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Hierarchical reference theory study of the lattice restricted primitive model

A. Brognara® A. Parola? and L. Reattb
IDipartimento di Fisica, Universitali Milano and Instituto Nazionale per la Fisica della Materia, Via Celoria 16, 20133 Milano, Italy
2Dipartimento di Scienze, Universiell'Insubria and Istituto Nazionale per la Fisica della Materia, Via Valleggio 11, Como, Italy
(Received 23 October 2001; published 20 June 2002

A three dimensional model of point charges, named lattice restricted primitive rfid@EIM), is investi-
gated by using the hierachical reference theory of fluids. This approach, which generalizes the momentum
renormalization group technique, is shown to capture the physics of the model and provides a quantitative
description of the phase diagram. The comparison with recent numerical simulations and with other theoretical
approaches is discussed both for the LRPM and for the Blume-Capel model, which can be seen as a screened
version of LRPM. The nonuniversal crossover region close to the tricritical point is also discussed.
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I. INTRODUCTION The thermodynamic properties of the LRPM have also
been investigated by a number of approximate theories. In
Criticality in ionic fluids has been a subject of great de-particular, we mention the MSA study of/Me and Stel[8]
bate and study in the last centuf§,2]. In fact, the long and the field theoretical methods developed by Ciach and
range nature of the interatomic potential makes this problenstell [9,10], which addressed the interesting problem of the
very difficult to deal with and there is not even general con-nature of the differences between the phase diagram of the
sensus on many key issues, such as the universality class RbMm and LRPM. However, the critical properties extracted
the liquid-vapor critical behavior in ionic fluids. This anoma- from all these theories do not go beyond mean-field level or
lous aspect of the Coulomb criticality is further supported byean spherical approximatiof®,11] and are not in very
recent experimental resul{8] that have shown that both good agreement with simulation resufts2,13. Recently
Ising-like and mean-field-like criticality can be observed for 4.« . 1qel has also been studied by using the self-consistent

these systems. Although Ising criticality is generally believe . - .
to represent the asymptotic behavior, the experimental evi 1r4r}ste|n zernike approximatiolSCOZA) by Grollauet al.

dence requires an explanation of the anomalously larg In order to provide a theory capable of improving the

crossover detected in electrolytes. o :
fgreement with simulation results, we present an approach to

The simplest theoretical model able to capture the mai X .
features of ionic fluids is the restricted primitive model _LRPM based on the hierarchical reference theddRT)

(RPM). This model is a symmetric mixtures of positive and IMPlementation of the renormalization groyRG). Origi-
negative charged hard spheres of equal diameters immersBg!ly developed to describe properties of simple fluids, this
in a neutral fluid of dielectric constard. From the first theory has been later extended to treat lattice mofles$
pioneering work of Debye and kel [4] several approxi- and fluid mixtureqd16].
mations and theories have been introduced to treat the RPM. The main advantage of HRT approach is that, starting
However, the first evidence of criticality in the RPM was only from the microscopic interaction between constituents,
shown by Stell and co-workers only in 1976] where, by it allows one to derive an infinite set of coupled differential
using a mean spherical approximativiSA), they found a  equations, which is formally exact. These equations describe
coexistence curve that ends at a critical point. They alsdhe evolution of the thermodynamic quantities when fluctua-
showed that the details of the coexistence curve strongly deions are gradually included and give rise to the correct RG
pend on the approximation employed so, in order to bettestructure, which clearly identifies the universality class and
describe these properties, various other approaches hattee critical properties of the model. However, in order to
been developed to treat ionic systems. Using a mean-fielduantitatively analyze this set of equations, an approximate
approximation, Fisher and co-workers concluded that in orrelation(closure relationthat allows one to reduce the infi-
der to obtain realistic values fgr, and T, it was necessary nite set to a finite number of equations must be introduced.
to include Bjerrum association and dipole-charge interaction This paper is organized as follow. In Sec. Il we derive a
[6,7]. formulation of HRT, which is particularly suitable to treat
Recently, in an attempt to better understand the criticasymmetric mixtures. The closure relation employed for the
properties of the RPM, attention has been attracted by thmtegration of the first equation of the hierarchy is also dis-
lattice version of this mode(LRPM) [1,2]. However, the cussed. In Sec. Ill we describe the application to two lattices
phase diagram of the lattice model contains features that amaodels. The first one is the Blume-Capel model, which in-
absent in the continuous case. In fact, above the coexistenselves only nearest neighbor interactions and is useful as a
region, where a disordered and a charge modulated phase celmeck of the approximations employed. Then we discuss the
coexist at two different densities, the phase diagram displayapplication to the LRPM, which is the main subject of this
a Neel line of critical points which is absent in the RPM.  work. In Sec. IV numerical results of the integration of HRT
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equations for the two models are presented and finally Sec. ¥nough to consider the one-loop contributions shown in Eq.

