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Evolution and structure formation of the distribution of partition function zeros:
Triangular type Ising lattices with cell decoration
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The distribution of partition function zeros of the two-dimensional Ising model in the complex temperature
plane is studied within the context of triangular decorated lattices and their triangle-star transformations. Exact
recursion relations for the zeros are deduced for the description of the evolution of the distribution of the zeros
subject to the change of decoration level. In the limit of infinite decoration level, the decorated lattices
essentially possess the Siegkingasket or its triangle-star transformation as the inherent structure. The posi-
tions of the zeros for the infinite decorated lattices are shown to coincide with the ones for thesRigpéaket
or its triangle-star transformation, and the distributions of zeros all appear to be a union of infinite scattered
points and a Jordan curve, which is the limit of the scattered points.
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[. INTRODUCTION circle in the complex fugacity plane, and the zero located at
the real axis represents the phase transition pdiftl7.
Along with the intensive investigations of the two- Fisher then studied the partition function zeros in the com-
dimensional Ising model defined on classical lattices such aglex temperature plane, also referred as the Fisher zeros, for
the rectangular, triangular, and hexagonal lattices, some athe two-dimensional zero-field Ising model. He showed that,
tention has been paid to the model defined on more complifor the model defined on a square lattice, the zeros lie on two
cated lattices. One of them is the spin model on hierarchicatircles in the complex tanh plane, wherep=J/kgT with
lattices[1-9]. These lattices are constructed as the infinitethe spin-spin coupling strengthand the Boltzmann constant
limit of a given decoration process which can be either &g [18]. In principle, by knowing the zeros of the partition
bond or a cell decoration. Diamond hierarchical lattice is arfunction, we may deduce all the thermodynamic characteris-
example of bond decorations. Starting with a bond, a diatics of a system. Particularly, the distribution density of the
mond hierarchical lattice is obtained by replacing the bondzeros near the phase transition point can be used to extract
by a diamond and then repeating the process iteratively tthe critical exponentg19—21]. For example, the logarithmic
the infinite limit. On the other hand, Sierski carpet is an  singularity of the specific heat for the two-dimensional zero-
example of cell decorations. Starting with a square, we cafiield Ising model is the result of the linearly vanishing den-
construct the hierarchical lattice of a Siergkn carpet by sity of the zeros near the real axi3,21].
first dividing the square into nine equal squares, then pulling In the efforts of understanding the distribution and struc-
out the middle square, and finally repeating the process iteraure of the Fisher zeros, the zeros for the zero-fipktate
tively to the infinite limit. Since these lattices are decoratedPotts model has also been calculated for several valugs of
to the infinite level in a self-similar way, they are fractal on the regulaf20,22 as well as hierarchical latticd$,7].
lattices, and the thermodynamic limit is well defined for a Among these results, due to the connection with the Julia set,
physical system defined on these lattices. we have fairly complete information about the Fisher zeros
Gerfen and co-workers investigated the Ising criticality onof hierarchical models, including the multifractal structure
fractal lattices, including Koch curves, and Siegkingas- appearing in the distribution of the zeros and the character-
kets and carpets, by means of the renormalization techniquieation of the global scaling properties in this structure
[10-13. These authors came to the conclusion that the phad@3—-29.
transition can occur at finite temperature only when the order Fractal lattices can be viewed as the infinite limit of a
of ramification of a fractal lattice is infinitgl1]. There also certain type of hierarchical decorations starting with either a
exist some calculations on the partition functions of the Isingoond or a cell. Then, the renormalization approximation of
models on different fractal lattices embeded in two or threeMigdal [26] and Kadanoff27] becomes exact, and the zeros
dimensions, and the calculation results are consistent withf the (h—1)th decoration level become the preimages of
the above conclusiofi4,15. the renormalization map, which yield the zeros of tith
On the other hand, the interest about the geometric distritevel. Thus, the formation of the fractal structure in the dis-
bution of the partition function zeroes has also been raisetribution of the zeros can be realized via the gradual increase
after the classical works of Yang and Lee on regular lattice®f the decoration level toward the infinite limit. But, due to
[16,17]. The Lee-Yang circle theorem states that, for the latthe fact that the number of the zeros is finite for a finite
tice gas in the thermodynamic limit, the zeros of the granddecoration level, we cannot show how the fractal structure
partition function are continuously distributed on a unitemerges from the increase of the decoration level in a clear
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FIG. 1. (a) A triangular lattice
consists of primary cell§shaded
region). A primary cell is deco-
rated to(b) one level andc) two
levels. Note thatory, o5, and o
are the corner spins and the others
are inner spins.
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way. However, this can be improved if lattices possessed a Il. FREE ENERGY
well-defined thermodynamic limit for any decoration level in . . .
the passage toward a fractal lattice. In th|§ paper, two kinds of.regular Iattlt;es are cho§en for
To construct a hierarchically decorated lattice that has (egor;‘:grlheogfh; |ps Iar?:;atr:)annjulgtiitu\?viiiﬂoi\évnol;?ai':ngd
well-defined thermodynamic limit for any degree of decora-; >’ °Xag ' ; i
tions, we can start with a classical regular lattice, and ther'tErom the last one by a triangle-star transformation shown in

