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Pseudofractal scale-free web
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We find that scale-free random networks are excellently modeled by simple deterministic graphs. Our graph
has a discrete degree distributi@@egree is the number of connections of a vertahich is characterized by
a power law with exponeng=1+1In 3/In 2. Properties of this compact structure are surprisingly close to those
of growing random scale-free networks wighin the most interesting region, between 2 and 3. We succeed to
find exactly and numerically with high precision all main characteristics of the graph. In particular, we obtain
the exact shortest-path-length distribution. For a large networksih) the distribution tends to a Gaussian of
width ~ \In N centered az’~In N. We show that the eigenvalue spectrum of the adjacency matrix of the graph
has a power-law tail with exponent2y.
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The essence of the modern situation in network science isetworks are “compact;” andiii ) the linking is preferential
the change over from the study of classical random graphgew vertices become preferentially attached to more con-
with Poisson degree distributiori4] to the exploration of nected verticgs One may wonder, whether all these three
complex networks with fat-tailed degree distributi@s-7].  ingredients are necessary to produce the structure and topol-
The prominent particular case of such nets are networks witR9Y Of @ growing scale-free network. From the growth prin-
power-law degree distribution&cale-free networks[2,8]. ciples for a S|mple network with preferentl.al Imkmg' we
While growing, such nets actually self-organize into SCaIe_change only the first one, so that the growth is deterministic,

free structures. These networks play a great role in Naturgr.1d compare main structl_JraI characterigtics of this graph
[3-5]. The Internet, the World Wide Web, and many basicwIth those of random growing networks wit<3.

. : . . Here we present results of this program. We succeed to
biological networks belong to this class. Fat tails of the de'find a number of exact characteristics of the scale-free deter-

gree distributions produce a number of intriguing effect"c‘ministic graph, some of which are still unknown for random
[9-14. ) . ) . scale-free networks. The structural properties of determinis-
Such networks are w@espread, but very little is stilltjc and random scale-free growing networks proved to be
known even about their basic propertjé$,16. Most of real gy prisingly close to each other, so our results can be reason-
growing scale-free networks hayeexponent of the degree ably applied to random growing nets.
distribution P(k)~k™” in the range (2,3), but this case  pseudofractal graphThe most popular and simple mod-
turned to be the most difficult and Unexplored one. In parels of random growing networks are citation graphs_ By defi-
ticular, no exact results for the average shortest-path lengthition, new connections in them emerge only between new
/ are known in this situation. The only known exact vertices and old ones. For example, in a scale-free citation
shortest-path-length distributions were obtained for the simgraph proposed in Ref21], one vertex is created per time
plest equilibrium networkgl17,18. Notice that ify<3, stan- step and connects to both the ends of a randomly chosen
dard estimates 0?[19] are inapp"cable to equi“brium net- edge. Here we use the closest deterministic variation of this
works with uncorrelated vertices. Correlations in growingnetwork growing under the mechanism of “preferential link-
networks are inevitable, and the results are even less encoufd:” . _
aging. The generic property of these networks, which makes The growth starts from a single edge connecting two ver-
their analytical study so hard, is a complex structure of theitices att=—1 (see Fig. 1 At each time step, to every edge
adjacency matrices. of the graph, a new vertex is added, which is attached to both
Scale-free random networks naturally have a continuou#e end vertices of the edge. Then,tat0, we have a tri-
degree distribution spectrum, but it has recently been show@ngle of edges connecting a triple of verticestatl, the
that discrete degree distributions of some deterministi@raph consists of six vertices connected by nine edges, and
graphs also have a power-law de¢ag]. All known stochas- SO on. The total number of vertices at “time’is N;=3(3'
tic models of growing scale-free networks are based on threé 1)/2, and the total number of edged is=3"**, so that the
main “physical” principles:(i) the growth is stochastidji)  average degree i§=2L,/N,=4/(1+37").
the growth produces “long-distance” connections, so that This simple rule produces a complex growing network,
which is certainly not a fractdR2]. Indeed, at any step, the
entire graph can be set inside of a unit triangle. On the other