contains conclusions and perspectives. (2). In this way it is possible to derive an exact infinite hier-
archy of equations, which describes the evolution of the ther-
Il. HRT EQUATIONS FOR SYMMETRIC MIXTURES modynamic properties of the system when fluctuations are

) ] ) o gradually included. The resulting differential equation for the
In this section we review the application of the HRT for- free energy is then given by

malism to binary mixtures on a lattidd.6,17. We start by

considering a system whose constituents interact through a d 1 doy
two-body central potential; ;(r). Here the subscripts stand - d_pApzif WTf{m[lJrfp(k) d(kK)]} 4
to label the species. The first step in the derivation of HRT p
equations is to separate the interacting potential into two
arts: 1 doy
parts: =3, (ZmandelLt FP0$(K)]. (5)
s
vi (N =v{(r)+w;(r), (1) P

R - _ HereX., is the contour surface of the regidfy . It should be
where vj; is the reference term whose properties are aspqeq that this evolution equation is exact because the higher
sumed known and; ;(r) represents the “perturbation term” orqer |oop diagrams do not contribute. In E§), in order to
that includes the long range part of the interaction. deal with continuous quantities, a modified free energy den-

_ In full analogy with the one-component case, the separagjy, 4 and correlation function/(k), including the mean
tion (1) allows one to derive a perturbative expansion, for thesia|q terms have been defined

free energy. Here we report only the first term of this expan-

sion, which includes the resummation of the infinite one loop BAP 1
diagrams of the perturbative series: Ap:_T_E ‘f ddk[qsi,i(k)—qﬁip,i(k)]
BA  BAR 1 3 1 B 1
TV TV 2t =0T 5 dii(k=0) +5pipil 6150~ 9F;(0)], ®)
1 d%
_EJ WTr[ln{l—FR(k)¢(k)}]+~--- 2 —(F HP k) =CPi(k)=cPi(Kk) + ¢; j(K)— P;(K). (7)

The other terms are related to higher loop contributions. If/nfortunately, Eq.(5) is not closed because the two point
Eq. (2) we have defined; (k)= — Bw; j(k), Fr; (k) is the correlation functionFP(k) is not simply related to the free
correlation function of the reference system, matrix notatiorBnergy and its evolution can be expressed in terms of the
has been employed and summation over repeated indices tree- and four-point correlation functions. The formal struc-
understood. The integrations are extended to the full Brilture of the hierarchy has been discussed in Reff} and will
louin zone. not be repeated here. In the case of symmetric mixtures with
Clearly, a perturbative expansion such as B).breaks ®11= — ¢12= ¢, the whole hierarchy simplifies. In fact,
down near phase boundaries and cannot be used as a starting 0
point for a realistic description of the phase diagram of the d€L1+7~(K) ¢(K)]=1+[Fy1(k) + F2AK)

model. Rather, in order to include, in the free energy, the —2F, K K =1+ F. (K) (K
contribution due to the perturbation term a momentum space 14Kk coK) B (k).
renormalization group approach is implemented. This can be 8

accomplished by first defining a sequence of systems char- ) ,
acterized by a lower cutoff, labeled hy on fluctuations. Whereéc=p;—p, and we have introduced the concentration
From now on we simply refer to each of these systems as thePrrelation function.(k). Using this expression the evolu-
p systemthis means to restrict the domain of integration in ion equation for the free energy can be written in the sim-
Eq. (2) to a region3, . Varying p this region must span the plified form

full momentum space. The actual shape of the doniin q 1
will be specified later taking into account the specific fea- —AP=Z
tures of the symmetry breaking mechanism that occur at the dp 2
transition. The introduction of cutoff on fluctuations can be

conveniently performed by introducing a potential with aln this equation the density correlation function does not

f—dd“’k N1+ 2001 (9
. (2m) Ce '

sharp cutoff at long wavelength defined as appear. This is not a peculiarity of the free energy equation
of the hierarchy but it can be shown that in the full hierarchy
D wij(k), keB, only concentration correlations are involved. In other words,

wij (k) 0, keB,. ) for symmetric mixtures withp, ;= — ¢, , the density corre-

lation functions are fully decoupled from the hierarchy. As a
The generality of the perturbative expansi@ allows one  consequence, any phase transition occurring in such a model
to obtain the properties of the system with a cutpff 5p must be accompanied by some singularity in the concentra-
considering the systemas reference. For this purpose it is tion fluctuations; otherwise, Eq9) would lead to a fully
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regular thermodynamics. It is important to remark here thatvhere the integration runs over the surfacgthat, varying
this is not an approximation, because the infinite set of equathe labelp, spans the full first Brillouin zone of the lattice.
tions is exact. The direct correlation function is defined as

