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Excitability transitions and wave dynamics under spatiotemporal structured noise

S. Alonso,1,2,* F. Sague´s,1 and J. M. Sancho2
1Departament de Quı´mica Fı́sica, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain

2Departament d’Estructura i Constituents de la Mate`ria, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain
~Received 16 October 2001; published 14 June 2002!

We present an analytic and numerical study of the effects of external fluctuations in active media. Our
analytical methodology transforms the initial stochastic partial differential equations into an effective set of
deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions
on the systematic and constructive effects of the noise, for example, target patterns created out of noise and
traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and
spatial structures.
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I. INTRODUCTION

Excitability, in relation to wave propagation processes
one of the most genuine features of distributed active me
@1,2#, irrespective of the context we refer to, either chemi
@3#, biological @4#, cardiological@5#, or neurophysiological
@6#. In fact, we could think of excitability as one of the ma
robust mechanisms to sustain signal propagation in nat
The diversity of such self-organized propagating patte
varies largely, depending on initial conditions or geometri
constraints: from the simplest one-dimensional wave fro
@7# to spiral waves@8# and target patterns@9# in two-
dimensional systems, or adopting more complicated top
gies, such as scroll waves and scroll rings@10# in three-
dimensional media.

Obviously, in any realistic situation we can envisage,
tive media cannot be completely isolated from their enviro
ment. Thus, the control, either global or local, of the exc
ability of a given medium will be unavoidably subjected
imperfections or fluctuations. Until recently, and most co
monly, one would consider this statement as a sort of wor
caution to prevent experimentalists or to discourage the
ticians. However, during this last decade a new twist on
generally accepted idea has been progressively emergin
ter the discovery of more and more subtle examples of w
are presently viewed as noise-constructive effects in non
ear systems@11#. In this paper we will show abundant ex
amples of phenomenologies occurring in excitable me
that can be addressed under this general perspective.

To gain the widest possible universality we propose a
neric theoretical framework that covers the whole spectr
of excitability conditions considered here: from nonexcita
~media unable to propagate any kind of pulses! to subexcit-
able ~contraction of waves with free ends! up to excitable
and even to oscillatory regimes. In doing so our goal is tw
fold: ~i! First, we want to demonstrate that some previo
observations in noisy excitable systems, both experime
and numerical, concerning photosensitive versions of
Belousov-Zhabotinsky reaction mainly by Ka´dár et al. @12#
and by us@13#, are in fact particular examples, with add
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tional ones furnished here, of what we denote asnoise-
induced excitability transitions. ~ii ! Our second purpose is t
extract robust analytical and numerical evidences of the p
found effect of external fluctuations coupled to the nonline
dynamics of excitable systems to ultimately modify the
wave propagation properties. Actually we want to prove t
this is not at all a specific effect associated to some pecu
statistical prescriptions of the imposed fluctuations. In t
respect we extend our previous research@13#, where we fo-
cused on purely uncorrelated partitioned fluctuations~white
noise! to address more realistic situations corresponding
spatiotemporal structured random forcing of the active m
dia. What comes out of our study, and this is the main
neric conclusion we want to stress, is that such spatiotem
ral structured noise forcing, although locally and globa
averaging to zero, always enhances the medium excitab
favoring in turn wave propagation conditions.

Unlike our previous related papers@14# and@13#, we pre-
fer here to concentrate on the theoretical treatment of
problem, without accompanying experiments, but supp
menting it with extensive numerical simulations. The the
retical part is totally generic as it would apply to FitzHug
Nagumo-like schemes to describe active systems. Spe
applications of these theoretical results, whenever nee
and particularly the whole numerical part of the paper w
refer, however, to the simplest modelization of such excita
dynamics, namely, the Barkley’s model@15#

] tu5D¹2u1
1

e
u~12u!S u2

v1b

a D ,

] tv5u2v. ~1!

