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Excitability transitions and wave dynamics under spatiotemporal structured noise
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We present an analytic and numerical study of the effects of external fluctuations in active media. Our
analytical methodology transforms the initial stochastic partial differential equations into an effective set of
deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions
on the systematic and constructive effects of the noise, for example, target patterns created out of noise and
traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and
spatial structures.
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[. INTRODUCTION tional ones furnished here, of what we denote naése-
induced excitability transitiongii) Our second purpose is to
Excitability, in relation to wave propagation processes, isextract robust analytical and numerical evidences of the pro-
one of the most genuine features of distributed active mediéound effect of external fluctuations coupled to the nonlinear
[1,2], irrespective of the context we refer to, either chemicaldynamics of excitable systems to ultimately modify their
[3], biological [4], cardiological[5], or neurophysiological Wave propagation properties. Actually we want to prove that
[6]. In fact, we could think of excitability as one of the main this is not at all a specific effect associated to some peculiar
robust mechanisms to sustain signal propagation in naturétatistical prescriptions of the imposed fluctuations. In this
The diversity of such self-organized propagating patterngespect we extend our previous resedit8], where we fo-
varies largely, depending on initial conditions or geometricalcused on purely uncorrelated partitioned fluctuatiomkite
constraints: from the simplest one-dimensional wave front§10is@ to address more realistic situations corresponding to
[7] to spiral waves[8] and target pattern§9] in two-  spatiotemporal structured random forcing of the active me-

dimensional systems, or adopting more complicated topolodia. What comes out of our study, and this is the main ge-
gies, such as scroll waves and scroll rifg®] in three-  neric conclusion we want to stress, is that such spatiotempo-

dimensional media. ral structured noise forcing, although locally and globally
Obviously, in any realistic situation we can envisage, acaveraging to zero, always enhances the medium excitability,
tive media cannot be completely isolated from their environfavoring in turn wave propagation conditions.
ment. Thus, the control, either global or local, of the excit- Unlike our previous related papes4] and[13], we pre-
ability of a given medium will be unavoidably subjected to fer here to concentrate on the theoretical treatment of the
imperfections or fluctuations. Until recently, and most com-Pproblem, without accompanying experiments, but supple-
monly, one would consider this statement as a sort of word ofnenting it with extensive numerical simulations. The theo-
caution to prevent experimentalists or to discourage theorg€tical part is totally generic as it would apply to FitzHugh-
ticians. However, during this last decade a new twist on thigNagumo-like schemes to describe active systems. Specific
generally accepted idea has been progressively emerging &pplications of these theoretical results, whenever needed,
ter the discovery of more and more subtle examples of wha&nd particularly the whole numerical part of the paper will
are presenﬂy viewed as noise-constructive effects in non]inEefer, however, to the simplest modelization of such excitable
ear system$11]. In this paper we will show abundant ex- dynamics, namely, the Barkley's modgl5]
amples of phenomenologies occurring in excitable media

that can_be addr_essed unqler this_ gener_al perspective. Ju=DV2u+ lu(l—u)( U— vtb ’
To gain the widest possible universality we propose a ge- € a
neric theoretical framework that covers the whole spectrum
of excitability conditions considered here: from nonexcitable dv=u-—v. 1)
(media unable to propagate any kind of pujs@ssubexcit-
able (contraction of waves with free endsp to excitable After these introductory remarks, the paper is organized

and even to oscillatory regimes. In doing so our goal is two-as follows. Section Il is devoted to present the theoretical
fold: (i) First, we want to demonstrate that some previoudreatment that enables us to deal with excitable systems sub-
observations in noisy excitable systems, both experimentaécted to spatiotemporal structured fluctuations. Section IlI
and numerical, concerning photosensitive versions of theummarizes the different scenarios of what was denoted pre-
Belousov-Zhabotinsky reaction mainly by & et al.[12]  viously as noise-induced excitability transitions. To highlight
and by us[13], are in fact particular examples, with addi- the main trends of these phenomena we prefer to limit at this
point to white (temporally uncorrelatedfluctuations stress-
ing the effect of the intensity of the fluctuations. The com-
*Corresponding author. Email address: s.alonso@qf.ub.es plete analysis, including correlations both in space and time,

1063-651X/2002/66)/06610711)/$20.00 65 066107-1 ©2002 The American Physical Society



