fory. The dashed lines indicate the IA estimateggf.

Asymptotically, the two sequencgt™ and(™ approach3,
and ¢, with corrections ofO(1/n**€) and O(1/n€), respec-
tively. More precisely, if

~B; "M HAg+ANTO) (41)
for n—ce, then
A, 1
£/~ B 1+ 5pei(e=1) 1] (42)
(W~¢1 (43)

Note that, if only analytic corrections are present, iees,1,
the convergence is faster with corrections of ordef and
n—2 for B, and{:

Ai¢-2 7 1
ﬁé%ﬁc[l (Aig Tt 1))—3 (44
i-2 3
(M=¢ 1—(3A0g T 1))§n (45

In Figs. 3 and 4 we show, for th¢* model at\ ,=1.10

and for the spin-1 model d =0.641, respectively, the se-
quenceﬂ(c“) obtained usingS= x. The sequence clearly ap-
proaches the IA estimate. For tig¢ model the agreement is

quite good and indee@'" differs from the IA estimaté14)
by 15x 10~ 7 and 9x 10’ for n=24,25(note that the error
on the 1A estimate o8, is 5x 10~ 7). In principle, one could

try to extrapolate the sequenﬁé") to get a better estimate of

B.. For this purpose, we have tried to B@”) assuming a
behavior of the form
BM=a+bn7, (46)

wherea, b, ando are free parameters. If we interpolagg”
for n=21,23,25 with Eq(46), we obtain

PHYSICAL REVIEW BE5 066127

0.38572 r T — T

0.38570

0.38568 |- -

)
B

0.38566 [~ . -
0.38564 - -

038562~ . .

038560 ! ! L | L

FIG. 4. Sequenc@" for the spin-1 model ab=0.641 using
the series fory. The dashed lines indicate the IA estimategaf.

6.6(—1.5)

20) '
(47)
where the “errors” show the variation of the parameters be-

tween the interpolations with=21,23,25 anch=19,21,23.
Analogously, the even sequence 20,22,24 gives

BM=0.375097 T—5)+3.0( +4) X 10 (

—-6(-2)

(M=0.375096 §— 25)+ 4(+2) X 10 ° 0

(48)

The extrapolated values are in perfect agreement with Eqg.
(14), but it is quite difficult to interpret the results far.
Indeed, in an improved model the leading corrections in the
coefficientsc,, are of ordem™22, n=1, with [56] A,~1. The
analytic term gives a contribution of order 3, while the
nonanalytic one gives a correction of order®2=1, How-
ever, its amplitude is of ordeA,—1, and thus, sincé\,
~1, it could be very small. The next correction terms are of
ordern %3, n"'74 and give rise to corrections of order
n~174s n=274 |nclusion of corrections with 2 0<5/2
does not improve the fit57]. Clearly, we are not yet suffi-
ciently asymptotic to be able to extrapolate using the leading
asymptotic behavior. At the values nfwe are considering,
several corrections are still important and apparently con-
spire to give a uniformly small correction.

The same behavior is observed in thé model, where
both odd and even points extrapolate to 0.426 9787, with
effective exponentr=~12, 8. The agreement with the IA es-
timate (16) is quite good. We finally analyze the spin-1 re-
sults. Even points show again a very fast convergence with
o=~9 and extrapolate to 0.385 666 2. Odd points instead are
well fitted by assuming corrections of order? or n~>2
Fixing o= —2, we obtain 0.3856730, while far=—5/2
we have 0.3856719. Again, the IA res(i8) is very well
confirmed.

For comparison, in Fig. 5 we plot the sequerg® for
the spin-1/2 model versusrf/? which should be approxi-
mately the leading correction. The higheresults have ap-
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1/n*?

FIG. 5. Sequencg{" for the spin-1/2 model using the series for
Xx- The dashed lines indicate the MC estimatef, while the
extrapolation of the four points

dotted line corresponds tora %2

with n=22,23,24,25.

parently the predicte®(n~%?) behavior, and indeed an ex-
trapolation with Eq.(46) and o= 3/2 gives results that are
close to the MC estimate @8.. The odd(even points ex-
trapolate to 0.221 656 8®.221 657 1Y they are close to the
MC estimatd47] 0.221 654 5010). However, it is hard to go

beyond a relative precision of 16.

In Fig. 6 we show the sequengé” as obtained from the

0.025
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1.252 — T T T T
1 T T T T
1250~ n q)4 r=1.1 -
s 4 .
6 *
1248~ ® ¢, A =1, A4=1.9 . —
4 spin 1, D=0.641
1.246 - p, ’ PR -
* spin 1/2 Loex
(n) 24l e -
n K3
Y
1242 L |
o
1240 _
E
a3 - [ ]
meE_ jlec e e -
—————————————————— kAR A A ko~ — s — ===
1.236 - A —
A
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2800 001 002 005 004 005 006 007 008

1/n

FIG. 6. Sequences™ for the ¢* model atx,=1.10, the¢®
model ath ,=1.90, the spin-1 model & =0.641, and the standard
Ising model. The dashed lines indicate the IA estimate.of

Ref.[16], we wish to perform a more straightforward analy-
sis, both conceptually and practically. The idea is to generate
sequences of estimates by fitting the expansion coefficients
with their asymptotic form. By adding a sufficiently large
number of terms we can make the convergence as fast as
possible, although of course the procedure becomes unstable
if the number of terms included is too large compared to the
number of available terms. In practice, one should include

series ofy for the three improved models and for the stan-those terms that give rise to the maximal stability of the
dard Ising model. The improved results clearly approach oufesults. In some sense, the variant ratio method of the previ-

best estimatey=1.237%2), the ¢* and ¢® models from

ous section corresponds to considering the leading singular

above and the spin-1 model from below. Note that the result§ehavior and the first analytic correction—and also the lead-
are flat and no extrapolation is needed. We also report th#ig nonanalytic term if we further extrapolate the sequence.

sequencey™ for the Ising model. If we extrapolate the re-

sults assuming a behavior of the forarbn 2, with A

series of¢2. Again, the improved models show a very good

On the cubic lattice, the large-order behavior is dictated
by the singularities at- 8.. Indeed, given an observab&
=0.52, we obtainy=1.23857, 1.238 32, and 1.238 01 using With expansionS= X,c,8", for n— the expansion coeffi-
pairs n=(21,23), (22,24), and (23,25). Clearly, the esti- cients behave like
mates converge towards the IA estimate 1.23732).