After these introductory remarks, the paper is organiz
as follows. Section II is devoted to present the theoreti
treatment that enables us to deal with excitable systems
jected to spatiotemporal structured fluctuations. Section
summarizes the different scenarios of what was denoted
viously as noise-induced excitability transitions. To highlig
the main trends of these phenomena we prefer to limit at
point to white ~temporally uncorrelated! fluctuations stress-
ing the effect of the intensity of the fluctuations. The com
plete analysis, including correlations both in space and ti
©2002 The American Physical Society07-1
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is concentrated in Sec. IV. The paper ends with a Conclus
section and an Appendix where we compile the techn
details necessary to conveniently handle spatiotempor
correlated fluctuations.

II. STOCHASTIC MODELIZATION AND EFFECTIVE
DETERMINISTIC MODEL

Although as mentioned above explicit results will be o
tained for the Barkley’s model, we adopt on what follows
more general perspective by formulating our analytical tre
ment as it would apply to a generic active medium descri
by an activator-inhibitor~FitzHugh-Nagumo-like! dynamics,

] tu5D¹2u1 f ~u,v;b!,

] tv5u2v. ~2!

Note that, as usual in this context, diffusion of the inhib
tor has been neglected and, for the sake of simplicity,
have incorporated the time scale parameter of the model
the generic definition of the kinetic term. In the equatio
aboveb is the parameter that is assumed to control the
citability of the medium, i.e., it would represent, for e
ample, the intensity of light in the photosensitive Belouso
Zhabotinsky~BZ! reaction. It is thus natural to introduc
external fluctuations acting on the medium through this
rameter by letting it to fluctuate according tob→b
1h(x,t) ~to avoid overloading notation we keep on denoti
the mean value with the same symbolb). In this way we
arrive at the following generic system of stochastic par
differential equations~SPDE!,

] tu5D¹2u1 f ~u,v,b!1g~u!h~x,t !,

] tv5u2v. ~3!

In fact, the only implicit limitation to what we have com
mitted ourselves when writing Eq.~3!, and certainly valid for
the Barkley’s model, is that the noise enters directly only
the dynamics of the activator variable, and, furthermore,
assume that it is coupled explicitly only with this variabl
Although this in not in any way a fundamental requireme
of our theoretical analysis, it renders its practical handl
much simpler, as exemplified on what follows. The only
maining task is to specify the statistical properties of
fluctuating forceh(x,t). We prescribe it as a Gaussian sp
tiotemporal distributed noise with zero mean and correlat
given by

^h~x8,t8!h~x,t !&5G~ ux2x8u,ut2t8u!

5C~ ux2x8u/l!g~ ut2t8u/t!, ~4!

where for ad-dimensional system,

C~r /l!5
s2

~A2p!dld
e2r 2/2l2

,
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g~s/t!5
1

t
e2s/t. ~5!

For the sake of simplicity we have adopted isotropic, stati
ary, and uniform properties. In addition we propose a dec
pling ansatz for the temporal and spatial dependences. In
way we highlight the role of the three basic input paramet
of the external fluctuations: intensity (s2), correlation time
(t), and correlation length (l) @16#.

The set of equations~3!–~5! does not admit an exact so
lution. The important point to realize, however, is that due
the multiplicative nature of the random term, one can se
rate its systematic effects from those that trivially average
zero. Moreover, we will show how to transfer the former in
an effective deterministic model statistically equivalent
the original SPDE set. Note in passing that the assumptio
such a multiplicative character of the fluctuations is by
means unreasonable, since commonly, and singularly for
alistic Oregonator-like models of the BZ reactions, activat
inhibitor simplified descriptions of active media do resu
from adiabatic reduction procedures of more compl
reaction-diffusion schemes originally containing additi
fluctuations@17#.

The practical recipe to extract such systematic contri
tions is the following. We denote the nonzero mean value
the noisy term,

^g„u~x,t !…h~x,t !&[^F~u!&Þ0. ~6!

By adding and substractingF(u) to the equation of mo-
tion for u in Eq. ~3! we arrive at

] tu5D¹2u1 f ~u,v,b!1F~u!1R~u;x,t !,

] tv5u2v, ~7!

whereR(u;x,t)5g(u)h(x,t)2F(u) is a more complicated
random term but has a zero mean value and whose eff
can be safely discarded for not very large noise intensit
The original SPDE set is thus equivalent to aneffectivede-
terministic model, formally expressed as

] tu5D¹2u1 f ~u,v,b!1F~u!,

] tv5u2v. ~8!