S. ALONSO, F. SAGUB, AND J. M. SANCHO PHYSICAL REVIEW E65 066107

is concentrated in Sec. IV. The paper ends with a Conclusion 1y
section and an Appendix where we compile the technical y(slm)=—e"" 5)
details necessary to conveniently handle spatiotemporally

correlated fluctuations. For the sake of simplicity we have adopted isotropic, station-
ary, and uniform properties. In addition we propose a decou-
Il. STOCHASTIC MODELIZATION AND EFFECTIVE pling ansatz for the temporal and spatial dependences. In this
DETERMINISTIC MODEL way we highlight the role of the three basic input parameters

i . ) of the external fluctuations: intensityrf), correlation time
Although as mentioned above explicit results will be ob—(T) and correlation length\() [16].

tained for the Barkley's model, we adopt on what follows a" "tpq get of equationé3)—(5) does not admit an exact so-

more general perspective by formulating our analytical treaty sion The important point to realize, however, is that due to
ment as it would apply to a generic active medium describegne myftiplicative nature of the random term, one can sepa-
by an activator-inhibitofFitzHugh-Nagumo-likedynamics, a6 its systematic effects from those that trivially average to

zero. Moreover, we will show how to transfer the former into

— 2 . . L. .. .
du=DV-u+f(u,v;b), an effective deterministic model statistically equivalent to
the original SPDE set. Note in passing that the assumption of
duv=u—u. (2 such a multiplicative character of the fluctuations is by no

means unreasonable, since commonly, and singularly for re-

Note that, as usual in this context, diffusion of the inhibi- alistic Oregonator-like models of the BZ reactions, activator-
tor has been neglected and, for the sake of simplicity, wenhibitor simplified descriptions of active media do result
have incorporated the time scale parameter of the model intisom adiabatic reduction procedures of more complete
the generic definition of the kinetic term. In the equationsreaction-diffusion schemes originally containing additive
aboveb is the parameter that is assumed to control the exfluctuations[17].
citability of the medium, i.e., it would represent, for ex-  The practical recipe to extract such systematic contribu-
ample, the intensity of light in the photosensitive Belousov-tions is the following. We denote the nonzero mean value of
Zhabotinsky (BZ) reaction. It is thus natural to introduce the noisy term,
external fluctuations acting on the medium through this pa-

rameter by letting it to fluctuate according tb—b (gu(x,1)n(x,t))=(P(u))#0. (6)
+ n(x,t) (to avoid overloading notation we keep on denoting ) ) i
the mean value with the same symb)l. In this way we By adding and substractin@(u) to the equation of mo-

arrive at the following generic system of stochastic partialfion for uin Eq.(3) we arrive at
differential equation§SPDB, au=DV2u+ f(u,0,b) + () + R(UIX.1),

du=DV?u+f(u,v,b)+g(u) n(xt), du=u—v (7

dv=u-—v. (3 whereR(u;x,t)=g(u) 7(x,t) — P (u) is a more complicated
random term but has a zero mean value and whose effects
In fact, the only implicit limitation to what we have com- can be safely discarded for not very large noise intensities.
mitted ourselves when writing E(B), and certainly valid for  The original SPDE set is thus equivalent to effectivede-
the Barkley's model, is that the noise enters directly only interministic model, formally expressed as
the dynamics of the activator variable, and, furthermore, we

assume that it is coupled explicitly only with this variable. du=DV2u+f(u,v,b)+d(u),
Although this in not in any way a fundamental requirement
of our theoretical analysis, it renders its practical handling dv=u-—u. (8)

much simpler, as exemplified on what follows. The only re-

maining task is to specify the statistical properties of the Following the steps derived in R€fL7] we have that
fluctuating forcen(x,t). We prescribe it as a Gaussian spa-

tiotemporal distributed noise with zero mean and correlation P (U) = ¢o(U) + [ h1a(U) + d1p(U) + Pyc(U) J7+ - -, .
given by

oy _ ot 1+ where ¢, stands for the white noise systematic contribution,
(7 1) D)= G(Ix=x'],[t=t']) and ¢4; denotes the first order contributions of an expansion
=C(|x=x'|/IN)y(Jt—t'|/7), (4  based on the correlation time Explicitly,

where for ad-dimensional system, $o(u)=C(0)g(u)g’(u), (10)
o2 $1a(U)=—C(0)g" (u){g(u),f(u,v)},
C(r/\)= ————e "2, ,
(\2m)°\ $15(1)=C(0)Dg’ (U)g"(u)(Vu)?, (11)
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{(W)=DC(0 ), 0.03 . : :
Phac(U) (0)g(u)g’(u) a) _____ u2(1—u)2(1—ZU)

Bu(1-u)(1-2u)
0.02 | _

where{g,f}=g'f—gf’, and the derivatives are taken with
respect to the activator field We remark here that the de-
pendence on the correlation lengthis included through
C(0) andC"(0) (see Sec. IV.

