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25th-order high-temperature expansion results for three-dimensional Ising-like systems
on the simple-cubic lattice
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25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising
model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials
characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-
temperature series specialized to improved potentials, obtainingg51.2373(2), n50.63012(16), a
50.1096(5), h50.036 39(15),b50.326 53(10), andd54.78 93(8). Moreover, biased analyses of the 25th-
order series of the standard Ising model provide the estimateD50.52(3) for the exponent associated with the
leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helm-
holtz free energy. The results are then applied to the construction of parametric representations of the critical
equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of
several universal amplitude ratios are also presented.
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I. INTRODUCTION

The Ising model is one of the most studied systems in
theory of phase transitions, not only because it is the simp
nontrivial model that has a critical behavior with nonclas
cal exponents, but also because it describes the critical
havior of many physical systems. Indeed, many syste
characterized by short-range interactions and a scalar o
parameter undergo a continuous phase transition belon
to the Ising universality class. We mention the liquid-vap
transition in simple fluids and the critical transitions in mu
ticomponent fluid mixtures, in uniaxial antiferromagne
materials, and in micellar systems. Continuous transiti
belonging to the three-dimensional Ising universality cla
are also expected in high-energy physics, for instance in
electroweak theory at finite temperature and in the theory
strong interactions at finite temperature and finite bary
number chemical potential. For a recent review, see, e
Ref. @1#.

The high-temperature~HT! expansion is one of the mos
efficient approaches to the study of critical phenomena. V
precise results have been obtained by performing carefu
trapolations to the critical point, by using several differe
methods, see, e.g., Ref.@2#. For moderately long series, suc
as those available for models in the three-dimensional Is
universality class, the nonanalytic confluent corrections
the main source of systematic errors. For instance, accor
to renormalization-group theory, the critical behavior of t
magnetic susceptibility is given by the Wegner expansion

x5Ct2g~11axtD1a2t2D1•••1btD21•••1e1t1e2t2

1••• !, ~1!
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wheret[(T2Tc)/Tc is the reduced temperature andD is a
noninteger exponent,D'0.5 in the Ising case. In the analys
of HT expansions these nonanalytic terms introduce la
and dangerously undetectable systematic deviations in
results.

In order to obtain precise estimates of the critical para
eters, the approximants of the HT series should properly
low for the confluent nonanalytic corrections@3–9#. How-
ever, the extensive numerical work that has been done sh
that in practice, with the series of moderate length that
available today, no unbiased analysis is able to take ef
tively into account nonanalytic correction-to-scaling term
In order to treat them properly, one should use biased m
ods in which the presence of the leading nonanalytic te
with exponentD is imposed~see, e.g., Refs.@10–17#!. An
alternative approach to this problem consists in conside
models—we call themimproved—that do not couple the
leading irrelevant operator that gives rise to the conflu
correction of ordertD. Therefore, such correction does n
appear in the expansion ofany thermodynamic quantity nea
the critical point: for instance,ax50 in Eq.~1!. In this case,
we expect standard analysis techniques to be much m
effective, since the main source of systematic error sho
have been eliminated. There are no methods that allow u
determine exactly improved models, and one must there
use numerical techniques. One may use HT expansions
in this case the improved model is determined with a re
tively large error@1,6,8,9,18,19# so that the final results do
not significantly improve the estimates obtained from st
dard analyses using biased approximants. Recently@19–27#,
it has been realized that Monte Carlo~MC! simulations using
finite-size scaling techniques are very effective for this p
pose, obtaining accurate determinations of several impro
models in the Ising,XY, and O~3! universality classes.

As shown in Refs.@19,25,27–29#, analyses of the HT se
ries for the improved models lead to a significant improv
ment in the estimates of the critical exponents and of ot
©2002 The American Physical Society27-1
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infinite-volume HT quantities. Our working hypothesis
that, with the series of current length, the systematic err
i.e., the systematic deviations that are not taken into acco
in the analysis, are largely due to the leading confluent c
rection, so that improved models give results with sma
and, more importantly, reliable error estimates. This hypo
esis can be checked by comparing the results obtained u
different improved models: if correct, they should agr
within error bars. In the following we shall report results th
confirm our hypothesis. Indeed, the estimates obtained f
three different improved Hamiltonians are perfectly cons
tent. Moreover, they are very stable with respect to the or
of the series considered in the analysis, without show
dangerous trends, but only an apparent reduction of the e
The results obtained in Ref.@19# using 20th-order series ar
fully consistent with the 25th-order analysis that we prese

We consider scalar models on a simple-cubic lattice w
Hamiltonian

H52b(
^ i , j &

f if j1(
i

V~f i
2!, ~2!

whereb[1/T, ^ i , j & indicates nearest-neighbor sites,f i are
real variables, andV(f2) is a generic potential satisfyin
appropriate stability constraints. These models are expe
to have either a critical transition belonging to the Ising u
versality class or a first-order transition between a disorde
and an ordered phase, apart from special cases that c
spond to multicritical points. Using the linked-cluster expa
sion technique, we compute, for an arbitrary potential,
HT expansion of the two-point correlation function to 25
order on a simple-cubic lattice. These results extend thos
Ref. @19# that reported the two-point function to 20th ord
@30#. In particular, we consider three classes of models
pending on an irrelevant parameter, which is fixed by req
ing the absence of the leading scaling correction. The
one is thef4 lattice model with potential

V~f2!5f21l4~f221!2. ~3!

MC simulations using finite-size scaling techniques ha
shown that the model is improved for@31#

l45l4* 51.10~2!. ~4!

A consistent but less precise estimate can be obtained
the HT expansion@19#. The second class of models is thef6

lattice model with potential

V~f2!5f21l4~f221!21l6~f221!3. ~5!

Fixing l651, thef6 Hamiltonian is improved for@19#

l45l4* 51.90~4!. ~6!

Finally, we consider the spin-1~or Blume-Capel! Hamil-
tonian

H52b(
^ i , j &

sisj1D(
i

si
2 , ~7!
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where the variablessi take the values 0,61. An improved
spin-1 model is obtained for@32#

D5D* 50.641~8!. ~8!

The comparison of the results obtained using the abo
mentioned improved Hamiltonians represents a strong ch
of the expected reduction of systematic errors in the HT
sults, and provides an estimate of the residual errors du
the subleading confluent corrections to scaling.

We also extend the HT expansion of the zero-moment
n-point correlation functionsxn . In particular, we compute
x4 , x6, and x8 to 21st, 19th, and 17th order, respective
The analysis of such series provides information on
small-magnetization expansion of the Helmholtz free ene
in the HT phase. These results are used to determine app
mate representations of the equation of state that are val
the critical regime in the whole (t,H) plane. For this pur-
pose, following Ref.@19#, we use a systematic approximatio
scheme based on polynomial parametric representations
on a global stationarity condition. This approach allows us
obtain an accurate determination of the critical equation
state in the whole critical region up to the coexistence cur

In Table I we anticipate most of the results that we sh
obtain in this paper. We report HT estimates of the critic
exponents and of the coefficients parametrizing the sm
magnetization expansion of the Helmholtz free energy: th
are denoted by IHT, where the ‘‘I’’ stresses the fact that
are using improved models. Then, we report several am
tude ratios~definitions are given in Sec. V!. Those appearing
in the column IHT-PR are obtained from an approxima
representation of the equation of state that uses the HT
sults as inputs, those labeled by LT are obtained from
analysis of low-temperature expansions, while those repo
under IHT-PR1LT are obtained combining the IHT-PR an
LT results. The comparison with the corresponding Ta
XIII of Ref. @19# shows that the estimates obtained from t
25th-order series are essentially identical to those obta
by using the shorter 20th-order series. However, the lon
series allows us to give error bars that are smaller by a fa
of 1.5–2, depending on the observable. The estimates
ported in Table I are in substantial agreement with, and s
stantially more precise than, the best theoretical and exp
mental results that have been previously obtained@10,20–
23,35–50#. For a comprehensive recent review of theoreti
and experimental results, see Ref.@1#. On the experimenta
side, we mention the planned experiments in micrograv
environment described in Ref.@51#, which may substantially
improve the experimental determinations of the critical qu
tities and make the comparison with the theoretical com
tations more stringent.

