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Hierarchical reference theory study of the lattice restricted primitive model

A. Brognara,1 A. Parola,2 and L. Reatto1
1Dipartimento di Fisica, Universita` di Milano and Instituto Nazionale per la Fisica della Materia, Via Celoria 16, 20133 Milano, Ita

2Dipartimento di Scienze, Universita` dell’Insubria and Istituto Nazionale per la Fisica della Materia, Via Valleggio 11, Como, Italy
~Received 23 October 2001; published 20 June 2002!

A three dimensional model of point charges, named lattice restricted primitive model~LRPM!, is investi-
gated by using the hierachical reference theory of fluids. This approach, which generalizes the momentum
renormalization group technique, is shown to capture the physics of the model and provides a quantitative
description of the phase diagram. The comparison with recent numerical simulations and with other theoretical
approaches is discussed both for the LRPM and for the Blume-Capel model, which can be seen as a screened
version of LRPM. The nonuniversal crossover region close to the tricritical point is also discussed.
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I. INTRODUCTION

Criticality in ionic fluids has been a subject of great d
bate and study in the last century@1,2#. In fact, the long
range nature of the interatomic potential makes this prob
very difficult to deal with and there is not even general co
sensus on many key issues, such as the universality cla
the liquid-vapor critical behavior in ionic fluids. This anom
lous aspect of the Coulomb criticality is further supported
recent experimental results@3# that have shown that bot
Ising-like and mean-field-like criticality can be observed f
these systems. Although Ising criticality is generally believ
to represent the asymptotic behavior, the experimental
dence requires an explanation of the anomalously la
crossover detected in electrolytes.

The simplest theoretical model able to capture the m
features of ionic fluids is the restricted primitive mod
~RPM!. This model is a symmetric mixtures of positive an
negative charged hard spheres of equal diameters imme
in a neutral fluid of dielectric constantD. From the first
pioneering work of Debye and Hu¨ckel @4# several approxi-
mations and theories have been introduced to treat the R
However, the first evidence of criticality in the RPM wa
shown by Stell and co-workers only in 1976@5# where, by
using a mean spherical approximation~MSA!, they found a
coexistence curve that ends at a critical point. They a
showed that the details of the coexistence curve strongly
pend on the approximation employed so, in order to be
describe these properties, various other approaches
been developed to treat ionic systems. Using a mean-
approximation, Fisher and co-workers concluded that in
der to obtain realistic values forrc andTc it was necessary
to include Bjerrum association and dipole-charge interac
@6,7#.

Recently, in an attempt to better understand the crit
properties of the RPM, attention has been attracted by
lattice version of this model~LRPM! @1,2#. However, the
phase diagram of the lattice model contains features tha
absent in the continuous case. In fact, above the coexist
region, where a disordered and a charge modulated phas
coexist at two different densities, the phase diagram disp
a Néel line of critical points which is absent in the RPM.
1063-651X/2002/65~6!/066113~11!/$20.00 65 0661
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The thermodynamic properties of the LRPM have a
been investigated by a number of approximate theories
particular, we mention the MSA study of Ho”ye and Stell@8#
and the field theoretical methods developed by Ciach
Stell @9,10#, which addressed the interesting problem of t
nature of the differences between the phase diagram of
RPM and LRPM. However, the critical properties extract
from all these theories do not go beyond mean-field leve
mean spherical approximation@9,11# and are not in very
good agreement with simulation results@12,13#. Recently
this model has also been studied by using the self-consis
Ornstein-Zernike approximation~SCOZA! by Grollauet al.
@14#.

In order to provide a theory capable of improving th
agreement with simulation results, we present an approac
LRPM based on the hierarchical reference theory~HRT!
implementation of the renormalization group~RG!. Origi-
nally developed to describe properties of simple fluids, t
theory has been later extended to treat lattice models@15#
and fluid mixtures@16#.

The main advantage of HRT approach is that, start
only from the microscopic interaction between constituen
it allows one to derive an infinite set of coupled different
equations, which is formally exact. These equations desc
the evolution of the thermodynamic quantities when fluctu
tions are gradually included and give rise to the correct
structure, which clearly identifies the universality class a
the critical properties of the model. However, in order
quantitatively analyze this set of equations, an approxim
relation ~closure relation! that allows one to reduce the infi
nite set to a finite number of equations must be introduc

This paper is organized as follow. In Sec. II we derive
formulation of HRT, which is particularly suitable to trea
symmetric mixtures. The closure relation employed for t
integration of the first equation of the hierarchy is also d
cussed. In Sec. III we describe the application to two latti
models. The first one is the Blume-Capel model, which
volves only nearest neighbor interactions and is useful a
check of the approximations employed. Then we discuss
application to the LRPM, which is the main subject of th
work. In Sec. IV numerical results of the integration of HR
©2002 The American Physical Society13-1
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equations for the two models are presented and finally Se
contains conclusions and perspectives.