Following the steps derived in Ref.@17# we have that

F~u!5f0~u!1@f1a~u!1f1b~u!1f1c~u!#t1•••,
~9!

wheref0 stands for the white noise systematic contributio
andf1i denotes the first order contributions of an expans
based on the correlation timet. Explicitly,

f0~u!5C~0!g~u!g8~u!, ~10!

f1a~u!52C~0!g8~u!$g~u!, f ~u,v !%,

f1b~u!5C~0!Dg8~u!g9~u!~“u!2, ~11!
7-2
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EXCITABILITY TRANSITIONS AND WAVE DYNAMIC S . . . PHYSICAL REVIEW E 65 066107
f1c~u!5DC9~0!g~u!g8~u!,

where$g, f %5g8 f 2g f8, and the derivatives are taken wit
respect to the activator fieldu. We remark here that the de
pendence on the correlation lengthl is included through
C(0) andC9(0) ~see Sec. IV!.

The explicit form of these contributions can be obtain
readily for the model Eq.~1!. The first termf0(u) is the
standard Stratonovich’s contribution@16# and the f1c(u)
term is formally equal tof0(u), so we explicitly obtain

f0~u!5
C~0!

a2e2
u~12u!~122u!, ~12!

f1c~u!5
DC9~0!

a2e2
u~12u!~122u!. ~13!

The f1a(u) contribution is written as

f1a~u!5
C~0!

a2e3
u2~12u!2~122u!. ~14!

Here a higher-order polynomial appears whose influence
the wave dynamics is impossible to determine analytica
Our practical strategy here consists in substituting it for
equivalent and simpler functional form like those appear
in Eqs.~12! and~13!. As can be readily checked this can b
accomplished through the simple introduction of a numer
prefactorb5 6

25 (A3/A5) @see Fig. 1~a!#. This prefactor has
been calculated imposing the same maximum value for
two polynomials@u2(12u)2 andbu(12u)# in the interval
@0,1#.

Thus, the contribution of Eq.~14! is replaced by the ap
propriate expression:

f1a~u!'
C~0!

a2e3
bu~12u!~122u!. ~15!

Finally, for the treatment of the term containing spat
derivativesf1b(u),

f1b~u!52
C~0!D

a2e2
2~122u!~“u!2, ~16!

we perform numerical derivatives of the one-dimensio
profile for the activator variable with the ultimate purpose
reduce the whole contribution to the same functional form
the previously evaluated terms@see Fig. 1~b!#. Skipping the
details, we end up with

f1b~u!52
C~0!

a2e2
2Dgu~12u!~122u!, ~17!

whereg'12.
Finally, by putting all these contributions together, we g
06610
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f1~u!t52
C~0!u~12u!~122u!

a2e2

t

t0
, ~18!

where we have introduced a new time scalet0 defined as

t0
21~l!52

DC9~0!

C~0!
2

b

e
12Dg. ~19!

This is one of the relevant parameters of our analysis, wh
for realistic choices of the parameter values is positive
contains three terms each one being a characteristic t
The most important for us is the first one because it keeps
dependence on the noise correlation lengthl, being indepen-
dent ofs2 andt. The other two terms are associated with t
time scale of the reaction and diffusion, respectively.

Using these final expressions we arrive at an effective
renormalized version of Barkley’s model@Eq. ~1!#, with the
following parameter redefinitions:

FIG. 1. ~a! Plot of the functionality of Eq.~14! ~dotted line! and
the approximation used in Eq.~15! ~solid line!. ~b! Square of the
second spatial derivate of the activator variable~dashed line!. Ap-
proximation proposed in Eq.~17! with g'12 ~solid line!.
7-3
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FIG. 2. Parameters of the effective mod
Eqs.~23!–~25! vs the temporal correlation of the
noise (t). In this and following figures, the sym
bols s.u. and t.u. correspond, respectively, to
dimensionless spatial and temporal units used
the model in Eq.~1!. Parameter values area
50.7, b50.1, e50.02, D51, C(0)50.004,
C9(0)520.8, andt050.0047 t.u.
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a85aS 12
2

ea2
C~0!~12t/t0!D , ~20!

b85b2
1

ea
C~0!~12t/t0!, ~21!

e85
e

F12
2

ea2
C~0!~12t/t0!G . ~22!

