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Feedback stabilization of unstable propagating waves
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Propagating wave segments are stabilized to a constant size and shape by applying negative feedback from
the measured wave area to the excitability of the medium. The locus of steady-state wave size as a function of
excitability defines the perturbation threshold for the initiation of spiral waves. This locus also defines the
excitability boundary for spiral wave behavior in active media.
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Propagating waves in active media arise from the coueaptured with a video camera and processed by a computer
pling of a positive feedback process, such as chemical autdn real time to modulate the beam intensity of a video pro-
catalysis, with some form of mass transport, such as molecyector illuminating the gel, thereby producing the desired me-
lar diffusion. A variety of spatiotemporal patterns arise fromdium excitability. Details of the experimental setup and the
the interplay of these processes, from expanding circular anéixcitable medium preparation are describe1ig].
spiral waves[1-3] to highly disordered structures that re-  Wave stabilization is realized by adjusting the light inten-
semble turbulencd4—6]. Completely new types of spa- Sity ¢ incident on the gel according to the negative feedback
tiotemporal behavior, such as traveling spatk spiral wave — algorithm
resonance attractof8], and oscillatory clusterf9] arise in
reaction-diffusion systems that include elements of global p=aA+b, (1)
feedback.

The basic features of wave propagation are |arge|y dete[\Nith areaA and the feedback coefficieatand offseth. The
mined by the excitability of the medium, and two excitability area of the wave, corresponding to the region containing the
limits can be identified for 1D and 2D wave propagationoxidized ruthenium catalyst, Ru(bpy), is determined as
[10]. The propagation of 1D waves is not possible below onghe pixel count above a threshold:
excitability limit, and 2D waves with free ends, such as spi-
ral waves or wave segments, contract and disappear below _ —
the other excitability limit. A= XE; O(p(x.y)—k-p(x,y)). 2

In this paper, we present a detailed characterization of the
excitability limit for 2D waves with free ends. The evolution Here, ®( ) is the Heaviside functionp(x,y) is the gray
of such waves is influenced not only by the medium excit-level at each pixel, and the threshold is a value slightly above
ability but also by th_e wave size. At each excitability, there isiq average gray leve(x,y) over the imageK=1.1). This
a wave segment with a particular and natural fdtength  54antive threshold scheme allows the wave area to be accu-
and shapethat will either grow or decay when perturbed. rately determined in the presence of unavoidable light inten-
Wave segments larger than this critical wave form grow tosity fluctuations.
fill the medium with spiral waves, while smaller wave seg-  “The excitability of the medium is reduced or increased as
ments contract until they disappear. The critical wave siz§he wave becomes larger or smaller, respectively, according
increases with decreasing excitability, and the locus of thigg he feedback algorithm. As the wave approaches its sta-
size as a function of excitability represents a perturbationjonary size and shape the control perturbations become van-

threshold, separating an attractor characterized by spirgdningly small, with the stabilized state representing an in-
waves from an attractor characterized by the uniform steadyinsic “unstable state of the autonomous systevithout

state. contro)). Examples of the stabilized waves are shown in Fig.

We study the locus of critical wave size by stabilizing 1 changing the offse in the feedback loop results in dif-
unstable wave segments in the Belousov-Zhaboti&&)  ferent medium excitabilities and, hence, different wave sizes.

reaction with a feedback control algorithm. Waves are stabi- e essential features of the photosensitive BZ system are
lized by continually adjusting the excitability of the medium yeogcriped by a two-variable Oregonator mofiet, 15 that

such that it is decreased when the wave area increases agds peen modified to include the photochemical pathway
vice versa. We describe experimental and numerical studigs g-

of wave segment stabilization and also present a kinematic
analysis. ou 1 u—gq
Experiments were carried out with the photosensitive =— u—uz—(fu+¢)m +D,Vau,
&

Belousov-Zhabotinsky (BZ) reaction [11,12] using a at

0.3 mmx20 mmx30 mm slab of silica gel in which

rutheniungll)-bipyridyl, a light-sensitive catalyst for the BZ 3_U:(u_v) 3)
reaction, was immobilized. Images of chemical waves were ot '
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FIG. 2. Simulation of wave segment stabilization using Egk.
FIG. 1. Examples of typical wave segments stabilized by thepane|(a) shows the evolution of the wave segment under feedback