The explicit form of these contributions can be obtained
readily for the model Eq(1). The first term¢g(u) is the
standard Stratonovich’s contributidri6] and the ¢.(u) 0
term is formally equal tapy(u), so we explicitly obtain

0.01

function

C(0 —0.01 L
Bl = 2 (1 - u)(1-2u), (12) P!
a‘e
-0.02 ' ! ! !
DC’(0) 0 0.2 0.4 0.6 0.8 1
$1c(U)=———>—u(l-u)(1-2u). (13 u
a‘e
4 ; ; ’ :
The ¢,,(u) contribution is written as b) o——- (du/dx)®
o (1-u)
bra(U)= i 3)u2(1—u)2(1—2u). (14 3 X 1
a‘e ; N
/ N
Here a higher-order polynomial appears whose influence or ‘“% // \
the wave dynamics is impossible to determine analytically. 3 27 / \ |
Our practical strategy here consists in substituting it for an ~ / \
equivalent and simpler functional form like those appearing ‘/ \
in Egs.(12) and(13). As can be readily checked this can be 1l / \, i
accomplished through the simple introduction of a numerical / hN
prefactor 3= £ (\/3/\/5) [see Fig. 1a)]. This prefactor has / A\
been calculated imposing the same maximum value for the AN
two polynomials[u?(1—u)? and Bu(1—u)] in the interval 08 02 e Y 08 /
[0,1]. u

Thus, the contribution of Eq14) is replaced by the ap-

propriate expression: FIG. 1. (a) Plot of the functionality of Eq(14) (dotted ling and

the approximation used in E@15) (solid line). (b) Square of the
second spatial derivate of the activator variafilashed ling Ap-

hra(U)~ CiOs) Bu(1l—u)(1—2u). (15)  proximation proposed in Eq17) with y~12 (solid line).
a‘e
, . . 1-u)(1-2
Ema_lly, for the treatment of the term containing spatial d(U)7=— COu( Zuz)( u) l, (18)
derivatives¢,p(Uu), a‘e To
C(0)D where we have introduced a new time scaledefined as
bip(U)=— —552(1—2u)(Vu)?, (16)

" Son=-2T9 B o 19

we perform numerical derivatives of the one-dimensional

profile for the activator variable with the ultimate purpose to_ . . ) .
reduce the whole contribution to the same functional form of! his is one of the relevant parameters of our analysis, which

the previously evaluated ternfisee Fig. 1b)]. Skipping the for realistic choices of the parameter values is positive. It
details, we end up with contains three terms each one being a characteristic time.

The most important for us is the first one because it keeps the
dependence on the noise correlation lengtbeing indepen-
C(0) 2 : .
Hrp(U)=— 2Dyu(1—u)(1-2u), (17)  dentofo” andr. The other two terms are associated with the
2¢2 time scale of the reaction and diffusion, respectively.

Using these final expressions we arrive at an effective and

where y~12. renormalized version of Barkley's modgtqg. (1)], with the
Finally, by putting all these contributions together, we getfollowing parameter redefinitions:
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0.8 — : — —
06 | ]
® 0.4 i
0.2 | ]

0 107 107 X 10° '
0.1 ‘ ‘ ' ' ] FIG. 2. Parameters of the effective model
0.08 | 4 Egs.(23)—(25) vs the temporal correlation of the
I 1 noise (7). In this and following figures, the sym-
w 0.06 - i bols s.u. and t.u. correspond, respectively, to the
0.04 . dimensionless spatial and temporal units used for
] the model in Eq.(1). Parameter values are

