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Extrapolation and the Bulirsch-Stoer algorithm
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The Bulirsch-Stoer extrapolation algorithm was used in a statistical mechanics setting in 1984 by Henkel
and Patkos. Since then it has been used numerous times in a large variety of settings to extrapolate from finite
size systems to the infinite system in a large variety of situations in statistical mechanics. We investigate some
of its characteristics by using it in situations where the behavior of the infinite system is known. One charac-
teristic is the error involved with the algorithm. More importantly we investigate the dependence of the
effectiveness of the algorithm on the size and number of systems used as input and find that a larger number
of smaller systems results in better results than a few much larger systems.
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[. INTRODUCTION analysis of the characteristics of the algorithm in situations
where one knows the dependency of the infinite system on
In statistical mechanics one generally is interested in théhe finite systems and one can thereby check some of the
behavior of a system in the thermodynamic limit, that ischaracteristics of the algorithm.
when the size of the system is allowed to go to infinity. In We present such a study of the algorithm in the following.
many cases of course one cannot find the quantities of intePecifically in the next section we introduce the algorithm
est in this limit so an approach is taken whereby finite sys@nd present a number of questions relevant to its use. Fol-
tems are studied and then one attempts to extrapolate to t@wing that section we examine the BST algorithm in a set-
thermodynamic ||m|t A number Of a|gorithms for doing th|s t|ng Similar to one Of |tS most common uses ||Sted abOVe that
have been used and many are Very thorough'y reviewed f partition fUnCtion Zeros. HOWGVEI’, we inVeStigate |tS be'
Guttmann[1]. Just about the time of publication of Gutt- havior in the extrapolation of results for finite one-
mann’s review article Henkel and Patkm introduced an dimensional SyStemS to the infinite SyStem. The obvious ad-
algorithm, originally due to Bulirsch and Stog8] and here-  vantage is that we have numerous analytic results involving
after to be referred to as the BST algorithm, into the area o¥arious expansions of quantities in terms of the size of the
critical phenomena. In Guttmann’s review article this algo-System available to us for the one-dimensional system but
rithm was mentioned and described “as fair to middling” in Not for higher dimensional systems. In Sec. IV we see if
comparison to other methods but results using the BST alggsome of our findings from Sec. Ill carry over to the two-
rithm were not presented in the same manner as the results 8fmensional Ising model. Since in some respects the one-
seven other algorithms were, because one would suppos@mensional model is rather pathological, e.g., having a
the BST algorithm’s almost concurrent introduction with the Phase transition only when the temperature is zero, it is
review. Shortly after the introduction of the algorithm Hen- Worth seeing if some of our conclusions based on the one-
kel and Schtz [4] pointed out several characteristics of the dimensional model are also true for the two-dimensional
algorithm and in particular stressed its being superior to a§ase. But here again we are in a situation where at least some
algorithm due to van den Broeck and SchwéB, hereafter ~ exact results are available such as the critical temperature
to be referred to as the VBS algorithm, which was introducedVhich will allow us to see the accuracy and efficiency of the
into statistical mechanics by Hamer and Barljgt and  algorithm.
which was one of the approaches reviewed by Guttmann.
Since the introduction of the BST algorithm there have
been a number of topics where use is made of it to take
results for a series of finite size systems and extrapolate to In general we wish to determine the value of some quan-
the infinite system. Examples of such are quite varied andity we will denote asT of an infinite statistical mechanical
include the ftricritical point and the phase diagram of a col-system by knowing the corresponding valueg dér several
lapsing lattice anima[7], layered magnetic systeni8,9], finite systems. Since the value ©for the finite systems will
polymers with crossing bond40], density profiles, Casimir depend on the size of the system we denote the(a$
amplitudes, critical exponents, corner exponents, and the lavhereL is a measure of the system size. One supposes in
cation of the Lee-Yang zeros all for two-dimensional Pottsgeneral thaff (L) can be written as
models[11-14, critical temperature, critical exponent and
correction to scaling estimates for two- and three-
dimensional Ising modelgl5-18, magnetizations plateaus
in antiferromagnetic Heisenberg spin-1/2 laddgt9], and
interacting, oriented, self-avoiding walk&0]. While there where OKw;<w,<w3<--- and where T, is the
has been much use of the algorithm there has been littlgalue for the infinite system. The BST algorithm allows