After completion of this work, the study reported in Re
@17# appeared, where analyses of 25th-order series for spS
models are reported. Results for the critical exponents
obtained by means of biased analyses, essentially by fix
D. Comparing Ref.@17# with Refs.@10,13#, where 21st- and
23rd-order series are analyzed, a trend appears towards b
agreement with improved Hamiltonian results~Ref. @19# and
present paper!. The latest results of the authors of Ref.@17#
7-2
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TABLE I. Summary of the results obtained in this paper~unless a reference is explicitly cited! by our
high-temperature calculations~IHT!, by using the parametric representation of the equation of state~IHT-
PR!, by analyzing the low-temperature expansion~LT!, and by combining the results of the two approach
(IHT-PR1LT). The estimates of critical exponents marked by an asterisk have been obtained using
and hyperscaling relations.

IHT IHT-PR LT IHT-PR1LT

Critical g 1.2373~2!

exponents n 0.63012~16!

a 0.110~2!,* 0.1096(5)
h * 0.03639(15)
b * 0.32653(10)
d * 4.7893(8)
D 0.52~3!

v 0.83~5!

vNR 2.0208~12! @19,33#

Small-magnetization g4
1 23.56~2!

expansion of r 6 2.056~5!

the free-energy r 8 2.3~1!

in the HT phase r 10 213(4) @19# 210.6(1.8)

Universal U0 0.532~3!

amplitude U2 4.76~2!

ratios; U4 29.0(2)
see Sec. V Rc

1 0.0567~3!

for notations Rc
2 0.02242~12!

R4
1 7.81~2!

v3 6.050~13!

R4
2 93.6~6!

v4 16.17~10!

Rx 1.660~4!

w2 4.75~4! @14#

Uj 1.956~7!

Q1 0.01880~8!

Rj
1 0.2659~4!

Q2 0.00472~5!

Qc 0.3315~10!

g3
2 13.19~6!

g4
2 76.8~8!

Qj
1 1.000200~3!

Qj
2 1.032~4! @34#

Ujgap
1.896~10!

Qj
c 1.024~4!

Q2 1.195~10!

Pm 1.2498~6!

Pc

Rp

0.3933~7!
1.9665~10!
o
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are in full agreement with our estimates.
The paper is organized as follows. In Sec. II we report

the HT expansions. Section III reports on the results of
analysis of the HT series for the critical exponents. In S
IV we determine approximate representations of the crit
equation of state. In Sec. IV A we give the definitions,
Sec. IV B we give estimates of the zero-momentum fo
06612
n
r
.
l

-

point coupling and of the first few coefficients of the sma
magnetization expansion of the equation of state, in S
IV C we explain the method, and in Sec. IV D we give th
final results. In Sec. V we present estimates of several
versal amplitude ratios. In Sec. VI we determine the lo
momentum behavior of the two-point function in the H
phase.
7-3
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TABLE II. Coefficients of the HT series for the improved models. Lower-order coefficients appear in Ref.@19#.

n f4: l451.10 f6: l651,l451.90 spin-1:D50.641

x
21 958465949.119795229380125 55356759.0258594943774739 521863527.5497471277
22 2581828793.17418316658592 130996257.131383657648562 1367254366.702566846
23 6953921835.10625772660286 309956395.981892002096689 3581814299.630299659
24 18716342130.2600278822297 732873665.558914443007657 9376338630.496015452
25 50369768053.5367726030130 1732674465.68758001711514 24543094928.92051559

m2

21 32990320251.5660972216018 1900950559.23375555678011 17908950773.48017065
22 94071328367.8146359923071 4762044317.91673448231502 49684326561.54395427
23 267461898855.689392585599 11894571003.1970044574018 137433163639.4574944
24 758423675496.642760823002 29631147101.2512233682029 379139772127.1014696
25 2145329356955.42924803892 73634162230.2093808561076 1043350926215.226116

m4

20 541141652908.631074719231 35399348720.3598637148375 299758906549.7916103
21 1643345014677.80358819408 94444621918.7858920241050 885976701269.7361042
22 4961021084766.33884428748 250485298262.046958470064 2603026564263.780698
23 14895796670810.3387628037 660748522303.208118944668 7606210964865.328211
24 44504475774409.2126174407 1734347627024.93369651634 22115153167519.19843
25 132362288688779.709839376 4531641133142.45499870752 64005596692608.80360

x4

19 2141558376231.985023846408 29210343000.40488445467068 277210883309.3840433243811
20 2440895445559.088001425635 225206881115.0765162521666 2234263398532.544236218037
21 21363771989486.31756523825 268511054288.5805997438372 2705801443484.646787710146

x6

18 25922773662329.4681285982 1657400403425.39611029038 13110582140461.82416
19 93214547843378.1420243052 5239283130720.37310719268 46080008679021.70956

x8

17 23021378127745877.943411840 2188904527250502.5683919596 21360671334948122.79225352
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II. HIGH-TEMPERATURE EXPANSION

We considered a simple-cubic lattice and computed
HT expansion of several quantities for a generic latt
model defined by the Hamiltonian~2!, using the vertex- and
edge-renormalized linked-cluster expansion technique,
veloped in Refs.@18,52# and described in detail in Ref.@53#.
Some technical points that allowed us to extend the com
tation of Ref.@53# will be reported in a forthcoming publi
cation. We computed the 25th-order HT expansion of
two-point function

G~x!5^f~0!f~x!&. ~9!

In the present context we consider its moments,

m2 j5(
x

uxu2 jG~x!, ~10!

and therefore, the magnetic susceptibilityx[m0 and the
second-moment correlation lengthj25m2 /(6x).
06612
e
e

e-

u-

e

We also calculated the HT expansion of the ze
momentum connected 2j -point correlation functionsx2 j ,

x2 j5 (
x2 , . . . ,x2 j

^f~0!f~x2!•••f~x2 j 21!f~x2 j !&c ~11!

(x5x2). More precisely, we computedx4 to 21st order,x6
to 19th order,x8 to 17th order. The correlation functionx10
was computed to 15th order in Ref.@19#.

It would be pointless to present here the full results for
arbitrary potential: the resulting expressions are only fit
further computer manipulation. They are available on
quest. In Table II we give the new coefficients only for th
three improved models we have considered, i.e., for thef4

model at l451.10, for the f6 model at l651 and l4
51.90, and for the spin-1 model atD50.641.

For the standard Ising model, we give below the coe
cients of the terms that extend the expansions presente
Refs.@15,53# for x, m2, andx4:
7-4
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x5•••118 554 916 271 112 254v24185 923 704 942 057 238v251O~v26!,

m25•••1977 496 788 431 483 776v2414 767 378 698 515 169 334v251O~v26!,

x45•••26 306 916 133 817 628v18234 120 335 459 595 728v19

2183 166 058 308 506 108v202976 373 577 976 196 368v211O~v22!, ~12!
fo
ra
I.
a

f
rre-
f

.

t
-

wherev[tanhb.

III. THE CRITICAL EXPONENTS

In this section we shall report three different analyses
the critical exponents. In Sec. III A we shall use integ
approximants and derive the estimates reported in Table
Secs. III B and III C we shall use two other methods th
have been recently used in the literature@10,16,17# to con-
firm the integral-approximant results.
e
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A. Analysis using integral approximants

In order to estimateg andn, we analyze the HT series o
the magnetic susceptibility and of the second-moment co
lation length, respectively. We follow closely Appendix B o
Ref. @19#, to which the reader is referred for more details

We use integral approximants~IA’s ! of first, second, and
third order ~see Ref.@2# for a review!. Given a nth-order
series f (b)5( i 50

n cib
i , its kth-order integral approximan

@mk /mk21 /•••/m0 / l # IAk is a solution of the inhomoge
neouskth-order linear differential equation
Pk~b! f (k)~b!1Pk21~b! f (k21)~b!1•••1P1~b! f (1)~b!1P0~b! f ~b!1R~b!50, ~13!
by

of
r to

-

of
where the functionsPi(b) andR(b) are polynomials of or-
der mi and l, respectively, which are determined by th
known nth-order small-b expansion of f (b). Following
Fisher and Chen@9#, we also consider integral approximan
FCIAk’s, in which Pk(b) is a polynomial inb2. FCIAk’s
allow for the presence of the antiferromagnetic singularity
bc

af52bc @54#. In our analyses we consider diagonal or qu
sidiagonal approximants, since they are expected to give
most accurate results. For each set of IAk’s we determine the
average of the values corresponding to all nondefec
IAk’s. The error bar from each class of IA’s is essentially t
spread of the results, and it is given by the standard devia
of the results obtained from all nondefective IA’s. In mo
cases the nondefective IA’s are more than 90%.