Closure relation ) 1
CcP(k)=— (16)
cc }—EC( k)

As already stated, the evolution equati@ is not closed
becauseF? (k) is related to higher order correlation func-
tions and so a quantitative study of this equation cannot bg.q the exact sum rule reads
performed. In order to obtain results for nonuniversal quan-

tities, a closure relation able to account approximatively for 2P
the integration of the remaining set of equations must be CPk=m)=——5=¢", (17)
introduced. In the following, we describe how a closure re- Je

lation can be implemented. In the discussion we will adopt a
magnetic language and so charges and vacancies are idemtihere P is simply related to the staggered susceptibility of
fied with a three-state spin defined at every lattice sitethe p system. We now discuss the application of Ep) to
coupled by the antiferromagnetic interactimr). the study of two simple cubic lattice models. In both these
First of all it is known that at the mean-field lejdl1,12, cases the interacting potential depends only on the function
the relevant fluctuations of the system are those ardund
=q. This is further supported by simulation resyli,13
that suggest the presence in the phase diagram oehliNe Y=
characterized by the divergencesBf. at the wave vector
k= 4. In order to relate these fluctuations to the thermody-
namics, it is necessary to introduce the appropriate sum rulghe surface& , of the integration domain are defined as
in full analogy with the treatment of ferromagnetic transition
[15]. This can be achieved by introducing an external stag- So={k;[wl<[pl} with —1<p<O0. (19
gered magnetic field that tends to create an antiferromagnetic
order. It is also convenient to perform a Legendre transfor- - gtarting from p=0, this surface spans the whole first
mation, which allows to eliminate the density dependence insyjjlouin zone moving simultaneously to the centér=0)
favor of the chemical potential, and to the cornerk= ) of this region where critical fluc-
_ tuations may develop. This choice has the advantage of lead-
OP(u,h)=AP(p, )+ up, (10 ing to a stable integration algorithm. This, with the com-

whereh and . are the staggered field and the chemical IOO_pressibility rule(17), suggests the following parametrization

tential measured in units && T, while p=p,+ p, is the total for the concentration correlation function:
density. In this way the compressibility sum rule takes the

3
Zl cosk;. (18)

W =

simple form CL(K)=&0— (k) + apyk- (20
9*QP = 7P (k=m) (11) Here &, (independent ok) is the staggered susceptibility of
oh? cc ' the reference system which is just a two-component lattice

=const . . : .
peons gas in a staggered magnetic field arglis a function that

It is now convenient to express the thermodynamics inmust be determined according to the compressibility sum
terms of the staggered magnetizatips =;(—1)'S, instead rule atk=ar,
of the magnetic field. This leads to the further definitions

=§&—EP— p(k=m). 21
GP(1.¢)=QP(u,h)—he, (12 =l Y
with A similar parametrization of the two-body correlations has
also been proposed by Grolla al. [14] for the integration
Ele of SCOZA equations.
p= (13 The grand canonical partition function of the reference
K system in the presence of a staggered magnetic field can be
90 calculated analytically; and in the symmetric case its expres-
o= —" (14) sion is given by
oh
With this substitution, Eq(9) takes the form Q4=In(1+2zcoshh) with z=e*. (22)
d 1 dw, B(K) ] Using the relation$11), (12), and(16) we obtain the follow-
—GP=— —f —3In| 1- ———|, (15 ing expression for the staggered susceptibility of the refer-
dp 2)s,(2m) Ceo(k) ence:
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(1+2zcoshgh)? CR() = (1+ 70 €0 NP (29
fo=" 2z(coshh+2z) 23
Inserting this relatiori29) into expressior{15) we obtain the
with following evolution equation:
Jo?+42(1-o?) IGP 1 -
hzlngo—l— e°+4z°(1—¢ ) (24 = _Zp,i| 1+ bo(Y=P)
22(1- ¢) ap 2 Cl(%=p)
Before discussing the numerical solution of the partial de- ¢ p(v=—p)
rivative equation we point out that the closure relati@n) +in| 1+ —— ———— (30)
does not automatically fulfill the core condition leading to Cec (¥e=—P)
the possibility of multiple occupancy of a lattice site. In our > 2 2
approximation this condition is verified only for the refer- __ }D In §o—Pap (31)
ence system at the beginnings of the integration. Usually 2P E&-pP(N—ap)?)