II. BASIC METHOD

T(L)=T.+a;L “t+al " “2+agl " “s+---, (1)
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one to start with a finite sequence of
T(L41),T(L2),T(L3), ..., T(Lp) and estimateT... In par-

ticular the algorithm allows one to construct a table of ex-

trapolants of this sequence, e.g., for5 we have

)

whereT} is the algorithm’s best estimate o, . TheT, are
computed from

T%,=0, 3
To=Te(n), (4)
Th=Th i+ (Th 3= Thoo)
Ln © 1 Tnmtll_Trr:wfl 1 ' 5
XL Tqeroqeer] Y O
n+m m—1 m—2

wherem=1 and wherew is a free parameter.
Henkel and Schutg4] in their investigation of the prop-
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values cific examples which can be used to give some guidance for

the level of accuracy necessary. Finally we want to investi-
gate the ways in which the error involved in a particular BST
estimate may be gauged, in particular we investigate a pro-
cedure which has been used by several authors for estimating
the error. This method relies upon the use of the absolute
value of the difference between the two values at the next to
last level of approximation, in particular we take as our es-
timate for errore to be

€:|T%72"T#72| (6)
when there aren input values.

In Ref.[5] a good deal of the work involved test functions
of the form of Eqg.(1) but with only a term or two on the
right-hand side. As they point out this is seldom the case in
statistical mechanics applications. We consider Ising model
systems which are governed by the Hamiltonian

_JZ

BY

H= O'iO'j_hE gj, (7)

where the variabler; denotes the spin variable on thh
site, eachr can take on the values 1, the first sum is over

all nearest-neighbor pairs, and the later sum is over all spin
variables comprising the systerd.is the nearest-neighbor
interaction and is the external magnetic field. The partition
function for such a system is

Z=2, exfl— BH],
{o}

®

whereB=1/kT, and the sum is over all configurations of the
system, a configuration being denoted{las}. The partition

erties of the algorithm generally looked at the comparisorfunction can be written as a generalized polynomial, an ex-

between the VBS algorithrf6] and the results it produces

pression where negative exponents are allowed; afid u

compared to the BST algorithm and the results it produceswvhere u=exd —43J] and z=exg2gh]. One then can find
We concentrate solely on the BST algorithm which based otthe zeros of the polynomial considering eitheor z as the

their results is superior to the VBS algorithm. The most im-

variable. When we wish to consideras the variable we will

portant questions we consider in the following center on thealways takeh to be zero. The zeros in this case are referred
very practical issue of how to get the best results from theo as the Fisher zeros as these were first studied by Michael

algorithm taking into account that computing the input val-
ues is generally very difficult and time consuming. One typi-

Fisher[21]. When considering the opposite case, i.e., taking
z as the variable, the zeros will be referred to as the Lee-

cal question concerns how the accuracy of the estimate¢ang zeros after the two authors whose work started the
given by the BST algorithm depend on the size of the syseonsiderations of the zeros of the partition functj@a).

tems used to generate the input, i.e.,“ﬂﬁé? As an example

one might ask if one could compute input data for 13 sys-

tems of sizd.=3,5,7,. . .,27 oronly 7 systems but of larger

size, sayL =2,8,14,20. . .,38, as we do in the next section, ' e c
dine and we consider the case where we have periodic bound-

would the estimate based on the input values from the larg

IIl. ONE-DIMENSIONAL ISING MODEL CASE

In this section we consider all Ising spins to lie along a

systems result in a more accurate estimate or vice versg¥Y cqnditions. The partition function can be found using the
Generating data from 13 smaller systems is often easier ifV0 €igenvalues of the 22 transfer matrix for the system.
general than generating data using 7 larger systems. Second€ partition function for a system & sites is the sum of
since when using the algorithm one is constantly subtracting€ two eigenvalues each raised to tith power. Setting

two quantities of near equal value such &/, —Tn _,)
how important is the accuracy of the original input? It is

rather apparent that the accuracy is of importance and this is

mentioned in Ref[1] but we give some very clear and spe-

is sum equal to zero one obtains

2y—1
N

z+%=2(1—u)co{ Tl')—ZU, 9
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TABLE I. Absolute value of the difference between the exact value and the BST algorithm estimate for the argufpemtcéstimate
of the error based on E@9) whenu=(1/2)*, »=2, and system sizes used are,3,5. ,2an+1.

