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Pseudofractal scale-free web
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We find that scale-free random networks are excellently modeled by simple deterministic graphs. Our graph
has a discrete degree distribution~degree is the number of connections of a vertex!, which is characterized by
a power law with exponentg511 ln 3/ln 2. Properties of this compact structure are surprisingly close to those
of growing random scale-free networks withg in the most interesting region, between 2 and 3. We succeed to
find exactly and numerically with high precision all main characteristics of the graph. In particular, we obtain
the exact shortest-path-length distribution. For a large network (lnN@1) the distribution tends to a Gaussian of
width ;Aln N centered atl̄ ; ln N. We show that the eigenvalue spectrum of the adjacency matrix of the graph
has a power-law tail with exponent 21g.

DOI: 10.1103/PhysRevE.65.066122 PACS number~s!: 87.18.Sn, 05.10.2a, 05.40.2a, 05.50.1q
e
ph

wi

le
tu
sic
e

ct

til

e
e
ar
g

ct
im

-
ng
o
ke
e

ou
ow
st

re

a

on-
ee
pol-

in-
e
tic,

aph

to
ter-
m
nis-
be
son-

-
fi-
ew
tion
e
sen
this
k-

er-
e
oth

and

rk,
e
her
s in
of
ctal
The essence of the modern situation in network scienc
the change over from the study of classical random gra
with Poisson degree distributions@1# to the exploration of
complex networks with fat-tailed degree distributions@2–7#.
The prominent particular case of such nets are networks
power-law degree distributions~scale-free networks! @2,8#.
While growing, such nets actually self-organize into sca
free structures. These networks play a great role in Na
@3–5#. The Internet, the World Wide Web, and many ba
biological networks belong to this class. Fat tails of the d
gree distributions produce a number of intriguing effe
@9–14#.

Such networks are widespread, but very little is s
known even about their basic properties@15,16#. Most of real
growing scale-free networks haveg exponent of the degre
distribution P(k);k2g in the range (2,3), but this cas
turned to be the most difficult and unexplored one. In p
ticular, no exact results for the average shortest-path len
l̄ are known in this situation. The only known exa
shortest-path-length distributions were obtained for the s
plest equilibrium networks@17,18#. Notice that ifg<3, stan-
dard estimates ofl̄ @19# are inapplicable to equilibrium net
works with uncorrelated vertices. Correlations in growi
networks are inevitable, and the results are even less enc
aging. The generic property of these networks, which ma
their analytical study so hard, is a complex structure of th
adjacency matrices.

Scale-free random networks naturally have a continu
degree distribution spectrum, but it has recently been sh
that discrete degree distributions of some determini
graphs also have a power-law decay@20#. All known stochas-
tic models of growing scale-free networks are based on th
main ‘‘physical’’ principles:~i! the growth is stochastic;~ii !
the growth produces ‘‘long-distance’’ connections, so th
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networks are ‘‘compact;’’ and~iii ! the linking is preferential
~new vertices become preferentially attached to more c
nected vertices!. One may wonder, whether all these thr
ingredients are necessary to produce the structure and to
ogy of a growing scale-free network. From the growth pr
ciples for a simple network with preferential linking w
change only the first one, so that the growth is determinis
and compare main structural characteristics of this gr
with those of random growing networks withg,3.

Here we present results of this program. We succeed
find a number of exact characteristics of the scale-free de
ministic graph, some of which are still unknown for rando
scale-free networks. The structural properties of determi
tic and random scale-free growing networks proved to
surprisingly close to each other, so our results can be rea
ably applied to random growing nets.

Pseudofractal graph. The most popular and simple mod
els of random growing networks are citation graphs. By de
nition, new connections in them emerge only between n
vertices and old ones. For example, in a scale-free cita
graph proposed in Ref.@21#, one vertex is created per tim
step and connects to both the ends of a randomly cho
edge. Here we use the closest deterministic variation of
network growing under the mechanism of ‘‘preferential lin
ing.’’

The growth starts from a single edge connecting two v
tices att521 ~see Fig. 1!. At each time step, to every edg
of the graph, a new vertex is added, which is attached to b
the end vertices of the edge. Then, att50, we have a tri-
angle of edges connecting a triple of vertices, att51, the
graph consists of six vertices connected by nine edges,
so on. The total number of vertices at ‘‘time’’t is Nt53(3t

11)/2, and the total number of edges isLt53t11, so that the
average degree isk̄t52Lt /Nt54/(1132t).