II. HRT EQUATIONS FOR SYMMETRIC MIXTURES

In this section we review the application of the HRT fo
malism to binary mixtures on a lattice@16,17#. We start by
considering a system whose constituents interact throug
two-body central potentialv i , j (r ). Here the subscripts stan
to label the species. The first step in the derivation of H
equations is to separate the interacting potential into
parts:

v i , j~r !5v i , j
R ~r !1wi , j~r !, ~1!

where v i , j
R is the reference term whose properties are

sumed known andwi , j (r ) represents the ‘‘perturbation term
that includes the long range part of the interaction.

In full analogy with the one-component case, the sepa
tion ~1! allows one to derive a perturbative expansion, for
free energy. Here we report only the first term of this exp
sion, which includes the resummation of the infinite one lo
diagrams of the perturbative series:

2
bA

V
52

bAR

V
2

1

2
r if i ,i~r 50!1

1

2
r ir jf i , j~k50!

2
1

2E ddk

~2p!d Tr@ ln$12FR~k!f~k!%#1•••. ~2!

The other terms are related to higher loop contributions
Eq. ~2! we have definedf i , j (k)52bwi , j (k), FRi, j (k) is the
correlation function of the reference system, matrix notat
has been employed and summation over repeated indic
understood. The integrations are extended to the full B
louin zone.

Clearly, a perturbative expansion such as Eq.~2! breaks
down near phase boundaries and cannot be used as a st
point for a realistic description of the phase diagram of
model. Rather, in order to include, in the free energy,
contribution due to the perturbation term a momentum sp
renormalization group approach is implemented. This can
accomplished by first defining a sequence of systems c
acterized by a lower cutoff, labeled byp, on fluctuations.
From now on we simply refer to each of these systems as
p system; this means to restrict the domain of integration
Eq. ~2! to a regionBp . Varying p this region must span th
full momentum space. The actual shape of the domainBp
will be specified later taking into account the specific fe
tures of the symmetry breaking mechanism that occur at
transition. The introduction of cutoff on fluctuations can
conveniently performed by introducing a potential with
sharp cutoff at long wavelength defined as

wi j
p ~k!H wi , j~k!, kPBp

0, k¹Bp .
~3!

The generality of the perturbative expansion~2! allows one
to obtain the properties of the system with a cutoffp2dp
considering thep systemas reference. For this purpose it
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enough to consider the one-loop contributions shown in
~2!. In this way it is possible to derive an exact infinite hie
archy of equations, which describes the evolution of the th
modynamic properties of the system when fluctuations
gradually included. The resulting differential equation for t
free energy is then given by

2
d

dp
A p5

1

2ESp

dvk

~2p!d Tr$ ln@11F p~k!f~k!#% ~4!

5
1

2ESp

dvk

~2p!d ln det@11F p~k!f~k!#. ~5!

HereSp is the contour surface of the regionBp . It should be
noted that this evolution equation is exact because the hig
order loop diagrams do not contribute. In Eq.~5!, in order to
deal with continuous quantities, a modified free energy d
sity A and correlation functionF(k), including the mean
field terms have been defined,

A p52
bAp

V
2

1

2
r iE ddk@f i ,i~k!2f i ,i

p ~k!#

1
1

2
r ir j@f i , j~0!2f i , j

p ~0!#, ~6!

2~F 21! i , j
p ~k!5C i , j

p ~k!5ci , j
p ~k!1f i , j~k!2f i , j

p ~k!. ~7!

Unfortunately, Eq.~5! is not closed because the two poi
correlation functionF p(k) is not simply related to the free
energy and its evolution can be expressed in terms of
three- and four-point correlation functions. The formal stru
ture of the hierarchy has been discussed in Ref.@16# and will
not be repeated here. In the case of symmetric mixtures w
f1,152f1,25f, the whole hierarchy simplifies. In fact,

det@11F Q~k!f~k!#511@F1,1~k!1F2,2~k!

22F1,2~k!#f~k!511Fcc~k!f~k!,

~8!

wherec5r12r2 and we have introduced the concentrati
correlation functionFcc(k). Using this expression the evolu
tion equation for the free energy can be written in the si
plified form

2
d

dp
A p5

1

2ESp

dvk

~2p!d ln@11F cc
p ~k!f~k!#. ~9!