8 figure accuracy input 12 figure accuracy input 16 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of error
7 2.4x1077 2.4x10°6 1.6x10°7 4.7x10°° 1.6x10°7 4.7x10°°
8 9.9x10°8 1.4x10°7 5.9x10°° 1.5x10°7 6.0<10°° 1.5x10°7
9 1.9x10°7 1.5x10°7 2.9x 10710 5.4x10°° 1.2x10° 10 5.6x10°°
10 7.8x10°8 1.1x10°7 4.1x10° 10 6.5 1010 3.0x10712 1.2x10°10
11 2.2x1077 1.7x10°7 9.4x 1011 6.0x10°1° 45x10° 14 2.8x10712
12 2.0x10°° 1.5x10°6 7.8x10° 11 1.7x10°1° 3.9x10° 4 8.1x 104
13 2.0<1077 2.0x10°6 2.6x10° 1 1.3x107°1° 6.3x10°1° 3.9x10°

wherey=1,2, ... N. Knowing that the Lee-Yang zeros for by taking as input a sequencerafvalues, these values being
the case wherd>0, which is the only case we consider the value of the argument of); for systems of size
when dealing with the Lee-Yang zeros, lie on the unit circle3,5, ... ,2n+1 sites. We then apply the BST algorithm to
in the complexz plane, a result of the Lee-Yang circle theo- thesem input values obtaining an approximation for the
rem[22], thenz can be written ag=ex(i6,] and therefore value of the argument of this zero in the infinite site limit.
their location is determined by the value @f. We will be  We do this for two different values af. We are interested in
interested only in the zero closest to the real, positnaxis.  the accuracy of the BST estimates and the easiest way to see
This zero is designated as the leading zero. There are actthis accuracy is to look at the absolute value of the difference
ally two such zeros since the zeros come in complex conjubetween the exact value and the BST estimate. This for vari-
gate pairs. These are the zeros one obtains whefh or y  ous values ofm are given in Table | fou=(1/2)* and in
=N. Using the above and taking=1 one can do a series Table Il for u=(1/4)*. In both cases we have presented re-

expansion in the variable () for #; and one obtains sults using 8 figure, 12 figure, and 16 figure accuracy input.
) ) Also in these tables we have presented estimates of the error,
m 1 1 using Eq.(8), involved in our approximation for again the
6, =arcco¢l—2u)+ 4 Vu 1(N) case of the three varying input accuracies.

. . First we address the issue of the accuracy of the estimate.
N W_(E_z) 1 1<£ _) (10 In theu= (1/2)* case even for our smallest sequence of input
192\ u u N N values, m=7, eight figure accuracy is insufficient. Also

Table | shows that while fom=8 there is little difference

which is precisely of the form of Eql). Hence we have between the outcome of using 12 figure as opposed to 16
from a statistical mechanical system an example of exactlfigure accuracy all longer sequences require 16 figure accu-
the situation that the BST algorithm was designed to handleracy. With eight figure accuracy for the input the accuracy of
A further complication is the variable which is present in the estimate is basically random. In fact the accuracy ob-
all coefficients on the right-hand side of E40). As we will  tained with seven input values is virtually the same as that
see in the following the effectiveness of the BST algorithm isusing 13 input values. Table | shows that the most accurate
dependent on the value af Finally we mention that given estimate with this input is obtained witim=10. However,
the expansion in Eq10) we know we want to seb=2 in  from Table | one sees very clearly that with 16 figure accu-
the BST algorithm. racy for the input values one first of all gains significantly in

Obviously from Eq.(10) in the limit N—o then #;  overall accuracy of the output except when only seven input
=arccos(t2u). We begin our study of the BST algorithm values are used and that the increase in the number of input

4
+0

TABLE II. Absolute value of the difference between the exact value and the BST algorithm estimate for the argufpentcdéstimate
of the error based on E@9) whenu=(1/4)*, »=2, and system sizes used are,3,5. ,2an+1.