implement bond or cell decorations hierarchically to this lat- ig. 2a). For the way of generating hierarchical decorations,
tice to any desired degree. In the limit of infinite decoration

we adopt the rule depicted in Fig. 1 for a triangular lattice,
level, the decorated lattice essentially possesses the fract%rl1d its corresponding triangle-star transformation to a hex-
lattice as the inherent structure. For decorated lattices corf:

gonal lattice is shown in Fig. 2. In the limit of infinite
structed in this way, they show lack of translational invari-d?:rori?; Ili)in Iae\sllféttg?]g?tcso:ﬁ;end :thslf;rstfasﬁgfrg;ﬂgti%?]szisfhghe
ance, and the degree of inhomogeneity in the coordinatior‘? P 9 9

number of lattice sites can be indexed by the number of th nherenF structure for the tria'ngule'tr and hexa}gonal lattice,
decoration level. Thus, one may expect that this type of |at_respect|vely. 'I;EI)e corre_spondlng site num_lmﬁ‘ and the
tices may provide a very good frame to deepen our underbo_nd numbeNy” per unit cell of regulgr Iatt|ceéreferred+?s
standing of physical systems such as random magnets, polffimary cell, hereaftgrfor the decoration leveh are (3'
mers, and percolation clusters. —1)/2 and 3" for a triangular decorated Iatt|ce,_and (5
Using these decorated lattices, we attempt to give a sys<3"—1)/2 and 3** for a hexagonal decorated lattice.
tematic study of the effect of inhomogeneity on the thermo-  The general form of the partition function reads
dynamic behavior of the two-dimensional zero-field Ising
model. This is the first of two papers that study the evolution
and structure formation of the Fisher zeros on decorated lat- Z:{(E,} ex OED g”iai)’ (1)
tices with an arbitrary decoration level(n lattice, hereaf-

ter). In this paper, we study the model defined on a triangular here the sum is over the nearest neighboring gaji$ on

and hexagonal lattice with cell decorations, while the modea certain tvne of hierarchically decorated lattices. Here we
on a rectangular lattice with bond decorations is studied inconsider u)r/fi)form ferroma netBi/c counlinas charac.terized b
the second paper. We are interested in the following ques: 9 ping y

tions. (i) How do the critical point and the distribution of the he dimensionless coupling parametgrand the Ising spin

Fisher zeros vary with the decoration levé&l (i) How does takes two possible Valueﬁ'.: -1 Formally, the exponential .
the fractal structure in the distribution of the Fisher zerospart of Eq.(1) can be rewritten as simple products, and this
emerge from the increase of the decoration lev@l? Is renders the partition function to be

there any difference for the fractal structure in the distribu-

tion of the Fisher zeros between a fractal lattice and a deco- Z=2"R™Q, @
rated lattice with the fractal lattice as the inherent structure?

