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Feedback stabilization of unstable propagating waves
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Propagating wave segments are stabilized to a constant size and shape by applying negative feedback from
the measured wave area to the excitability of the medium. The locus of steady-state wave size as a function of
excitability defines the perturbation threshold for the initiation of spiral waves. This locus also defines the
excitability boundary for spiral wave behavior in active media.
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Propagating waves in active media arise from the c
pling of a positive feedback process, such as chemical a
catalysis, with some form of mass transport, such as mole
lar diffusion. A variety of spatiotemporal patterns arise fro
the interplay of these processes, from expanding circular
spiral waves@1–3# to highly disordered structures that r
semble turbulence@4–6#. Completely new types of spa
tiotemporal behavior, such as traveling spots@7#, spiral wave
resonance attractors@8#, and oscillatory clusters@9# arise in
reaction-diffusion systems that include elements of glo
feedback.

The basic features of wave propagation are largely de
mined by the excitability of the medium, and two excitabili
limits can be identified for 1D and 2D wave propagati
@10#. The propagation of 1D waves is not possible below o
excitability limit, and 2D waves with free ends, such as s
ral waves or wave segments, contract and disappear b
the other excitability limit.

In this paper, we present a detailed characterization of
excitability limit for 2D waves with free ends. The evolutio
of such waves is influenced not only by the medium ex
ability but also by the wave size. At each excitability, there
a wave segment with a particular and natural form~length
and shape! that will either grow or decay when perturbe
Wave segments larger than this critical wave form grow
fill the medium with spiral waves, while smaller wave se
ments contract until they disappear. The critical wave s
increases with decreasing excitability, and the locus of
size as a function of excitability represents a perturbat
threshold, separating an attractor characterized by sp
waves from an attractor characterized by the uniform ste
state.

We study the locus of critical wave size by stabilizin
unstable wave segments in the Belousov-Zhabotinsky~BZ!
reaction with a feedback control algorithm. Waves are sta
lized by continually adjusting the excitability of the mediu
such that it is decreased when the wave area increases
vice versa. We describe experimental and numerical stu
of wave segment stabilization and also present a kinem
analysis.

Experiments were carried out with the photosensit
Belousov-Zhabotinsky ~BZ! reaction @11,12# using a
0.3 mm320 mm330 mm slab of silica gel in which
ruthenium~II !-bipyridyl, a light-sensitive catalyst for the BZ
reaction, was immobilized. Images of chemical waves w
1063-651X/2002/65~6!/065602~4!/$20.00 65 0656
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captured with a video camera and processed by a comp
in real time to modulate the beam intensity of a video p
jector illuminating the gel, thereby producing the desired m
dium excitability. Details of the experimental setup and t
excitable medium preparation are described in@13#.

Wave stabilization is realized by adjusting the light inte
sity f incident on the gel according to the negative feedba
algorithm

f5aA1b, ~1!

with areaA and the feedback coefficienta and offsetb. The
area of the wave, corresponding to the region containing
oxidized ruthenium catalyst, Ru(bpy)3

31 , is determined as
the pixel count above a threshold:

A5(
x,y

Q„p~x,y!2k•p~x,y!…. ~2!

Here, Q( ) is the Heaviside function,p(x,y) is the gray
level at each pixel, and the threshold is a value slightly ab
the average gray levelp(x,y) over the image (k51.1). This
adaptive threshold scheme allows the wave area to be a
rately determined in the presence of unavoidable light int
sity fluctuations.

The excitability of the medium is reduced or increased
the wave becomes larger or smaller, respectively, accord
to the feedback algorithm. As the wave approaches its
tionary size and shape the control perturbations become
ishingly small, with the stabilized state representing an
trinsic unstable state of the autonomous system~without
control!. Examples of the stabilized waves are shown in F
1. Changing the offsetb in the feedback loop results in dif
ferent medium excitabilities and, hence, different wave siz

The essential features of the photosensitive BZ system
described by a two-variable Oregonator model@14,15# that
has been modified to include the photochemical pathw
@16#:

]u

]t
5

1

« S u2u22~ f v1f!
u2q

u1qD1Du¹2u,

]v
]t

5~u2v !, ~3!
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where the variablesu and v correspond to HBrO2 and
Ru(bpy)3

31 concentrations, respectively, andDu is the acti-
vator diffusion coefficient. The parameterf, corresponding
to the light intensity, controls the excitability of the medium
The kinetic parameterse, q, and f are fixed at values such
that the medium is excitable but nonoscillatory atf50 and
can be made nonexcitable by increasingf.