8 figure accuracy input 12 figure accuracy input 16 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of error
7 1.9x10°° 3.9x10°° 1.9x10°3 3.9x10°° 1.9x10°3 3.9x10°°
8 5.8<10 4 1.3x10°8 5.8x10°* 1.3x10°8 5.8x10°4 1.3x10°°
9 1.4x10°4 3.9x10°4 1.3x10°% 4.0<10°4 1.3x10°% 4.0<10°4
10 7.7x10°8 1.3x10°% 3.1x10°° 9.7x10°° 3.1X10°° 9.7x10°°
11 2.3x10°° 1.6x10°° 5.7x10°° 2.3x10°° 5.7x10°® 2.3x10°°
12 2.0<10°° 2.6x10°6 1.0x10°6 4.4x10°° 1.0x10°6 4.4x10°°
13 2.5<10°° 4.9x10°° 1.2x10°7 8.6x10° 7 1.5x10°7 8.3x10°”
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TABLE Ill. Absolute value of the difference between the exact value and the BST algorithm estimate for the argufpetdéstimate
of the error based on E@9) whenu=(1/4)*, »=2, and system sizes used are,3,9. ,6Gn—3.

8 figure accuracy input 12 figure accuracy input 16 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of error
7 1.1x10°° 1.2x10°% 1.0x10°5 1.1x10°* 1.0x10°5 1.2x10°4
8 1.2x10°° 8.8x10°° 7.8x10°7 9.5x10°° 7.8x10°7 9.5x10°°
9 1.1x10°© 2.2x10°° 3.8x10°8 7.2x1077 3.8x10°8 7.2x1077
10 3.3x1077 1.5x10°6 2.1x107° 3.6x10°8 1.8x107° 3.6x10°8
11 1.3x10°7 1.9x10°7 4.8x10°10 2.5x10°° 6.2x10° 11 1.8x10°°
12 471077 4.1x10°7 4.8x107 10 9.9x10° 10 2.0x10°1? 6.0x 10711
13 1.9x1077 6.4x10°7 1.4x10° 1 4.5x107 10 1.3x107 13 1.9x10° 12

values corresponds to a very systematic increase in the accls it better to obtairm input values from smaller systems or
racy of the final result of using the BST algorithm. To sum-to obtain a smaller number, say—p, input values but for
marize for eight figure input accuracy one gets an estimatgenerally larger systems? We can address this issue for our
for the argument of the zero closest to the real, positi@eis  system because we can easily obtain the argume# &r

of six figure accuracy regardless if one uses seven input vany system size.

ues or 13 input values bL_lt if one goes to 16 figure accuracy Specifically we will foru=(1/4)* consider a new series
input one sees a gradual increase in output accuracy from thg finite lattice systems given by 3,9. . ,Gn—3 wherem is

BST algorithm from six figures to 14 figures, a pickup Of \han the number of input values for a given sequence of

eight orders of magnitude. In addition if one considers Zzsystem sizes. We again will consider sequences of from 7 to

figure accuracy of the_lan('not showr_n n Table_)lthen the 13 values hence we will consider systems with as many as 75
BST algorithm for 13 input values will further increase the _. L ; K
sites. The results for this is given in Table IIl. We again see

accuracy to 16 figures a pickup of two more orders of mag- erv clearly the impact of the accur f the inout val
nitude. Further increases in the input accuracy has no effedtY y P ccuracy of Iné Input values

on the output accuracy as we are now limited by the numbefVen at th_e level of eight input values. _First fof eight figure
of input values, i.e., the size of the systems being used tgeeuracy input the accuracy of the estimates is almost ran-
approximate the infinite system. dom as the length of the sequence is increased. For 12 figure