All IA’s considered give perfectly consistent result
Moreover, the results turn out to be very stable with resp
to the number of terms of the series, so that there is no n
to perform problematic extrapolations in the number of ter
in order to obtain the final estimates. In Fig. 1 we show
estimates ofg obtained by analyzing the series ofx for the
f4 model at l451.10 by using IA1’s, IA2’s, IA3’s, and
FCIA2’s, as a function of ordern of the series considered i
the analysis. Perfect agreement is also found among the
sults for the three improved Hamiltonians. This is shown
Fig. 2, where the results of the IA2 analyses for the th
improved Hamiltonians are reported versusn. In Fig. 2 we
also show the results of the IA2 analysis applied to the se
of x for the standard Ising spin-1/2 model. The correspo
ing results disagree with those obtained by using impro
Hamiltonians: clearly, there is a large error that is not tak
into account by the spread of the approximants. The res
t
-
he

e

n
t

ct
ed
s
e

re-

e

s
-
d
n
lts

for the Ising model improve if one biases the analysis
using the very accurate MC estimate ofbc @47#: bc
50.221 654 59(10). Indeed,g drops from 1.245 tog
51.2400(5). However, the error obtained from the spread
the approximants is still incorrect. Results that are close
those obtained by using the improved Hamiltonians~and
substantially compatible with them! are only obtained by ad
ditionally biasing the series, allowing forO(tD) confluent
corrections, see, e.g., Ref.@10#.

FIG. 1. Estimates ofg as obtained by analyzing the HT series
x for the f4 model atl451.10 versus the ordern of the series
considered in the analysis. Several approximants~defined in the
text! are considered.
7-5
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For thef4 lattice model we obtained

bc~l451.10!50.375 097 5~5!, ~14!

ge~l4!51.237 32~10!10.006~l421.10!, ~15!

wherege(l4) is the effective critical exponent obtained
the IA analysis, which has a small but nonvanishing dep
dence onl4 around the favorite valuel451.10.~Here and in
the following, we write explicitly the dependence onl4 and
equivalent couplings: should a better estimate ofl4* become
available, it can be immediately used to improve our resu!
The number between parentheses is basically the sprea
the approximants atl451.10. Thel4 dependence is esti
mated by determining the variation of the results wh
changingl4 aroundl451.10. The best estimate ofg should
be obtained atl45l4* . Thus, using the MC estimate ofl4* ,
i.e.,l4* 51.10(2), andtaking into account its uncertainty, w
obtain the estimateg51.237 32(10)@12# ~which is also re-
ported in Table III!, where the error in brackets is related
the uncertainty onl4* . As final error we consider, pruden
tially, the sum of these two numbers. The estimate~14! is in

FIG. 2. Estimates ofg as obtained by analyzing the HT series
x for the improved models and for the spin-1/2 model, versus
order n of the series considered in the analysis. IA2’s are cons
ered.
06612
-

.
of

n

substantial agreement with the MC estimate ofbc @23# ob-
tained using finite-size scaling techniques,bc(l451.10)
50.375 0966(4).

Similarly, for thef6 lattice model we obtain

bc~l451.90,l651!50.426 979 1~5!, ~16!

ge~l4 ,l651!51.237 26~10!10.0055~l421.90!,
~17!

and, using the MC resultl4* 51.90(4), the estimate g
51.237 26(10)@22#; for the spin-1 model

bc~D50.641!50.385 671 7~10!, ~18!

ge~D !51.237 25~20!20.012~D20.641!, ~19!

and therefore, usingD* 50.641(8), g51.237 25(20)@10#.
Our final estimate ofg is obtained by combining the re

sults of the three improved Hamiltonians: as an estimate
take the weighted average of the three results, and as
mate of the uncertainty the smallest of the three errors.
cording to this rather subjective but reasonable proced
we obtain

g51.2373~2!. ~20!

A direct estimate of the specific-heat exponenta is obtained
from the singular behavior ofx at the antiferromagnetic criti-
cal pointbc

af52bc , since@54#

x5c01c1~b2bc
af!uaf1••• ~21!

where

uaf512a. ~22!

FCIAk’s provide rather precise estimates ofuaf . The corre-
sponding results fora are reported in the second line o
Table III. No error in brackets is reported since the dep
dence onl4 ,D is negligible. As the final estimate we give

a50.110~2!. ~23!

The exponentn is obtained from the series of the secon
moment correlation lengthj, sincej2;(bc2b)22n. Unbi-
ased analyses of the 24th-order series ofj2/b provide the
results reported in the third line of Table III. The correspon
ing estimates ofbc are consistent with those derived fromx,

e
-

imant
o

TABLE III. Critical exponents obtained from the HT analysis. In parentheses we report the approx
error atl* or D* , in brackets the uncertainty due to the error onl* or D* , in braces the uncertainty due t
the error onbc .

f4 f6 spin-1

g x-series 1.23732~10!@12# 1.23726~10!@22# 1.23725~20!@10#

a x-series atbc
af 0.110~2! 0.110~2! 0.112~5!

n j2-series 0.6302~2!@1# 0.6301~3!@3# 0.6300~2!@1#

n j2-series (bc-biased) 0.63014~1!$6%@9# 0.63009~1!$16%@16# 0.63010~1!$10%@9#

hn x,j2-series~CPRM! 0.02294~3!@6# 0.02291~2!@10# 0.02294~8!@4#
7-6
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although less precise. For instance, for thef4 model atl4
51.10 we foundbc50.375 098(2).

In order to get a more precise estimate ofn, we follow the
procedure suggested in Ref.@2#, i.e., we use the estimate o
bc obtained fromx to bias the analysis ofj2. For this pur-
pose we use IA’s that have a singularity at a fixed value
bc , or, in order to take into account the antiferromagne
singularity, a pair of singularities at6bc ; the two choices
give equivalent results. This analysis provides the follow
effective exponents for the three classes of models. Fol4

'l4* ,

ne~l4!50.630 14~1!$6%10.0045~l421.10! ~24!

for the f4 model, where the number in braces gives t
variation of the estimate whenbc varies within one error bar

ne~l4 ,l651!50.630 09~1!$16%10.004~l421.90!
~25!

for the f6 model;

ne~D !50.630 10~1!$10%20.011~D20.641! ~26!

for the spin-1 model. Then, using the MC estimates
l4* ,D* , one obtains the results reported in Table III, whe
the error due to the uncertainty onl4* and D* is reported
between brackets. They are perfectly consistent with the
sults of the unbiased analysis, but more precise. Combin
the results of Table III as we did forg, we obtain

n50.630 12~16!. ~27!

Using the hyperscaling relationa5223n, we derive

a50.1096~5!, ~28!

which is fully consistent with, but more precise than, t
direct estimate~23!.

Using the above-reported results forg andn and the scal-
ing relation g5(22h)n, we obtainh50.0364(6), where
the error is estimated by considering the errors ong andn as
independent, which is of course not true. We can obtain
estimate ofh with a smaller, yet reliable, error by applyin
the so-called critical-point renormalization method~CPRM!
@55# to the series ofx and j2. This method provides an
estimate for the combinationhn. Proceeding as before, w
obtain

@hn#e~l4!50.022 94~3!10.003~l421.10! ~29!

for the f4 model,

@hn#e~l4 ,l651!50.022 91~2!10.0025~l421.90!
~30!

for the f6 model, and

@hn#e~D !50.022 94~8!20.005~D20.641! ~31!
06612
f
c

g

e

f

e-
g

n

for the spin-1 model. We then obtain the results reported
Table III, which lead to an estimate ofh with a considerably
smaller error:

h50.036 39~15!. ~32!

Then, by using the scaling relations we obtain

d5
52h

11h
54.7893~8!, ~33!

b5
n

2
~11h!50.326 53~10!, ~34!

where the error onb has been estimated by considering t
errors ofn andh as independent.

Finally, we estimate the exponentD. For this purpose, we
analyze the HT expansion oftgx that behaves like

tgx5C1~11axtD1••• !, ~35!

for t[12b/bc→0. We consider the spin-1/2 model—he
improved models are not useful sinceax'0—fix the expo-
nentg to our best estimate,g51.2373, and use biased IA’
that are singular atbc50.221 654 59(10), which is the mos
precise MC estimate of the critical point@47#. We obtain

D50.52~3!, ~36!

where the error takes into account the uncertainty onbc and
g. Correspondingly, we obtainv5D/n50.83(5). Consistent
results are obtained from the analysis of the series oft2nj2,
fixing n andbc .