In this equation the density correlation function does n
appear. This is not a peculiarity of the free energy equat
of the hierarchy but it can be shown that in the full hierarc
only concentration correlations are involved. In other wor
for symmetric mixtures withf1,152f1,2 the density corre-
lation functions are fully decoupled from the hierarchy. As
consequence, any phase transition occurring in such a m
must be accompanied by some singularity in the concen
tion fluctuations; otherwise, Eq.~9! would lead to a fully
3-2
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HIERARCHICAL REFERENCE THEORY STUDY OF THE . . . PHYSICAL REVIEW E 65 066113
regular thermodynamics. It is important to remark here t
this is not an approximation, because the infinite set of eq
tions is exact.

Closure relation

As already stated, the evolution equation~9! is not closed
becauseF cc

p (k) is related to higher order correlation fun
tions and so a quantitative study of this equation canno
performed. In order to obtain results for nonuniversal qu
tities, a closure relation able to account approximatively
the integration of the remaining set of equations must
introduced. In the following, we describe how a closure
lation can be implemented. In the discussion we will adop
magnetic language and so charges and vacancies are id
fied with a three-state spin defined at every lattice s
coupled by the antiferromagnetic interactionw(r ).

First of all it is known that at the mean-field level@11,12#,
the relevant fluctuations of the system are those arounk
5p. This is further supported by simulation results@12,13#
that suggest the presence in the phase diagram of a Ne´el line
characterized by the divergences ofFcc at the wave vector
k5p. In order to relate these fluctuations to the thermo
namics, it is necessary to introduce the appropriate sum
in full analogy with the treatment of ferromagnetic transiti
@15#. This can be achieved by introducing an external st
gered magnetic field that tends to create an antiferromagn
order. It is also convenient to perform a Legendre trans
mation, which allows to eliminate the density dependence
favor of the chemical potential,

Vp~m,h!5A p~r,h!1mr, ~10!

whereh andm are the staggered field and the chemical p
tential measured in units ofkBT, while r5r11r2 is the total
density. In this way the compressibility sum rule takes
simple form

]2Vp

]h2 U
m5const

5F cc
p ~k5p!. ~11!

It is now convenient to express the thermodynamics
terms of the staggered magnetizationw5( i(21)iSi instead
of the magnetic field. This leads to the further definitions

Gp~m,w!5Vp~m,h!2hw, ~12!

with

r5
]G

]m
, ~13!

w5
]V

]h
. ~14!

With this substitution, Eq.~9! takes the form

d

dp
Gp52

1

2ESp

dvk

~2p!d lnF12
f~k!

C cc
p ~k!

G , ~15!
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where the integration runs over the surfaceSp that, varying
the labelp, spans the full first Brillouin zone of the lattice
The direct correlation function is defined as

C cc
p ~k!52

1

F cc
p ~k!

~16!

and the exact sum rule reads

C cc
p ~k5p!5

]2Gp

]w2 [jp, ~17!

wherejp is simply related to the staggered susceptibility
the p system. We now discuss the application of Eq.~15! to
the study of two simple cubic lattice models. In both the
cases the interacting potential depends only on the funct

gk5
1

3 (
i 51

3

coski . ~18!

The surfacesSp of the integration domain are defined as

Sp5$k;ugku,upu% with 21,p,0. ~19!

Starting from p50, this surface spans the whole fir
Brillouin zone moving simultaneously to the center~k50!
and to the corner (k5p) of this region where critical fluc-
tuations may develop. This choice has the advantage of le
ing to a stable integration algorithm. This, with the com
pressibility rule~17!, suggests the following parametrizatio
for the concentration correlation function:

C cc
p ~k!5j02f~k!1apgk . ~20!

Herej0 ~independent ofk) is the staggered susceptibility o
the reference system which is just a two-component lat
gas in a staggered magnetic field andap is a function that
must be determined according to the compressibility s
rule atk5p,

ap5j02jp2f~k5p!. ~21!

A similar parametrization of the two-body correlations h
also been proposed by Grollauet al. @14# for the integration
of SCOZA equations.

The grand canonical partition function of the referen
system in the presence of a staggered magnetic field ca
calculated analytically; and in the symmetric case its expr
sion is given by

V5 ln~112z coshh! with z5em. ~22!

Using the relations~11!, ~12!, and~16! we obtain the follow-
ing expression for the staggered susceptibility of the re
ence:
3-3



de

to
ur
r-
al
ec
he
n

o-

or
he

e
o
lu
ts

il

as

ear

ble

ts

f

A. BROGNARA, A. PAROLA, AND L. REATTO PHYSICAL REVIEW E65 066113
j052
~112z coshbh!2

2z~coshh12z!
, ~23!

with

h5 ln
w1Aw214z2~12w2!