feedback algorithm. The image in each panel represents an overlg\ntrol with the parameters=2.5x 104, b= —0.14, giving ¢
of snapshots taken every 40.0 s. The feedback param&ed.375  ~0.0909. In panelgb) and (c), the control was discontinued and a
in all experiments. The values of the offset parameétand result-  gmall perturbation of duratiodt=0.1 and amplitudel ¢==+1.0
ing values of ¢ are —0.0744, 0.564(a), —0.0248, 0.551(b), %1073 was applied, after which the light intensity was held at the
0.0248, 0.528¢), and 0.0744, 0.48&d), all measured in mW/cf  yajue prior to the perturbation. Equatiof8 were integrated using
Composition of catalyst-free BZ solution: 0.28 M NaBr@®.05 M an Euler method with a time step of @0 * and a grid size of
malonic acid, 0.165 M bromomalonic acid, 0.36 M$0,. Silica .02 on an array of 1000500 grid points with zero-flux boundary
gel prepared by acidifying aqueous solution of 10#w) N&,SiO;  conditions. Parameter values=0.01, f=2.5, q=0.002, andD,

and 2.0<10"% M Ru(bpy);" with H,SO,. Solution and gel were 0 1. The image in each panel represents an overlay of snapshots
maintained at 9.0 °C. The scale bar(@ is 1.0 mm and one pixel taken every 0.25 time units.

corresponds to 73um.

the dependence of the wave size on the excitability of the
where the variabless and v correspond to HBr@ and  medium. Since the front is symmetrical, we consider the
Ru(bpy}* concentrations, respectively, afl, is the acti-  curve s representing one-half of the leading wave front, as
vator diffusion coefficient. The paramete, corresponding shown in Fig. 4, withl being the coordinate along the curve.
to the light intensity, controls the excitability of the medium. The origin ofs aty=0 moves with the wave at velocity,
The kinetic parameters, g, andf are fixed at values such in the positivex direction. At any given point on the curve,
that the medium is excitable but nonoscillatorydat 0 and
can be made nonexcitable by increasipg S
The initial conditions in each calculation consist of a 1.0 :
small wave segment that assumes a certain constant steady- )
state size and shape as the control algorithm is applied, as
shown in Fig. 2a). In the absence of control, the wave either
contracts and eventually disappears or grows until it reaches (a
the boundaries of the medium, as shown in paielsand 0.5
(¢). In this calculation, small perturbations were applied to {
accelerate the departure from the unstable steady state; how-
ever, an infinitesimal random perturbation would ultimately
cause the unstable wave to grow or decay. C .
The steady-state wave ar&iincreases with decreasing 0 o0 o
excitability, as shown in Fig. 3, with the area diverging at the 20 T1p
critical vaIue. of the Iight intensityp, p. Different steady-” FIG. 3. Dependence of critical wave siS@n light intensitye.
state wave sizes on this curve can be selected and _StabI|IZQ/a|ues calculated with Eq€3) shown by circles. Aig,p=0.0915
by changing the offset tertmin t_he cor_1tro| qup. The circles e wave size diverges to infinity. The dark system w0,
show the results of the PDE simulations using H&8. and  corresponding to the nonoscillatory but excitable experimental sys-
the solid curve shows the prediction from the kinematiciem, lies just above the Hopf bifurcation. The limapt, ;= 0.0977
analysis we now describe. marks the point beyond which no propagation is possible for 1D
We consider a wave of constant size and shape propagakaves. Model parameters and numerical integration are the same as
ing through a medium of a particular excitability. We will in Fig. 2. Solid line shows prediction of kinematic model according
derive expressions describing the contour of such a wave and Eq. (11), wherec=4.15x 10”4, D=0.16, andv,=1.84.

065602-2



RAPID COMMUNICATIONS

FEEDBACK STABILIZATION OF UNSTABLE . .. PHYSICAL REVIEW E 65 065602R)
' _s(t) s (t+dt) 7
{ 6
5 a)
-
4 ®)
&, 3
. ) ©
1 (
0
4 6 8 10 12 14 16 18
10, - ¢) (cm?/mW)

FIG. 4. One-half of the leading front of a wave segment propa- FIG. 5. Square of the wave si& from experimental measure-
gating with velocityv, in the x direction. The angle between the ments as a function of inverse difference betwegrand ¢;p
normal direction to the front and thedirection ise, andv, isthe ~ =0.63 mWi/cni. Points(a)—(d) correspond to the panels in Fig. 1.
normal velocity. Shape stationarity requires that every p@irst Experimental conditions and procedures are the same as in Fig. 1.
time t becomes some poif at timet+dt by propagation normal
to the front. Dotted curve represents wave contour from the PDE 2D
simulations with the parameters as in Fig. 2. The thick curve cor- A= v Ko (8
responds to the half-front shape predicted from the kinematic de- oo

scription Eq.(7), whereK,=0.42,D=0.16,v,=1.84, and is the At the end point,a= /2, and, typically,v,>DKy; there-

coordinate along the curve. fore, the lengthL is
the normal to the front makes an anglevith the x direction, L~ (N ©
and a« becomesr/2 at the extremum of the curve. 2