[16], neglecting the core condition does not severely affect _ _ .
the numerical determination of the critical points and thewhere we have introduced the density of states defined as
shape of the coexistence curve, and, of course, does not 4%k
modify the critical behavior predicted by HRT. D = S(D— 32
; . . SRS p 36(P— Y- (32
Finally the dielectric function is simply related to the two- B(27)

body correlations by the relation
The numerical solution of Eq(31) can be more easily

d(k) 25 achieved once it has been transformed into a quasilinear
Sotapyk (29 form
2
In the case of Coulomb potentigi(k) behaves like&k 2 for ~ 97Vp _ p - (14
k—0, while the evolution equatiofl5) forcesé&y+ apy, to 92 A(P.vp.¢) at B(p.vp,e)  with t=In(1+p).

(k) =[1-Fe(K) p(k)] *=1-

be always negative. This implies that with our closure (33
This transformation can be made by defining a new variable
ek~ oz 26) v, as
2_ .2 2
which coincides with the perfect screening condition. eP?vp— y = e (39)
22y 2
Eo—P(N— a’p)2

I1l. NUMERICAL SOLUTION OF HRT EQUATIONS _ o _ )
and taking two derivatives ip on both sides of Eq(31).

In this section we discuss the application of the theoryHere we only report the results for the coefficients
developed in Sec. Il to two lattice models by detailing theA(p,v,,¢),B(p,v,,¢) of the quasilinear form
numerical solution of the first equation of the Hierarch)
with the closure relatiori1l7), (20), and(21). 2% day

A(p,Up,fp):—m%, (35
A. Application to the Blume-Capel model
As a first application of the formalism just developed, we B(P.vp.¢)= LZ da vp%)_ (36)
study the Blume-Capel model which is a generalization of Dpp“\ dp d
the Ising model where spins can assume three distinct values i . )
1 for one specie- 1 for the other specie, and 0 for holes. Its "Where the partial derivatives af, are given by
Hamiltonian is given b
JvEn DY datp (1-%08 -
H=—33 $-h3 (-1's (27) PVt pA(1-x)%E
N i
and is a special case of the Blume-Emery-Griffiths Hamil- 9% A N P2(1+x)\?
tonian that contains an extra termKs ,S'S’ and has x  (1-%)? 2ozt p? 2.2 2
. g 1— 1—
been applied to the study of thiHe-*He mixtures. Vi pP(1-x) &o(1=x) (39)

In Fourier space, the interacting potential is
The boundary condition at=0 reflects the symmetry of

d(K)=Ny, with \= E (28) the system under the substitution @~ — ¢. This implies
KT that
and the closure relatiof20) together with Eq(17) becomes vp(—@)=vp(e) (39
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at every stage of the integration. The boundary condition at ) 2\p2&P
¢=1 instead can be derived from the expression of the cor- 1-p*-e Pr=y= (= alp?) " (48)
relation function for the reference system, which implies 0o~ @pP

lim &= —oo. (40

the evolution equation can be cast in the quasilinear form
(33). The steps of the derivation are the same as before, the
This condition is maintained at every step of the integra-only difference here being that the double derivation with
tion and in terms ob, can be written as respect toe allows one to eliminate the term In¢ip?),
which becomes singular at the end of the integration. Here