Although we admit that this particularly simple renorma
ization scheme is model dependent, the procedure is q
general and its predictions are quite robust, as shown in
lowing sections, when they are statistically compared w
numerical simulations of the original stochastic model.

It is clear that these results have been obtained for sm
noise intensities and temporal correlations and there
some inconsistencies should be expected for large value
these parameters. In order to get a better analytical con
gence we further propose a standard analytic regulariza
of the previous first-order expressions. The simplest regu
ization of thet dependence, giving the deterministic lim
whent→0, would be expressed by~see Fig. 2!

a85aS 12
2CR~0!

ea2 D , ~23!

b85b2
CR~0!

ea
, ~24!

e85
e

S 12
2CR~0!

ea2 D , ~25!
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where for simplicity we have introduced the effective para
eterCR(0) into the renormalized expressions for the mod
parameters,

CR~0!5
C~0!

@11t/t0~l!#
. ~26!

This is another relevant effective parameter in our analyt
approach. It can be understood as a renormalization of
noise intensity, which incorporates the influence of the th
parameters of the noise@remember thatC(0);s2/ld#. The
white noise intensity is trivially recovered fort→0 leading
to the well-known Stratonovich contribution, and the det
ministic limit is obtained ass2→0, t→`, or l→`.

The behavior oft0 andCR(0) as a function of the noise
parameters will help us in the interpretations and predicti
relevant to the phenomena in noisy excitable systems
ported in the following sections.

III. NOISE-INDUCED EXCITABILITY TRANSITIONS

Quite diverse are the wave propagation phenomenolo
that can be found in spatially extended active media. In t
section we focus on the most paradigmatic examples,
single front propagation~either with or without free ends!,
spiral waves or target patterns. Our goal at this point is
show that external distributed fluctuations can be effectiv
used to tune the global excitability properties of the mediu
and in turn modify the conditions under which the differe
regimes of wave propagation are observed. Although suc
effect will naturally depend on the different parameters of
fluctuations, i.e, their intensity and length and time corre
tions, we will restrict ourselves in this section to the cons
eration of noncorrelated, neither temporal nor spatial, no
In this way, we hope to stress the generic nature of what
have called noise-induced excitability transitions and, at
same time, focus on the role of the fluctuation intensity
7-4
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EXCITABILITY TRANSITIONS AND WAVE DYNAMIC S . . . PHYSICAL REVIEW E 65 066107
the main parameter controlling such transitions.
All the numerical simulations reported in this section th

correspond to run implemented discretized codes for num
cal integration, via an implicit Heun method, of the origin
SPDE adapted to the Barkley’s model. This is done once
spatially distributed fluctuations are prescribed through in
pendent realizations on each grid cell of a Gaussian w
random process. To compare with our analytical predictio
we only need to run simulations of the deterministic effect
model with the model parameters renormalized accordin
the results of the preceding section, Eqs.~23!–~26!, under
the limit t→0 and with intensityC(0)5s2/(Dx)d.

A. Nonexcitable-excitable transition: Noise-supported
wave propagation

The simplest case to begin with corresponds to o
dimensional propagation conditions, when active media
unable to support waves~nonexcitable regime!. Let us sup-
pose now that to such a nonexcitable medium we sim
superimpose distributed uncorrelated fluctuations that a
age to zero. As repeatedly stated above, we modify in
way the global excitability properties of the medium and a
result we do observe in this case steadily propagating wa
This is illustrated in Fig. 3 for circular fronts, where respe
tively we plot propagation conditions of the fluctuation-fr
nonexcitable medium~first column in Fig. 3!, of the noisy
forced situation~second column in Fig. 3!, and finally, for
the sake of comparison, of the effective deterministic sys
~third column in Fig. 3!.

A somewhat more quantitative study of such
nonexcitable-excitable transition, this time as it applies
strictly one-dimensional fronts, is summarized in Fig. 4. Ta
ing the velocity propagation of stable fronts as indicator,
can neatly identify the intensity-dependent fluctuati
threshold for one-dimensional noise-sustained wave pro
gation. Also note the monotonous increase of the front
locity, as the noise intensity increases, as a direct signatu
the excitability enhancement in the medium. We stress
very good agreement we observe between the simulation
the noisy system and those for the deterministic effec
one. In the former case, obviously, results come from av
ages among several realizations, the velocity being take
the very first time the front is formed.