*Email address: sdorogov@fc.up.pt hand, one can depict the graph in another way, namely, as in
"Email address: goltsev@gav.ioffe.rssi.ru Fig. 1 where the graph is surrounded by a long chain of
*Email address: jfmendes@fc.up.pt edges. This means that the structure has no fixed finite fractal
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and a;s of At. Here N;_;+1=<s=<N,. Other elements are
zeros. This produces the sparse block matrix shown in Fig. 2.
Degree distribution The degree spectrum of the graph
*————0

is discrete: at timet, the numberm(k,t) of vertices of
degree k=2,222% ..., 271221 js equal to
34,31 3t72 | 333, respectively. Other values of de-
gree are absent in the spectrum. Clearly, for the large net-
work, m(k,t) decreases as a power lgfso the network can
be called “scale-free.” Spaces between degrees of the spec-
trum grow with increasing. Therefore, to relate the expo-
nent of this discrete degree distribution to standarelxpo-
nent of a continuous degree distribution for random scale-
free networks, we use a cumulative distributi®y (k)
=3, = m(k’,t)/N;~k!~?. Herek andk’ are points of the
FIG. 1. Scheme of the growth of the scale-free pseudofractatliscrete degree spectrum. Thus we obtain
graph. The growth starts from a single edge connecting two vertices
att=—1. At each time step, every edge generates an additional y=1+ (In3/In2), D
vertex, which is attached to both end vertices of the edge. Notice
that the graph at time step-1 can be made by connecting together so that 2<y=2.58% . ..<3. Comparey with the character-
the threet graphs. istic exponent in the relation between the “mass” and the
“perimeter” of the graph. Also, notice that the maximal de-
dimension. We failed to introduce a well defined spectrum ofgree of a vertex is equal to' 2t~N" " 3=NY(~1) " \which
fractal dimensiongin principle, for this structure, it must coincides with a standard relation for the cutoff of degree
extend to infinite dimension hence the network cannot be distribution in growing scale-free networks].
called a multifractal. Thus, this graph is not a fractal but only  Distribution of clustering By definition, the cluster coef-
parody of it, and we call it, for brevityyseudofractalNotice  ficient C of a vertex is the ratio of the total number of exist-
that the graph contains numerous loops and hence is very fitig connections between aflits nearest neighbors and the
from tree like. numberk(k—1)/2 of all possible connections between them.
Adjacency matrixBy definition, an elemera;; of an ad-  Usually, only the average value of the clustering coefficient
jacency matrix is equal to 1 or 0 depending on whether aris considered. In our case, it is possible to obtain a more rich
edge between verticésindj is present or not. The adjacency characteristic, namely, the distribution of the clustering coef-
matrix A, structure is schematically shown in Fig. 2. At ficient in the graph.
=—1, this is the 2 2 matrix with zeros on the diagonal and ~ One can see that, in this graph, there is a one-to-one cor-
two unit elements. At time stepp we add rows and columns respondence between the clustering coefficient of a vertex
i,j=N_1+1,... N; (new vertices to the matrix. Matrix is and its degree:C=2/k. Thus, the numbem(C,t) of
symmetric, and each unit elememj above the diagonal of Vertices with y lCJLtJSUf['”g ~ coefficient  C
the matrixAt,1 generates, in addition, two unit elemeats :tl’tz_l ’zt_z’ S22l s e_qual _to_
34,371 3172 | 333, respectively. In this case, it is
natural to introduce the cumulative distribution of the clus-
tering coefficient W, (C)=2¢/=cme(C’,t)/N,~C" 32
=C” !, whereC andC’ are the points of the discrete spec-
trum. This corresponds to the power-law behavior of the cor-
responding continuous distribution of clustering/(C)
~C”2 for random scale-free network at sm@ll Such dis-
tribution of clustering is observed in real scale-free networks
of protein-protein interactionf23].
The average clustering coefficient can be easily obtained
for arbitraryt,