The same basic characteristics are illustrated in Table [RcCuracy input there is a gain in overall accuracy as well as
for the case where=(1/4)*. Here, however, our results do at least up tan=12 sequence a systematic increase in the
not have anywhere near the same level of accuracy as thodécuracy of the estimate as the value of m increases. But
of Table | due to the simple fact that the coefficients in theeven 12 figure accuracy is not adequate for 13 input values
series expansion in EGLO) are larger for this value af and ~ Where one see that going from 12 figure input accuracy to 16
hence the infinite system result is harder to approximate, i.efigure input accuracy results in two orders of magnitude
larger systems must be included to obtain the same level ghore accurate estimates. Furthermore an additional order of
accuracy achieved in Table |. Because of the greater diffimagnitude increase in the accuracy of the estimate is
culty in the approximation for this value af the impact of achieved for than=13 case if one goes to 22 figure accu-
the accuracy of the input is not seen until ten or more inputacy of the input. Also for the most accurate input the esti-
values are used and there is never any substantial differenceate of the error given by Eq9) is sufficient to guarantee
between the results obtained by 16 figure accuracy inpute estimatet the error estimate includes the exact value.
when compared to 12 figure accuracy input. Going to even Obviously we also see an increase in the accuracy of the
larger accuracy for the input results in no gain as it is agairestimates given by the BST algorithm when comparing for
the size of the systems which are the limiting factor. any given value oim the estimate from Table Il to that of

As far as the estimation of the error from the results pre-Table Ill. But to answer the question raised in the earlier
sented in Tables | and Il we see with eight figure accuracyaragraph we want to compare estimates from Tables Il and
input that both foru=(1/2)* andu=(1/4)* that only about Il between differing sequence lengths. This can best be done
1/2 of the time asn runs from 7 to 13 is the estimate of the graphically and is done so in Fig. 1. Here we plot as a func-
error large enough. However, for 16 figure accuracy the estion of m, the number of input values, the logarithm of the
timate of the error is always large enough. Therefore giverabsolute value of the difference between the BST estimate
sufficiently accurate input the estimate the error is such for the argument of; for the infinite system and the exact
that it produces an interval in which the exact value falls andvalue. This is done both for the results from Table Il and
the interval is generally not so large as to imply much lessTable Ill. From Fig. 1 one sees that the result from Table I
accuracy than is actually achieved. involving 13 input values is more accurate than either the

We now look at the issue of the size of the systems beingesults from the 3,9 ..,39 and3,9, ... ,45site series de-
considered versus the number of systems being considespite the fact that the largest system involved with the 13
Specifically the issue we wish to address can be phrased asput value sequence of Table Il consists of only 27 sites.
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accuracy expression allowing one to calculate the partition function
of estimate for a generamxn site system with periodic boundary con-

1 ditions. Furthermore, Bealg24] using Kaufmann’s expres-
sion has placed on the InternetM\THEMATICA program
which computes the partition function for such a system.
Alves et al. [15] were aware of this but state that precise
computation of the zeros for large systems, e.g., of size 64

-10

-20 * X 64 sites, is nevertheless unfeasible. They point out various

S | e ‘ nume_rical prob_lems in determ_inin_g the zeros of the parFition
3 T function especially when considering relatively large lattices.

_3ol] * 6m3 serieg e n They also point out that prior to their paper a number of

studies have been presented, two being Héf] and[17],

FIG. 1. Log (accuracy of estimajevs m plot for estimates of 100King at the critical properties of the two-dimensional sys-
leading Lee-Yang zero of one-dimensional Ising model. tem using the behavior of the leading zeros but all of them
were limited to lattices no larger than %33 sites. In order
to consider larger systems they develop a method to approxi-