More spectacular results are expected to occur in goin
real two-dimensional propagation conditions. In this conte
a pair of situations will be considered in turn: spiral wav
and target patterns.

B. Subexcitable-excitable transition: Noise-sustained spirals

The control of shrinking or sprouting of autowaves wi
free ends, as considered previously in other experimenta
numerical situations@12,13#, appears to be a perfect scena
to be addressed from the point of view of the effect of e
ternal fluctuations on excitable media. The most crucial
ample corresponds here to an initially subexcitable med
for which an initially created spiral wave retraces back a
finally disappears. Similarly to what was reported in the p
ceding section, by simply adding distributed uncorrela
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fluctuations, we do sustain in this case steady rotating sp
that rapidly adopt a characteristic pitch and rotation per
after a few rotations. Numerical simulations are plotted
Fig. 5, organized similarly to the previous considered ca
Actually, as we can see in Fig. 5, our effective model is n
only able to reproduce the final pitch of the spiral und
fluctuations, but also its transient behavior to adopt a ste
rotation mode.

Again, a somewhat more quantitative analysis of suc
subexcitable-excitable transition, was conducted by referr
to one of the characteristic parameters of the stable rota
waves, in this case the rotation period. Results are sum
rized in Fig. 6 for an intermediate range of noise intensit
before spiral breakup induced by noise@18#. It is clear in this
case, again related to the noise-enhanced excitability p
erty, that the rotation period decreases with the fluctuat
intensity. With reference to Fig. 6, the boundary betwe
subexcitable and excitable conditions is numerically fixed
the condition of expanding versus contracting a wave wit
free end, this being the condition of spiral formation in
infinite medium. In passing we justify in this way, the shift
our finite size simulation results. Another numerical dif
culty we meet and that could explain also some discrep
cies, is the Brownian motion of the spiral tip@14#, which
renders the practical computation of the rotation period
somewhat difficult task, singularly for weak excitability.

C. Excitable-oscillatory transition: A pacemaker
created out of noise

Actually this is the situation that motivated our expe
mental and numerical research previously published
noise-induced excitability transitions@13#. We start in this
case with an excitable medium perturbed with a circu
wave front that expands, without reproducing itself as e
pected, to encompass the whole system. By randomly f
ing the excitability of the medium, however, not only th
front waves move faster but more importantly, repeat the
selves to, transiently, create a pacemaker regularly emit
waves. Numerical simulations are plotted in Fig. 7, org
nized similarly to the previous cases. It is worth remarking
this point that our observations, in accordance with theo
ical predictions, certainly indicate that in most cases
regular target pattern structure is not stable, being eventu
replaced by a global oscillation of the entire forced mediu
In any respect, however, this fact invalidates our claim o
pacemaker created out of noise to refer to the phenomeno
hand, since to strictly maintain the pacemaker structure
only need to think of an initial condition where the nois
forced excitable region is surrounded with a noise-free p
excitable area.

The supplementary, more quantitatively oriented, analy
of the phenomenon of excitable-oscillatory transitions
ferred to in this section, was aimed to compute the emitt
period of the pacemaker. Results, summarized in Fig. 8,
produce qualitatively the experimental observations for
chemical active Belousov-Zhabotinsky reaction reported
Ref. @13#. The transition between excitable and oscillato
conditions was estimated, in although reliable, yet not tota
7-5
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FIG. 3. First column: Propagation failure of an initial perturbation in a nonexcitable media free of fluctuations. Second c
Propagation of the same initial perturbation supported by stochastic fluctuations (s250.000 01). Third column: Propagation of the sam
initial perturbation for the effective deterministic model using the renormalized values of the parameters corresponding to the noise
C(0)50.001. Time intervals correspond to 4.2 t.u. between the first and second rows and 12 t.u. between the second and third. P
of the model and of the simulations are:a50.7, b50.07, e50.04, Dx50.1 s.u., Dt50.001 t.u., 5123512 pixels, andD51 for this
figure and the rest.
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rigorous way, from the conditionb850 in Eq. ~24!. Note
also with respect to our previous results for single fro
propagation, or even when we computed spiral rotation
riods, that the agreement between the noisy and effec
renormalized systems is a little bit worse for the oscillati
frequency. This could be explained by a singular sensitiv
of this later quantity to fluctuations as due to rare local nuc
ation effects. In any case, and as anticipated above in Se
differences should be larger when increasing noise inte
ties. In spite of this small discrepancy, at the level of os
lation period, between the stochastic and the effective m
els, the agreement between the velocities of emitted wa
~not shown! is again as remarkable as in Fig. 4. One fin
comment is worth mentioning here with respect to the p
ods plotted in Fig. 8. Presented results correspond to the
between the first and the second pulses. This time incre
for the next pulses until it arrives the global oscillatio
period.