2z~12w!
. ~24!

Before discussing the numerical solution of the partial
rivative equation we point out that the closure relation~20!
does not automatically fulfill the core condition leading
the possibility of multiple occupancy of a lattice site. In o
approximation this condition is verified only for the refe
ence system at the beginnings of the integration. Usu
@16#, neglecting the core condition does not severely aff
the numerical determination of the critical points and t
shape of the coexistence curve, and, of course, does
modify the critical behavior predicted by HRT.

Finally the dielectric function is simply related to the tw
body correlations by the relation

e~k!5@12Fcc~k!f~k!#21512
f~k!

j01apgk
. ~25!

In the case of Coulomb potentialf(k) behaves likek22 for
k→0, while the evolution equation~15! forcesj01apgk to
be always negative. This implies that with our closure

e~k!;k→0

1

k2 , ~26!

which coincides with the perfect screening condition.

III. NUMERICAL SOLUTION OF HRT EQUATIONS

In this section we discuss the application of the the
developed in Sec. II to two lattice models by detailing t
numerical solution of the first equation of the Hierarchy~15!
with the closure relation~17!, ~20!, and~21!.

A. Application to the Blume-Capel model

As a first application of the formalism just developed, w
study the Blume-Capel model which is a generalization
the Ising model where spins can assume three distinct va
1 for one specie,21 for the other specie, and 0 for holes. I
Hamiltonian is given by

H52J(
^ i , j &

SiSj2h(
i

~21! iSi ~27!

and is a special case of the Blume-Emery-Griffiths Ham
tonian that contains an extra term2K(^ i , j &Si

2Sj
2 and has

been applied to the study of the3He-4He mixtures.
In Fourier space, the interacting potential is

f~k!5lgk with l5
6J

kT
~28!

and the closure relation~20! together with Eq.~17! becomes
06611
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C cc
p ~k!5~11gk!j02gkj

p. ~29!

Inserting this relation~29! into expression~15! we obtain the
following evolution equation:

]Gp

]p
52

1

2
DpF lnS 11

fp~gk5p!

C cc
p ~gk5p!

D
1 lnS 11

f2p~gk52p!

C cc
2p~gk52p!

D G ~30!

52
1

2
Dp lnF j0

22p2ap
2

j0
22p2~l2ap!2G , ~31!

where we have introduced the density of states defined

Dp5E
B

d3k

~2p!3 d~p2gk!. ~32!

The numerical solution of Eq.~31! can be more easily
achieved once it has been transformed into a quasilin
form

]2vp

]w2 5A~p,vp ,w!
]vp

]t
1B~p,vp ,w! with t5 ln~11p!.

~33!

This transformation can be made by defining a new varia
vp as

ep2vp5x5
j0

22p2ap
2

j0
22p2~l2ap!2 ~34!

and taking two derivatives inw on both sides of Eq.~31!.
Here we only report the results for the coefficien
A(p,vp ,w),B(p,vp ,w) of the quasilinear form

A~p,vp ,w!52
2x

Dp~11p!

]ap

]p
, ~35!

B~p,vp ,w!5
2

Dpp2 S ]ap

]p
12xpvp

]ap

]x D . ~36!

Where the partial derivatives ofap are given by

]ap

]p
52

~12x!j0
2

pAp4xl21p2~12x!2j0
2

, ~37!

]ap

]x
52

l

~12x!2 1
p2~11x!l2

2Ap4xl21p2~12x!2j0
2~12x!2

.

~38!

The boundary condition atw50 reflects the symmetry o
the system under the substitution ofw↔2w. This implies
that

vp~2w!5vp~w! ~39!
3-4
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at every stage of the integration. The boundary condition
w51 instead can be derived from the expression of the c
relation function for the reference system, which implies

lim
w→1

j052`. ~40!

This condition is maintained at every step of the integ
tion and in terms ofvp can be written as

vp~w51!50. ~41!

The integration of Eq.~33! with the boundary conditions
~39! and~41! has been performed using an implicit Predic
Corrector algorithm@18,19#.