In Fig. 7 we show the sequenf2r»]™ obtained from the

convergence to the IA estimate, in spite of the fact that the 1280
analysis is unbiased—the value 8f is not fixed. The Ising

results are sensibly higher and steadily decreasing, reachin
v~0.638 forn=25. Results that are closer to the I1A estimate

are obtained by an extrapolation. Assuming a behavior of the
form a+bn~%, we obtainy=0.6290 and 0.6284 from even [

and odd sequences, respectively. Again, the agreement is se

isfactory.

In conclusion, this analysis based on the variant of the
ratio method proposed by Zinn-Justi@] supports the IA

estimate obtained in S

ec. Il A.

C. Matching the coefficients with their asymptotic form

In the preceding section we have determined the critical

1285 ——T , T , —
4 * * *
» ¢}, )»4=1.1 * *
- s % x -
® ¢, l.6=l,l4:1.9 ¥
A spin 1, D=0.641 P
1275 # spin 1/2 o .
Qv](“) 12701~ -
1265 .
. *
| X | A
1260 ;."::::::::::::::l_lil_‘l:!:,:rtl‘:t::::.
assb o L4111 !
%00 001 002 003 004 0065 006 007 008

i/n

FIG. 7. Sequencd®v]™ for the ¢* model at\ ,=1.10, theg®

exponents ang@. by generating sequences that converge tamodel ath ,=1.90, the spin-1 model & =0.641, and the standard
the asymptotic value fon—e. In this section, following

Ising model. The dashed lines indicate the IA estimate maf 2
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B B, B, Ba, 49
e e £ (49

& Ay +&+... +(_1)nn*(0af+1)
N glth | p2

—nd-1 1
Boc,=n¢"1 Ag+ It

Here, we have neglected all subleading exponents except the Note that this method allows us to determine the nonuni-
first oneA; in particular, we neglected the first subdominantversal amplitude#,, A, , . . ., andconsequently the ampli-
A,. However, since\,~1 [56], for all practical purposes a tudesa; appearing in the expansion 8ffor 83— 8. If

term n~ 22 cannot be distinguished from a purilk/ analytic

correction. Also, we do not write terms of order “* since _ ¢ _ a\A

they cannot be distinguished from the analytic terms and S=AsBe=B) 1tad B B)] 0
corrections of orden™ ™ “. Note also the presence of the

parity-dependent corrections with exponéif and the sub- then

leading corrections with exponent,. For the susceptibility

X, it is known [54] that 6,=1— «. The argument can be As=T'()Ay, (51
generalized to all moments,, and thus in all cases we
predict 6= 1— «. We have tested this prediction fgr, cf. T(—A)A
Sec. Il A, m,, andm,. By analyzing the expansion i, S:—l
with biased 1A’s that have a pair of singularities it 3;, (DA,
we obtain 6,=0.884(12), while from the expansion ai,

we obtainf,=0.909). These results are clearly compatible |n the following, we shall perform two different analyses:
with the predictionf,= 1— a=0.89045). For theexponent  (essentially unbiased analyses in order to determine the ex-
A4 nothing is known. However, the results appear to be quitgyonents; and 3. and biased analyses in whi¢hand 8., are
insensitive to the choice af . For this reason, in the fol- fixed. In all cases we fix the value d&f (A=0.52) and the
lowing we only report the results corresponding to purelyexponent of the antiferromagnetic singularity. In the unbi-
analytic corrections, i.e., we sB_=0. We checked thatthe ased analyses, in order to have a linear problem, we consider
choiceA ;= 1/2 gives equivalent results. In ¢, that behaves as

(52

b, b, b b, i dy d, ds d,
Incn=—In(,Bc)n—l-(g“—l)Inn—l-bo—l—n—5+F+nl—+A+F2+~~+(—1)”n (¢+ bap) d0+n—5+F+nl—+A+n7-~- .

(53

As before, we have neglected terms that have exponenB,, ... ,B,_; in the antiferromagnetic one. We usé&
similar to those already present: for instance, terms=0.52, y=1.2373,0,=0.8904, the IA estimate g8., and
O(n~ 4™ or O(n~k42~"A"M) In the expansion of the an- B,_=0. Then, we generate the sequensgd, ... A",
tiferromag_netic part we have assumAquA., or Aaffl. Bgn), o ,B(kn_)l, by solving the h-+k) equationsc,
Note that if only_analytlc t_erms are present in qu)_, i€, R m=0,...h+k—1, whereR, is the right-hand
Bs,=0. thend, is proportional toA; and therefore it van-  gijge of Eq.(49).
ishes in improved models. In both cases we varl andk, trying to find the values
We first analyze improved models and we verify thgt  that give the best stability of the exponents or of the leading
~0. For this purpose, we consider the susceptibiitand,  amplitudes. In the unbiased analy&s, the preferred choice
for each improved Hamiltonian, we generate two sequenceis (h,k)=(4,4), while for analysigb) we use {,k)=(3,2).

of amplitudes in the following way: For these choices of the parameters, in Fig. 8 we report the
(@) We choose two integerh,k and consider Eq(53) corresponding sequence aﬁ(”)za(”), obtained using Eq.
keeping onlybg, ... b,_; in the ferromagnetic part and (52). In the unbiased analysis), ag(”) clearly converges to
do, ... dx—; in the antiferromagnetic one. Then, we zero for the improved Hamiltonians* and ¢°, as expected.
generate the sequenceg!™, ™, b{W, ... b, Forthe spin-1 model, the situation is not that clear, and pre-
df)”), - ,d(k’l)l, by solving the h+k-+2) equations sumably more orders are needed to observe convincingly
InCh-m=Rn—m, M=0, ... h+k+1, whereR, is the right- a,=0. In the case of the biased analysiﬁ]) is very stable
hand side of Eq(53). We useA =0.52, y+ 0,~=2.1277. and small already fon=15. For all Hamiltonians we ob-
(b) We choose two integerb,k and consider Eq(49) sen/e|aX|510‘3.
keeping onlyAg, ... ,A,_1 in the ferromagnetic part and As a second check of consistency we have verified that

066127-10



25TH-ORDER HIGH-TEMPERATURE EXPANSION . ..