(,D*?l

vp(¢=1)=0. 4D e only quote the coefficients of the quasilinear form
The integration of Eq(33) with the boundary conditions
(39) and(41) has been performed using an implicit Predictor 26~ Pp ey
Corrector algorithn{18,19. A(p,vp,p)=— D, (1+p) p "’ (49)
B. Application to the lattice restricted primitive model
The discussion of the LRPM proceeds along the same _ dap | dap 2
lines of the Blume-Capel model. As interacting potential in B(pvp.¢)= Dpp2 ap 2p ay (1=e " "vp)
Fourier space, we use the expression (50)
k)= ! ith A= 2m ¢’ 42 where the partial derivatives af, are given by
p(K)= = M =3 DkeT (42) P
which is the solution of the lattice Laplace equation. In real J &
. ap oY
space Eq(42) correctly reproduces the Coulomb potential —= ., (51
only at large distances. In order to partially eliminate the P pyYNZpi+ py(yEE— 2\ p2Eo—N2p?)
self-interaction introduced by a nonvanishing contribution on
site, we shift the potential by a constantkrspacd 9]. This
is equivalent to a redefinition of the chemical potential. We 9p A o\ 2N—Ny—2y&o
choose the constant as so that the interacting potential .., 2 :
becomes 9P Ny 2y2\N2p*+ p2y(yEs— 2\ p2go—\2p?)
(52)
k) =h—— —n =2 43)
ST l-ye U Ty The boundary conditions for the integration variable are
) o ) given by
leading to the explicit expressions fat, andCP (k)
ap=—EP+ &g+ N/2, (44) vpl@)=vp(— @), (53
p _ p )\ 1+ ')/k T T
Coc(k)= (14 vi) o= v« T, (45)
07 +
Using the same integration surface of the Blume-Capel
model, the evolution equation can be written as
IGP 1 =
- 1M)
P Ceclv=p) -
+Inl 1+ w> ] (46)
Cec (7k=—Pp) 03 L
v d
1 §2_a,22 & N " e e,
=— 2Dl In 0~ @pP , M "o
2_ 2.2 ‘
(66— app?) =2\ 1_pz§" ol ‘ , ‘ ,
0.0 0.2 04 0.6 0.8 1.0
P
+In(1—-p?) |. 4
n(1=p% “7) FIG. 1. Phase diagram in the—p plane for the Blume-Capel
model. Temperatures are in units of 6kgll Circles, HRT results;
crosses, results of SCOZA of Grollati al.[23]. The triangle shows
By the substitution the tricritical point of Ref[20].
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FIG. 2. Schematic representa-
tion of criticality below and above
T,. The wider lines delimit re-
gions on staggered magnetization
axis whereCP="Y(k=m)=0. As
shown, for T<T, (figure on the
left, w=uw,) transitions begin in
regions away fromp=0. Increas-
ing the chemical potential W,
> u4) this region enlarges and can
include the origin fuz>pu,). At
: : : temperatures higher tham, in-
s : CMs stead(figure on the right transi-

' ' ‘ tions always includep=0.
¢ 0

:Mz :Mz

In(1—p?) Detecting a cusp i_lﬁBF’:‘1 leads, however, toa rather inac_- _
vplp=1)=— — - (54 curate determination of the phase boundaries. Instead it is
much more convenient to look at the behavior along the

staggered magnetization axis. In fact fox T, the staggered

IV. RESULTS susceptibilityCP. ~*(k= ) may vanish in a region of the

The numerical integration of the first equation of HRT staggered magnetization axis, which does not include the

described in the sections herebefore allows one to determinéue ¢ =0 [see F'pg:'_ef‘)]' Conversely, above the tricritical
several physically interesting quantities for the two latticePOINt [F!g. 2Ab)], € (k=) vanishes in a region which
models introduced above. Simulatigi,13,20,2] and the- always includes the valug=0. ,

oretical result§9,14] indicate that the phase diagram of both _ 1herefore, the order parametee., the spontaneous stag-
these models is characterized by a liquid-gas coexistend&red magnetizationvaries continuously starting from zero
curve ending at a tricritical point, where a Néiee of criti- along .the Nel I|n.e, while along the "q‘4'°."9as coexistence
cal points starts. However, before showing the numerical reSUrve it abruptly jumps from zero to a finite value when the
sults, we briefly discuss how phase transitions may be def0€Xistence curve is encounterédg. 2).

tected. First of all we start considering théélléine. On the

left side of this line(see Fig. 1 the system is in a uniform A. Blume Capel model

paramagnetic phase. However, by increasing the chemical Figure 1 shows the phase diagram, in @ plane, of
potential . (or, equivalently, increasing the density of the the Blume-Capel model obtained by integration of HRT
system antiferromagnetic order may appear; these two reequationstemperatures are measured in unit ofig)/ For
gions of the phase diagram are separated by thel Ntee  comparison, results from SCOZA of Grollat al. [14,23
where the system undergoes a second order phase transitigfie also shown. The line of critical point§éel line) ends at

As stated in Sec. Il A, this transition is characterized by they tricritical point localized at T,=0.230=0.002, p,
divergence of the staggered susceptibility, i.e., by the vanish- g 350+ 0.005. In Table | we make a comparison with pub-
ing of the functionCc.(k= ) at ¢=0, and so it is possible |ished results obtained with other methods. The two simula-
to detect the points of the Meline simply by looking at the  tjon results reported have been obtained by two different
Vanishing of this function at the end of the integration. Fromtechniques: in Ref[zo] simulations were performed in the
the general theory of the tricritical poinf&2] it is known  mijcrocanonical ensemble while {21] a geometric cluster
that along the Nddine the critical behavior is described by Monte Carlo algorithm was employed. As it can be seen, our
the Ising critical exponents. At the tricritical point, instead prediction forT, is about 2.5% less then Deserno’s simula-
critical exponents have classical values in three dimensiongion [20] while it agrees well with that of Heringa and Béo

It can be verified that HRT equationid6] correctly repro-  [21]. Conversely, SCOZA results are closer to the results of
duce this scenario.