B. Application to the lattice restricted primitive model

The discussion of the LRPM proceeds along the sa
lines of the Blume-Capel model. As interacting potential
Fourier space, we use the expression

f~k!5l
1

12gk
with l5

2p

3

q2

DkBT
, ~42!

which is the solution of the lattice Laplace equation. In re
space Eq.~42! correctly reproduces the Coulomb potent
only at large distances. In order to partially eliminate t
self-interaction introduced by a nonvanishing contribution
site, we shift the potential by a constant ink space@9#. This
is equivalent to a redefinition of the chemical potential. W
choose the constant asl so that the interacting potentia
becomes

f~k!5l
1

12gk
2l5l

gk

12gk
, ~43!

leading to the explicit expressions forap andC cc
p (k)

ap52jp1j01l/2, ~44!

C cc
p ~k!5~11gk!j02gkj

p2
l

2
gk

11gk

12gk
. ~45!

Using the same integration surface of the Blume-Ca
model, the evolution equation can be written as

]Gp

]p
52

1

2
DpF lnS 11

fp~gk5p!

C cc
p ~gk5p!

D
1 lnS 11

f2p~gk52p!

C cc
2p~gk52p!

D G ~46!

52
1

2
DpF ln

j0
22ap

2p2

~j0
22ap

2p2!22l
p2

12p2jp

1 ln~12p2!G . ~47!

By the substitution
06611
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12p22e2p2vp5y5
2lp2jp

~j0
22ap

2p2!
, ~48!

the evolution equation can be cast in the quasilinear fo
~33!. The steps of the derivation are the same as before,
only difference here being that the double derivation w
respect tow allows one to eliminate the term ln(12p2),
which becomes singular at the end of the integration. H
we only quote the coefficients of the quasilinear form

A~p,vp ,w!52
2e2p2vp

Dp~11p!

]ap

]p
, ~49!

B~p,vp ,w!5
2

Dpp2 F]ap

]p
22p

]ap

]y
~12e2p2vpvp!G .

~50!

where the partial derivatives ofap are given by

]ap

]p
5

j0
2y

pAl2p41p2y~yj0
222lp2j02l2p2!

, ~51!

]ap

]y
52

l

y2 1p2l
2l2ly22yj0

2y2Al2p41p2y~yj0
222lp2j02l2p2!

.

~52!

The boundary conditions for the integration variable a
given by

vp~w!5vp~2w!, ~53!

FIG. 1. Phase diagram in theT2r plane for the Blume-Cape
model. Temperatures are in units of 6 J/kB . Circles, HRT results;
crosses, results of SCOZA of Grollauet al. @23#. The triangle shows
the tricritical point of Ref.@20#.
3-5
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FIG. 2. Schematic representa
tion of criticality below and above
Tt . The wider lines delimit re-
gions on staggered magnetizatio
axis whereC p521(k5p)50. As
shown, for T,Tt ~figure on the
left, m5m1) transitions begin in
regions away fromw50. Increas-
ing the chemical potential (m2

.m1) this region enlarges and ca
include the origin (m3.m2). At
temperatures higher thanTt in-
stead~figure on the right! transi-
tions always includew50.
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vp~w51!52
ln~12p2!

p2
. ~54!

IV. RESULTS

The numerical integration of the first equation of HR
described in the sections herebefore allows one to determ
several physically interesting quantities for the two latt
models introduced above. Simulations@12,13,20,21# and the-
oretical results@9,14# indicate that the phase diagram of bo
these models is characterized by a liquid-gas coexiste
curve ending at a tricritical point, where a Nee´l line of criti-
cal points starts. However, before showing the numerical
sults, we briefly discuss how phase transitions may be
tected. First of all we start considering the Ne´el line. On the
left side of this line~see Fig. 1! the system is in a uniform
paramagnetic phase. However, by increasing the chem
potential m ~or, equivalently, increasing the density of th
system! antiferromagnetic order may appear; these two
gions of the phase diagram are separated by the Ne´el line
where the system undergoes a second order phase trans
As stated in Sec. II A, this transition is characterized by
divergence of the staggered susceptibility, i.e., by the van
ing of the functionCcc(k5p) at w50, and so it is possible
to detect the points of the Ne´el line simply by looking at the
vanishing of this function at the end of the integration. Fro
the general theory of the tricritical points@22# it is known
that along the Nee´l line the critical behavior is described b
the Ising critical exponents. At the tricritical point, instea
critical exponents have classical values in three dimensi
It can be verified that HRT equations@16# correctly repro-
duce this scenario.