The initial conditions in each calculation consist of
small wave segment that assumes a certain constant ste
state size and shape as the control algorithm is applied
shown in Fig. 2~a!. In the absence of control, the wave eith
contracts and eventually disappears or grows until it reac
the boundaries of the medium, as shown in panels~b! and
~c!. In this calculation, small perturbations were applied
accelerate the departure from the unstable steady state;
ever, an infinitesimal random perturbation would ultimate
cause the unstable wave to grow or decay.

The steady-state wave areaS increases with decreasin
excitability, as shown in Fig. 3, with the area diverging at t
critical value of the light intensityf2 D . Different steady-
state wave sizes on this curve can be selected and stabi
by changing the offset termb in the control loop. The circles
show the results of the PDE simulations using Eqs.~3!, and
the solid curve shows the prediction from the kinema
analysis we now describe.

We consider a wave of constant size and shape propa
ing through a medium of a particular excitability. We wi
derive expressions describing the contour of such a wave

FIG. 1. Examples of typical wave segments stabilized by
feedback algorithm. The image in each panel represents an ov
of snapshots taken every 40.0 s. The feedback parametera is 0.375
in all experiments. The values of the offset parameterb and result-
ing values of f are 20.0744, 0.564~a!, 20.0248, 0.551~b!,
0.0248, 0.528~c!, and 0.0744, 0.488~d!, all measured in mW/cm2.
Composition of catalyst-free BZ solution: 0.28 M NaBrO3, 0.05 M
malonic acid, 0.165 M bromomalonic acid, 0.36 M H2SO4. Silica
gel prepared by acidifying aqueous solution of 10%~w/w! Na2SiO3

and 2.031023 M Ru(bpy)3
21 with H2SO4. Solution and gel were

maintained at 9.0 °C. The scale bar in~a! is 1.0 mm and one pixel
corresponds to 73mm.
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the dependence of the wave size on the excitability of
medium. Since the front is symmetrical, we consider
curve s representing one-half of the leading wave front,
shown in Fig. 4, withl being the coordinate along the curv
The origin ofs at y50 moves with the wave at velocityv0
in the positivex direction. At any given point on the curve

e
lay

FIG. 2. Simulation of wave segment stabilization using Eqs.~3!.
Panel~a! shows the evolution of the wave segment under feedb
control with the parametersa52.531024, b520.14, givingf
'0.0909. In panels~b! and~c!, the control was discontinued and
small perturbation of durationDt50.1 and amplitudeDf561.0
31023 was applied, after which the light intensity was held at t
value prior to the perturbation. Equations~3! were integrated using
an Euler method with a time step of 5.031024 and a grid size of
0.02 on an array of 10003500 grid points with zero-flux boundary
conditions. Parameter values:e50.01, f 52.5, q50.002, andDu

50.1. The image in each panel represents an overlay of snaps
taken every 0.25 time units.

FIG. 3. Dependence of critical wave sizeSon light intensityf.
Values calculated with Eqs.~3! shown by circles. Atf2D50.0915
the wave size diverges to infinity. The dark system withf50,
corresponding to the nonoscillatory but excitable experimental s
tem, lies just above the Hopf bifurcation. The limitf1D50.0977
marks the point beyond which no propagation is possible for
waves. Model parameters and numerical integration are the sam
in Fig. 2. Solid line shows prediction of kinematic model accordi
to Eq. ~11!, wherec54.1531024, D50.16, andv051.84.
2-2
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the normal to the front makes an anglea with thex direction,
anda becomesp/2 at the extremum of the curve.

Now consider the wave front at two momentst and t
1dt. To maintain shape stationarity, every pointA of the
curves(t) must become some pointB of its rigidly translated
replicas(t1dt) by moving in the normal direction with ve
locity v' . This geometric constraint can be written as

v'5v0 cos~a!. ~4!