IV. SPATIOTEMPORAL STRUCTURED NOISE EFFECTS

The preceding section was devoted to the study of dif
ent scenarios of transitions induced by uncorrelated fluc
tion, i.e., exhibited by the emergence of sustained pattern
wave propagation purely arising from the intensity of a wh
06610
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noise approximation. Now we will concentrate on the effe
of such external fluctuations on preexisting wave patterns
gain generality and to prove that this behavior is by
means an artifact of using a white noise approximation,
will apply our general formalism, presented in Sec. II, to t
case of generic structured spatiotemporal fluctuations. We
it in two steps: first we consider only temporal correlatio
and next we introduce also the spatial correlations.

A. Time correlated noise

As the most genuine parameter of wave propagation,
refer on what follows to the velocity of propagating waves
a function of the correlation time (t), but keeping the noise
white in space. The spatially white noise prescription in
lattice supposes that

C~0!5
s2

Dxd
, C9~0!52

2ds2

Dx21d
. ~27!

Quantitative results are summarized in Fig. 9 for differe
noise intensities and again contain both the simulations
the noisy system and those of the effective deterministic o
Now the main contribution tot0 in Eq. ~19! arises from the
first term that is one order of magnitude greater than
7-6
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FIG. 4. Mean velocity of noise-supported traveling waves in
one-dimensional nonexcitable media vs the noise intensity, a
aged with 25 realizations~points!. Velocity of traveling wave for the
effective deterministic model using the renormalized values of
parameters Eqs.~23!–~26! ~solid line!. Error bars correspond to th
velocity dispersion. Vertical line shows the transition between d
ferent types of excitability. Parameters of the model and of
simulations are: a50.7, b50.08, e50.04, Dx50.05 s.u., Dt
50.0005 t.u., andL5100 s.u.
06610
others (t0'0.0047 t.u. for the system parameters of Fig.!.
Noting that the horizontal axis of Fig. 9 is logarithmic, on
can see that the increase of the propagation speed is
sharp whent approaches the new temporal scale introduc
by the noiset0.

It is important to realize how increasing the correlati
time, and in a sense decreasing in this way the effec
intensity of the fluctuations@see Eq.~26!#, and in turn the
excitability of the medium, the front velocity diminishes. F
large correlation time the front speed for the averaged ex
ability is recovered. Note also the systematic effect obser
for large correlation timest in the one-dimensional stochas
tic simulations plotted in Fig. 9. Apparently the velocity
smaller than the deterministic value corresponding to
mean excitability. Something similar had been observed
dichotomic frozen noise in Ref.@19#.

B. Spatiotemporal correlated noise

Here we add the parameter of spatial correlation lengthl.
Technical details can be found in the Appendix. Our simu
tions correspond now to two dimensional systems, with
explicit expressions forC(0) andC9(0) obtained from Eq.
~5!,

C~0!5
s2

pl2
, C9~0!52

s2

pl4
. ~28!