This simple rule produces a complex growing netwo
which is certainly not a fractal@22#. Indeed, at any step, th
entire graph can be set inside of a unit triangle. On the ot
hand, one can depict the graph in another way, namely, a
Fig. 1 where the graph is surrounded by a long chain
edges. This means that the structure has no fixed finite fra
©2002 The American Physical Society22-1
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dimension. We failed to introduce a well defined spectrum
fractal dimensions~in principle, for this structure, it mus
extend to infinite dimension!, hence the network cannot b
called a multifractal. Thus, this graph is not a fractal but o
parody of it, and we call it, for brevity,pseudofractal. Notice
that the graph contains numerous loops and hence is ver
from tree like.

Adjacency matrix. By definition, an elementai j of an ad-
jacency matrix is equal to 1 or 0 depending on whether
edge between verticesi andj is present or not. The adjacenc
matrix Ât structure is schematically shown in Fig. 2. Att
521, this is the 232 matrix with zeros on the diagonal an
two unit elements. At time stept, we add rows and column
i , j 5Nt2111, . . . ,Nt ~new vertices! to the matrix. Matrix is
symmetric, and each unit elementai j above the diagonal o
the matrixÂt21 generates, in addition, two unit elementsais

FIG. 1. Scheme of the growth of the scale-free pseudofra
graph. The growth starts from a single edge connecting two vert
at t521. At each time step, every edge generates an additi
vertex, which is attached to both end vertices of the edge. No
that the graph at time stept11 can be made by connecting togeth
the threet graphs.

FIG. 2. Structure of the adjacency matrix of the grapht
52, Nt515). Black regions are unit elements of the matrix.
white regions, all matrix elements are zeros. In gray regions, n
zero~unit! elements are present. The matrix is symmetric, and e
column in gray blocks above the diagonal contains only two n
zero elements.
06612
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and ajs of Ât . Here Nt2111<s<Nt . Other elements are
zeros. This produces the sparse block matrix shown in Fig

Degree distribution. The degree spectrum of the grap
is discrete: at timet, the numberm(k,t) of vertices of
degree k52,22,23, . . . ,2t21,2t,2t11 is equal to
3t,3t21,3t22, . . . ,32,3,3, respectively. Other values of de
gree are absent in the spectrum. Clearly, for the large
work, m(k,t) decreases as a power ofk, so the network can
be called ‘‘scale-free.’’ Spaces between degrees of the s
trum grow with increasingk. Therefore, to relate the expo
nent of this discrete degree distribution to standardg expo-
nent of a continuous degree distribution for random sca
free networks, we use a cumulative distributionPcum(k)
[(k8>km(k8,t)/Nt;k12g. Herek and k8 are points of the
discrete degree spectrum. Thus we obtain

g511 ~ ln 3/ln 2! , ~1!

so that 2,g52.585 . . .,3. Compareg with the character-
istic exponent in the relation between the ‘‘mass’’ and t
‘‘perimeter’’ of the graph. Also, notice that the maximal d
gree of a vertex is equal to 2t11;Nt

ln 2/ln 35Nt
1/(g21) , which

coincides with a standard relation for the cutoff of degr
distribution in growing scale-free networks@5#.

Distribution of clustering. By definition, the cluster coef-
ficient C of a vertex is the ratio of the total number of exis
ing connections between allk its nearest neighbors and th
numberk(k21)/2 of all possible connections between the
Usually, only the average value of the clustering coefficie
is considered. In our case, it is possible to obtain a more
characteristic, namely, the distribution of the clustering co
ficient in the graph.

One can see that, in this graph, there is a one-to-one
respondence between the clustering coefficient of a ve
and its degree:C52/k. Thus, the numbermc(C,t) of
vertices with clustering coefficient C
51,221,222, . . . ,222t,212t,22t is equal to
3t,3t21,3t22, . . . ,32,3,3, respectively. In this case, it i
natural to introduce the cumulative distribution of the clu
tering coefficient Wcum(C)[(C8<Cmc(C8,t)/Nt;Cln 3/ln 2

5Cg21, whereC andC8 are the points of the discrete spe
trum. This corresponds to the power-law behavior of the c
responding continuous distribution of clusteringW(C)
;Cg22 for random scale-free network at smallC. Such dis-
tribution of clustering is observed in real scale-free netwo
of protein-protein interactions@23#.