0.5

04

03

02

T T T T T T T T 1
i }5%?3
@ spin 1/2 (c)
O ¢4, A=11 @)
* ¢\ 0 =L10)
0 ¢, 2,19 @
x ¢°2,=1.9 (b)

A spin 1, D=0.641 (2) A,.“"'

+ spin 1, D=0.641 (b)

1.242

1.240

1.238

PHYSICAL REVIEW &5 066127

(n)
Y

By 00 = FEohewduitssndocn b e

0.1 1.236

02 —
1.234
03+ -
04 -
C o i 1.232 L ] ! 1 | L 1 I 1 | |
05 { ] | i | | [ I I | 1 | | 14 15 t6 17 18 19 20 21 22 23 24 25 26
Il 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 n

n
FIG. 9. Exponenty as obtained from the analysig) of y for

FIG. 8. Amplitudea, of the leading scaling correction as ob- the three improved models. Details are explained in the text.
tained from several different analysesyofor the standard spin-1/2
IS|r!g m(_)del and for the three improved models. Details are eX'A(3X)~—0.02 for the spin-1 model. Errors should bel on
plained in the text. the last reported digit and include the uncertainty onrthe
—oo extrapolation of the sequences and the variation of the
estimates forh and k in the rangeh=3-5 andk=2-4.
Instead they do not take into account the variation of the
estimates withy and B.. Note that the estimate o4, is
purely phenomenological and in practice it should corre-

our estimates o#, are compatible with the quoted error bars
on\; andD*. For this purpose, using the analysis of type
(b) reported above, we have computad for Aj A\,

whereA\, is the quoted error bar—for the spin-1 model we

are referring toD*AD. In all cases, we finda,(x; spond to the sum of the amplitude f* and ofn~*2 (note
=AN,)[>[a,(\3)| and thata, (A3 +ANy) and a(\i  yhatin improved models the amplitude of 2 vanishes
—AM,) have opposite sign. This confirms the correctness of \yg have performed similar analyses for the spin-1/2 Ising
our estimates ok andD*. Of course, since we ug& and  model, in order to compute the nonuniversal amplitudes. We
v obtained in the IA analysis, the above results representyye performedi(a) an analysis of type(@ using (,k)

only a check of consistency. Inde€d: we determing8. and  — (4,4); (b) an analysis of typéa) in which we have fixe,

v by performing a IA analysis whose results should be reli-g jts MC value using if,k) = (4,3); (c) an analysis of type
able only if the models are improve@h some sense we using (,k)=(3,2). The results foag(n) are reported in
weakly assume hem, ~0); (ii) using such values g8. and  fig g These analyses give perfectly consistent results and

v, we estimate, and finda,~0. allow us to determine the amplitudes:
Once we have verified that, is very small and compat-

ible with zero within the precision of the analysis, we have
performed several analyses fixidg=0 andb;=0. At the

A{)=1.233-10(y—1.2373—0.013A-0.52), (54

same time, we have sd =0, which corresponds to assum- A(lX)= —0.13-0.71A—-0.52 +50(y—1.2373, (55
ing A;4=1. We have determined the exponents by perform-
ing the analysisa) reported above. In the case of ti¢ B{=-0.073, (56)

model for \,=1.10, this analysis givey~1.2374. Simi-

larly, we obtainy~1.2375 for thep® model at\,=1.90 and  Where we have explicitly written the dependence on the input
for the spin-1 model aD=0.641. In Fig. 9 we show the Pparametergwhen it turns out to be relevantwe have re-
sequencey™ for (h,k)=(5,5) (since two coefficients van- Peated the same analysis for the second momentWe

ish, we are considering four amplitudes in the ferromagneti@btain

and antiferromagnetic expansjoiWe observe a very good (my)
agreement with the IA estimatg=1.23732). It is difficult Ao ©=1.301-10(y+2r—2.49754—0.01A-0.52),

to estimate the uncertainty, since the results do not show a (57
sufficiently robust stability with respect to the numbérk) (my)
of coefficients used in the analysis. A} #=-0.73-4(A-0.52 +55(y+2v—2.497 54,
Finally, we report the estimates of the amplitudes obtained (58)
in the analysis of typéb) for the magnetic susceptibility: (o)
¢* A ~0.5246,A4)~0.13, B{)~ —0.0351; B, #=0.06. (59

#%: AY)~0.4601,A5~0.11, B{ ~ —0.0311;
spin-1:A{¥~0.5126,A0~0.12, B{ ~ — 0.0359.

Moreover, |A{)|<1072 for the ¢* and ¢° models, while

Using the above results and E&2), one can determine the
amplitudesa, and a,, associated with th@©(t%) scaling
corrections in the Wegner expansion gfand &, respec-
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tively, and evaluate their universal ratio. We obtaip/a, B

=0.9(1),where the error takes also into account the uncer- H= C—(—t)ﬁ‘s‘b(u)

tainty on the input parameters of the biased analysis. For

comparison we mention the recent HT resut/a, M

=0.76(6) [17], and the field theoretical estimat;/a, UEE(_t)fﬁl (68)

—0.68(2)[35].

The constantC* andC, are the amplitudes appearing in
the critical behavior of the zero-momentum connected
A. Definitions n-point correlation functiong,:

IV. THE CRITICAL EQUATION OF STATE

The equation of state relates the magnetizatibnthe
magnetic field H, and the reduced temperatutte=(T
—T¢)/T.. In the neighborhood of the critical poirtt=0,
H=0, it can be written in the scaling form

Xn=Cq|t| 77~ (7262, (69

The susceptibilityy corresponds tg, and we simply write

c*=C,.
H=B_ °M?f(x), (60) With the chosen normalizatiod1,46,49
= -~ 1 1 ‘
x=t(M/B) "%, (61) F(z)=z+ 52 +2 e ryz2 1, (70)
whereB; andB are the amplitudes of the magnetization on '
the critical isotherm and on the coexistence curve,
M=BHY, 10, 62 ®(u)=(u- 1>+2 —ouiu- T (7
M=B(-t)#, H=0t<O0. (63)  The functionsF(z) and®(u) are related td(x). Indeed,
Using these normalizations the coexistence curve corre- 7 0F(2)=Fif(x), z=zx P, (72)

sponds tox=—1, and the universal functioh(x) satisfies

f(—1)=0, f(0)=1. Griffiths’ analyticity implies thatf (x) and

is regular everywhere for>—1. It has a regular expansion

in powers ofx, ~go-1
u °d(u)=

. f(x), u=(—x)"A (73
fx)=1+ > ", (64) ¢

nt The constanf is defined by the large-behavior ofF(z),
and a largex expansion of the form