Even the sequences involving 11 and 12 input values froninate the leading zero using methods from lattice gauge
Table 1, which respectively have a largest system size of 23heory and were able to consider systems as large as 64
and 25 sites, produce better estimates than the seven se-64 sites. Their method is iterative in nature and could ap-
guence input from Table Il which involves three larger sys-proximate the zeros to arbitrary accuracy in theory while in
tems, i.e., systems of 27, 33, and 39 sites. While in the casactual implementation the time required will certainly limit
of the one-dimensional Ising model one can directly calcuthe computation. Specifically they obtained the real and
late 6, for any size system in general applications going to amaginary parts of the leading zeros to only ten figure accu-
system with even one more lattice site may double thgacy. By “leading” zero we mean again as in the one-
amount of work necessary to get an input value, e.g., in thglimensional case the zero whose argument is closest to zero
direct calculation of a partition function by summing over i, value.
the states adding a single Ising spin doubles the number of For our input data into the BST algorithm we have used
configurations one must sum over. Beale's MATHEMATICA program to generate the partition
The above shows the important point that it can be bettefynction and then with our owmATHEMATICA programs
to consider more smaller system sizes than a few larger sygomputed the Fisher zeros for systems up to and including a
tem sizes. In the following section we look at the two- 30x 30 site system. We have used the arbitrary precision
dimensional square lattice Ising system to see if this resulfjiowed by MATHEMATICA and for the computation of the
holds at larger dimensions. zeros the 38 30 site system have used 400 figure accuracy.
For completeness and to allow others to perhaps try other
extrapolation algorithms on our data we present in Table IV
the leading zeros to 34 figure accuracy for systems of size
For the two-dimensional Ising model on the square lattice4 X4, 5X5, 6X6, ..., 30<30. It should be pointed out
analytic results like those found for the one-dimensional systhat all our calculations were performed on a personal com-
tem are unavailable but we do have Onsager’s exact resuputer running at 1.7 GHz and for the largest system where
locating the critical temperature and hence where the locugre obtained all zeros, the 288 system, it took approxi-
of zeros cross the positive real axis in any appropriate plangately 12 h runninguATHEMATICA programs for this sys-
involving a complex temperature. Hence we will look only at tems at 260 figure accuracy. Actually we can go well beyond
the Fisher zeros in this case and consider only the case whetige 28< 28 system size if we are only interested in the lead-
h=0. Several authors, notably Alvest al. [15], Creswick ing, Fisher zero and for systems of sizexX229 sites and
[16], and Bhanof17], have used the BST algorithm on the 30X 30 sites this is what was done. The time required to get
Fisher zeros of the two-dimensional, square lattice, Isinghe leading zero for the 3030 system requires less than 5
model to approximate the critical temperature, the criticalmin including generation of the partition function and the
exponentr, and corrections to scaling. Specifically we will memory requirements are negligible. Therefore if needed the
consider the partition function zeros in the compleglane.  computations could certainly be extended to significantly
We want to look at some of the same aspects of the BSTarger systems, however, much of our interest here centers on
algorithm used on this system as was done in the previoushowing the interplay between the system size and the num-
section for the one-dimensional case. In particular we wanber of systems used. Once again we will see by using the
to contrast the outcome using fewer but larger system size®sults of Alveset al. [15] who considered systems as large
with more but smaller systems. as 64< 64 BST estimates based on using smaller systems but
Again the accuracy to which we know the imaginary andmore of them are often more accurate than can be obtained
real parts of the leading zero will be crucial. The partition using data from the larger systems of reference.
function can be written as a polynomialin Luckily for this The estimation ofi;, the critical exponent, and correc-
model Kaufmann23] has produced an exact closed form tions to scaling are all based on the finite size scaling results

IV. TWO-DIMENSIONAL ISING MODEL CASE
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TABLE IV. Real and imaginary part ofi, system sizeg X L of the two-dimensional Ising model.

LXL

Re(Uo)

Im(up)

6X6
X7
8%x8
9Xx9
10x 10
11x11
12x 12
13%x13
14X 14
15X 15
16X 16
17x17
18x18
19X 19
20x 20
21x21
22X 22
23%x23
24X 24
25X 25
26X 26
27X 27
28x28
29x 29
30x30

0.1756913615573711016305548862308596
0.1773627857761477873797569589312878
0.1780809274807217478864106823995287
0.1783370199817459372711424676089029
0.1783571853666583091393157025599633
0.1782541389593520937301517561711766
0.1780873238696294859636981113120588
0.1778893450966634697569911629316706
0.1776785449249190548627500277542951
0.1774653671315838089029894554262255
0.1772557409000967785605727807340487
0.1770529534865744491328326611581594
0.1768587208845992776495534868567471
0.1766738164020039662539711416167222
0.1764984476280063003871226068726472
0.1763324862757432509525843900123733
0.1761756100083881916538388782914137
9.1760273905904262137679574340675251
0.1758873487833546137042136938013663
0.1757549883731927444782228722113847
0.1756298169762764720801923282311223
0.1755113584142179019137046659793238
0.1753991596978105929798960022063834
0.1752927945687249795513768257894871
0.1751918648586569730235955176049097