Detecting points of the liquid-gas coexistence curve
stead is a much more difficult task. In fact below the tricri
cal point the liquid-vapor coexistence curve is defined b
discontinuity in the derivative of the thermodynamic pote
tial G with respect to the chemical potential, whose right a
left limits are related to the two coexisting densities,

rv5
]G

]m U
m

c
2

,
]G

]mU
m

c
1

5r l . ~55!
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Detecting a cusp inGp521 leads, however, to a rather inac
curate determination of the phase boundaries. Instead
much more convenient to look at the behavior along
staggered magnetization axis. In fact forT,Tt the staggered
susceptibilityC cc

p521(k5p) may vanish in a region of the
staggered magnetization axis, which does not include
valuew50 @see Fig. 2~a!#. Conversely, above the tricritica
point @Fig. 2~b!#, C p521(k5p) vanishes in a region which
always includes the valuew50.

Therefore, the order parameter~i.e., the spontaneous stag
gered magnetization! varies continuously starting from zer
along the Ne´el line, while along the liquid-gas coexistenc
curve it abruptly jumps from zero to a finite value when t
coexistence curve is encountered~Fig. 2!.

A. Blume Capel model

Figure 1 shows the phase diagram, in ther-T plane, of
the Blume-Capel model obtained by integration of HR
equations~temperatures are measured in unit of 6J/kB). For
comparison, results from SCOZA of Grollauet al. @14,23#
are also shown. The line of critical points~Néel line! ends at
a tricritical point localized at Tt50.23060.002, rc
;0.35060.005. In Table I we make a comparison with pu
lished results obtained with other methods. The two simu
tion results reported have been obtained by two differ
techniques: in Ref.@20# simulations were performed in th
microcanonical ensemble while in@21# a geometric cluster
Monte Carlo algorithm was employed. As it can be seen,
prediction forTt is about 2.5% less then Deserno’s simu
tion @20# while it agrees well with that of Heringa and Blo¨te
@21#. Conversely, SCOZA results are closer to the results

TABLE I. Comparison of tricritical point coordinates for th
Blume-Capel model. Temperatures are in units of 6 J/kB .

Tt rc

HRT 0.23060.002 0.35060.005
SCOZA @14,23# 0.236060.0006 0.34560.006
Simulation of Ref.@20# 0.236460.0001 0.39
Simulation of Ref.@21# 0.231560.0001
3-6
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@20# than to those of@21#. Our estimate for the tricritica
density agrees well with SCOZA estimate which is low
than the simulation result of Deserno.

In order to better understand the mechanism that allo
one to localize the tricritical point we present in Fig. 3
three-dimensional~3D! plot of the critical surface. As it can
be seen, aboveTt the critical surface is always centere
aroundw50, while, below this temperature, for low value
of the chemical potential, the surface does not include
value.

Figures 4 and 5 show the behavior of the order param
~the spontaneous staggered magnetization! below and above
the tricritical point showing the change from first order
second order in the character of the transition.

B. Lattice restricted primitive model

In Fig. 6 we show the HRT results for the phase diagr
of the LRPM in theT-r plane. Predictions from SCOZA@14#
and simulations@12,13# are also displayed for comparison
In this section temperatures are measured in units
q2/DkB . As for the Blume-Capel model there is a Ne´el line

FIG. 3. Phase coexistence surface for the Blume-Capel mo
Temperatures in are units of 6 J/kB , m in units of kBT.

FIG. 4. Order parameter behavior for the Blume-Capel be
the tricritical point. Temperatures in units of 6 J/kB are 0.18
~circles! and 0.22~squares!.
06611
r

s

is

er

of

that ends at the tricritical point, which is localized atTt
50.20260.002, rc;0.38060.005. As it can be seen in
Table II our estimate for the tricritical temperature devia
about 30% both from the simulation results by Panagioto
los and Kumar@13# and Dickman and Stell@12#. However, as
mentioned in Sec. III B, our interaction potential~42! is dif-
ferent from that used in simulations. Furthermore, as sta
in @12#, simulations have been performed only on small l
tices and this could partially explain the discrepancies w
our results. In order to check this aspect we tried to simu
the finite size effect by stopping the integration at a cutoff
the orderk;2p/L which corresponds to

p;12
2p2

L2 . ~56!

Even if for L,30 the localization of the tricritical poin

el.

FIG. 5. Order parameter behavior for the Blume-Capel ab
the tricritical point. Temperatures in units of 6 J/kB are ~from left
to right! 0.25, 0.30, 0.40, 0.50, and 0.60.

FIG. 6. Phase diagram in theT-r plane for the LRPM. Filled
circles, HRT results; crosses, SCOZA data for thel line; up tri-
angles, simulation of Ref.@13#; down triangles, simulation of Ref
@12#.
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becomes quite difficult, the tricritical temperature drifts
smaller values if the long wavelength fluctuations are
glected. In particular, for a lattice withL520, we estimate a
tricritical temperature of about 0.165. Our estimate of
tricritical density is in good agreement with the only ava
able results of@12#.