. F(2)= 52 Frz w8, (74)
f(x)=x7>, fox 28, (65)
n=0 .
while
At the coexistence curve, i.e., far——1, f(x) has at most + 112
an essential singularity58]. It can be asymptotically ex- 2o=| — Cq B (75)
panded as 0 (CH3 —
coe N To compare with experimental data, it is useful to determine
f(X)~21 fr(1+x)". (66)  the magnetization as a function tf ~ V4%, Therefore, we
define
It is useful to rewrite the equation of state in terms of a I s s
variable proportional tdit~#, although in this case we must E(y)=B; "MH""=f(x)" ™, (76)
distinguish betweenh>0 andt<0. Fort>0 we define
y=(B/B)YPtH VB =xf(x) 1), (77)
+\ 1/2
H:(F) tP%F(2), Finally, we shall also determine the scaling behavior of the
4 susceptibility, by defining
ler llet*,B (67) f( )1—1/5
7= , I X
(CH D(y)=B_ H? 1/5;(:—1. (78
while for t<0 we set FHx)- EXf )
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B. Small-magnetization behavior TABLE IV. Results forg,, rg, andrg.

In this section we determine the first few coefficienjs
appearing in the expansion of the scaling functig(z), cf.
Eqg. (67). We shall also compute the four-point renormalizedg, 23.5598)[11] 23.5548)[20] 23.56G20)[5] 23.542)
coupling constanty,, which, although not related to the r, 2.0574)[1] 2.0564)[2] 2.0528)[2] 2.05@5)
equation of state, is relevant for the field-theoretical apr, 2.299)[3] 2.31(5)[5] 2.377)[3] 2.31)
proach and will be used to determine amplitude ratios in
volving the second-moment correlation length.

In order to estimate the critical limit af, and ofr,; we  able results, but they are less subject to systematic errors
first determine their HT expansions using the correspondingince they allow for confluent nonanalytic correctiongat

o o Spin-1 Final estimates

results fory,; andm,, Biased IAl's give[l] g,=23.54(4) when applied to the
17th-order series of Ref19].
94=— X4 (79 Results forrg,rg are obtained using the same method and
4 X°& are reported in Table IV. We finally recall that a rough esti-
mate ofr ;o was obtained in Ref19] from the analysis of its
X6X2 15th-order series, obtaining,=—13(4). Areview of the
re=10- ' (80 available results for these quantities can be found in R&f.
YoX2 XSX% C. Parametric representations of the equation of state
rg=280-56 Xfl * Xi ' (81) In this section we shall determine the equation of state

using parametric representations, improving the results of
The corresponding seri¢s9] have been analyzed by closely Refs.[19,41]. This method has also been applied in two di-
following the procedure presented in Appendix B.3 of Ref.mensiong62], and to the three-dimension¥ly [25,29 and
[25]. We use biased IA1’s with a singularity gt or a pair of ~ Heisenberd27] universality classes.

singularities at- 8., whereg, is obtained from the analysis ~ In order to obtain approximate expressions for the equa-
of the susceptibility. AroungB., IA1’s behave like[60] tion of state, we parametrize the thermodynamic variables in
terms of two parametelR and 8, implementing all expected

IAL~f(B)(1—BIB)+a(B), (82 scaling and analytic properties. Explicitly, we wr[i&3—65
wheref(B) andg(B) are regular a3, provided{ is not a M =myR#9,
negative integer. In particular

t=R(1- 6%,
Po(Bc) R(Bo)
=—, =- 83 H=hoRP°h(#), (85)
g Pi(ﬁc) g(,Bc) Po(ﬁc) ( 0

whereh, andmg are normalization constants. The function

[see Eq(13) for the definition of the above quantitiesn the  h(#) is odd and normalized so thai(6)= 6+ 0O(6%). The
case we are considering,is positive and, thereforey(8.) smallest positive zero di(6), which should satisfy§,>1,
provides the desired estimate. corresponds to the coexistence curve, i.e.TtoT; andH

In Table IV (first line) we report the estimates @f, ob-  —0. We mention that alternative versions of the parametric
tained for the three improved Hamiltonians. The error in parepresentations have been considered in F&&i.
rentheses is related to the spread of the approximants and the |t is easy to express the scaling functions introduced in
second one in brackets to the uncertainty \dh,D*. The  Sec. IV A in terms ofd. The scaling functiorf(x) is ob-
error induced by the uncertainty gf. is negligible. The tained from

results are perfectly consistent. Our final estimate is
1-6° ( 00) v

94=23.562). (84) 10
The result for the exponeitin Eq. (82) is {=1.3(3),which h(6)
is consistent with our expectation for improved models, i.e., f(x)= 0*5W, (86)
{=A,~2A andA~0.5. For comparison, the same analysis (1)

applied to the standard Ising model givgs=23.5(5) and

hile F(z) is obtained b
{=0.6(3), in agreement with the fact that in this cage while F(z) is obtained by

=A. Notice that the small difference with the estimateggf z=pO(1—6%) "B,
reported in Ref[19] is essentially due to the different analy-
sis employed here, which is better justified due to the F(z(0))=p(1— 6% P°h(0), (87

nonanalytic behavior ap. predicted by renormalization
group[61]. With respect to standard Padpproximants, bi- wherep can be related tong, hy, C*, andC; using Egs.
ased IAl’s require more terms of the series to give reason®%7) and(85).
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TABLE V. Polynomial approximations dfi(#) using the global stationarity condition for various values
of the parametek. The reported expressions are obtained by using the central values of the input parameters.
The last column shows the corrections to the simple linear magléb, 6,) = 6(1— 62/ 0(2)).

k h(6)/6 63 h(8)/h;n (6, 6,)

1 1-0.73473272 1.36104 1

2 1-0.73163®>+ 0.00909@* 1.39085 1 0.0126429?