The question of how the specific heat onratattice varies ~ with R=(1—t?) 2 andt=tanhs, whereng andn,, are the
with the decoration leveh will be discussed in other sepa- total site and bond numbers respectively, and the reduced
rated papers. partition functionQ takes the form of

FIG. 2. (a) A hexagonal lattice is obtained
from a triangle-star transformation. A primary
cell decorated tdgb) one level andc) two levels
in a triangular lattice is transferred to a hexagonal
lattice through the triangle-star transformation.
Note thato,0,, and o are the corner spins on
the corresponding primary cell of a hexagonal
lattice.

(a)
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The expression of) in all cases can be unified by means which appears to preserve the form of Ef) after taking
of the characteristic spin functional defined on a primaryaveraged sums over the inner spias, o, andoy . Hence

cell, this formally leads to the associated recursion relations of the functional coeffi-
cients are given as
(1 ng/Ng 2 H
== A 4
Q 2 o=+1 [cells 1'2'3] @ a(n):(a(nfl))3+('B(nfl))3, (13
with BM =(p—1)2(o(n~1) 4 gn=1)) (14)
Arpg=atB(or0t 0203+ 0301), ) for both latticesT and H.

The above results indicate that the characteristic spin

where the product is taken over all the primary cells, the Sp”?unctionalA(lf‘%S does preserve its form as

variables,o1,0, andos, are the corner spins on the primary
cell for the construction depicted in Figs. 1 and 2, andnd
B are certain defined functionals of the variabl®&ote that

for the zero-field Ising model with the nearest neighbor in-iy any decoration levels. Then the reduced partition func-

teractions, the characteristic spin function® ;5 always  ton for a lattice withn decoration levels takes the general
takes bilinear form of the spin variables, and the functionakgym of

coefficients before three different spin-pairs are the same for
the case of uniform couplings. NG
For the case of the zeroth order decoration, the corre- Q(”)—(E> s
B 2 o=*1

A(lr,g,sz aW+ B (o104 gp03+ 0301) (15

sponding functional coefficientgy and B, in the character-
istic spin functionalA; , 5 of Eq. (4) can be calculated from
simple relations,

1(_!/ [a,(n) + B(n)(ax,yo'x+ 1y

+Ux,yo'x,y+1+Ux+1,y0'x,y+1)]] ) (16)
a9+ g 0105+ 0205+ 0304)
where the two-tuplex,y) in the subscript of a spin variable
denotes the position of an Ising spin located at one of the
sites in a lattice with the zeroth order decoration.

Since, the reduced partition function of decorated lattices

stays unaltered up to certain well-defined functional coeffi-

= %E (1+toqog)(1+tos0g)(L+tosog), (7) cients, the system is completely resolved, and the free energy
70 can be easily written down according to the formal expres-
sion of exact solution provided by Refi28—30. The ex-

:(1+t0'10'2)(1+t0'20'3)(1+t0'30'1), (6)

P+ B 0105+ 0205+ 0307)

which yield pression of the free energy per site gl can be written as
0= 1+t3, ®) the sum of two parts,
BO=t(1+1), ) =0+, (17
a®=1, (10) wheref(" is the regular part,
O=¢2 (11) Ng”

f§”>=—|n2—%|nR, (18)
Here the subscript$ andH denote the triangular and hex- Ns

agonal lattices, and superscripts with parenthesis denote the . . . .
dgcoration level P P P andf{", coming from the reduced partition functi@f™, is

For a lattice with the decoration level the functional the Singular part,
coefficientsa™ and (™ can be obtained through the recur-

sion relations between two successive decoration levels. An  ¢(n) _ -1 szd_‘ﬁ 2”ﬁm[B(n)_B(n)@)(‘9 ®)]
effective way of constructing these recursion relations is to * 2NMWJo 2m)o 2m 0 L R
patch three of the neighboring ancestor lattices together and (19

then to complete the sum over the inner spins. In this con-
struction, the characteristic spin functional at the decoratiomith B andB{" defined as
levels n,A(er,s, can be expressed in terms of those at the

decoration levela—1A{T ", as B{"=(a)?+3(8M)?, (20
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FIG. 3. The quantityX(", defined asX(™
0.6l =BM/a(M as a function oft decreases rapidly