0.1052834872456599478737807812045678
0.08900625809878365207707381088270372
0.07710375571859840823196605520729804
0.06801661701229172187622691018925158
0.06084948477969045257452302555866051
0.05505096371006008106733171803959075
0.05026266795690422238961891903733239
0.04624145356375805315485090249218081
0.04281649121622217969216131425049106
0.03986421637638012018294978025341565
0.03729302674155069833522141561729018
0.03503356799760033272244700559562696
0.03303236187478630182322752204173483
0.03124750680583837636622727552824986
0.02964570467921901895809107900555564
0.02820015958955516896307201692162145
0.02688906399403547465887719236387629
0.02569448914945364282960995168567808
0.02460155919288038906316834895358412
0.02359782770153706245275070090846425
0.02267280107627923764921341551298777
0.02181756992097064653375986537726636
0.02102452090076385688342966841851667
0.02028710929560394031194939636661839
0.01959967783597390122756411622592126

of ltzykson, Pearson, and Zubgt5]. They show foruy, the

leading zero, that

ug(L)=u,+AL Y[1+0(L™ )], (12)

where w>0 and is the correction to scaling exponent. Ac-

similar results. In the following the specific values were

found using the absolute value.

Using as input into the BST algorithm the real part of the
ten figure accuracy zeros of Alves al. [15] (actually nine
digit accuracy with rounded errors in the tenth digiising

cording to CreswicK17] one can write separate expressions@S Mmany as 13 input values based on systems of size 12

for the real and imaginary parts af(L) of the form

and

Alternately only can use the absolute valuewfL). We

X12, 1515, 16X 16, 18x18, 20x 20, 24X 24, 30x 30, 32

X 32, 36x36, 40x40, 48<48, 60x60, and 64 64 sites
Reug(L)]=uc+BL Y [1+0(L™ )] (12)  (the 13 largest systems looked at in Rf5]), and with e
=1, we have for|u.—u}| values of 1.&10 7, 4.2
x107°% 4.6x10°° 4.1x107°% and 8.8<10°° for a se-
Im[ug(L)]=CL " Y[1+0O(L"“)]. (13)  quence of the 9, 10, 11, 12, and 13 systems, respectively.
Here u} denotes the BST estimate. Because of the small

accuracy in obtaining the values of the leading zero by Alves

have used the real, imaginary, and absolute values of thet al.the use of the BST algorithm results in estimates which
ug(L) as input into the BST algorithm and they all give do not increase in accuracy as the length of the input se-

TABLE V. Absolute value of the difference between the exact value and the BST algorithm estinateloén o= 1, and system sizes

used are 12,15..,3n+9.

10 figure accuracy input 16 figure accuracy input 34 figure accuracy input

m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of error
4 6.8<10°° 6.8x10°° 6.8x 1076 6.8X107° 6.8x10°° 6.8x10°°
5 2.4x10°7 3.7x10°° 2.5x10°7 3.7x10°° 2.5x10°7 3.7x10°©
6 4.6x10°° 1.4x10°7 6.9x10°° 1.5x10°7 6.9x10°° 1.5x10°7
7 3.3x1077 8.8x10°8 2.4x10°° 5.7x10°° 2.4x107° 5.7x10°°
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TABLE VI. Absolute value of the difference between the exact value and the BST algorithm estinateloénw =1, and system sizes
used are 12,14 .. ,2n+10.

10 figure accuracy input 16 figure accuracy input 34 figure accuracy input

m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of error
5 5.0<10°7 4.4x10°° 4.4x10°7 4.3x10°° 4.4x10°7 4.3x10°°

6 2.4x10°7 3.6x10°7 2.2x10°8 2.2x1077 2.2x10°8 2.2x1077

7 1.8x10°7 4.5x10°7 7.6x10°° 1.6x10°8 7.6x10°° 1.6x10°8

8 1.4x10°8 2.9x10°8 6.4x10 10 4.9x10°° 6.4x10 10 4.9x10°°

9 4.3x10°8 1.8x10°8 4.7x107 1 3.0x10° %0 4.4x10° 1 3.0x10 °

10 121078 1.2x10°7 3.3x10 8.2x10 12 5.1x10 4.6x10° 12

guence increases just as we saw with the one-dimensionkdngth sequence although obviously it is again in general two