3 1-0.736743%+ 0.008904"* — 0.000472° 1.37861 1+ 0.011377%%+0.0006518*

It is important to note that Eq85) and the normalization
conditionh(6)~ 6 for 6—0 do not completely fix the func-
tion h(#). Indeed, one can rewrite the relation betwaemnd
0 in the form

x?=h(1)f5(1— 6?76 2. (88)
Thus, givenf(x), the value oh(1) can be arbitrarily chosen
to completely fixh(6). In the expressio87) we can fix this
arbitrariness by choosing arbitrarily the parameter
[1,19,29,41

As suggested by arguments based on ¢éhexpansion
[19,41], we approximatédn(#) with polynomials, i.e., we set

k

h(8)= 6+ >, hyy, 62" L. (89)
n=1

for all x. Equivalently one may require that, fanyuniversal
ratio R that can be obtained from the equation of state, its
approximate expressioﬁggpmx obtained by using the para-
metric representation satisfies

d Rg;)prm( hs)

dh —0.

ha=h3y

(94)

The existence of such a value b§ is a nontrivial math-
ematical fact. The stationary valuelof is the solution of the
algebraic equatiofil9]

This choice is further supported by the effectiveness of its

simplest version withk=1, which is the so-called linear

model. If we require the approximate parametric representa-

tion to give the correct K—1) universal ratiosrg,

g, - ..ok, We obtain
! r
2m+2
h2n+1:mE:0 Cnm6m(h3+ 7)m(2mm—+1)!y (90
where
n—m
CanWkHl (28m—y+k—1), (91

and we have set,=r,=1. Moreover, by requiring that
F(z)=z+%z3+ .-, we obtain the relation
p?=6(h3+7). (92)

In the exact parametric representation, the coeffidigrtan

J
2(2p—-1)(hs+ 7)a_r13_27+2k hox+1=0. (95
For k=1, the so-called linear model, E(®5) gives
y(1-2p)
hy=——F—, 96
=25 (96

which is the optimal value oh; considered in Ref[64].
Thus, the optimal(sometimes called restrictetinear model
represents the first approximation of our scheme.

D. Results

Following Ref.[19], we apply the variational method by
using the HT results fory=1.23732), »=0.63012(16),
re=2.0565), rg=2.3(1), and ;o= —13(4) as input param-
eters of the approximation scheme. This provides different
approximations withk=1,2,3,4. In Table V we report the
polynomials h(6) for k=1,2,3, that are obtained in the
variational approach for the central values of the input pa-
rameters. The fast decrease of the coefficients of the higher-
order terms irh(6) gives further support to the effectiveness
of the approximation scheme. We do not repof®t) for k

be chosen arbitrarily. Of course, this is no longer true wher~4, since it requires ;o and its available estimate is rather

we use our truncated functidr( §), and the related approxi-
mate functionf (%, (x,hs) depends othz. We must thus fix

imprecise. Using the results reported in Table V and Egs.
(86), (87), and(73), one may easily compute the correspond-

a particular value for this parameter. Here we use a varialnd approximations for the scaling functiohéx), F(z), and

tional approach,
£ oX.h3) to have the smallest possible dependench.pn
Thus, we sehz=h3), wherehs, is a solution of the global
stationarity condition
&fg;))proix!hli)

ah, =0

ha=hzy

(93

requiring the approximate function®(u). The results show a good convergence with increasing

k. Actually, the results folkk=2,3,4 are already consistent
within the errors induced by the uncertainty on the input
parameters, indicating that the systematic error due to the
truncation is at most of the same order of the error induced
by the input data. In Figs. 10, 11, and 12 we show respec-
tively the scaling functions as obtained froh{#) for k
=1,2,3.
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FIG. 10. The scaling functiof(x). We also plot the asymptotic FIG. 12. The scaling functiond(u). We plot also the
behavior off(x) at the coexistence curv@otted ling, i.e., f(X) asymptotic behavior oP (u) at the coexistence cur(dotted ling,

~f5{1+x) for x——1. i.e., ®(u)~(u—1)+3vs(u—1)2+ Lv,(u—1)3 for u—1.
In Table VI we report results concerning the behavior of D(y)
the scaling functiorf(x), F(z) and®(u) for H=0 and on Clyrp) = _y,
the critical isotherm, cf. Eq$64), (65), (66), (70), (71), (74). D(Ymax)
Note that the results fok=1,2,3 oscillate and that the un-
certainty due to the input parameters on kwe3 results is y
approximately the same as the difference between the esti- yR:Ymax' (97)

mates withk=2 and k=3. Therefore, it is reasonable to

consider thé&k=3 truncation as the best approximation of theWhich is such that the maximum correspondsyte=1 and

method using the available input parameters and to use the ..~ .. - . ) )
corresponding errors as final uncertainties. satisfiesC(1)=1. In Fig. 14 we plot the scaling function

In Fig. 13 we give the behavior of the magnetization as ac.(yR)’ as obtained from the=1,2,3 approximate paramet-

function oft andH, reporting the scaling functioB(y). The fe Irnezieseer?rtna;notg?work on maanetic svstems. it is custor-
behavior of the susceptibility can be obtained from the scal- P _ ok Y f Z

) . . ) ary to report[67,68 h/m=H|t|"?/M vs m>=M?|t| 28

ing functionD(y). The functionD(y) has a maximum for Such a function c’an be easily obtained from our appro>.<ima-
ymaX:1.9$q4),_corresponding to the so—cglled. crossover Ortions for f(x), sincem?=B2|x| ~2# and

pseudocritical lindsee Sec. Y. In order to simplify possible '

comparisons, it may be convenient to consider the rescaled

. h
function, a:k|x|*7f(x), (98)
400

" where the constark can be written as

300 — R
k:B;587’B=C—i, (99
F(2) i

whereR,=C*B’ /B is a universal constant, see Sec. V. A
plot of m?/B? vs C*h/m for the two case$>0 andt<O0 is
reported in Fig. 15.