xo to zero as the decoration leval increases for
triangular(black and hexagonalgray) decorated
0.4r lattices, with n=0,2,4,6 and 10 form left to
right.
0.2
0.2 0.4 t 0.6 0.8 1
B(ln)zz[a(n)[g(n)_(Ig(n))Z], (21) ing that the value ofX(" is a decreasing sequence in the
increase of the decoration leveisfor a givent value be-
and 0O (6, ¢) defined as tween 0 and 1. Hence, the increase of the decoration levels
will decrease the value oX(™ down to X(W=0 for anyt
0(6,¢)=cosf+cos¢+cog 60— ¢). (22)  value except the poirtt=1 that corresponds to the repulsive

fixed pointX;=1. This feature is shown in Fig. 3. Hence, we
have the integration resu@("(t) of Eq. (25) vanish in the
range G6<t<<1 for the infinite decoration level, and then the
free energy density of Eq24) is the same as that of the
decoupled primary cells.

Thus, decorations play the role of weakening the correla-
tions among the primary cells, and eventually there is no
f) 1 na'™. (23) phase transition at finite temperature when the decoration

It is interesting to consider the lattice formed by an iso-
lated primary cell with the decoration level which leads to
a conventional fractal lattice in the limit of infinite. After
summing over the three corner sping, o,, and o3, we
obtain the singular part of the free energy density as

s.cell N levelsn is sufficiently large.

On the other hand, by introducing new variablx§"

=BM/aM we can rewrite the singular part of the free en- lll. CRITICAL POINT

ergy density given by Eq19) as In view of the dimensionless free energy density given by
Eq. (19), the bulk critical temperature for the ferromagnetic
-1 L ; )
g“)= [2Ina™+CM(1)], (24) phase transition is determined by the conditi@g,30
2N
Cc
(N _qR(n_—
whereC("(t) is the result of the integration defined as Bo'—3B;7=0, (27)
277d¢ 27Td0 . .c
C(”)(t):J 2—j 2—In{(1+3x(“)) where, for convenience, we use the notatien, to denote
0 £mJo £m the equivalence established only at the critical temperature.
—2[XM—(X(™M)210 (8, $)}. (25) In principle, Eq.(27) has to be converted into the relations of

the variablet and to be solved with respect to the variable

Then, by comparing Eq24) with Eq. (23) we know that the ~ for & lattice with decoration levels. But as the decoration

quantity C™(t) signifies the contribution to the free energy level goes higher, the relevant functionad,’andB{"”, be-

density from the correlations among different primary cells.come extremely complicated in the variattjeand it is not
From the recursion relations of Eq43) and(14), we can  €asy to determine the critical temperature accurately. There-

obtain the recursion relation o™ as fore, we consider seeking an analytical way to reformulate
the critical condition of Eq(27).
" (X(n=1))2 In view of the recursion relations of Eq&L3) and (14),
X = (26) we can introduce more appropriate variables to manage the

_y(n—1) (n—1)2"°
=X (X ) critical condition. For the ratio of the functional coefficients,

¥M=1/X" =M/ g™ the recursion relation take the form

This map between two succesive decoration levels has tw A
0

fixed points, one aX;=1 is repulsive and the other
=0 is attractive. Note that we can determine a fixed point,
X;=1 or 0, to be repulsive or attractive by directly observ- Y () =y D[yr-)—-1]+1. (28)
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kaTe 21 ® FIG. 4. The critical pointskgT./J vs the
7 . decoration leveh for triangular(black) and hex-
l.5% [ ] .
'.. agonal(gray) decorated lattices.
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Then, in terms of the new variab¥ the critical condition of determined by solving Eq33) for any i value. The most

Eq. (27) can be reduced to the form of convenient way of doing this is to handle the last expression
. of Eq. (33
Y (t)=h(®, (29) .
(0)= R(n)
with h©®=3. e (39
To solve the critical condition of Eq29), first we use Eq.  sinceY(® is a simple function of for both latticesT andH
(28) to rewrite it as andh™ is a constant number regardless of thealue. By
. using the recursion relation of E¢34) with the initial h(®)
YD) YO D(t)—1]+1=h®), (300 =3, we can obtain the constant valu for any decoration
level n. Then, for the decoration level we solve Eq.(35)
which, in general, has two roots, with Y@= (1—t+t?)/t for the latticeT to obtain the critical
c pointt, + as
YO D(t)=1 (1= J4h©@=3). (31