T ' 5 |

10™ 10 10 =0.7, b=0.1, €=0.02, D=1, C(0)=0.004,
' C"(0)=—0.8, andr,=0.0047 t.u.
o
- 2 L L | |
0 107 10° 10" 10° 10'
T {t.u.)
2 where for simplicity we have introduced the effective param-
a’=a( 1- —ZC(O)(1—7/70)>, (20 eter Cg(0) into the renormalized expressions for the model
a parameters,
b'=b ! C(0)(1—17/79) (21 Cr(0)= (o) 26
~bT GO, RO~ T moT (28

€ This is another relevant effective parameter in our analytical
€= 5 . (22 approach. It can be understood as a renormalization of the
{1_ ~_co)1- /7o) noise intensity, which incorporates the influence of the three

€a

parameters of the noigeemember tha€(0)~ o*/\9]. The

white noise intensity is trivially recovered far—0 leading
Although we admit that this particularly simple renormal- to the well-known Stratonovich contribution, and the deter-

ization scheme is model dependent, the procedure is quitainistic limit is obtained agr®—0, 7—%, or A—®.

general and its predictions are quite robust, as shown in fol- The behavior ofr, and C(0) as a function of the noise

lowing sections, when they are statistically compared withparameters will help us in the interpretations and predictions

numerical simulations of the original stochastic model. relevant to the phenomena in noisy excitable systems re-
It is clear that these results have been obtained for smaflorted in the following sections.

noise intensities and temporal correlations and therefore

some inconsistencies should be expected for Iarge values of ||, NOISE-INDUCED EXCITABILITY TRANSITIONS

these parameters. In order to get a better analytical conver-

gence we further propose a standard analytic regularization Quite diverse are the wave propagation phenomenologies

of the previous first-order expressions. The simplest regulathat can be found in spatially extended active media. In this

ization of the r dependence, giving the deterministic limit section we focus on the most paradigmatic examples, i.e.,

when 7—0, would be expressed kigee Fig. 2 single front propagatiorieither with or without free ends

spiral waves or target patterns. Our goal at this point is to

2Cg(0) show that external distributed fluctuations can be effectively

a'=al 1- > | (23)  used to tune the global excitability properties of the medium,
€a and in turn modify the conditions under which the different
regimes of wave propagation are observed. Although such an

b’ =b— Cr(0) , (24) effect will naturally depend on the different parameters of the
€a fluctuations, i.e, their intensity and length and time correla-

tions, we will restrict ourselves in this section to the consid-

€ eration of noncorrelated, neither temporal nor spatial, noise.

€= T(O) (295 In this way, we hope to stress the generic nature of what we
_Z=R have called noise-induced excitability transitions and, at the

( ea’ ) same time, focus on the role of the fluctuation intensity as
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the main parameter controlling such transitions. fluctuations, we do sustain in this case steady rotating spirals
All the numerical simulations reported in this section thusthat rapidly adopt a characteristic pitch and rotation period
correspond to run implemented discretized codes for numeriafter a few rotations. Numerical simulations are plotted in
cal integration, via an implicit Heun method, of the original Fig. 5, organized similarly to the previous considered case.
SPDE adapted to the Barkley’s model. This is done once th@ctually, as we can see in Fig. 5, our effective model is not
spatially distributed fluctuations are prescribed through indeomy able to reproduce the final pitch of the spiral under

pendent realizations on each grid cell of a Gaussian whitgctuations, but also its transient behavior to adopt a steady
random process. To compare with our analytical predictionsygtation mode.

we only need to run simulations of the deterministic effective Again, a somewhat more quantitative analysis of such a

model with the model parameters renormalized according tQ ey citable-excitable transition, was conducted by referring
the r.es.ults of the pr-ece.dlng section, Eg&)_(zf)’ Under 15 one of the characteristic parameters of the stable rotating
the limit 7—0 and with intensityC(0)=o/(Ax)°. waves, in this case the rotation period. Results are summa-
rized in Fig. 6 for an intermediate range of noise intensities
A. Nonexcitable-excitable transit.ion: Noise-supported before spiral breakup induced by no[4d)]. It is clear in this
wave propagation case, again related to the noise-enhanced excitability prop-
The simplest case to begin with corresponds to oneerty, that the rotation period decreases with the fluctuation
dimensional propagation conditions, when active media aréntensity. With reference to Fig. 6, the boundary between
unable to support wavesionexcitable regime Let us sup- subexcitable and excitable conditions is numerically fixed as
pose now that to such a nonexcitable medium we simplythe condition of expanding versus contracting a wave with a
superimpose distributed uncorrelated fluctuations that avefree end, this being the condition of spiral formation in an
age to zero. As repeatedly stated above, we modify in thignfinite medium. In passing we justify in this way, the shift of
way the global excitability properties of the medium and as aur finite size simulation results. Another numerical diffi-
result we do observe in this case steadily propagating wavesulty we meet and that could explain also some discrepan-
This is illustrated in Fig. 3 for circular fronts, where respec-cies, is the Brownian motion of the spiral tjd4], which
tively we plot propagation conditions of the fluctuation-free renders the practical computation of the rotation period a
nonexcitable mediuntfirst column in Fig. 3, of the noisy = somewhat difficult task, singularly for weak excitability.
forced situation(second column in Fig.)3 and finally, for
the sake of comparison, of the effective deterministic system C. Excitable-oscillatory transition: A pacemaker
(third column in Fig. 3. created out of noise
A somewhat more quantitative study of such a