- It is interesting to observe that in a neighborhood of the

critical isotherm the equation of state can be written in the
Arrott-Noakes form69]

H 1/y
z (M) =at+bMYP, (100

FIG. 11. The scaling functiofr(z). We also show the smatl-
and largez behaviors(dotted lineg, i.e., F(z)~z+ 323+ 135rsz°> Wherea and b are numerical constants. Indeed, using the

for z—0 andF(z)~F;z° for z— . results of Table VI forkk=3, we obtain
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TABLE VI. Expansion coefficients for the scaling equation of state obtained by the variational approach.

See text for definitions. Numbers marked with an asterisk are inputs, not predictions.

k=1 k=2 k=3 k=4
6% 1.3610@8) 1.3902) 1.382) 1.346)
p 1.736%8) 1.7411) 1.73310) 1.696)
e 1.9393) *2.056(5) *2.056(5) *2.056(5)
re 2.502) 2.393) *2.3(1) *2.3(1)
o —12.59(2) —12.08(5) —10.6(1.8) * —13(4)
Fo 0.0327178) 0.0338811) 0.0338215) 0.03382)
Zy 2.82547) 2.7922) 2.7943) 2.79838)
fo 1.050417) 1.05322) 1.05277) 1.0512)
fg 0.042986) 0.0449413) 0.04484) 0.043913)
f9 —0.02474(4) —0.02595(8) —0.0254(7) —0.023(4)
fo 0.596@4) 0.60317) 0.602415) 0.601(4)
o 0.939129) 0.934713) 0.935711) 0.9384)
U3 6.0134) 6.0624) 6.05013) 6.025)
Uy 16.323) 16.104) 16.1710) 16.4(3)
H\ ¥ M\ VB M\~ VB of the second-moment correlation length,
(M) |<1’7:(E +O.851t—0.050t2(E)
=17t (103
_2B
—0.008t3 M) (107  and of the truefon-shel) correlation length, describing the
B large distance behavior of the two-point function,
Thus, corrections to Eq100) are small and thus this expres- Ega= fgaFM e (104
sion has a quite wide range of validity. . . o
One can also define amplitudes along the critical isotherm,
V. UNIVERSAL AMPLITUDE RATIOS €.
- —IBs
From the critical equation of state one may derive esti- x=Co[H[ 2, (105
mates of several universal amplitude ratios. They are ex- £=f|H| V6o (106
pressed in terms of the amplitudes of the magnetization, cf. '
Egs.(62) and(63), of the magnetic susceptibility amdpoint _
gs.(62) and(63) g ptibility amelp Equ=FEudH| 180, (107

correlation functions, cf. Eq69), of the specific heat,

Cy=A~|t| 79, (102 10

0.5 : T T o
: 038

0.6
7 Clye) |

0.4

0.0
log,,E(y)

-0.5
0.2

|
1

s RN
non

W -

0.0

=
Y
=]
[}
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FIG. 14. The scaling functionC(yg). We also report its
asymptotic behaviorgdotted lineg: C(yr)~R,YmiD(Ymad Y’
~1.9%g” for yg—+, and C(yr)~B(f1") Y niD¥ma) *
X (—yr) 7=0.413(—yg) 7 for yg— — .

FIG. 13. The scaling functionE(y). We also report its
asymptotic behavior@lotted lineg: E(y)~R,y~” for y— +, and
E(y)=(—y)* for y— —c.
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3 TABLE VII. Amplitude-ratio definitions.
Uo=At/A" U,=C*/C™
L u,=CjIC; R;=—-C;B?%(C")?
Ri=aA*C"/B? R, =aA C7/B?
y R,=C,B?%(C")3 R,=C*"B> 1/(B,)°’
miB u3s—ch/(c—)2 vs=—C,B?(C)%+3v3
- 1 92 =—C4/I(CH*(F")°] w?=C/[B*(f7)"]
1 R ---- k=1 <0 A =f+/f"
S o k=2 >0 oie //Af+(f+)3 g =y Agaszfgiz
R T k=21<0 +:a +11/3 “ +
L S -—- ll§=g zg 1 R;=(Q") §—fgarff
_— = ——f [f C— c
/ Q¢ =fgaf Qi=fs
ol Wy L e L Q.=B%(f")%cC* Q.= (f°/f+)2’7C+/CC
o 1+ 2 3 4 5 6 7 8 9 10 PmET’gB/BC PCE—Tf,MC*/Cf{
+
C hm R,=C"/C,

FIG. 15. Plot ofm?/B? vs CTh/m.

We also consider the crossovéor pseudocritical line — be determined by comparing the results of the various ap-
tmadH), that is defined as the reduced temperature for whicProximations. In Table VIl we also show results fof,,
the magnetic susceptibility has a maximum Ht fixed. ~ Xmax, @NdYmax, Which are the values of the scaling variable

Renormalization group predicts z, x, andy [y was defined in Eq(77)] associated with the
crossover line. As already mentioned in Sec. IV D, we con-
tmad H) = T,HYOA), (109  sider thek=3 results as our best estimates, and report them
in Table I.
X(tmaxsH) = Cytnl, (109 Estimates of universal ratios of amplitudes involving

correlation-length amplitudes, such@s, R+ , andQ., can

We consider several universal amplitude ratios. They are ddi® obtained using the HT estimate @f. For instanceQ "
fined in Table VII. =R, R/ /g,. Other universal ratios can be obtained by

In Table VIII we report the universal amplitude ratios, as supplementmg the above results with the es_hmatexszoind
derived by the approximate polynomial representations of; (see Table VI), obtained by an analysis of the corre-
the equation of state fdt=1,2,3,4. The reported errors are sponding low-temperature expansiorist,34, and the HT
only due to the uncertainty of the input parameters and destimate ong (see Sec. VJI Moreover, using approximate
not include the systematic error of the procedure, which mayparametric representations of the correlation length, see Refs.