(h™W+1)— J(hW+3)(h(W—1)
However, one of the solutions, (1,/4h(®—3)/2, must be te,r= 2 ' (36)
disregarded due to the fact that this root appears to be nega-
tive in the physical region, €t<1, while the left hand side and with Y(®'=1#2 for the latticeH to obtain the critical
of Eq. (31) is essentially positive definite for the ferromag- pointt, .4 as
netic couplings. Then we can rewrite H§9) as ’

1
c = .

Y1) = h®), 32 AN 7
with h@(t)=(1+ \/WUTS)IZ. Hence, by further reduc- The numerical values df. r andt. ;4 versus the decoration
tions we can expect level n are shown in Fig. 4.

As stated above, the critical point can be determined by

Y(n—i)(t)i h() (33) solving Eq.(35) in conjunction with the recursion relation of

' Eq. (34). Thus, for the case of approaching infinity, in
with order to determine the corresponding critical temperature we
have to know the asymptotic behavior of the functid® as
h(=1(1+ah(-D-3), (34  n goes tox. Concerned with the sequence built up by the
functionsh(™ of increasingn, one may find that the values
for 1<i=<n. decrease uniformly for anyvalue of interest. On the other

When Eq.(33) is applied to a lattice with decoration lev- hand, we recall that a)’s must be strictly real and posi-
elsn, this equation with any value in the range £i<nis tive according to the construction of E@3) and the physi-
equivalent to Eq(29), and this equivalence can be viewed ascal requirement. Thuh("™ stays positive and it is bounded
a kind of renormalization scheme for the critical point sub-below, accumulation points do exist and they can be obtained
ject to the size changing inside the lattice. It corresponds t@ia a fixed point equation
rescaling the system to the low momentum limit when ithe
value increases. h)=1 (14 4h™)-3), (39

Then the critical value of the hyperbolic tangential func-
tion t,=tanhz,, and hence the critical temperature, can bewhich yieldsh*)=1 for both latticesT andH.
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By virtue of Egs.(36) and (37), direct substitution of 2
h(*)=1 leads to the resutt r=t. ;=1 for the infinite deco- 3
ration level. Therefore, we may conclude that there are no
phase transitions at finite temperatures for these cases, an 1
this result is consistent with the conclusion given by Gerfen 1
et al. 0 0
IV. PARTITION FUNCTION ZEROS . L
In this section, we focus on the distribution of the Fisher :
zeros for an arbitrary lattice and how the fractal structure ~#
emerge in the distribution for the limit of infinite. In gen- -Z
eral, the Fisher zeros can be obtained by simply setting the ~* ~% ‘l( ’ )l g 2 -l-0.3 '3'(055) 11.5¢2
argument of the logarithm in the singular part of the free
energy density of Eq(19) equal to zero. In terms of the
variableY", Eq. (19) takes the form of L N
-1 2nd¢p (27dO
(n) _ n _r 7 n)\2
f{ _2N@(2mﬁ(ﬂih o) 2ng3+(w>)]
o 0
—avw—lmna¢n) (39)
-1 -1
Thus, the distribution of the zeros can be resolved as a unior
of the solutions from the two conditions as
-0.5 0 (0;5) 1 1.5 -0.5 0 (0&5) 1 1.5

[3+(Y(M)?]—2(YM-1)0(6,¢4)=0 (40)
FIG. 5. The distribution of the partition function zeros on the

and Y(©) complex plane obtained from the solution of E40) for the

decoration levela) n=0, (b) n=1, (c) n=2, and(d) n=38.
BM=0. (41)
_ [16,17), the critical point, given byy(®=h("  corresponds
ancerned Wlth_Eq(.40), we observe that the range of the to the only zero located at the physical regior Y(® <o
function ©(6,¢) is —_3{2<®(0,¢)<3._ For _that =1 with real Y© for ann lattice.