This stationarity condition provides a direct connection b
tweenv' as a function of curvature,v'5 f (K), and the sta-
tionary wave shapea( l ). We find a linear relationship be
tween the curvaturea( l )8 and cos(a)}v' from contour
lines obtained in numerical simulations and therefore emp
a linear eikonal equation to describe the dependence of
normal velocity upon curvature:

v'5v`2DK, ~5!

wherev` is the velocity of the planar front,K5a8 is the
curvature, andD is a coefficient associated with the autoca
lyst diffusivity @17#. Combining Eqs.~4! with ~5!, and ex-
pressingv` in terms ofK0 andv0, we obtain

v0 cos~a!5v01DK02Da8, ~6!

whereK0 is the curvature at the midpoint of the wave.
For all but the smallest waves, most of the front cor

sponds to small values ofa, and the solution of Eq.~6! is
therefore well approximated by

a5lK0 tan~ l /l!, ~7!

where

FIG. 4. One-half of the leading front of a wave segment pro
gating with velocityv0 in the x direction. The angle between th
normal direction to the front and thex direction isa, andv' is the
normal velocity. Shape stationarity requires that every pointA at
time t becomes some pointB at time t1dt by propagation norma
to the front. Dotted curve represents wave contour from the P
simulations with the parameters as in Fig. 2. The thick curve c
responds to the half-front shape predicted from the kinematic
scription Eq.~7!, whereK050.42, D50.16, v051.84, andl is the
coordinate along the curve.
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v0K0
. ~8!

At the end point,a5p/2, and, typically,v0@DK0; there-
fore, the lengthL is

L'
pl

2
, ~9!

since arctan(x)'p/2 for x@1. Based on measurements
curvature as a function of excitability in the PDE simul
tions, we approximate the dependence ofK0 on f with the
linear function

K05~f2D2f!/c, ~10!

wherec is an empirical constant. Substituting relation~10!
into Eq. ~9! yields

L2}
p2D

2v0

c

~f2D2f!
. ~11!

Here we neglect the dependence ofD andv0 on f, which is
small compared to that ofK0. A comparison of the kinematic
description with the PDE simulations can be seen in Fig
where the solid curve shows values ofL from Eq. ~11!. ~We
note thatS and L are proportional except for the smalle
wave segments.!

Extensive theoretical studies have been carried out on
ral wave dynamics@18–22#, and the excitability limit for
spiral wave behavior has been described@10#. The wave-
length of a spiral wave increases with decreasing excitab
until it becomes infinite at the excitability limit. At this criti-
cal point, the unbounded spiral wave has completely ope
up to form an unbounded planar wave with a free end. As
excitability is further decreased, the planar wave contract
its free end. The excitability limit is defined as the poi
where the wave becomes planar and is stationary in
moving-coordinate system@10#. This excitability limit is ex-
actly the same as the limit defined by the divergence of
steady-state wave segments atf2D in Fig. 3 @23#. The excit-
ability where the steady-state wave segment becomes

FIG. 5. Square of the wave sizeS2 from experimental measure
ments as a function of inverse difference betweenf and f2D

50.63 mW/cm2. Points~a!–~d! correspond to the panels in Fig. 1
Experimental conditions and procedures are the same as in Fig
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bounded defines a critical point for two-dimensional med
at lower excitabilities, the asymptotic propagation of wav
with free ends is not supported.

The kinematic description for propagating wave segme
is in excellent agreement with the numerical simulations,
shown in Figs. 3 and 4. We note, however, that the go
agreement for very short waves is likely fortuitous, as o
assumptions above that depend on slight curvature are
applicable for these waves. The general agreement betw
the theoretical and simulated prediction of critical wave s
S as a function of light intensityf in Fig. 3 is due to the
curvature contribution of the tip being negligible except f
very small wave segments. We also note that the experim
tal measurements are in good agreement with the theore
description, although only a relatively narrow range of exc
ability could be studied in our experiments. The sizeSof the
experimental waves increases with increasing light inten
.
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~decreasing excitability!, as shown in Fig. 1. A linear depen
dence ofS2 on the inverse difference betweenf andf2D is
shown in Fig. 5, in agreement with the prediction of Eq.~11!
from the kinematic description.

The feedback stabilization of unstable wave segme
yields a characteristic curve of wave size as a function
excitability, the asymptote of which is the excitability lim
for spiral wave behavior. This curve also represents a per
bation threshold for the initiation of spiral waves in activ
media.
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