The average clustering coefficient can be easily obtai
for arbitrary t,

C̄t5
4

5

6t13/2

2t~3t11!
. ~2!

For the infinite graph,C̄54/5, so the clustering is high.
Degree correlations. The numberm(k,k8,t) of edges,

which connect vertices of degreek and k8, characterizes
short-range degree-degree correlations in the graph. It is
venient to writek[2p11 and use the notationm(k,k8,t)
[c(p,p8,t). Then one can find directly
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c~ t,t,t !53, c~ t,p8<t21,t !5332t212p8,

c~p<t21,p8<p21,t !53t2p2p2p821. ~3!

This yields the cumulative distribution;k22gk821~we as-
sume thatk@k8), which, in turn, corresponds to the effectiv
continuous distribution

P~k,k8!;k12gk822. ~4!

This expression coincides with the corresponding asympt
formula for an arbitrary random scale-free citation graph@5#
~by definition, a citation graph is a growing network,
which new edges do not emerge between pairs of old ve
ces!. Originally, Eq. ~4! was obtained exactly for a specifi
model in Ref.@24#.

Shortest-path-length distribution. Here we briefly outline
our exact results for the distribution P(l ,t)
[n(l ,t)/@Nt(Nt21)/2#, where n(l ,t) is the number of
pairs of vertices with minimal separationl . Details of the
analytical solution and general exact expressions forn(l ,t)
will be published elsewhere.

For the calculation ofn(l ,t) one can use two distinc
schemes. First, one may use the following property. T
length l i j of the shortest path between verticesi and j is
equal to the minimal power of the adjacency matrix w
nonzero$ i j % element:$Âl 21% i j 50,$Âl % i j Þ0. This property
allows us to obtainn(l ,t) by counting the total numbers o
nonzero elements in sequential powers of the adjacency
trix. This can be easily done by computer and yieldsn(l ,t),

3

9 6

27 57 21

81 351 369 60

243 1806 3582 1716 156

. . . , ~5!

etc., where t labels lines (t50,1,2,3,4, . . . ) and l
51,2,3,4,5, . . . is theindex of columns.

Second, the exact analytical form of the distributi
P(l ,t) and all its moments were obtained by the solution
recursion relations forn(l ,t). In particular, an exact expres
sion for the average shortest-path length is of the form

l̄ ~ t>0!5
~4t111!32t11033t13

3~3t11!~333t11!
. ~6!

The distribution quickly approaches an asymptotic regim
where

l̄ ~ t@1!5 4
9 t1 11

9 1O~ t32t!>
4

9 ln 3
ln Nt . ~7!

Thus, the average shortest-path length logarithmically gro
with increasing size of the graph. Expression~7! may be
compared with the standard estimate@19#: l̄ ; ln N/ln k̄
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5ln N/ln 4. The relative difference is surprisingly sma
(4/9)(ln 4/ln 3)50.561 . . . . Notice that according to stan
dard arguments@4,5#, the classical formula is not applicabl
for g<3 ~recall that this formula was obtained for equilib
rium uncorrelated graphs!. Nevertheless, Eq.~7! demon-
strates that the classical estimate is unexpectedly good in
case where degree-degree correlations are strong.

The exact distribution is rather complex and we do n
present it here, but we found analytically that at larget, it
takes the Gaussian form

P~ l ,t !>
1

A2p~22/33!t
expF2

~ l 2 l̄ ~ t !!2

2~22/33!t
G , ~8!

which is violated only in narrow regions of width;t1/3 near
the pointsl 51 andl 5t11. One sees that the width of th
distribution is of the order ofAt;Aln Nt!l̄ (t). Notice that
the simulations of the Baraba´si-Albert growing random net-
work also yield a Gaussian-likeP(l ) @7#.