Detecting points of the liquid-gas coexistence curve in- TABLE I. Comparison of tricritical point coordinates for the
stead is a much more difficult task. In fact below the tricriti- Blume-Capel model. Temperatures are in units of &gJ/
cal point the liquid-vapor coexistence curve is defined by a
discontinuity in the derivative of the thermodynamic poten- T, Pe
tial G with respect to the chemical potential, whose right and
left limits are related to the two coexisting densities, HRT 0.230-0.002 0.356:0.005

SCOZA[14,23 0.2360-0.0006  0.34%0.006
G G Simulation of Ref[20] 0.2364+0.0001 0.39
Po=ol <gnl TP (55 simulation of Ref[21] 0.2315+0.0001
Ml - O
Cc C
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FIG. 3. Phgse coexi_stence surfacz_a for _the Blume-Capel model 00.3 oi 7 015 016 017 018 0.9
Temperatures in are units of 6 kd/, x in units of kgT. N
[20] than to those of21]. Our estimate for the tricritical FIG. 5. Order parameter behavior for the Blume-Capel above
density agrees well with SCOZA estimate which is lowerthe tricritical point. Temperatures in units of 6 kd/are (from left
than the simulation result of Deserno. to right) 0.25, 0.30, 0.40, 0.50, and 0.60.

In order to better understand the mechanism that allow.
one to localize the tricritical point we present in Fig. 3 a
three-dimensional3D) plot of the critical surface. As it can
be seen, abovd, the critical surface is always centered
arounde =0, while, below this temperature, for low values
of the chemical potential, the surface does not include thi
value.

Figures 4 and 5 show the behavior of the order paramet
(the spontaneous staggered magnetizati@iow and above
the tricritical point showing the change from first order to
second order in the character of the transition.

that ends at the tricritical point, which is localized &¢
=0.202-0.002, p.~0.380+0.005. As it can be seen in
Table 1l our estimate for the tricritical temperature deviates
about 30% both from the simulation results by Panagiotopu-
los and Kumaf13] and Dickman and SteflL2]. However, as
$nentioned in Sec. IlI B, our interaction potenti@p) is dif-
ferent from that used in simulations. Furthermore, as stated
Sh [12], simulations have been performed only on small lat-
tices and this could partially explain the discrepancies with
our results. In order to check this aspect we tried to simulate
the finite size effect by stopping the integration at a cutoff of

_ . o the orderk~27/L which corresponds to
B. Lattice restricted primitive model

272

In Fig. 6 we show the HRT results for the phase diagram ==
[z

of the LRPM in theT-p plane. Predictions from SCOZAA4|
and simulationg12,13 are also displayed for comparisons.
In this section temperatures are measured in units of

p~1- (56)

Even if for L<30 the localization of the tricritical point

q%/Dkg. As for the Blume-Capel model there is aéldine ' '
1 ' 0.7 .
09 r 05 | &~ i
— o°
o 04 v
o
é o ° ...
v o K
a” i v
o 03 | o’ ]
[n} L )
0.8 r o B o’
. o ."o v
o® A% L] P -
o oo®® A L
o g varvE aAvY 4 v s
0.1 L 1 1 1 Il
07 a , . 0.0 0.2 0.4 0.6 0.8 1.0
“07 0.8 0.9 1 p

P
FIG. 6. Phase diagram in thEp plane for the LRPM. Filled

FIG. 4. Order parameter behavior for the Blume-Capel belowcircles, HRT results; crosses, SCOZA data for thdine; up tri-
the ftricritical point. Temperatures in units of 6kd/ are 0.18 angles, simulation of Ref13]; down triangles, simulation of Ref.
(circles and 0.22(squares [12].
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FIG. 7. Order parameter behavior for the LRPM below the tri-  FIG. 8. Order parameter behavior for the LRPM abdye Tem-
critical point. Temperatures in units @?/Dkg are 0.18(circles peratures in units ofj?/Dkg are (from left to right 0.25, 0.30,
and 0.20(squares 0.35, 0.40, and 0.45.