nonexcitable-excitable transition, this time as it applies to A(t:ttlja”ydth's IS the |5|tuat|on thhat mo_tlva;ced Ol;):. eﬁ(p(f”'
strictly one-dimensional fronts, is summarized in Fig. 4. Tak-Mental and numerical research previously publisned on

ing the velocity propagation of stable fronts as indicator, wehoise-induced excitability transitiorfd.3]. We start in this

can neatly identify the intensity-dependent fluctuation©@S€ ‘?"thtiﬂ ;axcnablz megjtlﬁm tperturzed' W't.r; alfcwcular
threshold for one-dimensional noise-sustained wave propa\’ya\{[edr(in at expan ﬂs], Wlh olu reriro ugng |sde ?S fex-
gation. Also note the monotonous increase of the front veP€cted, to encompass the whole system. By randomly Torc-

g the excitability of the medium, however, not only the

locity, as the noise intensity increases, as a direct signature ¢ faster but . cantl L th
the excitability enhancement in the medium. We stress th ont waves move faster but more importantly, repeat them-
Ives to, transiently, create a pacemaker regularly emitting

very good agreement we observe between the simulations 6f N cal simulati lotted in Fia. 7
the noisy system and those for the deterministic effectived/2VES. NUMErIcal simulations are plotted in 9. 7, orga-

one. In the former case, obviously, results come from aver["zed similarly to the previous cases. It is worth remarking at

ages among several realizations, the velocity being taken 5@'5 point that our obsgrvat_lon.s, In accordance with theoret-
the very first time the front is formed. ical predictions, certainly indicate that in most cases the

More spectacular results are expected to occur in going tBeguIar target pattern stryctu_re s not staple, being evenpually
real two-dimensional propagation conditions. In this contextePlaced by a global oscillation of the entire forced medium.

a pair of situations will be considered in turn: spiral waves’In any respect, however, th's. fact invalidates our claim of a
and target patterns. pacemaker created out of noise to refer to the phenomenon at

hand, since to strictly maintain the pacemaker structure we
only need to think of an initial condition where the noisy

forced excitable region is surrounded with a noise-free pure

The control of shrinking or sprouting of autowaves with excitable area.

free ends, as considered previously in other experimental or The supplementary, more quantitatively oriented, analysis
numerical situation§12,13, appears to be a perfect scenario of the phenomenon of excitable-oscillatory transitions re-
to be addressed from the point of view of the effect of ex-ferred to in this section, was aimed to compute the emitting
ternal fluctuations on excitable media. The most crucial experiod of the pacemaker. Results, summarized in Fig. 8, re-
ample corresponds here to an initially subexcitable mediunproduce qualitatively the experimental observations for the
for which an initially created spiral wave retraces back andchemical active Belousov-Zhabotinsky reaction reported in
finally disappears. Similarly to what was reported in the preRef. [13]. The transition between excitable and oscillatory

ceding section, by simply adding distributed uncorrelatecdconditions was estimated, in although reliable, yet not totally

B. Subexcitable-excitable transition: Noise-sustained spirals
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FIG. 3. First column: Propagation failure of an initial perturbation in a nonexcitable media free of fluctuations. Second column:
Propagation of the same initial perturbation supported by stochastic fluctuati8rs0(000 01). Third column: Propagation of the same
initial perturbation for the effective deterministic model using the renormalized values of the parameters corresponding to the noise intensity
C(0)=0.001. Time intervals correspond to 4.2 t.u. between the first and second rows and 12 t.u. between the second and third. Parameters
of the model and of the simulations a@=0.7, b=0.07, e=0.04, Ax=0.1 s.u.,, At=0.001 t.u., 51X512 pixels, and>=1 for this
figure and the rest.