B. The ratio method

In order to check the above-reported results, we cons
the ratio method proposed by Zinn-Justin in Ref.@3# ~also
see Ref.@2#!. Such a method has been recently employed
Refs. @10,17# to analyze the 25th-order HT expansions
spin-S models on the simple cubic and on the body-center
cubic lattice.

According to this method, given a quantity

S5(
n

cnbn'AS~bc2b!2z@11aS~bc2b!e1•••#,

~37!

one considers the sequences

bc
(n)5S cn22cn23

cncn21
D 1/4

expF sn1sn22

2sn~sn2sn22!G , ~38!

z (n)5112
sn1sn22

~sn2sn22!2
, ~39!

where

sn52
1

2 F 1

ln~cncn24 /cn22
2 !

1
1

ln~cn21cn25 /cn23
2 !

G .

~40!
7-7
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Asymptotically, the two sequencesbc
(n) andz (n) approachbc

and z, with corrections ofO(1/n11e) and O(1/ne), respec-
tively. More precisely, if

cn'bc
2nnz21~A01Aen

2e! ~41!

for n→`, then

bc
(n)'bcF11

Ae

2A0
e2~e21!

1

n11eG , ~42!

z (n)'zF11
Ae

zA0
e~e221!

1

neG . ~43!

Note that, if only analytic corrections are present, i.e.,e51,
the convergence is faster with corrections of ordern23 and
n22 for bc andz:

bc
(n)'bcF12S A1

2

A0
2

z22

z21
1

7

12
~z21! D 1

n3G , ~44!

z (n)'zF12S 3
A1

2

A0
2

z22

z21
1

3

4
~z21! D 1

zn2G . ~45!

In Figs. 3 and 4 we show, for thef4 model atl451.10
and for the spin-1 model atD50.641, respectively, the se
quencebc

(n) obtained usingS5x. The sequence clearly ap
proaches the IA estimate. For thef4 model the agreement i
quite good and indeedbc

(n) differs from the IA estimate~14!
by 1531027 and 931027 for n524,25~note that the error
on the IA estimate ofbc is 531027). In principle, one could
try to extrapolate the sequencebc

(n) to get a better estimate o
bc . For this purpose, we have tried to fitbc

(n) assuming a
behavior of the form

bc
(n)5a1bn2s, ~46!

wherea, b, ands are free parameters. If we interpolatebc
(n)

for n521,23,25 with Eq.~46!, we obtain

FIG. 3. Sequencebc
(n) for the f4 model atl451.10 using the

series forx. The dashed lines indicate the IA estimate ofbc .
06612
bc
(n)50.375 097 7~25!13.0~14!31026S n

20D
26.6(21.5)

,

~47!

where the ‘‘errors’’ show the variation of the parameters b
tween the interpolations withn521,23,25 andn519,21,23.
Analogously, the even sequencen520,22,24 gives

bc
(n)50.375 096 8~225!14~12!31026S n

20D
26(22)

.

~48!

The extrapolated values are in perfect agreement with
~14!, but it is quite difficult to interpret the results fors.
Indeed, in an improved model the leading corrections in
coefficientscn are of ordern2D2, n21, with @56# D2'1. The
analytic term gives a contribution of ordern23, while the
nonanalytic one gives a correction of ordern2D221. How-
ever, its amplitude is of orderD221, and thus, sinceD2
'1, it could be very small. The next correction terms are
order n2D3, n212D, and give rise to corrections of orde
n212D3, n222D. Inclusion of corrections with 2,s&5/2
does not improve the fit@57#. Clearly, we are not yet suffi-
ciently asymptotic to be able to extrapolate using the lead
asymptotic behavior. At the values ofn we are considering,
several corrections are still important and apparently c
spire to give a uniformly small correction.

The same behavior is observed in thef6 model, where
both odd and even points extrapolate to 0.426 978 7, w
effective exponents'12, 8. The agreement with the IA es
timate ~16! is quite good. We finally analyze the spin-1 r
sults. Even points show again a very fast convergence w
s'9 and extrapolate to 0.385 666 2. Odd points instead
well fitted by assuming corrections of ordern22 or n25/2.
Fixing s522, we obtain 0.385 673 0, while fors525/2
we have 0.385 671 9. Again, the IA result~18! is very well
confirmed.

For comparison, in Fig. 5 we plot the sequencebc
(n) for

the spin-1/2 model versus 1/n3/2, which should be approxi-
mately the leading correction. The higher-n results have ap-

FIG. 4. Sequencebc
(n) for the spin-1 model atD50.641 using

the series forx. The dashed lines indicate the IA estimate ofbc .
7-8
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25TH-ORDER HIGH-TEMPERATURE EXPANSION . . . PHYSICAL REVIEW E65 066127
parently the predictedO(n23/2) behavior, and indeed an ex
trapolation with Eq.~46! and s53/2 gives results that ar
close to the MC estimate ofbc . The odd~even! points ex-
trapolate to 0.221 656 86~0.221 657 17!: they are close to the
MC estimate@47# 0.221 654 59~10!. However, it is hard to go
beyond a relative precision of 1025.

In Fig. 6 we show the sequenceg (n) as obtained from the
series ofx for the three improved models and for the sta
dard Ising model. The improved results clearly approach
best estimateg51.2373(2), the f4 and f6 models from
above and the spin-1 model from below. Note that the res
are flat and no extrapolation is needed. We also report
sequenceg (n) for the Ising model. If we extrapolate the re
sults assuming a behavior of the forma1bn2D, with D
50.52, we obtaing51.238 57, 1.238 32, and 1.238 01 usin
pairs n5(21,23), (22,24), and (23,25). Clearly, the es
mates converge towards the IA estimateg51.2373(2).

In Fig. 7 we show the sequence@2n# (n) obtained from the
series ofj2. Again, the improved models show a very go
convergence to the IA estimate, in spite of the fact that
analysis is unbiased—the value ofbc is not fixed. The Ising
results are sensibly higher and steadily decreasing, reac
n'0.638 forn525. Results that are closer to the IA estima
are obtained by an extrapolation. Assuming a behavior of
form a1bn2D, we obtainn50.6290 and 0.6284 from eve
and odd sequences, respectively. Again, the agreement is
isfactory.

In conclusion, this analysis based on the variant of
ratio method proposed by Zinn-Justin@3# supports the IA
estimate obtained in Sec. III A.

C. Matching the coefficients with their asymptotic form

In the preceding section we have determined the crit
exponents andbc by generating sequences that converge
the asymptotic value forn→`. In this section, following

FIG. 5. Sequencebc
(n) for the spin-1/2 model using the series f

x. The dashed lines indicate the MC estimate ofbc , while the
dotted line corresponds to an23/2 extrapolation of the four points
with n522,23,24,25.
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Ref. @16#, we wish to perform a more straightforward anal
sis, both conceptually and practically. The idea is to gene
sequences of estimates by fitting the expansion coeffici
with their asymptotic form. By adding a sufficiently larg
number of terms we can make the convergence as fas
possible, although of course the procedure becomes uns
if the number of terms included is too large compared to
number of available terms. In practice, one should inclu
those terms that give rise to the maximal stability of t
results. In some sense, the variant ratio method of the pr
ous section corresponds to considering the leading sing
behavior and the first analytic correction—and also the le
ing nonanalytic term if we further extrapolate the sequen

On the cubic lattice, the large-order behavior is dicta
by the singularities at6bc . Indeed, given an observableS
with expansionS5(ncnbn, for n→` the expansion coeffi-
cients behave like

FIG. 6. Sequencesg (n) for the f4 model atl451.10, thef6

model atl451.90, the spin-1 model atD50.641, and the standar
Ising model. The dashed lines indicate the IA estimate ofg.