r-

e

-
e

ave in a
ing
en
FIG. 5. First column: Propagation failure of a spiral wave in a subexcitable media free of fluctuations. Second column: Spiral w
subexcitable media sustained by stochastic fluctuations (s250.0001). Third column: Spiral wave for the effective deterministic model us
the renormalized values of the parameters corresponding to the noise intensityC(0)50.0025. Time intervals correspond to 7.5 t.u. betwe
each plot. Parameters of the model and of the simulations are:a50.7, b50.13, e50.02, Dx50.2 s.u., Dt50.005 t.u., and 5123512
pixels.
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FIG. 6. Mean rotation period of noise-sustained spiral wave
a subexcitable media vs the noise intensity~points!. Rotation period
of the spiral wave for the effective deterministic model using
renormalized values of the parameters Eqs.~23!–~26! ~solid line!.
Error bars correspond to the period dispersion. Vertical lines sh
the transition between different types of excitability. Parameters
the model and of the simulations are:a50.7, b50.13, e
50.02, Dx50.2 s.u., Dt50.005 t.u., and 2563256 pixels.
06610
Keeping the noise intensitys2 constant, increasing eithe
the temporal (t) or length (l) correlation parameters, th
velocity of wave propagation decreases, as seen in Fig.
This is once more explained as a decrease in the effec
intensity of the fluctuations@see Eqs.~26! and ~28!#. Unlike
the preceding section, we change the new temporal s
introduced by the noiset0 when we modify the correlation
length of the noise. In particular, the first term of Eq.~19!
becomes increasingly irrelevant whenl increases and then
its effects are small~see caption of Fig. 10!. These are the so
called nontrivial effects ofl. Strong effects, although trivial
are those coming from the intensity of the noise,C(0)
;s2/ld, which can be absorbed as a renormalized inten
in a white noise assumption@Eq. ~26!#.

In Fig. 11 several front patterns for different values of t
time and length correlation parameters are displayed. In
the situations, the front structure is largely maintained
though it presents some unavoidable roughness induce
the stochastic nature of the forcing. This irregularity is mo
marked when decreasing both length and temporal corr
tion, although the correlation time effects seem more imp
tant within the temporal and spatial range of the fluctuatio
used in this study.

These three last figures clearly show how the noise
rameterst and l affect quantitatively the dynamics o
chemical waves in excitable media under external fluct
tions, and how these results are explained by our renorm
ized approach.

n

w
f

a target
istic

u.
FIG. 7. First column: Propagation of a circular wave in an excitable media free of fluctuations. Second column: Propagation of
pattern created out of stochastic fluctuations (s250.000 12). Third column: Propagation of target pattern for the effective determin
model using the renormalized values of the parameters corresponding to the noise intensityC(0)50.003. Time intervals correspond to 6 t.
between each plot. Parameters of the model and of the simulations are:a50.7, b50.02, e50.04, Dx50.2 s.u.,Dt50.002 t.u., and 512
3512 pixels.
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FIG. 8. Mean oscillation period of noise created wave trains i
one-dimensional subexcitable media vs the noise intensity, aver
with 25 realizations~points!. Oscillation period of the wave train
for the effective deterministic model using the renormalized val
of the parameters Eqs.~23!–~26! ~solid line!. Error bars correspond
to the period dispersion. Vertical lines show the transition betw
different types of excitability. Parameters of the model and of
simulations are:a50.7, b50.1, e50.02, Dx50.05 s.u., Dt
50.0005 t.u., andL5100 s.u.

FIG. 9. Mean velocity of noisy traveling waves in a on
dimensional excitable media vs the correlation time of the noiset)
for different noise intensities:s250.001 ~filled circles!, s2

50.002 ~circles!, s250.003 ~filled triangles!, ands250.004 ~tri-
angles!. Velocity of traveling waves for the effective determinist
model using the renormalized values of the parameters, Eqs.~23!–
~26! ~solid lines!. Parameters of the model and of the simulatio
are: a50.7, b50.1, e50.02, Dx50.1 s.u.,Dt50.001 t.u., andL
5400 s.u.
06610
a
ed

s

n
e

FIG. 10. Mean velocity of noisy traveling waves in a on
dimensional excitable media vs the correlation time of the no
(t), averaged with 25 realizations, for the same noise inten
(s250.001) and for different correlation lengths:l53Dx s.u.
~filled circles! (t050.057 t.u.), l54Dx s.u. ~circles! (t0

50.061 t.u.), andl55Dx s.u. ~filled triangles! (t050.064 t.u.).
Velocity of traveling waves for the effective deterministic mod
using the renormalized values of the parameters, Eqs.~23!–~25!
~solid lines!. For the sake of clarity only two characteristic err
bars on the averaged velocity are shown. Labels~A!–~D! corre-
spond to the cases in Fig. 11. Parameters of the model and o
simulations are:a50.7, b50.1, e50.02,Dx50.2 s.u.,Dt50.005
t.u., and 2563256 pixels.