rigorous way, from the conditiomb’=0 in Eq. (24). Note  noise approximation. Now we will concentrate on the effect
also with respect to our previous results for single frontof such external fluctuations on preexisting wave patterns. To
propagation, or even when we computed spiral rotation pegain generality and to prove that this behavior is by no
riods, that the agreement between the noisy and effectiveneans an artifact of using a white noise approximation, we
renormalized systems is a little bit worse for the oscillationwill apply our general formalism, presented in Sec. Il, to the
frequency. This could be explained by a singular sensitivitycase of generic structured spatiotemporal fluctuations. We do
of this later quantity to fluctuations as due to rare local nucleit in two steps: first we consider only temporal correlations
ation effects. In any case, and as anticipated above in Sec. nhd next we introduce also the spatial correlations.
differences should be larger when increasing noise intensi-

ties. In spite of this small discrepancy, at the level of oscil- A. Time correlated noise

lation period, between the stochastic and the effective mod-

els, the agreement between the velocities of emitted waves As the most genuine parameter of wave propagation, we
(not shown is again as remarkable as in Fig. 4. One ﬁnalrefer on what follows to the velocity of propagating waves as

comment is worth mentioning here with respect to the peri-a function of the correlation timer}, but keeping the noise

ods plotted in Fig. 8. Presented results correspond to the tini%l'.te In Space. -[Eet spatially white noise prescription in a
between the first and the second pulses. This time increas Ice Supposes tha

for the next pulses until it arrives the global oscillations 2 d_2

period. C0)= - ¢c"0)=—
=2 cO)

(27)

AX2+d :

IV. SPATIOTEMPORAL STRUCTURED NOISE EFFECTS . . - .

Quantitative results are summarized in Fig. 9 for different

The preceding section was devoted to the study of differnoise intensities and again contain both the simulations of

ent scenarios of transitions induced by uncorrelated fluctuathe noisy system and those of the effective deterministic one.
tion, i.e., exhibited by the emergence of sustained patterns dow the main contribution ta in Eq. (19) arises from the

wave propagation purely arising from the intensity of a whitefirst term that is one order of magnitude greater than the
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others o~0.0047 t.u. for the system parameters of Fig. 9
Excitable Noting that the horizontal axis of Fig. 9 is logarithmic, one
can see that the increase of the propagation speed is very
sharp whenr approaches the new temporal scale introduced
- by the noisery.

g It is important to realize how increasing the correlation
_-_ T time, and in a sense decreasing in this way the effective
K intensity of the fluctuationgsee Eq.(26)], and in turn the

excitability of the medium, the front velocity diminishes. For
large correlation time the front speed for the averaged excit-
ability is recovered. Note also the systematic effect observed
for large correlation times in the one-dimensional stochas-
tic simulations plotted in Fig. 9. Apparently the velocity is
smaller than the deterministic value corresponding to the
mean excitability. Something similar had been observed for
dichotomic frozen noise in Ref19].

Nonexcitable

Speed (s.u./t.u.)
n

0l —-e oo

0 © T 0.001 0.002 0.003 . .
C(0) B. Spatiotemporal correlated noise

FIG. 4. Mean velocity of noise-supported traveling waves in a Her.e we ad(.j the parameter Qf spatial corre_latlon Iel?tgth
one-dimensional nonexcitable media vs the noise intensity, aver-!.—ecm'caI details can be fOUI’ld.In the_Appendlx. Our S|.mula-
aged with 25 realizationgoints. Velocity of traveling wave for the tlons_, (_:orrespon_d now to two dlm?nsmnal S_yStemS' with the
effective deterministic model using the renormalized values of theeXPliCit expressions fo€(0) andC"(0) obtained from Eq.
parameters Eq$23)—(26) (solid ling). Error bars correspond to the 5),
velocity dispersion. Vertical line shows the transition between dif-
ferent types of excitability. Parameters of the model and of the o oA
simulations are: a=0.7, b=0.08, e=0.04, Ax=0.05 s.u., At C(0)= 2 C"(0)=- A (28)
=0.0005 t.u.,, and. =100 s.u.