becomes quite difficult, the tricritical temperature drifts to pa=p+_(1)2d, (58)
smaller values if the long wavelength fluctuations are ne-
glected. In particular, for a lattice with=20, we estimate a wherep, _(r) is the probability that two oppositely charged
tricritical temperature of about 0.165. Our estimate of theparticles sit at distanceon the lattice and the proportionality
tricritical density is in good agreement with the only avail- factor 2d represents the number of distinct dipole orienta-
able results of12]. tions in an hypercubiaj-dimensional lattice. The correlation
In Figs. 7 and 8 the results for the order parameter belowynction p+_(1)=F,_(1)+p,.(0)p_(1) can be expressed
and above the tricritical point are shown, respectively. in terms of the charge response alone if we assume that like
The mean-field-theory approach to Coulomb criticality charges do not occupy nearest neighbors siies. (1)
developed by Fisher and co-worke® confirmed the im-  —0]. This leads to the estimator for the dipole density we
portant role played by the phenomenon of dipole associatioRave adopted,
in determining the shape of the coexistence curve in the re-
stricted primitive model of electrolytes. pa=d[(¢)*—Fe(1)], (59
In this approach, the density of dipolpg is estimated on
the basis of the phenomenological picture by Bjerrlith  where (¢) is the order parameter. From definiti¢7) it
who defined, in the low density regime, an “association con-p|lows that the association consta{T) can be identified
stant” K(T) describing the dipole formation process as awith the low density limit of the expression
chemical reaction,

2.5 T T T T
pa~p+p_K(T) (57

Due to the close analogy between the lattice and the con
tinuum Coulomb gas, it is natural to expect that a similar 20
phenomenon also occurs in the model we have studied. Ir
order to assess the relevance of dipole formation in the low
density region of the phase diagram of Fig. 6, we first haveE

to identify a microscopic analog of “dipole density:” The < 1.5
simplest guess is to set g
TABLE Il. Comparison of tricritical point coordinates predic-
tions for the LRPM. Temperatures are in unitsqgfDkg . 1.0 -
T[ Pe 4 /
HRT 0.202:0.002  0.386:0.005 05 L : : : :
Mean field[9,12] 0.299 0.333 20 30 oo 60 70
Simulation of Ref[12] 0.14 0.4
Simulation of Ref[13] 0.15+0.01 0.48-0.02 FIG. 9. Behavior of the dipole concentration constant vs tem-

perature. Densities argrom below to up 0.10, 0.15, and 0.20.
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. . FIG. 11. Crossover from classical to Ising critical exponent
FIG. 10. Values of the asymptotic critical exponentvs tem along various isothermsfrom below to up T/T,=1.0, 1.05,

peratl{re. Upper figure: results for the Blume Capel model. LOWer1.13,1.5 in both figurgsin the upper figure we show the results for
figure: results for the LRPM model. At high temperatures the expo- )

. . . - . the Blume-Capel model. In the lower figure results for the LRPM
nent takes the value predicted by the Ising universality class with a

Ornstein-Zernike closurey=1.38). NearT; instead the exponent model are displayed.

crosses over the mean-field valye- 1.0 treatment with no need to include “by hand” the dipolar

component to the Coulomb gas.
(@)*—Fec(1)

p (60) C. Critical behavior near the tricritical point

K(T)=4d

In this section we examine on the basis of the HRT equa-
tions, the critical properties of the two models we have stud-
In the “paramagnetic” phase, the order parametel ied. It is known that in the regions of the phase diagram
vanishes and the association constant is just proportional tcharacterized by a large staggered susceptibility, the HRT
the charge correlation function at nearest neighbors. Accordeq. (15) simplifies and acquires a universal structure inde-
ing to the phenomenological approach, in the low densitypendent of the two-body interactiofi(k). As discussed in
regions, the association process grows exponentially at lowRef. [16], the resulting asymptotic equation coincides with
temperaturesk (T)=Te" [6]. In Fig. 9 we provide a loga- the one derived within the RG approach in local potential
rithmic plot of K(T)/T as a function of I¥ in the low den-  approximation. Scaling laws are therefore obeyed by our ap-
sity phase as obtained by the HRT approach. At low temperagroximation with the critical exponents of the Ising univer-
tures, the curves display the expected exponential behaviosality class:y~1.38 and»=0 at every critical point on the
showing that dipole association comes out naturally in oulNed line. At the tricritical point, the RG flow is instead
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attracted by the Gaussian fixed point leading to classicaihg potential of the typep, ;= — ¢, ,. This formulation has
critical behavior[22]: The singular part of the thermody- the advantage of allowing for the elimination of one density

namic potential at fixed staggered field is given by variable from the general equation for binary mixtures. Fur-
a2 (d—4)/2 ther simplification has been possible because we studied the
G(T,pu)~u™f(vu ), (61) system at fixed chemical potential rather then at fixed density

leading to a hierarchy of evolution equations which contains
only concentration correlation functions.