Now consider the wave front at two momentsand t
+dt. To maintain shape stationarity, every poitof the  since arctarnX)~ /2 for x>1. Based on measurements of
curves(t) must become some poiBtof its rigidly translated ~ curvature as a function of excitability in the PDE simula-
replicas(t+dt) by moving in the normal direction with ve- tions, we approximate the dependencekgfon ¢ with the
locity v, . This geometric constraint can be written as linear function

v, =voCog ). (4) Ko=(¢2p—)/c, (10

wherec is an empirical constant. Substituting relatigr0)

This stationarity condition provides a direct connection be—Into Eq. (9) yields

tweenv, as a function of curvature,, = f(K), and the sta-

tionary wave shapex(l). We find a linear relationship be- , 2D C

tween the curvaturer(l)’ and cosg)oxv, from contour Lo o) (13)
. e . . ; vo (20— )

lines obtained in numerical simulations and therefore employ

a linear eikonal equation to describe the dependence of thgere we neglect the dependenceloéindv, on ¢, which is

normal velocity upon curvature: small compared to that d€,. A comparison of the kinematic
description with the PDE simulations can be seen in Fig. 3,
v, =v,—DK, ©) where the solid curve shows valueslofrom Eq. (11). (We

_ _ _ note thatS and L are proportional except for the smallest
wherew., is the velocity of the planar froniK=a' is the  \ave segments.

curvature, an® is a coefficient associated with the autocata- Extensive theoretical studies have been carried out on Spi-
lyst diffusivity [17]. Combining Egs.(4) with (5), and ex-  ral wave dynamic§18—22, and the excitability limit for

pressingu., in terms ofK, andv,, we obtain spiral wave behavior has been descrijé@]. The wave-
length of a spiral wave increases with decreasing excitability
vocoga)=vo+DKo—Da', (6)  until it becomes infinite at the excitability limit. At this criti-
cal point, the unbounded spiral wave has completely opened
whereKg is the curvature at the midpoint of the wave. up to form an unbounded planar wave with a free end. As the

For all but the smallest waves, most of the front corre-excitability is further decreased, the planar wave contracts at
sponds to small values af, and the solution of Eq(6) is  its free end. The excitability limit is defined as the point

therefore well approximated by where the wave becomes planar and is stationary in the
moving-coordinate systefii0]. This excitability limit is ex-

a=NKgtanI/\), (7) actly the same as the limit defined by the divergence of the
steady-state wave segmentsfg, in Fig. 3[23]. The excit-

where ability where the steady-state wave segment becomes un-
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bounded defines a critical point for two-dimensional media:(decreasing excitabiliy as shown in Fig. 1. A linear depen-
at lower excitabilities, the asymptotic propagation of wavesdence ofS? on the inverse difference betweénand ¢, is

with free ends is not supported. shown in Fig. 5, in agreement with the prediction of EL{l)

The kinematic description for propagating wave segment$rom the kinematic description.

is in excellent agreement with the numerical simulations, as The feedback stabilization of unstable wave segments
shown in Figs. 3 and 4. We note, however, that the goodjields a characteristic curve of wave size as a function of
agreement for very short waves is likely fortuitous, as ourexcitaility, the asymptote of which is the excitability limit
assumptions above that depend on slight curvature are ngl, sira| wave behavior. This curve also represents a pertur-

applicable for these waves. The general agreement betwegfdiion threshold for the initiation of spiral waves in active
the theoretical and simulated prediction of critical wave Size adia

S as a function of light intensityp in Fig. 3 is due to the

curvature contribution of the tip being negligible except for We thank the National Science Foundatig€HE-
very small wave segments. We also note that the experimer®974336 and the Office of Naval Resear¢N00014-01-1-

tal measurements are in good agreement with the theoretic@b96 for supporting this research. K.S. thanks Alexander
description, although only a relatively narrow range of excit-Mikhailov for his hospitality at the Fritz-Haber-Institut der
ability could be studied in our experiments. The sizef the = Max-Planck-Gesellschaft and for many useful discussions
experimental waves increases with increasing light intensitghat benefitted this study.
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