FIG. 7. Sequences@2n# (n) for thef4 model atl451.10, thef6

model atl451.90, the spin-1 model atD50.641, and the standar
Ising model. The dashed lines indicate the IA estimate of 2n.
7-9
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bc
ncn5nz21S A01

A1

nD 1
A2

n
1

A3

n11D
1

A4

n2
1••• D 1~21!nn2(uaf11)S B01

B1

n
1

B2

n2
1

BDaf

nDaf
1••• D . ~49!
t
n
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n
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-
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Here, we have neglected all subleading exponents excep
first oneD; in particular, we neglected the first subdomina
D2. However, sinceD2'1 @56#, for all practical purposes a
term n2D2 cannot be distinguished from a purely analy
correction. Also, we do not write terms of ordern2kD since
they cannot be distinguished from the analytic terms a
corrections of ordern2m2D. Note also the presence of th
parity-dependent corrections with exponentuaf and the sub-
leading corrections with exponentDaf . For the susceptibility
x, it is known @54# that uaf512a. The argument can be
generalized to all momentsm2k and thus in all cases w
predictuaf512a. We have tested this prediction forx, cf.
Sec. III A, m2, and m4. By analyzing the expansion ofm2
with biased IAk’s that have a pair of singularities in6bc ,
we obtainuaf50.884(12), while from the expansion ofm4
we obtainuaf50.90(9). These results are clearly compatib
with the predictionuaf512a50.8904(5). For theexponent
Daf nothing is known. However, the results appear to be q
insensitive to the choice ofDaf . For this reason, in the fol
lowing we only report the results corresponding to pur
analytic corrections, i.e., we setBDaf

50. We checked that the

choiceDaf51/2 gives equivalent results.
en
m
-

c

d
e

d

06612
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Note that this method allows us to determine the nonu
versal amplitudesA0 , AD , . . . , andconsequently the ampli
tudesai appearing in the expansion ofS for b→bc . If

S5AS~bc2b!2z@11aS~bc2b!D# ~50!

then

AS5G~z!A0 , ~51!

aS5
G~z2D!A1

G~z!A0
. ~52!

In the following, we shall perform two different analyse
~essentially! unbiased analyses in order to determine the
ponentsz andbc and biased analyses in whichz andbc are
fixed. In all cases we fix the value ofD (D50.52) and the
exponent of the antiferromagnetic singularity. In the un
ased analyses, in order to have a linear problem, we cons
ln cn that behaves as
ln cn52 ln~bc!n1~z21!ln n1b01
b1

nD 1
b2

n
1

b3

n11D
1

b4

n2 1•••1~21!nn2(z1uaf)S d01
d1

nD 1
d2

n
1

d3

n11D
1

d4

n2 ••• D .

~53!
ing

the

re-
gly

hat
As before, we have neglected terms that have expon
similar to those already present: for instance, ter
O(n2kD2m) or O(n2kD22hD2m). In the expansion of the an
tiferromagnetic part we have assumedDaf5D, or Daf51.
Note that if only analytic terms are present in Eq.~49!, i.e.,
BDaf

50, thend1 is proportional toA1 and therefore it van-
ishes in improved models.

We first analyze improved models and we verify thatA1
'0. For this purpose, we consider the susceptibilityx and,
for each improved Hamiltonian, we generate two sequen
of amplitudes in the following way:

~a! We choose two integersh,k and consider Eq.~53!
keeping onlyb0 , . . . ,bh21 in the ferromagnetic part an
d0 , . . . ,dk21 in the antiferromagnetic one. Then, w
generate the sequencesbc

(n) , g (n), b0
(n) , . . . ,bh21

(n) ,
d0

(n) , . . . ,dk21
(n) , by solving the (h1k12) equations

ln cn2m5Rn2m, m50, . . . ,h1k11, whereRn is the right-
hand side of Eq.~53!. We useD50.52, g1uaf52.1277.

~b! We choose two integersh,k and consider Eq.~49!
keeping onlyA0 , . . . ,Ah21 in the ferromagnetic part an
ts
s

es

B0 , . . . ,Bk21 in the antiferromagnetic one. We useD
50.52, g51.2373,uaf50.8904, the IA estimate ofbc , and
BDaf

50. Then, we generate the sequencesA0
(n) , . . . ,Ah21

(n) ,

B0
(n) , . . . ,Bk21

(n) , by solving the (h1k) equations cn2m
5Rn2m , m50, . . . ,h1k21, whereRn is the right-hand
side of Eq.~49!.

In both cases we varyh and k, trying to find the values
that give the best stability of the exponents or of the lead
amplitudes. In the unbiased analysis~a!, the preferred choice
is (h,k)5(4,4), while for analysis~b! we use (h,k)5(3,2).
For these choices of the parameters, in Fig. 8 we report
corresponding sequence ofax

(n)[a1
(n) , obtained using Eq.

~52!. In the unbiased analysis~a!, ax
(n) clearly converges to

zero for the improved Hamiltoniansf4 andf6, as expected.
For the spin-1 model, the situation is not that clear, and p
sumably more orders are needed to observe convincin
ax50. In the case of the biased analysis,ax

(n) is very stable
and small already forn*15. For all Hamiltonians we ob-
serveuaxu&1023.

As a second check of consistency we have verified t
7-10
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25TH-ORDER HIGH-TEMPERATURE EXPANSION . . . PHYSICAL REVIEW E65 066127
our estimates ofax are compatible with the quoted error ba
on l4* andD* . For this purpose, using the analysis of ty
~b! reported above, we have computedax for l4* 6Dl4,
whereDl4 is the quoted error bar—for the spin-1 model w
are referring toD* 6DD. In all cases, we finduax(l4*
6Dl4)u.uax(l4* )u and that ax(l4* 1Dl4) and ax(l4*
2Dl4) have opposite sign. This confirms the correctness
our estimates ofl4* andD* . Of course, since we usebc and
g obtained in the IA analysis, the above results repres
only a check of consistency. Indeed:~i! we determinebc and
g by performing a IA analysis whose results should be r
able only if the models are improved~in some sense we
weakly assume hereax'0); ~ii ! using such values ofbc and
g, we estimateax and findax'0.

Once we have verified thatA1 is very small and compat
ible with zero within the precision of the analysis, we ha
performed several analyses fixingA150 andb150. At the
same time, we have setd150, which corresponds to assum
ing Daf51. We have determined the exponents by perfor
ing the analysis~a! reported above. In the case of thef4

model for l451.10, this analysis givesg'1.2374. Simi-
larly, we obtaing'1.2375 for thef6 model atl451.90 and
for the spin-1 model atD50.641. In Fig. 9 we show the
sequenceg (n) for (h,k)5(5,5) ~since two coefficients van
ish, we are considering four amplitudes in the ferromagn
and antiferromagnetic expansion!. We observe a very good
agreement with the IA estimateg51.2373(2). It is difficult
to estimate the uncertainty, since the results do not sho
sufficiently robust stability with respect to the number (h,k)
of coefficients used in the analysis.

Finally, we report the estimates of the amplitudes obtain
in the analysis of type~b! for the magnetic susceptibility:

f4: A0
(x)'0.5246,A2

(x)'0.13, B0
(x)'20.0351;

f6: A0
(x)'0.4601,A2

(x)'0.11, B0
(x)'20.0311;

spin-1:A0
(x)'0.5126,A2

(x)'0.12, B0
(x)'20.0359.

Moreover, uA3
(x)u&1022 for the f4 and f6 models, while

FIG. 8. Amplitudeax of the leading scaling correction as ob
tained from several different analyses ofx for the standard spin-1/2
Ising model and for the three improved models. Details are
plained in the text.
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A3
(x)'20.02 for the spin-1 model. Errors should be61 on

the last reported digit and include the uncertainty on then
→` extrapolation of the sequences and the variation of
estimates forh and k in the rangeh53 –5 andk52 –4.
Instead they do not take into account the variation of
estimates withg and bc . Note that the estimate ofA2 is
purely phenomenological and in practice it should cor
spond to the sum of the amplitude ofn21 and ofn2D2 ~note
that in improved models the amplitude ofn22D vanishes!.

We have performed similar analyses for the spin-1/2 Is
model, in order to compute the nonuniversal amplitudes.
have performed:~a! an analysis of type~a! using (h,k)
5(4,4); ~b! an analysis of type~a! in which we have fixedbc
to its MC value using (h,k)5(4,3); ~c! an analysis of type
~b! using (h,k)5(3,2). The results forax

(n) are reported in
Fig. 8. These analyses give perfectly consistent results
allow us to determine the amplitudes:

A0
(x)51.233210~g21.2373!20.013~D20.52!, ~54!

A1
(x)520.1320.7~D20.52!150~g21.2373!, ~55!