Lee-Yang zeros. orders of magnitude better than the sequence using the larger
We now present our own attempts to estimateising the  systems of Alvest al. [15].
leading Fisher zeros, Eq12), and the BST algorithm with Again the errors as given by E() are generally conser-

o=1. We use three different sequences of system sizes andtive estimates but not quite with the regularity as seen for
vary the accuracy of the input as was done in the onethe one-dimensional case. While with sufficient accuracy of
dimensional case. The sequences of system sizes ame (3he input we generally have a systematic approach to the
+9)X(3m+9), (2m+10)X(2m+10), and m+11) correct value given by the BST algorithm we do note that the
X (m+11). Again, as in the previous sectian,will denote  very systematic approach to the correct value found for the
the number of input values. Obviously with=1 all our  one-dimensional case and clearly illustrated in Fig. 1 is not
sequences will begin with the ¥212 site systenithe same present, e.g., for our mid-length sequence the value obtained
size system as started the 13 input sequence using the resulging a ten system sequence is slightly less accurate than that
of Alves et al. [15]) and then increase by one, two, or threegiven by a nine system sequence. We suspect that this is due
columns and rows, respectively. Our results for these seto the added complication that the Fisher zeros for the two-
guences are presented in Tables V, VI, and VII. dimensional system with periodic boundary conditions that
Results for the short sequence of up to seven input valuege are using so as to be able to use the results of Kaufmann
are given in Table V and show that this sequence results iand Beale do not fall on the locus of the zeros for the infinite
an accuracy comparable to that found using the above larg&ystem. This is not true for the zeros in the one-dimensional
systems and that as to be expected while the ten figure inpgase where both the Lee-Yang and the Fisher zeros are for
accuracy results are somewhat erratic the 16 figure input reany finite system on the same line they would be for the
sults in steadily increasing accuracy as the sequence Isfinite system.
lengthened and that going beyond 16 figure input accuracy
results in no gain. The mid-length sequence with sufficient
accuracy for the input gives better results than the ten figure
accuracy with system sizes to 844 sites with the results The above two examples show that not very surprisingly
based on a nine and ten system sequence but with 16 t¢ine accuracy of the input plays a major role in the accuracy
better 34 figure input are approximately two orders of mag-of the BST algorithm and that while not very surprising it
nitude better. Finally for the longer sequence using as mangnay not be as fully appreciated as it needs to be. More im-
as 17 systems results in no appreciable gain over the migortantly the above two examples show that what one can

V. CONCLUSIONS

TABLE VII. Absolute value of the difference between the exact value and the BST algorithm estimatevben w=1, and system
sizes used are 12,13.. m+11.

10 figure accuracy input 16 figure accuracy input 34 figure accuracy input

m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of error
7 6.5x 1077 4.7x10°7 5.5x10°° 2.8x10°° 4.9x107° 2.6x10°°
8 5.8x1077 1.9x10°7 5.2x10°1° 4.9x107° 3.7x10°1° 4.1x107°

9 5.6x 1077 9.2x10°7 5.8x10° 10 2.3x10° 1 3.7x10°1° 9.8x10° 13
10 9.2x10°8 8.4x 1077 5.2x 10710 8.5x 10710 3.7x10710 2.0x 10710
11 5.2x10°8 7.7x10°8 8.5x 1011 3.0x10710 2.0x10° 1 5.1x10°°
12 3.5x1077 1.1x10°7 1.9x10°10 8.7x107 11 2.4x10° 1 2.3x107 1
13 7.0<10°8 7.7x10°7 9.2x10 1 3.5x10° 1 6.2x10° 12 15x10° 1t
14 3.5<10°7 1.0x10°7 2.2x10°1° 1.3x10°1° 2.5x10° 11 3.9x10°1?
15 5.8<10°8 3.5x107” 5.8x10° 1t 3.9x10°1? 2.8x10° 1 2.0x10°°
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obtain with a slightly larger number of small systems may be ACKNOWLEDGMENT

greater than what one can get out of a smaller number of

larger systems. This is of course of importance due to the We wish to thank Professor Beale for placing on the In-
fact that in all the cases mentioned in the introduction sigternet, so that anyone might use it, M&THEMATICA pro-
nificantly greater effort may be needed to increase the size gfram which allows one to calculate the partition function for

the system even just slightly.

finite, two-dimensional, Ising systems on the square lattice.
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