2 2

FIG. 5. First column: Propagation failure of a spiral wave in a subexcitable media free of fluctuations. Second column: Spiral wave in a
subexcitable media sustained by stochastic fluctuatiofs-0.0001). Third column: Spiral wave for the effective deterministic model using
the renormalized values of the parameters corresponding to the noise in@¢®)ty 0.0025. Time intervals correspond to 7.5 t.u. between
each plot. Parameters of the model and of the simulationsaa+€.7, b=0.13, €¢=0.02, Ax=0.2 s.u., At=0.005 t.u., and 512512
pixels.
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30 . w . Keeping the noise intensity? constant, increasing either
Subexcitable Excitable the temporal ¢) or length () correlation parameters, the
velocity of wave propagation decreases, as seen in Fig. 10.
This is once more explained as a decrease in the effective
intensity of the fluctuationgsee Eqs(26) and(28)]. Unlike
- the preceding section, we change the new temporal scale
introduced by the noise, when we modify the correlation
length of the noise. In particular, the first term of Ed9)
becomes increasingly irrelevant whanincreases and then
its effects are smallsee caption of Fig. J0These are the so
i called nontrivial effects ok. Strong effects, although trivial,
are those coming from the intensity of the nois&(0)
~a?/\9, which can be absorbed as a renormalized intensity
in a white noise assumptidiEq. (26)].
In Fig. 11 several front patterns for different values of the
, ‘ , time and length correlation parameters are displayed. In all
0 0.0005 0.001 0.0015 0.002 the situations, the front structure is largely maintained al-
C(0) though it presents some unavoidable roughness induced by
the stochastic nature of the forcing. This irregularity is more
FIG. 6. Mean rotation period of noise-sustained spiral waves inmarked when decreasing both length and temporal correla-
a subexcitable media vs the noise intengjitginty. Rotation period tion, although the correlation time effects seem more impor-
of the Spil‘al wave for the effective deterministic model Using thetant Wlthln the temporal and Spatlal range Of the ﬂuctuatlons
renormalized values of the parameters E@8)—(26) (solid line). used in this study.
Error bars correspond to the period dispersion. Vertical lines show These three last figures clearly show how the noise pa-
the transition between different types of excitability. Parameters oftgmeters r and \ affect quantitatively the dynamics of
the model and of the simulations ar@=0.7, b=0.13, ¢  chemical waves in excitable media under external fluctua-
=0.02, Ax=0.2 s.u., At=0.005 t.u., and 256256 pixels. tions, and how these results are explained by our renormal-
ized approach.

Rotation Period (t.u.)
n
(=]

—
o
T

4 n 4

FIG. 7. First column: Propagation of a circular wave in an excitable media free of fluctuations. Second column: Propagation of a target

pattern created out of stochastic fluctuationg+0.000 12). Third column: Propagation of target pattern for the effective deterministic
model using the renormalized values of the parameters corresponding to the noise iédsity).003. Time intervals correspond to 6 t.u.
between each plot. Parameters of the model and of the simulationa-afe7, b=0.02, e=0.04, Ax=0.2 s.u.,At=0.002 t.u., and 512
X512 pixels.
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FIG. 8. Mean oscillation period of noise created wave trainsina FIG. 10. Mean velocity of noisy traveling waves in a one-
one-dimensional subexcitable media vs the noise intensity, averagetimensional excitable media vs the correlation time of the noise
with 25 realizations(pointg. Oscillation period of the wave train (7), averaged with 25 realizations, for the same noise intensity
for the effective deterministic model using the renormalized valuegs?=0.001) and for different correlation lengths:=3Ax s.u.
of the parameters Eq&23)—(26) (solid ling). Error bars correspond  (filled circles (7,=0.057 t.u.), A\=4Ax s.u. (circles (g
to the period dispersion. Vertical lines show the transition between=0.061 t.u.), and=5Ax s.u.(filled triangles (7,=0.064 t.u.).
different types of excitability. Parameters of the model and of thevelocity of traveling waves for the effective deterministic model
simulations are:a=0.7, b=0.1, €=0.02, Ax=0.05 s.u., At using the renormalized values of the parameters, E2@—(25)
=0.0005 t.u., and. =100 s.u. (solid lineg. For the sake of clarity only two characteristic error

bars on the averaged velocity are shown. Lali@ls—(D) corre-
spond to the cases in Fig. 11. Parameters of the model and of the
simulations area=0.7,b=0.1, e=0.02, Ax=0.2 s.u.,At=0.005

t.u., and 25& 256 pixels.