In Figs. 7 and 8 the results for the order parameter be
and above the tricritical point are shown, respectively.

The mean-field-theory approach to Coulomb critical
developed by Fisher and co-workers@6# confirmed the im-
portant role played by the phenomenon of dipole associa
in determining the shape of the coexistence curve in the
stricted primitive model of electrolytes.

In this approach, the density of dipolesrd is estimated on
the basis of the phenomenological picture by Bjerrum@7#
who defined, in the low density regime, an ‘‘association co
stant’’ K(T) describing the dipole formation process as
chemical reaction,

rd;r1r2K~T! ~57!

Due to the close analogy between the lattice and the c
tinuum Coulomb gas, it is natural to expect that a simi
phenomenon also occurs in the model we have studied
order to assess the relevance of dipole formation in the
density region of the phase diagram of Fig. 6, we first ha
to identify a microscopic analog of ‘‘dipole density:’’ Th
simplest guess is to set

TABLE II. Comparison of tricritical point coordinates predic
tions for the LRPM. Temperatures are in units ofq2/DkB .

Tt rc

HRT 0.20260.002 0.38060.005
Mean field@9,12# 0.299 0.333
Simulation of Ref.@12# 0.14 0.4
Simulation of Ref.@13# 0.1560.01 0.4860.02

FIG. 7. Order parameter behavior for the LRPM below the
critical point. Temperatures in units ofq2/DkB are 0.18~circles!
and 0.20~squares!.
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rd5r12~1!2d, ~58!

wherer12(r ) is the probability that two oppositely charge
particles sit at distancer on the lattice and the proportionalit
factor 2d represents the number of distinct dipole orien
tions in an hypercubic,d-dimensional lattice. The correlatio
function r12(1)5F12(1)1r1(0)r2(1) can be expresse
in terms of the charge response alone if we assume that
charges do not occupy nearest neighbors sites@r11(1)
;0#. This leads to the estimator for the dipole density w
have adopted,

rd5d@^w&22Fcc~1!#, ~59!

where ^w& is the order parameter. From definition~57! it
follows that the association constantK(T) can be identified
with the low density limit of the expression

FIG. 8. Order parameter behavior for the LRPM aboveTt . Tem-
peratures in units ofq2/DkB are ~from left to right! 0.25, 0.30,
0.35, 0.40, and 0.45.

FIG. 9. Behavior of the dipole concentration constant vs te
perature. Densities are~from below to up! 0.10, 0.15, and 0.20.

-
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K~T!54d
^w&22Fcc~1!

r2
. ~60!

In the ‘‘paramagnetic’’ phase, the order parameter^w&
vanishes and the association constant is just proportiona
the charge correlation function at nearest neighbors. Acc
ing to the phenomenological approach, in the low dens
regions, the association process grows exponentially at
temperatures:K(T)}Te1/T @6#. In Fig. 9 we provide a loga-
rithmic plot of K(T)/T as a function of 1/T in the low den-
sity phase as obtained by the HRT approach. At low temp
tures, the curves display the expected exponential beha
showing that dipole association comes out naturally in

FIG. 10. Values of the asymptotic critical exponentg vs tem-
perature. Upper figure: results for the Blume-Capel model. Lo
figure: results for the LRPM model. At high temperatures the ex
nent takes the value predicted by the Ising universality class wi
Ornstein-Zernike closure (g51.38). NearTt instead the exponen
crosses over the mean-field valueg51.0.
06611
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treatment with no need to include ‘‘by hand’’ the dipola
component to the Coulomb gas.

C. Critical behavior near the tricritical point

In this section we examine on the basis of the HRT eq
tions, the critical properties of the two models we have st
ied. It is known that in the regions of the phase diagra
characterized by a large staggered susceptibility, the H
Eq. ~15! simplifies and acquires a universal structure ind
pendent of the two-body interactionf(k). As discussed in
Ref. @16#, the resulting asymptotic equation coincides w
the one derived within the RG approach in local poten
approximation. Scaling laws are therefore obeyed by our
proximation with the critical exponents of the Ising unive
sality class:g;1.38 andh50 at every critical point on the
Neél line. At the tricritical point, the RG flow is instead

r
-
a

FIG. 11. Crossover from classical to Ising critical expone
along various isotherms~from below to up T/Tt51.0, 1.05,
1.13,1.5 in both figures!. In the upper figure we show the results fo
the Blume-Capel model. In the lower figure results for the LRP
model are displayed.
3-9
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attracted by the Gaussian fixed point leading to class
critical behavior@22#: The singular part of the thermody
namic potential at fixed staggered field is given by