<0(0,¢)<3, the condition of Eq.(40) is equivalent to On the Y™ complex plane, the distribution of the zeros

(n) _ _ . . . . . 8 > - )
| Yt —1]=2, which corresponds to g)cwcle of radius 2 with ¢, o Jattice, obtained from Eq40), is a circle and a line
the center being located at 1 on tH€” complex plane. On  goqment and there is an intersection point between the circle
t_he other hand, the range ef3/2s@(0,¢)s —1 gives _the and the line segment located at the poffit = (—1,0). As is
line segment —3,0] on the real axis. Hence, the solution of yanicteq in Fig. &), after the first inverse map, the circle
Eq. (40) leads to the d|(>;'§r|but|on of the zeros as a circle plusgprinks but remains closed, whereas the line segment splits
a line segment on the™™ complex plane for am lattice s jnq two curved segments that intersect with the closed curve
shown in Fig. %a). It is worthwhile to note that this result is ¢ the points determined by the inverse map of the last inter-
consistent with the results for O lattice obtained elsewherggction (1,0). The resultant distribution, which is the union

[19,21. of a closed curve and two curved segments, has the space

However, for an effective comparison of the distributionsinversiOn symmetry about the symmetric centéfn— 1

of the zeros given at any decoration level, the plots had bet 4 5 0y For convenience, we shall call the closed curve as
ter to be brought to the complex plane of an unique variable(n_l) cycle and, in this sense, the original circle can be
Y(©, which corresponds to different function offor the 4 ~o cycle ' '
latticesT andH. To achieve this, we notice that knowing the Proceeding Wi.th the second inverse map, as shown in Fig.
zeros distribution on th&(™ complex plane we can obtain 5(c), the (n—1) cycle further shrinks to another closed
the distribution on th&/(®) complex plane by performing the cur\}e, the A—2) cycle, meanwhile, the two curved seg-
inverse map of Eq(28), given as ments split into four shortened ones. Therefore, the resultant
. pattern for the zeros in the compl&%"~2) plane possesses
Y(nfl)zl_._ 4aY'-3 (42) the (n—2) cycle as well as the four curved segments. Here,
2 2 ' the distribution maintains the space inversion symmetry
about the point (0.5,0), and the four intersections between
consecutivelyn times. We also notice that on thé®) com-  the (n—2) cycle and the four segments are the resultant
plex plane, as a consequence of the Lee-Yang theoremoints of the inverse map, given by E@2), of the two
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FIG. 6. The distribution of the partition function zeros on the
complex plane obtained from E@40) for (a) triangular and(b)
hexagonal decorated lattices with the decoration leveB.

intersections between then{1) cycle and the two curved
segments on th¥ ("1 complex plane.

In general, for am lattice, the distribution of the zeros
subject to the solutions of Eq40) is the union of an 1
—i) cycle and 2 separated curved segments on W& "
complex plane. In this distribution, there areitersection
points between then(—i) cycle and 2 separated curved seg-

PMSICAL REVIEW E 65 066124

an n lattice. By continuing the reduction always along the
branch (M= pg(M=0, eventually we can decompose the
condition for the zeros, Ed41), into the following:

y(h-H=_1, (43

and

a®=pO0=0. (44)

The last condition cannot be satisfied for lattide and it
impliest=—1 or Y(©=—3 for lattice T. Hence, for am
lattice the condition of Eq.(41) yields the zeros on
the Y(© complex plane as the union of the point
(—3,0) (this point is absent for latticH), the points obtained
from the result of performing the inverse map, given by Eq.
(42), n—1 times successively for the poirt1l, and all the
preimages in those— 1 times inverse maps.