Speed (s.u./t.u.)

T(t.u.)

FIG. 11. Snapshots for two-dimensional fronts after

FIG. 9. Mean velocity of noisy traveling waves in a one- =11.25 t.u. from the initial planar preparation, with the pattern of
dimensional excitable media vs the correlation time of the naide ( noise superposed for different values of the correlation time and
for different noise intensities:e?=0.001 (filled circles, o2 correlation length and the same noise intensitf=0.001): (A)
=0.002 (circles, o?=0.003 (filled triangles, and o>=0.004 (tri- 7=0.06 t.u. and\=3Ax s.u.(mean velocityv,=3.23 s.u./t.u.);
angles. Velocity of traveling waves for the effective deterministic (B) 7=0.6 tu. and A=3AX s.u. ©¢=3.12 s.u./t.u);(C) 7
model using the renormalized values of the parameters, (Bgs- =0.06 tu. andA=5Ax s.u. po=3.14 s.u./tu.); and(D) 7
(26) (solid lineg. Parameters of the model and of the simulations=0.6 t.u. andA=5Ax s.u. @p(=3.08 s.u./t.u.). Parameters of
are:a=0.7,b=0.1, e=0.02,Ax=0.1 s.u.,At=0.001 t.u., and_ the model and of the simulations area=0.7, b=0.1, €
=400 s.u. =0.02, Ax=0.2 s.u.,, At=0.005 t.u., and 258256 pixels.

066107-9



S. ALONSO, F. SAGUB, AND J. M. SANCHO PHYSICAL REVIEW E65 066107

V. CONCLUSIONS Fourier transform is also a Gaussian function,

We have developed an analytical approach for the evalu- N 220
ation of the systematic effects of spatiotemporal noises in C(k)=j dxde "k xC(x)=e” (K72, (A1)
activator-inhibitor equations. We have applied these calcula- R

tions to the Barkley’'s model. We have analyzed separatelgo, the noise correlation E¢4) in the Fourier space can be

the systematic effects of the different noise parametergypressed as

o?, 7, and\. Increasing the noise intensity the excitability

of the medium enhances giving rise to advanced transitions e 2 (M) o1 (l=t')i7)
between different excitability regimes and change, corre- (7(K,t),n(k",t"))=0"e Sk +k )-e :
spondingly, the wave propagation characteristics. Neverthe- (A2)
less, if we increase either the temporal or the spatial correla-

tions a decrease in the excitability is instead obtained. The first step is to write the equation of motionfk,t),

Our main theoretical result is the renormalization of the = — £k 1) (A3)
parameters of the deterministic model, which allows us to o=t k).

predict and understand the noise effects by using only deter- This equation is linear and a formal solution can be ob-

ministic calculations and arguments. Numerical simulationszined in a straightforward way. Dividing the time in tempo-
of the stochastic system modeled by stochastic partial differ;g, stepsAt, the formal solution can be written £&6]

ential equations support our theoretical results with a high

degree of accuracy. Ay o2 oy
n(kt+ Ay =gk e "1+ —(1-e T alk),
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APPENDIX which can be generated using standard proced@@s

) _ One can check that if the initial values g{k,0) are also
We present here the numerical algorithm for the generag ,ssian distributed with a correlation

tion of noise with controlled spatiotemporal structure in a

two-dimensional lattice. The numerical simulations corre- ) a? —0222) )

sponding to Secs. Il{white noise in space and timand (n(k,0,n(k’,0))=2—e sU(k+k’), (A7)
IV A (white noise in space but correlated in tinfewve been

performed with the usual algorithnjd6]. Here we present then the noisey(k,t) is a stationary, isotropic, and Gaussian
details on the generation of both spatially and temporallystochastic process with correlation E#2). At each time

correlated fluctuations. integration stepzn(k,t) is generated and Fourier antitrans-
The noise we have used through this work is a Gaussiaformed to getn(x,t) that is used in the numerical algorithm
process with zero mean and correlations given by (Bg. to simulate Eq(3). In this way the noise parametes$, T,

A particular feature of the spatial correlation is that itsand\ are controlled independently of each other.
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