FIG. 11. Snapshots for two-dimensional fronts aftert
511.25 t.u. from the initial planar preparation, with the pattern
noise superposed for different values of the correlation time
correlation length and the same noise intensity (s250.001): ~A!
t50.06 t.u. andl53Dx s.u. ~mean velocityv053.23 s.u./t.u.);
~B! t50.6 t.u. and l53Dx s.u. (v053.12 s.u./t.u.); ~C! t
50.06 t.u. and l55Dx s.u. (v053.14 s.u./t.u.); and~D! t
50.6 t.u. andl55Dx s.u. (v053.08 s.u./t.u.). Parameters o
the model and of the simulations are:a50.7, b50.1, e
50.02, Dx50.2 s.u., Dt50.005 t.u., and 2563256 pixels.
7-9
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V. CONCLUSIONS

We have developed an analytical approach for the ev
ation of the systematic effects of spatiotemporal noises
activator-inhibitor equations. We have applied these calc
tions to the Barkley’s model. We have analyzed separa
the systematic effects of the different noise parame
s2, t, andl. Increasing the noise intensity the excitabili
of the medium enhances giving rise to advanced transit
between different excitability regimes and change, cor
spondingly, the wave propagation characteristics. Never
less, if we increase either the temporal or the spatial corr
tions a decrease in the excitability is instead obtained.

Our main theoretical result is the renormalization of t
parameters of the deterministic model, which allows us
predict and understand the noise effects by using only de
ministic calculations and arguments. Numerical simulatio
of the stochastic system modeled by stochastic partial dif
ential equations support our theoretical results with a h
degree of accuracy.
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APPENDIX

We present here the numerical algorithm for the gene
tion of noise with controlled spatiotemporal structure in
two-dimensional lattice. The numerical simulations cor
sponding to Secs. III~white noise in space and time! and
IV A ~white noise in space but correlated in time! have been
performed with the usual algorithms@16#. Here we presen
details on the generation of both spatially and tempora
correlated fluctuations.

The noise we have used through this work is a Gaus
process with zero mean and correlations given by Eq.~5!.

A particular feature of the spatial correlation is that
c-
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Fourier transform is also a Gaussian function,

C~k!5E
R

dxde2 ik•xC~x!5e2(l2k2/2), ~A1!

so, the noise correlation Eq.~4! in the Fourier space can b
expressed as

^h~k,t !,h~k8,t8!&5s2e2(l2k2/2)dd~k1k8!
1

t
e2(ut2t8u/t).

~A2!

The first step is to write the equation of motion ofh(k,t),

t] th52h1j~k,t !. ~A3!

This equation is linear and a formal solution can be o
tained in a straightforward way. Dividing the time in temp
ral steps,Dt, the formal solution can be written as@16#

h~k,t1Dt !5h~k,t !e2Dt/t1As2

t
~12e22Dt/t!a~k,t !,

~A4!

where

a~k,t !5@C~k!#1/2b~k,t !. ~A5!

b(k,t) is a Gaussian white noise in Fourier space

^b~k,t !,b~k8,t8!&52d t,t8d
d~k1k8!, ~A6!

which can be generated using standard procedures@20#.
One can check that if the initial values ofh(k,0) are also

Gaussian distributed with a correlation,

^h~k,0!,h~k8,0!&52
s2

t
e2(l2k2/2)dd~k1k8!, ~A7!

then the noiseh(k,t) is a stationary, isotropic, and Gaussia
stochastic process with correlation Eq.~A2!. At each time
integration steph(k,t) is generated and Fourier antitran
formed to geth(x,t) that is used in the numerical algorithm
to simulate Eq.~3!. In this way the noise parameterss2, t,
andl are controlled independently of each other.
d
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