Eigenvalue spectrum of the adjacency matrix. The obser-
vation of the power-law eigenvalue spectrum of the ad
cency matrix of the Internet@25# makes this problem very
challenging. The eigenvalue spectrum of the adjacency
trix of the graphG(l) containsNt eigenvalues, which are
denoted byl. For t>2, Nt2123 of them are equal to zero
and, fort>3, there areNt2223 eigenvalues equal toA2 and
the same number of those equal to2A2. Here we do not
derive analytical results for the entire eigenvalue spectr
but only study its tail using a simple numerical analysis.

It is convenient to consider a cumulative distribution
eigenvaluesGcum(l)[(l8>lG(l8). The results of numeri-
cal diagonalization of the adjacency matrix for several tim
steps are shown in Fig. 3. One sees that, in the large g
limit, the resulting cumulative distribution approaches
staircaselike form forl@1.

We found network-size-independent points of the sp
trum. Using the coordinates of these points, we calcula
the series of slopes of lines connecting these points in Fig
1.498 47, 2.381 92, 3.030 23, 3.406 83, 3.531 35, 3.557~the

FIG. 3. Log-log plot of the cumulative distribution of eigenva
ues of the adjacency matrix,Gcum(l)[(l8>lG(l8). The curves
show the spectra fort55,6,7,8. The dashed line depicts thet→`
limit. The t-independent points are marked.
2-3
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last value is actually a very good estimate obtained fot
58). Interpolation of these values yields the exponend
2153.57560.015 of the cumulative distributionGcum(l)
;l2(d21). This value is 21 ln 3/ln 2511g53.585 . . . , to
within a precision of our numerics.

Thus, one can suggest that exponentd of the correspond-
ing continuous eigenvalue spectrumG(l@1);l2d is d
521g. We should mention that the direct study of the
genvalue spectrum for a growing random network withg
53 ~the Baraba´si-Albert model! showed power-law depen
dence in a too narrow range ofl to make precise conclusion
@26# ~see also Ref.@27#!. An estimate for the exponent in thi
situation wasd'5 @26#, which supports our conjecture.

Percolation properties. Let us delete, at random edges
the pseudofractal. We denote the probability that an edg
present asp. Then the standard real-space renormalizat
group transformation is exactly 12p8←(12p)(12p2), or
p8←p1p22p3. This transformation actually means th
‘‘decimation’’ of the graph~see Fig. 1 in reverse order!. So,
we see that in the infinite network limit, for any nonze
value of p, the system finally approaches the fixed pointp
51. This means that one has to remove at random ‘‘alm
all’’ edges to eliminate the giant connected component of
graph. The same is valid for the removal of vertices. This
a standard property of scale-free networks withg<3 @10#.

Discussion. The network that we study in this paper w
chosen to be as close as possible to random growing
works. Moreover, one can say that this graph grows un
the mechanism of ‘‘preferential linking:’’ vertices with
higher numbers of connections attach higher numbers of
edges~see Fig. 1!. Therefore, it is not so strange that th
properties of the pseudofractal network resemble those
scale-free random citation graphs. However, it is really s
prising how close they appear to each other. Hardly one
y
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propose a more simple deterministic scale-free growing n
work. In a similar way, we can easily construct vario
pseudofractal variations with various values ofg but their
general properties are similar. Therefore, we have foun
convenient tool for exploring complex scale-free networ
In the real-space renormalization group technique for criti
phenomena and percolation on lattices, the lattices are a
ally changed to fractal structures. We have demonstrated
the replacement of a random growing network by a pseud
ractal is also reasonable.

The extreme simplicity of the pseudofractal graph has
lowed us to obtain a number of results for growing networ
In particular, for this network with strong correlations, w
have obtained the exact shortest-path-length distribution
the eigenvalue spectrum of the complex adjacency ma
From the latter, we have made a conjecture that the expo
of eigenvalue spectra of scale-free citation graphs is 21g.
Of course, real growing networks are not determinis
graphs. Nevertheless, we have failed to find any princi
difference between the structural properties of pseudofrac
and those of random growing nets.

Note added. After submission of this manuscript we cam
to know of the paper by Jung and co-workers@28# where
deterministically growing scale-free trees, which also belo
to the class of pseudofractals, were studied. We thank
Kahng, who informed us about this paper before its publi
tion.
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acknowledges the support of the NATO program OU
REACH. We also thank A.N. Samukhin and A. Krzywick
for useful discussions.
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