Recall that for the solution of Eq40), the pointY("~1)
=(—1,0) is the intersection point between the<1) cycle
and the line segment on th&"~1) complex plane for ar(
—1) lattice. For the case of infinitg this point generates all
the points of the Julia set on thé&® complex plane through
the inverse map of Eq42) consecutively. Thus, for the case
of infinite n, the solution of Eq(40) is a subset of the solu-

ments, and these intersections are the results of the inversien of Eq. (41), and the distribution of the zeros is solely

map, given by Eq(42), of the Z'~1) intersections between

determined by the condition of E¢41). This result is con-

the[n—(i—1)] cycle and 27! separated curved segments sistent with the conclusion we obtained from the comparison

on the YI"=(=DI complex plane. In addition, this distribu-

of the singular part of the free energy density betweem an

tion has the space inversion symmetry about the symmetrilattice and a isolated primary cell with the decoration layel

center (0.5,0).
Then, it is obvious that for an lattice, the distribution of

the zeros on th&(®) complex plane contains a 0 cycle and

2" segments, and this 0 cycle is a continuous curve that
characterized by its 2intersection point with 2 segments.

For sufficiently largen, the lengths of the 2segments be-

come tiny and the 2intersection points turns out to domi-
nate the O cycle, as depicted in Figdbfor the case oh

namely, decorations play the role of weakening the correla-
tions among the primary cells.

By combining the solutions of Eq&20) and(41) together,
isre may conclude that for amlattice the Fisher zeros in the
complexY(© plane consist of a 0 cycle,"Zeparated curved
segments that intersect the 0 cycle at different points deter-
mined by then times inverse map of the point«(1,0), and
the scattered points including the point8,0), which is

=8. In the limit wheren tends to infinity, these segments absent for latticeH, the points obtained from the result of
have shrunk to the2points which then solely determine the performing the inverse map of E¢42) n—1 times succes-

0 cycle. Therefore, for am lattice with n approaching the
infinity, the solution of Eq(40) gives the distribution of the
zeros in the complex () plane as the set of infinite points

for both T andH structures. Owing to the fact that the map
given by Eq.(28), up to a constant translation, can be iden-

tified as one of the rational maps;»z°+ ¢ with c=1/4, this

set of infinite points, which is also referred as the Jorda

curve in the literature, is a Julia sg&1]. For reference, we
also show the zeros distribution from the solution of Eif)
on thet complex plane fofl structure in Fig. &) and forH
structure in Fig. &), both with the decoration level=8.
For the condition of Eq(41), 8" =0, because of the
definition of B{") given by Eq.(21) this condition essentially
leads toB{" =0, and, henceB{" =0 by virtue of the condi-
tion for the zeros,B{"—B{"®(6,$)=0. Therefore, Eq.
(41), actually, impliesa(™=8M=0 as a consequence of
B{"= B{M=0. Using the recursion relatiori¢3) and (14),
we obtain two coditionsY(""Y=—-1 and o(""V=g0M"1
=0, which are equivalent to the conditied™ = g =0 for

sively for the point (-1,0), and all the preimages in those
n—1 times inverse maps.

V. SUMMARY

In summary, an exact cell-renormalization transformation
were constructed and used to study the critical points and the
"Fisher zeros for the Ising model on triangular type lattices
with cell decorations. We exactly locate the critical point for
ann lattice with arbitrayn, and show that there is no phase
transition at finite temperature for the infinite decoration
level. For the distribution of the Fisher zeros, we choose a
unigue variable as the variable of complex temperature, and
then we bring the zeros distributions for lattices with differ-
ent decoration levels to this complex plane so that the pat-
terns of the distributions can be compared with each other.
The pattern first appears as a union of a circle and a line
segment for lattices without decorations. Then, as the deco-
ration level increases, the pattern gradually evolves to a set
of scattered points limited by a Jordan curve in the limit of
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infinite decoration level. By direct construction of the evolu- tem when the decoration levels increase, and a complete fac-
tion process, we can show the emergence of the fractal stru¢erization occurs in the limit of infinite decoration levels.

ture of the Jordan curve in a clear way. We also show that the

Sierpirski gasket essentially possesses the same distribution ACKNOWLEDGMENT

of the zeros as the triangular lattice with the inherent struc- This work was partially supported by the National Sci-
ture of the Sierpiski gasket. This is shown to be due to the ence Council of ROQTaiwan under Grant No. NSC 89-
fact that each primary cell tempts to factorize from the sys2112-M-033-004.
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