G~T,m!;ud/2f ~vu(d24)/2!, ~61!

whered53 is the space dimensionality,f (x) is a universal
scaling function, and the two fields (u,v) are linear com-
binations of the deviations ofT and m from their tricritical
values. This scaling form implies that, at fixed tem
perature, the staggered susceptibilityFcc(k5p) diverges as
umc2mu2g with g51. The shape of the liquid-vapor coexis
ence curve~in three dimensions! is instead governed by th
exponentb51 and displays the well known cusp of thel
line. This analytical result is compatible with the phase d
grams reported in Figs. 1 and 6 obtained by numerical in
gration of the HRT equations.

It is also interesting to investigate the nonuniversal cro
over phenomena on thel line when the tricritical point is
approached. In particular, it is not clear whether the lo
range nature of the Coulomb potential severely affects
extent of the asymptotic critical region or not. In order
clarify this point, we have extracted an effective critical e
ponentge f f by fixing the temperatureT larger than the tric-
ritical value and computing the staggered susceptibility a
function of the reduced chemical potential (12m/mc) in the
range 1023–1025. The plots of the effective exponents fo
the two models are shown in Fig. 10 and indicate a smo
crossover between the asymptotic Ising value, attained a
highest temperatures and the classical limit reached at
tricritical point. The large difference in the range of the p
tential for the two models we have examined does not h
significant consequences on the extent of the near-cri
region, probably because the relevant fluctuations occu
k;p, a region where the two microscopic potentials beha
in a quite similar way. This numerical analysis shows that
asymptotic critical region around a point on the Nee´l line
shrinks considerably at temperatures few percent larger
the tricritical temperature suggesting that, in this region
the phase diagram, an accurate experimental determina
of the true critical exponents should require a very clo
approach to thel line.

In Fig. 11 we present the behavior ofge f f at a fixed tem-
perature as a function of the chemical potential for b
models. As shown, near the tricritical temperature the Is
critical exponent can be detected only very close to thel line
(12m/mc,1025). Increasing the temperature instead e
tends the crossover region to the higher value of the redu
chemical potential (12m/mc;1024). No significant differ-
ences in the crossover behavior of the two models have b
noted.

V. CONCLUSIONS

In this work we have developed a formulation of the HR
for the study of symmetric binary mixtures with an intera
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ing potential of the typef1,152f1,2. This formulation has
the advantage of allowing for the elimination of one dens
variable from the general equation for binary mixtures. F
ther simplification has been possible because we studied
system at fixed chemical potential rather then at fixed den
leading to a hierarchy of evolution equations which conta
only concentration correlation functions.

In order to obtain quantitative results to be compared w
predictions of other methods we applied the theory to
study of two important lattice models using a single closu
relation for the two-point correlation function that does n
implement the core condition. The numerical solution of t
resulting equation allowed us to derive the phase diagram
both models, Figs. 1 and 6. For the Blume-Capel mod
predictions for the tricritical temperature and densities are
good agreement with both simulations and SCOZA res
~Table I!. Results for the tricritical temperature of the LRP
~Table II! instead do not agree so well with available sim
lations. This discrepancy can be ascribed to two reasons

~1! The first is that the interaction potential of Eq.~9!
reproduces the Coulomb potential used in simulations onl
large distances.

~2! The second concerns simulations which were p
formed on small lattices (L<20) without any finite size scal
ing analysis.

In the two models we examined, both the Ne´el and the
liquid-vapor transition were triggered by charge fluctuatio
at k5p, which led to the formation of strongly correlate
pairs of opposite charge. In fact, the low-density, lo
temperature regime of the LRPM can be interpreted on
basis of a dipole gas, as pointed out by Bjerrum and c
firmed by our RG investigation.

The generalization of this approach to LRPM with e
tended core, already studied using Monte Carlo@13#, is an
interesting program that deserves future investigation. T
HRT evolution equations may be obtained also in this c
with a noticeable difference regarding the relevant wave v
tor for charge fluctuations, which will be shifted to small
values, in agreement with the field theory developed by
ach and Stell@9,10#. However, according to our approac
the ‘‘Néel’’ transition line which originates from the clos
packing limit would now be described by an order parame
with a larger number of components, as usual in lattice m
els with competing interactions@24#. By increasing the core
radius, this phase transition is likely to become first ord
thereby mimicking a freezing line. However, the mechani
leading to the development of a genuine liquid-vapor criti
point at low density, without any visible singularity in th
dielectric function, still remains a crucial unsolved issue
future studies.
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