TABLE VIII. Universal amplitude ratios obtained by taking different approximations of the parametric

function h( ).
k=1 k=2 k=3 k=4

Ug 0.523111) 0.5332) 0.531925) 0.5296)
U, 4.82Q7) 4.74510) 4.75819) 4.785)
U, -9.73(3) —8.85(6) -9.0(2) -9.3(5)
R; 0.0554%7) 0.057@1) 0.05673) 0.056211)
R, 0.02196711) 0.022533) 0.0224212) 0.02224)
Ry 7.9834) 7.7948) 7.812) 7.834)
R, 92.1513) 94.1313) 93.606) 92(2)
R, 1.677911) 1.6582) 1.6604) 1.66510)
U, Ry 38.515) 36.9810) 37.12) 37.46)
Rj{ R: 0.44277) 0.44447) 0.4432) 0.44Q6)
Pm 1.252036) 1.24932) 1.24986) 1.2512)
P, 0.38313) 0.39385) 0.39337) 0.393@11)
Rp 1.97893) 1.96586) 1.966510) 1.967116)
Zmax 1.24434) 1.23175) 1.232298) 1.232612)
Xmax 12.323) 12.263) 12.274) 12.318)
Winax 1.9901) 1.9772) 1.9804) 1.98409)
D (W) 0.361794) 0.362717) 0.3626814) 0.36263)
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4, of the low-momentum expansion of the structure

factor.
o* P° Spin-1 Final estimates
C, —0.390(7)x 103 —0.390(6)x 103 —0.389(12)x 103 —0.390(6)< 102
Cs 0.882(8)x10°° 0.882(6)x 10 ° 0.88(4)x10°° 0.882(6)<10°°
C4 —0.4(1)x10°© —0.4(1)x10°° —0.4(1)x10°® —0.4(1)x10°©
[1,19 for details, one may also estimate the universal ratios S,=xM 2/zgap, (112

Q¢ andQ, defined in Table VII.

VI. LOW-MOMENTUM BEHAVIOR OF THE STRUCTURE
FACTOR

In this section we update the determination of the first few
coefficients that parametrize the low-momentum expansion

of the scaling two-point function in the HT phagkd,34,7(Q

X

50 (110

gy)== ~=1+y+2 cy,
wherey=k?£2,

The coefficientsc; can be related to the critical limit of
appropriate dimensionless ratios of spherical momenis
See Ref[34] for details. We have estimated the first few
coefficientsc; from the corresponding series derived from
the 25th-order expansions ofi,;, using the analysis de-

whereM,, (the mass gap of the thegrgnd Z,, determine
the long-distance behavior of the two-point function:

Zgap

g ~MgagX|
anx[ €

G(x)~ (113

As discussed in Ref$19,34], one may estimat§y,, andS,
from c,, c3, andc,. Indeed, we have

Su=1+cC,—Cz+Cy+2C5+---, (114

SZ:1_2C2+ 3C3_4C4_ZC§+ ey

(119

where the ellipses indicate contributions that are negligible

scribed in Sec. IV B. The results for the three improved mod-with respect toc,. Therefore, one find§,,=0.999 601(6)
els and our final estimates are reported in Table IX. OtheandS,=1.000810(13). From the result f&,, one obtains

interesting quantities are

Su=MgdM?, (111

Q; =fgff"=1.0002003).
A more detailed analysis of the behavior of the structure
factor for all momenta can be found in REV1].

[1] A. Pelissetto and E. Vicari, e-print cond-mat/0012164.

[2] A.J. Guttmann, irPhase Transitions and Critical Phenomena
edited by C. Domb and J. LebowitAcademic, New York,
1989, \Vol. 13.

[3] J. Zinn-Justin, J. Phys(France 40, 969 (1979; 42, 783
(19812).

[4] B.G. Nickel, inPhase Transitionsedited by M. Ley, J. C. Le
Guillou, and J. Zinn-JustitPlenum, New York, 1982

[5] D.S. Gaunt, inPhase Transitions(Ref. [4]).

[6] J.-H. Chen, M.E. Fisher, and B.G. Nickel, Phys. Rev. L4%.
630(1982.

[7] 3. Adler, J. Phys. A6, 3585(1983.

[8] M.J. George and J.J. Rehr, Phys. Rev. L&8.2063(1984).

[9] M.E. Fisher and J.H. Chen, J. PhyBrance 46, 1645(1985.

[10] P. Butera and M. Comi, Phys. Rev.@, 14 837(2000.

[11] R.Z. Roskies, Phys. Rev. B4, 5305(1981).

[12] J. Adler, M. Moshe, and V. Privman, Phys. Rev.2B, 1411
(1982; 26, 3958(1982.

[13] P. Butera and M. Comi, Phys. Rev. 3, 8212(1997.

[14] A. Pelissetto and E. Vicari, Nucl. Phys. B9 626 (1998.

[15] P. Butera and M. Comi, Phys. Rev. 38, 11552(1998.

[16] D. MacDonald, S. Joseph, D.L. Hunter, L.L. Moseley, N. Jan,

and A.J. Guttmann, J. Phys. 38, 5973(2000.

[17] P. Butera and M. Comi, Phys. Rev. @, 144431(2002..

[18] B.G. Nickel and J.J. Rehr, J. Stat. Phg4, 1 (1990.

[19] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.
Rev. E60, 3526(1999.

[20] H.G. Ballesteros, L.A. Fermalez, V. Martn-Mayor, and A.
Munoz Sudupe, Phys. Lett. B41, 330(1998.

[21] M. Hasenbusch, K. Pinn, and S. Vinti, Phys. Re\o® 11471
(1999.

[22] H.G. Ballesteros, L.A. Fefmalez, V. Marin-Mayor, A. Mufoz
Sudupe, G. Parisi, and J.J. Ruiz-Lorenzo, J. PhyS2A1
(1999.

[23] M. Hasenbusch, J. Phys. 32, 4851(1999.

[24] M. Hasenbusch and T."Tak, J. Phys. A32, 6361(1999.

[25] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.
Vicari, Phys. Rev. B63, 214503(2001).

[26] M. Hasenbusch, J. Phys. 34, 8221(2001).

[27] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.
Vicari, Phys. Rev. B65, 144520(2002.

[28] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.
Rev. B61, 5905(2000.

[29] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.
Rev. B62, 5843(2000.