B0
(x)520.073, ~56!

where we have explicitly written the dependence on the in
parameters~when it turns out to be relevant!. We have re-
peated the same analysis for the second momentm2. We
obtain

A0
(m2)

51.301210~g12n22.497 54!20.07~D20.52!,
~57!

A1
(m2)

520.7324~D20.52!155~g12n22.497 54!,
~58!

B0
(m2)

50.06. ~59!

Using the above results and Eq.~52!, one can determine the
amplitudesax and aj , associated with theO(tD) scaling
corrections in the Wegner expansion ofx and j, respec-

-

FIG. 9. Exponentg as obtained from the analysis~a! of x for
the three improved models. Details are explained in the text.
7-11
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CAMPOSTRINI, ROSSI, VICARI, AND PELISSETTO PHYSICAL REVIEW E65 066127
tively, and evaluate their universal ratio. We obtainaj /ax

50.9(1),where the error takes also into account the unc
tainty on the input parameters of the biased analysis.
comparison we mention the recent HT resultaj /ax

50.76(6) @17#, and the field theoretical estimateaj /ax

50.68(2) @35#.

IV. THE CRITICAL EQUATION OF STATE

A. Definitions

The equation of state relates the magnetizationM, the
magnetic field H, and the reduced temperaturet[(T
2Tc)/Tc . In the neighborhood of the critical pointt50,
H50, it can be written in the scaling form

H5Bc
2dM d f ~x!, ~60!

x[t~M /B!21/b, ~61!

whereBc andB are the amplitudes of the magnetization
the critical isotherm and on the coexistence curve,

M5BcH
1/d, t50, ~62!

M5B~2t !b, H50,t,0. ~63!

Using these normalizations the coexistence curve co
sponds tox521, and the universal functionf (x) satisfies
f (21)50, f (0)51. Griffiths’ analyticity implies thatf (x)
is regular everywhere forx.21. It has a regular expansio
in powers ofx,

f ~x!511 (
n51

`

f n
0xn, ~64!

and a large-x expansion of the form

f ~x!5xg (
n50

`

f n
`x22nb. ~65!

At the coexistence curve, i.e., forx→21, f (x) has at most
an essential singularity@58#. It can be asymptotically ex
panded as

f ~x!' (
n51

`

f n
coex~11x!n. ~66!

It is useful to rewrite the equation of state in terms o
variable proportional toMt2b, although in this case we mus
distinguish betweent.0 andt,0. For t.0 we define

H5S C1

C4
1D 1/2

tbdF~z!,

z[F2
C4

1

~C1!3G1/2

Mt2b, ~67!

while for t,0 we set
06612
r-
or

e-

H5
B

C2 ~2t !bdF~u!,

u[
M

B
~2t !2b. ~68!

The constantsC6 and C4
1 are the amplitudes appearing

the critical behavior of the zero-momentum connec
n-point correlation functionsxn :

xn5Cn
6utu2g2(n22)bd. ~69!

The susceptibilityx corresponds tox2 and we simply write
C65C2

6 .
With the chosen normalizations@41,46,49#

F~z!5z1
1

6
z31(

j 53

1

~2 j 21!!
r 2 j z

2 j 21, ~70!

F~u!5~u21!1(
j 53

`
1

~ j 21!!
v j~u21! j 21. ~71!

The functionsF(z) andF(u) are related tof (x). Indeed,

z2dF~z!5F0
` f ~x!, z5z0x2b, ~72!

and

u2dF~u!5
C2Bd21

Bc
d

f ~x!, u5~2x!2b. ~73!

The constantF0
` is defined by the large-z behavior ofF(z),

F~z!5zd(
k50

Fk
`z2k/b, ~74!

while

z05F2
C4

1

~C1!3G1/2

B. ~75!

To compare with experimental data, it is useful to determ
the magnetization as a function oftH21/bd. Therefore, we
define

E~y![Bc
21MH21/d5 f ~x!21/d, ~76!

y[~B/Bc!
1/btH21/(bd)5x f~x!21/(bd). ~77!

Finally, we shall also determine the scaling behavior of
susceptibility, by defining

D~y![Bc
21H121/dx5

f ~x!121/d

d f ~x!2
1

b
x f8~x!

. ~78!
7-12
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B. Small-magnetization behavior

In this section we determine the first few coefficientsr 2 j
appearing in the expansion of the scaling functionF(z), cf.
Eq. ~67!. We shall also compute the four-point renormaliz
coupling constantg4, which, although not related to th
equation of state, is relevant for the field-theoretical a
proach and will be used to determine amplitude ratios
volving the second-moment correlation length.

In order to estimate the critical limit ofg4 and of r 2 j we
first determine their HT expansions using the correspond
results forx2 j andm2,

g452
x4

x2j3 , ~79!

r 65102
x6x2

x4
2 , ~80!

r 85280256
x6x2

x4
2 1

x8x2
2

x4
3 . ~81!

The corresponding series@59# have been analyzed by close
following the procedure presented in Appendix B.3 of R
@25#. We use biased IA1’s with a singularity atbc or a pair of
singularities at6bc , wherebc is obtained from the analysi
of the susceptibility. Aroundbc , IA1’s behave like@60#

IA1' f ~b!~12b/bc!
z1g~b!, ~82!

where f (b) andg(b) are regular atbc , providedz is not a
negative integer. In particular

z5
P0~bc!

P18~bc!
, g~bc!52

R~bc!

P0~bc!
~83!

@see Eq.~13! for the definition of the above quantities#. In the
case we are considering,z is positive and, therefore,g(bc)
provides the desired estimate.

In Table IV ~first line! we report the estimates ofg4 ob-
tained for the three improved Hamiltonians. The error in p
rentheses is related to the spread of the approximants an
second one in brackets to the uncertainty onl4* ,D* . The
error induced by the uncertainty onbc is negligible. The
results are perfectly consistent. Our final estimate is

g4523.56~2!. ~84!

The result for the exponentz in Eq. ~82! is z51.3(3),which
is consistent with our expectation for improved models, i
z5D2'2D andD'0.5. For comparison, the same analy
applied to the standard Ising model givesg4523.5(5) and
z50.6(3), in agreement with the fact that in this casez
5D. Notice that the small difference with the estimate ofg4
reported in Ref.@19# is essentially due to the different anal
sis employed here, which is better justified due to
nonanalytic behavior atbc predicted by renormalization
group @61#. With respect to standard Pade´ approximants, bi-
ased IA1’s require more terms of the series to give reas
06612
-
-

g

.

-
the

.,

e

n-

able results, but they are less subject to systematic er
since they allow for confluent nonanalytic corrections atbc .
Biased IA1’s give @1# g4523.54(4) when applied to the
17th-order series of Ref.@19#.

Results forr 6 ,r 8 are obtained using the same method a
are reported in Table IV. We finally recall that a rough es
mate ofr 10 was obtained in Ref.@19# from the analysis of its
15th-order series, obtainingr 105213(4). A review of the
available results for these quantities can be found in Ref.@1#.

C. Parametric representations of the equation of state

In this section we shall determine the equation of st
using parametric representations, improving the results
Refs.@19,41#. This method has also been applied in two d
mensions@62#, and to the three-dimensionalXY @25,29# and
Heisenberg@27# universality classes.

In order to obtain approximate expressions for the eq
tion of state, we parametrize the thermodynamic variable
terms of two parametersR andu, implementing all expected
scaling and analytic properties. Explicitly, we write@63–65#

M5m0Rbu,

t5R~12u2!,

H5h0Rbdh~u!, ~85!

whereh0 andm0 are normalization constants. The functio
h(u) is odd and normalized so thath(u)5u1O(u3). The
smallest positive zero ofh(u), which should satisfyu0.1,
corresponds to the coexistence curve, i.e., toT,Tc and H
→0. We mention that alternative versions of the parame
representations have been considered in Ref.@66#.

It is easy to express the scaling functions introduced
Sec. IV A in terms ofu. The scaling functionf (x) is ob-
tained from

x5
12u2

u0
221S u0

u D 1/b

,

f ~x!5u2d
h~u!

h~1!
, ~86!

while F(z) is obtained by

z5ru~12u2!2b,

F„z~u!…5r~12u2!2bdh~u!, ~87!

wherer can be related tom0 , h0 , C1, andC4
1 using Eqs.

~67! and ~85!.