In order to obtain quantitative results to be compared with
predictions of other methods we applied the theory to the
study of two important lattice models using a single closure
relation for the two-point correlation function that does not
implement the core condition. The numerical solution of the
resulting equation allowed us to derive the phase diagram of
both models, Figs. 1 and 6. For the Blume-Capel model,
predictions for the tricritical temperature and densities are in
good agreement with both simulations and SCOZA results
; . . ) . . (Table ). Results for the tricritical temperature of the LRPM

Itis also interesting to mvestlgate the n_ongnlversgl cr OSS(Table [) instead do not agree so well with available simu-
over phenomena on the line when the tricritical point i |44i0ns This discrepancy can be ascribed to two reasons.
approached. In particular, it is not clear whether the long (1) The first is that the interaction potential of E¢g)

range nature of the Coulomb potential severely affects thgy o q,ces the Coulomb potential used in simulations only at
extent of the asymptotic critical region or not. In order to large distances

clarify this point, we have extracted an effective critical ex- (2) The second concerns simulations which were per-
ponentyesy by fixing the temperaturd larger than the tric- ;e on small latticesL(<20) without any finite size scal-
ritical value and computing the staggered susceptibility as thg analysis

function o;‘ the r5educed chemical potentia}l—(J.L/,uc) in the In the two models we examined, both thé eNand the
range 10°~10"°. The plots of the effective exponents for | iq_yapor transition were triggered by charge fluctuations
the two models are shown in Fig. 10 and indicate a smoothy . — - “\yhich led to the formation of strongly correlated
crossover between the asymptotic Ising value, attained at ﬂ}?airs of opposite charge. In fact, the low-density, low-
highest temperatures and the classical limit reached at tht%mperature regime of the LRPM can be interpreted on the

tricritical point. The large difference in the range of the po- basis of a dipole gas, as pointed out by Bjerrum and con-
tential for the two models we have examined does not havi rmed by our RG investigation.

significant consequences on the extent of the near-critical 1,4 generalization of this approach to LRPM with ex-

region, probably because the relevant fluctuations occur gbqed core already studied using Monte Cafl8], is an

k~r, a region where the two microscopic potentials behave,eresting program that deserves future investigation. The
ina qU|te_5|m|!a_1r way. 1_'h|s numerical an_aly5|s ShOWS _that the4RT evolution equations may be obtained also in this case
asymptotic critical region around a point on the N&ee i, 4 noticeable difference regarding the relevant wave vec-

shrinks considerably at temperatures few percent larger thiy, ¢o charge fluctuations, which will be shifted to smaller

the tricritical temperature suggesting that, in this region Ofvalues, in agreement with the field theory developed by Ci-

the phase dia_g'ram, an accurate experimental determinatioy, ang Stel[9,10]. However, according to our approach,
of the true critical exponents should require a very closghe «Néel” transition line which originates from the close

approach to tha line. , , packing limit would now be described by an order parameter
In Fig. 11 we present the behavior gf; at a fixed tem-  \ith 3 Jarger number of components, as usual in lattice mod-
perature as a function of the chemical potential for bothg|s with competing interactiorf@4]. By increasing the core
models. As shown, near the tricritical temperature the Ising,qiys this phase transition is likely to become first order,
critical expone_r15t can be detected only very close tavtiee  harehy mimicking a freezing line. However, the mechanism
(1— u/ue<1077). Increasing the temperature instead €X-jaading to the development of a genuine liquid-vapor critical
tends the crossover region to the higher value of the reduceﬁoint at low density, without any visible singularity in the

- . 74 . g - . N N ) . N 4
chemical potential (+ u/uc~10""). No significant differ-  gielectric function, still remains a crucial unsolved issue for
ences in the crossover behavior of the two models have beg{jire studies.

noted.

whered=3 is the space dimensionalitf(x) is a universal
scaling function, and the two fieldaifv) are linear com-
binations of the deviations of and p from their tricritical
values. This scaling form implies that, at fixed tem-
perature, the staggered susceptibikity, (k= 7) diverges as
|e— p| =Y with y=1. The shape of the liquid-vapor coexist-
ence curvein three dimensionsis instead governed by the
exponent3=1 and displays the well known cusp of the
line. This analytical result is compatible with the phase dia-
grams reported in Figs. 1 and 6 obtained by numerical inte
gration of the HRT equations.
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