066127-18



25TH-ORDER HIGH-TEMPERATURE EXPANSION . .. PHYSICAL REVIEW &5 066127

[30] There are also quite long series on the body-centered cubis4] M.E. Fisher, Philos. Mag7, 1731(1962.
lattice: for y and m,, 21 orders were computed for the [55] In the so-called critical-point renormalization methdgsee
Klauder, double-Gaussian, and Blume-Capel models for ge-  Ref. [60] and references thergingiven two serieD(x) and

neric values of the coupling in Ref18]; 25 terms were com- E(x) that are singular at the same poig, D(x)=23;dx

puted for a generic model in Re53]. ~(xo—%) % and E(x)==,e;x ~(Xo—X) ¢, one constructs a
[31] This is the estimate used in R¢L9], which was derived from new seriesF(x)=3;(d; /e,)x'. The functionF(x) is singular

the MC results of Ref[23]. There, the result* =1.095(12) atx=1 and forx—1 behaves likeF(x)~(1—x) "¢, where

was obtained by fitting the data for the lattices of dize 16.
Since fits using also data for smaller lattices, i.e., vita12
andL=14, gave consistent results, one might expect that the
systematic error is at most as large as the statistical 62

[32] M. HasenbuschHabilitationsschrift(Humboldt-Universitazu
Berlin, 1999; M. Hasenbusch, Int. J. Mod. Phys. 12, 911
(2002.

[33] The exponentwyy is associated with the leading nonrotation-
ally invariant scaling corrections: see REB4] for a precise

¢=1+ 6— €. Therefore, the differencé— e can be obtained

by analyzing the expansion &f(x) by means of biased ap-

proximants with a singularity at.=1.

[56] K.E. Newman and E.K. Riedel, Phys. Rev3B, 6615(1984).

[57] Using the results of Sec. Il C, we can estimate the size of a
correctionn™272, SinceAy~0.5246,|A;, ,| <10 2, we have

M~ B, (1+an 2~*) with |a|]<2x10 2. Thus, the correc-

tion may be small and give a negligible contribution at present

definition. values ofn.
[34] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys.[58] M.E. Fisher, PhysicsLong Island City, N.Y) 3, 255 (1967);
Rev. E57, 184 (1998. A.F. Andreev, Sov. Phys. JETES, 1415(1964; M.E. Fisher
[35] C. Bagnuls and C. Bervillier, Phys. Rev. &, 7209 (1985; and B.U. Felderhof, Ann. Phy§N.Y.) 58 176(1970; 58, 217
e-print hep-th/0112209. (1970; S.N. Isakov, Commun. Math. Phy85, 427 (1984).
[36] C. Bagnuls, C. Bervillier, D.I. Meiron, and B.G. Nickel, Phys. [59] Using the available series, we obtajp="322""2¢,5' and
Rev. B35, 3585(1987); ibid. 65, 149901E) (2000. roj=37m2G8", with npa=20,19,17 forg,, re, andrg.
[37] AJ. Liu and M.E. Fisher, Physica 856, 35 (1989. [60] D.L. Hunter and G.A. Baker, Jr., Phys. Rev7B3346(1973;
[38] C. Gutsfeld, J. Kater, and G. Master, Nucl. Phys. B79, 654 7,3377(1973; 19, 3808(1979; M.E. Fisher and H. Au-Yang,
(1996. J. Phys. AL2, 1677(1979; 13, 1517E) (1980; A.J. Guttmann
[39] S.-Y. Zinn and M.E. Fisher, Physica 226, 168(1996. and G.S. Joycedhid. 5, L81 (1972; J.J. Rehr, A.J. Guttmann,
[40] M. Caselle and M. Hasenbusch, J. Phys3@\ 4963(1997. and G.S. Joycdbid. 13, 1587(1980.
[41] R. Guida and J. Zinn-Justin, Nucl. Phys.4B9, 626 (1997). [61] In Ref.[19] we used PadeDlog-Padeand IA1, requiring that
[42] M.E. Fisher and S.-Y. Zinn, J. Phys. 34, L629 (1998. they were not singular g8.. We obtainedy,=23.494).
[43] R. Guida and J. Zinn-Justin, J. Phys3A 8103(1998. [62] M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, J.
[44] M. Hasenbusch and K. Pinn, J. Phys34 6157(1998. Phys. A34, 2923(2001).
[45] S.A. Larin, M. Mannigmann, M. Streser, and V. Dohm, Phys. [63] P. Schofield, Phys. Rev. Le®2, 606 (1969.
Rev. B58, 3394(1998. [64] P. Schofield, J.D. Lister, and J.T. Ho, Phys. Rev. [ 23.1098
[46] A. Pelissetto and E. Vicari, Nucl. Phys. B2 605 (1998; (1969.
575, 579(2000. [65] B.D. Josephson, J. Phys.221113(1969.
[47] HW.J. Bldae, L.N. Shchur, and A.L. Talapov, Int. J. Mod. [66] H.B. Tarko and M.E. Fisher, Phys. Rev. B, 1217 (1975;
Phys. C10, 1137(1999. M.E. Fisher, S.-Y. Zinn, and P.J. Uptorbhid. 59, 14533
[48] J. Zinn-Justin, Phys. Re44, 159 (200)). (1999; M.A. Anisimov and J.V. Sengers, ifcquations of
[49] A. Pelissetto and E. Vicari, Nucl. Phys. 810 639 (1999. State for Fluids and Fluid Mixturesedited by J.V. Sengers,
[50] A.W. Nowicki, Madhujit Ghosh, S.M. McClellan, and D.T. R.F. Kayser, C.J. Peters, and H.J. White, (Elsevier,
Jacobs, J. Chem. Phykl4, 4625(2002). Amsterdam, 2000

[51] M. Barmatz, Tech. Rep. JPL D-17083, JPL, 19@mpub- [67] J.S. Kouvel and D.S. Rodbell, Phys. Rev. L&8&, 215(1967).
lished; M. Barmatz, I. Hahn, and F. Zhong, Proceeding of [68] P.D. Babu and S.N. Kaul, J. Phys.: Condens. Mater 189
2000 NASA/JPL Workshop on Fundamental Physics in Micro- (1997.
gravity (unpublishegl [69] A. Arrott and J.E. Noakes, Phys. Rev. Let®, 786 (1967).

[52] M. Wortis, in Phase Transitions and Critical Phenomereal- [70] M.E. Fisher and A. Aharony, Phys. Rev.1®, 2818(1974).
ited by C. Domb and M.S. GreefAcademic Press, London, [71] V. Martin-Mayor, A. Pelissetto, and E. Vicari e-print
1974, Vol. 3. cond-mat/02023982002.

[53] M. Campostrini, J. Stat. Phy403 369 (2001). [72] M. Hasenbuscliprivate communication

066127-19