TABLE IV. Results forg4 , r 6, andr 8.

f4 f6 Spin-1 Final estimates

g4 23.559~8!@11# 23.554~8!@20# 23.560~20!@5# 23.56~2!

r 6 2.057~4!@1# 2.056~4!@2# 2.052~8!@2# 2.056~5!

r 8 2.29~9!@3# 2.31~5!@5# 2.37~7!@3# 2.3~1!
7-13
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TABLE V. Polynomial approximations ofh(u) using the global stationarity condition for various valu
of the parameterk. The reported expressions are obtained by using the central values of the input param
The last column shows the corrections to the simple linear modelhlin(u,u0)[u(12u2/u0

2).

k h(u)/u u0
2 h(u)/hlin(u,u0)

1 120.734732u2 1.36104 1
2 120.731630u210.009090u4 1.39085 120.0126429u2

3 120.736743u210.008904u420.000472u6 1.37861 120.0113775u210.0006511u4
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It is important to note that Eq.~85! and the normalization
conditionh(u)'u for u→0 do not completely fix the func
tion h(u). Indeed, one can rewrite the relation betweenx and
u in the form

xg5h~1! f 0
`~12u2!gu12d. ~88!

Thus, givenf (x), the value ofh(1) can be arbitrarily chosen
to completely fixh(u). In the expression~87! we can fix this
arbitrariness by choosing arbitrarily the parameterr
@1,19,29,41#.

As suggested by arguments based on thee expansion
@19,41#, we approximateh(u) with polynomials, i.e., we se

h~u!5u1 (
n51

k

h2n11u2n11. ~89!

This choice is further supported by the effectiveness of
simplest version withk51, which is the so-called linea
model. If we require the approximate parametric represe
tion to give the correct (k21) universal ratios r 6 ,
r 8 , . . . ,r 2k12, we obtain

h2n115 (
m50

n

cnm6m~h31g!m
r 2m12

~2m11!!
, ~90!

where

cnm5
1

~n2m!! )k51

n2m

~2bm2g1k21!, ~91!

and we have setr 25r 451. Moreover, by requiring tha
F(z)5z1 1

6 z31•••, we obtain the relation

r256~h31g!. ~92!

In the exact parametric representation, the coefficienth3 can
be chosen arbitrarily. Of course, this is no longer true wh
we use our truncated functionh(u), and the related approxi
mate functionf approx

(k) (x,h3) depends onh3. We must thus fix
a particular value for this parameter. Here we use a va
tional approach, requiring the approximate functi
f approx

(k) (x,h3) to have the smallest possible dependence onh3.
Thus, we seth35h3,k , whereh3,k is a solution of the globa
stationarity condition

] f approx
(k) ~x,h3!

]h3
U

h35h3,k

50 ~93!
06612
s

a-

n

a-

for all x. Equivalently one may require that, foranyuniversal
ratio R that can be obtained from the equation of state,
approximate expressionRapprox

(k) obtained by using the para
metric representation satisfies

dRapprox
(k) ~h3!

dh3
U

h35h3,k

50. ~94!

The existence of such a value ofh3 is a nontrivial math-
ematical fact. The stationary value ofh3 is the solution of the
algebraic equation@19#

F2~2b21!~h31g!
]

]h3
22g12kGh2k1150. ~95!

For k51, the so-called linear model, Eq.~95! gives

h35
g~122b!

g22b
, ~96!

which is the optimal value ofh3 considered in Ref.@64#.
Thus, the optimal~sometimes called restricted! linear model
represents the first approximation of our scheme.

D. Results

Following Ref.@19#, we apply the variational method b
using the HT results forg51.2373(2), n50.630 12(16),
r 652.056(5), r 852.3(1), andr 105213(4) as input param-
eters of the approximation scheme. This provides differ
approximations withk51,2,3,4. In Table V we report the
polynomials h(u) for k51,2,3, that are obtained in th
variational approach for the central values of the input
rameters. The fast decrease of the coefficients of the hig
order terms inh(u) gives further support to the effectivene
of the approximation scheme. We do not reporth(u) for k
54, since it requiresr 10 and its available estimate is rathe
imprecise. Using the results reported in Table V and E
~86!, ~87!, and~73!, one may easily compute the correspon
ing approximations for the scaling functionsf (x), F(z), and
F(u). The results show a good convergence with increas
k. Actually, the results fork52,3,4 are already consisten
within the errors induced by the uncertainty on the inp
parameters, indicating that the systematic error due to
truncation is at most of the same order of the error indu
by the input data. In Figs. 10, 11, and 12 we show resp
tively the scaling functions as obtained fromh(u) for k
51,2,3.
7-14
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In Table VI we report results concerning the behavior
the scaling functionf (x), F(z) andF(u) for H50 and on
the critical isotherm, cf. Eqs.~64!, ~65!, ~66!, ~70!, ~71!, ~74!.
Note that the results fork51,2,3 oscillate and that the un
certainty due to the input parameters on thek53 results is
approximately the same as the difference between the
mates withk52 and k53. Therefore, it is reasonable t
consider thek53 truncation as the best approximation of t
method using the available input parameters and to use
corresponding errors as final uncertainties.

In Fig. 13 we give the behavior of the magnetization a
function of t andH, reporting the scaling functionE(y). The
behavior of the susceptibility can be obtained from the sc
ing function D(y). The functionD(y) has a maximum for
ymax51.980(4), corresponding to the so-called crossover
pseudocritical line~see Sec. V!. In order to simplify possible
comparisons, it may be convenient to consider the resc
function,

FIG. 10. The scaling functionf (x). We also plot the asymptotic
behavior of f (x) at the coexistence curve~dotted line!, i.e., f (x)
' f 0

coex(11x) for x→21.

FIG. 11. The scaling functionF(z). We also show the small-z
and large-z behaviors~dotted lines!, i.e., F(z)'z1

1
6 z31

1
120r 6z5

for z→0 andF(z)'F0
`zd for z→`.
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C~yR!5
D~y!

D~ymax!
,

yR5
y

ymax
, ~97!

which is such that the maximum corresponds toyR51 and
satisfiesC(1)51. In Fig. 14 we plot the scaling function
C(yR), as obtained from thek51,2,3 approximate parame
ric representations.

In experimental work on magnetic systems, it is custo
ary to report @67,68# h/m[Hutu2g/M vs m25M2utu22b.
Such a function can be easily obtained from our approxim
tions for f (x), sincem25B2uxu22b and

h

m
5kuxu2g f ~x!, ~98!

where the constantk can be written as

k5Bc
2dBg/b5

Rx

C1 , ~99!

whereRx[C1Bd21/Bc
d is a universal constant, see Sec. V.

plot of m2/B2 vs C1h/m for the two casest.0 andt,0 is
reported in Fig. 15.

It is interesting to observe that in a neighborhood of t
critical isotherm the equation of state can be written in
Arrott-Noakes form@69#

S H

M D 1/g

5at1bM1/b, ~100!

where a and b are numerical constants. Indeed, using t
results of Table VI fork53, we obtain

FIG. 12. The scaling functionF(u). We plot also the
asymptotic behavior ofF(u) at the coexistence curve~dotted line!,
i.e., F(u)'(u21)1 1

2 v3(u21)21
1
6 v4(u21)3 for u→1.
7-15



oach.

CAMPOSTRINI, ROSSI, VICARI, AND PELISSETTO PHYSICAL REVIEW E65 066127
TABLE VI. Expansion coefficients for the scaling equation of state obtained by the variational appr
See text for definitions. Numbers marked with an asterisk are inputs, not predictions.

k51 k52 k53 k54

u0
2 1.3610~8! 1.390~2! 1.38~2! 1.34~6!

r 1.7365~8! 1.741~1! 1.733~10! 1.69~6!

r 6 1.938~3! * 2.056(5) * 2.056(5) * 2.056(5)
r 8 2.50~2! 2.39~3! * 2.3(1) * 2.3(1)
r 10 212.59(2) 212.08(5) 210.6(1.8) * 213(4)
F0

` 0.03277~8! 0.03388~11! 0.03382~15! 0.0338~2!

z0 2.8254~7! 2.792~2! 2.794~3! 2.798~8!

f 1
0 1.05041~7! 1.0532~2! 1.0527~7! 1.051~2!

f 2
0 0.04298~6! 0.04494~13! 0.0446~4! 0.0439~13!

f 3
0 20.02474(4) 20.02595(8) 20.0254(7) 20.023(4)

f 0
` 0.5960~4! 0.6031~7! 0.6024~15! 0.601~4!

f 1
coex 0.93912~9! 0.9347~3! 0.9357~11! 0.938~4!

v3 6.013~4! 6.062~4! 6.050~13! 6.02~5!

v4 16.32~3! 16.10~4! 16.17~10! 16.4~3!
s-

st
e
, c

e

rm,
S H

M D 1/g

k21/g5S M

B D 1/b

10.851t20.050t2S M

B D 21/b

20.008t3S M

B D 22b

•••. ~101!