— 4 6'4312
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FIG. 2. Structure of the adjacency matrix of the gragh ( For the infinite graphC=4/5, so the clustering is high.
=2, N,=15). Black regions are unit elements of the matrix. In Degree correlations The numberm(k,k’,t) of edges,
white regions, all matrix elements are zeros. In gray regions, nonwhich connect vertices of degrde and k’, characterizes
zero(unit) elements are present. The matrix is symmetric, and eacghort-range degree-degree correlations in the graph. It is con-
column in gray blocks above the diagonal contains only two nonvenient to writek=2P** and use the notatiom(k,k’,t)
zero elements. =c(p,p’,t). Then one can find directly
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c(t,t,)=3, c(t,p’st—1t)=3x2t"170",
c(pst—1p'<p—1t)=3t"P2P~P' -1 3
This yields the cumulative distributior kZ*Vk'*l(We as-

sume thak>k'), which, in turn, corresponds to the effective
continuous distribution

P(k,k’)~k 7k 72 (4)
This expression coincides with the corresponding asymptotic : .
formula for an arbitrary random scale-free citation gr@h b
(by definition, a citation graph is a growingl network, in_ Y S S .
which new edges do not emerge between pairs of old verti- log,, A
ces. Originally, Eq.(4) was obtained exactly for a specific
model in Ref[24]. FIG. 3. Log-log plot of the cumulative distribution of eigenval-

Shortest-path-length distributiotdere we briefly outline  ues of the adjacency matriG.,n(A)=Z,,=\G()"). The curves
our exact results for the distribution P(/t) s_h(_)w the spectra fdr=5,6,7,8. The dashed line depicts the «»
=n(/,t)/[[N(N,—1)/2], where n(/,t) is the number of limit. The t-independent points are marked.
pairs of vertices with minimal separatiofi. Details of the
analytical solution and general exact expressionsfef,t)
will be published elsewhere.

For the calculation oh(/,t) one can use two distinct
schemes. First, one may use the following property. Th
length /;; of the shortest path between vertideandj is
equal to the minimal power of the adjacency matrix wit
nonzerof{ij} element{A” ~1};;=0{A"};;#0. This property
allows us to obtaim(/,t) by counting the total numbers of
nonzero elements in sequential powers of the adjacency m
trix. This can be easily done by computer and yieidg’,t),

=InN/In4. The relative difference is surprisingly small,
(4/9)(In4/In3)=0.56L . .. . Notice that according to stan-
dard argument§4,5], the classical formula is not applicable
éor vy=<3 (recall that this formula was obtained for equilib-
rium uncorrelated graphs Nevertheless, Eq(7) demon-
, Strates that the classical estimate is unexpectedly good in our
case where degree-degree correlations are strong.
The exact distribution is rather complex and we do not

resent it here, but we found analytically that at latg&

akes the Gaussian form

3 P(/,1) ! (/=71 ®
/)= expg — ,

9 5 V27 (2233t 2(2213%)t

27 57 21 which is violated only in narrow regions of widtht® near

the points”’=1 and/=t+ 1. One sees that the width of the

81 351 369 60 R — )
distribution is of the order of/t~/n N:</(t). Notice that
243 1806 3582 1716 156 the simulations of the BarabaAlbert growing random net-
., (5  work also yield a Gaussian-like(/) [7].