Thus, corrections to Eq.~100! are small and thus this expre
sion has a quite wide range of validity.

V. UNIVERSAL AMPLITUDE RATIOS

From the critical equation of state one may derive e
mates of several universal amplitude ratios. They are
pressed in terms of the amplitudes of the magnetization
Eqs.~62! and~63!, of the magnetic susceptibility andn-point
correlation functions, cf. Eq.~69!, of the specific heat,

CH5A6utu2a, ~102!

FIG. 13. The scaling functionE(y). We also report its
asymptotic behaviors~dotted lines!: E(y)'Rxy2g for y→1`, and
E(y)'(2y)b for y→2`.
06612
i-
x-
f.

of the second-moment correlation length,

j5 f 6utu2n, ~103!

and of the true~on-shell! correlation length, describing th
large distance behavior of the two-point function,

jgap5 f gap
6 utu2n. ~104!

One can also define amplitudes along the critical isothe
e.g.,

x5CcuHu2g/bd, ~105!

j5 f cuHu2n/bd, ~106!

jgap5 f gap
c uHu2n/bd. ~107!

FIG. 14. The scaling functionC(yR). We also report its
asymptotic behaviors~dotted lines!: C(yR)'Rxymax

2g D(ymax)
21yR

2g

'1.97yR
2g for yR→1`, and C(yR)'b( f 1

coex)21ymax
2g D(ymax)

21

3 (2yR)2g'0.413(2yR)2g for yR→2`.
7-16
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We also consider the crossover~or pseudocritical! line
tmax(H), that is defined as the reduced temperature for wh
the magnetic susceptibility has a maximum atH fixed.
Renormalization group predicts

tmax~H !5TpH1/(g1b), ~108!

x~ tmax,H !5Cptmax
2g . ~109!

We consider several universal amplitude ratios. They are
fined in Table VII.

In Table VIII we report the universal amplitude ratios,
derived by the approximate polynomial representations
the equation of state fork51,2,3,4. The reported errors a
only due to the uncertainty of the input parameters and
not include the systematic error of the procedure, which m

FIG. 15. Plot ofm2/B2 vs C1h/m.
06612
h

e-

f

o
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be determined by comparing the results of the various
proximations. In Table VIII we also show results forzmax,
xmax, andymax, which are the values of the scaling variab
z, x, andy @y was defined in Eq.~77!# associated with the
crossover line. As already mentioned in Sec. IV D, we co
sider thek53 results as our best estimates, and report th
in Table I.

Estimates of universal ratios of amplitudes involvin
correlation-length amplitudes, such asQ1, Rj

1 , andQc , can
be obtained using the HT estimate ofg4. For instance,Q1

5R4
1Rc

1/g4. Other universal ratios can be obtained
supplementing the above results with the estimates ofw2 and
Qj

2 ~see Table VII!, obtained by an analysis of the corre
sponding low-temperature expansions@14,34#, and the HT
estimate ofQj

1 ~see Sec. VI!. Moreover, using approximate
parametric representations of the correlation length, see R

TABLE VII. Amplitude-ratio definitions.

U0[A1/A2 U2[C1/C2

U4[C4
1/C4

2 R4
1[2C4

1B2/(C1)3

Rc
1[aA1C1/B2 Rc

2[aA2C2/B2

R4
2[C4

2B2/(C2)3 Rx[C1Bd21/(Bc)
d

v3[2C3
2B/(C2)2 v4[2C4

2B2/(C2)313v3
2

g4
1[2C4

1/@(C1)2( f 1)3# w2[C2/@B2( f 2)d#

Uj[ f 1/ f 2 Ujgap
[ f gap

1 / f gap
2

Q1[aA1( f 1)3 Q2[aA2( f 2)d

Rj
1[(Q1)1/3 Qj

1[ f gap
1 / f 1

Qj
2[ f gap

2 / f 2 Qj
c[ f gap

c / f c

Qc[B2( f 1)3/C1 Q2[( f c/ f 1)22hC1/Cc

Pm[Tp
bB/Bc Pc[2Tp

2bdC1/C4
1

Rp[C1/Cp
etric
TABLE VIII. Universal amplitude ratios obtained by taking different approximations of the param
function h(u).

k51 k52 k53 k54

U0 0.5231~11! 0.533~2! 0.5319~25! 0.529~6!

U2 4.826~7! 4.745~10! 4.758~19! 4.78~5!

U4 29.73(3) 28.85(6) 29.0(2) 29.3(5)
Rc

1 0.05545~7! 0.0570~1! 0.0567~3! 0.0562~11!

Rc
2 0.021967~11! 0.02253~3! 0.02242~12! 0.0222~4!

R4
1 7.983~4! 7.794~8! 7.81~2! 7.83~4!

R4
2 92.15~13! 94.13~13! 93.6~6! 92~2!

Rx 1.6779~11! 1.658~2! 1.660~4! 1.665~10!

U2 R4
1 38.52~5! 36.98~10! 37.1~2! 37.4~6!

R4
1 Rc

1 0.4427~7! 0.4444~7! 0.443~2! 0.440~6!

Pm 1.25203~6! 1.2493~2! 1.2498~6! 1.251~2!

Pc 0.3831~3! 0.3938~5! 0.3933~7! 0.3930~11!

Rp 1.9789~3! 1.9658~6! 1.9665~10! 1.9671~16!

zmax 1.2443~4! 1.2317~5! 1.2322~8! 1.2326~12!

xmax 12.32~3! 12.26~3! 12.27~4! 12.31~8!

wmax 1.990~1! 1.977~2! 1.980~4! 1.984~9!

D(wmax) 0.36179~4! 0.36277~7! 0.36268~14! 0.3626~3!
7-17
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TABLE IX. Estimates of the coefficientsci , i 52,3,4, of the low-momentum expansion of the structu
factor.

f4 f6 Spin-1 Final estimates

c2 20.390(7)31023 20.390(6)31023 20.389(12)31023 20.390(6)31023

c3 0.882(8)31025 0.882(6)31025 0.88(4)31025 0.882(6)31025

c4 20.4(1)31026 20.4(1)31026 20.4(1)31026 20.4(1)31026
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ew
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@1,19# for details, one may also estimate the universal ra
Qj

c andQ2 defined in Table VII.

VI. LOW-MOMENTUM BEHAVIOR OF THE STRUCTURE
FACTOR

In this section we update the determination of the first f
coefficients that parametrize the low-momentum expans
of the scaling two-point function in the HT phase@19,34,70#

g~y![
x

G̃~k!
511y1(

i 52

`

ciy
i , ~110!

wherey5k2j2.
The coefficientsci can be related to the critical limit o

appropriate dimensionless ratios of spherical momentsm2 j .
See Ref.@34# for details. We have estimated the first fe
coefficientsci from the corresponding series derived fro
the 25th-order expansions ofm2 j , using the analysis de
scribed in Sec. IV B. The results for the three improved m
els and our final estimates are reported in Table IX. Ot
interesting quantities are

SM[Mgap
2 /M2, ~111!
a

n

06612
s

n

-
r

SZ[xM2/Zgap, ~112!

whereMgap ~the mass gap of the theory! andZgap determine
the long-distance behavior of the two-point function:

G~x!'
Zgap

4puxu
e2Mgapuxu. ~113!

As discussed in Refs.@19,34#, one may estimateSM andSZ
from c2 , c3, andc4. Indeed, we have

SM511c22c31c412c2
21•••, ~114!

SZ5122c213c324c422c2
21•••, ~115!

where the ellipses indicate contributions that are negligi
with respect toc4. Therefore, one findsSM50.999 601(6)
andSZ51.000 810(13). From the result forSM , one obtains
Qj

1[ f gap
1 / f 151.000 200(3).

A more detailed analysis of the behavior of the structu
factor for all momenta can be found in Ref.@71#.
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