Eigenvalue spectrum of the adjacency matilike obser-
etc., wheret labels lines (=0,1,2,3,4...) and /  vation of the power-law eigenvalue spectrum of the adja-
=1,2,3,4,5. .. is theindex of columns. cency matrix of the Interndt25] makes this problem very

Second, the exact analytical form of the distribution challenging. The eigenvalue spectrum of the adjacency ma-
P(7,1) and all its moments were obtained by the solution oftrix of the graphG(\) containsN, eigenvalues, which are
recursion relations fon(/,t). In particular, an exact expres- denoted byx. Fort=2, N,_;—3 of them are equal to zero
sion for the average shortest-path length is of the form and, fort=3, there aré\,_,— 3 eigenvalues equal tg2 and
2t . the same number of those equal t0,/2. Here we do not
:(4t+11)3 +10x3'+3 6) derive analytical results for the entire eigenvalue spectrum

3(3'+1)(3%x3'+1) ' but only study its tail using a simple numerical analysis.
It is convenient to consider a cumulative distribution of
The distribution quickly approaches an asymptotic regimeeigenvalueG,,(\)=2,.-,G(\"). The results of numeri-
where cal diagonalization of the adjacency matrix for several time
steps are shown in Fig. 3. One sees that, in the large graph
InN @) limit, the resulting cumulative distribution approaches a
. ; .
staircaselike form fon>1.
We found network-size-independent points of the spec-
Thus, the average shortest-path length logarithmically growgym. Using the coordinates of these points, we calculated
with increasing size of the graph. Expressioh may be  the series of slopes of lines connecting these points in Fig. 3:
compared with the standard estimaig9]: /~InN/ink  1.49847, 2.38192, 3.03023, 3.406 83, 3.531 35, 3b&

ZUs1)= §t+ 2 +0(3 Y= o
‘ e 9In3
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last value is actually a very good estimate obtainedtfor propose a more simple deterministic scale-free growing net-
=8). Interpolation of these values vyields the exponént work. In a similar way, we can easily construct various
—1=3.575:0.015 of the cumulative distributio®,(\) pseudofractal variations with various values ywfout their
~\"71, This value is 2-In3/In2=1+y=3.58 ..., to  general properties are similar. Therefore, we have found a
within a precision of our numerics. convenient tool for exploring complex scale-free networks.
Thus, one can suggest that exponérdf the correspond- |n the real-space renormalization group technique for critical
ing continuous eigenvalue spectruB(A>1)~\"°is 5  phenomena and percolation on lattices, the lattices are actu-
=2+y. We should mention that the direct study of the ei-gjly changed to fractal structures. We have demonstrated that
genvalue spectrum for a growing random network with  the replacement of a random growing network by a pseudof-
=3 (the Barabai-Albert mode] showed power-law depen- |actal is also reasonable.
dence in a too narrow range bfto make precise conclusions e extreme simplicity of the pseudofractal graph has al-
[26] (see also Ref27]). An estimate for the exponent in this |eq s to obtain a number of results for growing networks.
situation was5~5 [26], which supports our conjecture. In particular, for this network with strong correlations, we

Percolation propertiesLet us delete, at random edges of 50 ghtained the exact shortest-path-length distribution and
the pseudofractal. We denote the probability that an edge e eigenvalue spectrum of the complex adjacency matrix.

present ap. Then the standard real-space renormallzatlorI:rom the latter, we have made a conjecture that the exponent

. . ’ _ 12
group transformation is exactly-dp’ < (1—p)(1—p*), or of eigenvalue spectra of scale-free citation graphs-isy2

p'—p+p?—p°. This transformation actually means the . e
“decimation” of the graph(see Fig. 1 in reverse ordeiSo, Of course, real growing networks are not deterministic

we see that in the infinite network limit, for any nonzero graphs. Nevertheless, we have failed to find any principal
value ofp, the system finally approaches the fixed pgint difference between the structural properties of pseudofractals

—1. This means that one has to remove at random “almosgd those of random growing nets. _

all” edges to eliminate the giant connected component of the Note addedAfter submission of this manuscript we came

graph. The same is valid for the removal of vertices. This i@ know of the paper by Jung and co-work¢es8] where

a standard property of scale-free networks wjita 3 [10]. deterministically growing scale-free trees, which also belong
Discussion The network that we study in this paper was to the class of pseudofractals, were studied. We thank B.
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