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Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations
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We investigate the dynamics of the sine-Gordon solitons perturbed by spatiotemporal external forces. We
prove the existence of internéhape¢ modes of sine-Gordon solitons when they are in the presence of
inhomogeneous space-dependent external forces, provided some coriffitidhese forceshold. Additional
periodic time-dependent forces can sustain oscillations of the soliton width. We show that, in some cases, the
internal mode even can become unstable, causing the soliton to decay into an antisoliton and two solitons. In
general, in the presence of spatiotemporal forces the soliton behaves as a defdrmoabgd) object. A
soliton moving in an array of inhomogeneities can also present sustained oscillations of its width. There are
very important phenomen(ke the soliton-antisoliton collisionnsvhere the existence of internal modes plays
a crucial role.
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The sine-Gordon solitons are very important in physics. We will show that with some spatially inhomogeneous
They possess crucial applications in both particle physic$orces, the internal modes can exist for the sine-Gordon
and condensed matter theory. For instance, in solid statequation.
physics, they describe domain walls in ferromagnets, dislo- We have shown in previous papgé2)—2€ that in equa-
cations in crystals, charge density waves, fluxons in longions as the following:

Josephson junctions and Josephson transmission lines, etc.
[1-6]. - ind=

In general, nonintegrable soliton equatiofesgy., thee? Sut ¥ boctsind=Fi(x), @
equation and the double sine-Gorglanay possess internal
degrees of freedom that are crucial in many phenomen
[7-10]. A recent discussion of internal modes of solitary
waves can be found in Rdf11]. However, it is well known
that the unperturbe@pure” ) sine-Gordon equation does not
have internal modes.

A very remarkable question is the followingan external
forces create internal modes in the sine-Gordon equation?

Recently there has been a hot debate in the scientific lit- F1(x)=2(B?~1)sinh(Bx)/cosH(Bx). 3
erature about the existence of internal modes of sine-Gordon
solitons. Some authofd2-18 have claimed that they have Thjs js a function with a zero in the point =0.

found an internal quasimode described as a long-lived oscil- \we have chosen this function because of the following
lation of the width of the sine-Gordon soliton. propertiesii) the exact solution for the soliton resting on the

On the other hand, a very recent and interesting paper igquilibrium position can be obtained, afid) the stability
contradicting all these reporfd9]. By considering the re- problem of this soliton can be solved exactly. The results
sponse of the soliton to ac forces and initial distortions,optained with this function can be generalized qualitatively
Quinteroet al. show that neither intrinsic internal modes nor g other systems topologically equivalent to this one. Be-
“‘quasimodes” exist in contrast to previous reports. Wegjdes, real physical systems are related to this exafi@ile
should stress that they use only time-dependent perturbatioftsy instance, in a Josephson junction a perturbation that can
in their work. , o ~ be described by a function of tyge(x) =dR(x)/dx, where

In the present Rapid Communication we study the siner(y is a bell-shaped function, is an Abrikosov vortex lying
Gordon equation perturbed by spatiotemporal externaj, the junction’s plane perpendicular to its local dimension
forces: [27].

A similar function can describe a local deformation of a
Gt ydi— Py Sind=F(X,1). (1)  charge density wave systeR8g].

if the forceF,(x) possesses a zexd [F(x*)=0], this can
e an equilibrium position for the soliton. If there is only one
zero, this is a stable equilibrium position for the soliton if
[dF1(X)/dx]+>0. For the antisoliton, it is stable if
[IF 1(X)/ Ix]yx <O.
Let us suppose thdt;(x) is defined as
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Usually, functionR(x) is taken as the Dirac’é function.
However, if we wish to model a finite-width inhomogeneity,
function (3) is a better choice.

The exact stationary solution of EQ), with F,(x) as
defined in Eq(3), is ¢ =4arctafexpBx)].

The stability analysis, which considers small amplitude

oscillations aroundp, [ ¢(k,x) = ¢, (x)+ f(x)eM], leads to
the eigenvalue problerf20—26: Lf=TIf, where[=— 42
+[1-2cosh?(Bx)] andl'= —\2— y\.

This problem can be solved exacfBQ]. The eigenvalues
of the discrete spectruf0—26 are given by the formula

I',=B?(A+2An—n?)—1, (4)

whereA (A +1)=2/B2.
The integer part ofA, i.e.,[A], yields the number of
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FIG. 1. Soliton’s width oscillations when the internal mode can

. . 1
eigenvalues in the discrete spectrum, which correspond tBe excited and it is stablg;<B*< 3.

the soliton modesthis includes the translational modg,,
and the internal or shape modEg with n>0 [20-26)).

All this theoretical investigation produces the following
results(note that parametdé will be our control parametgr

It is important to note that the instability of the transla-
tional mode does not mean instability of the soliton structure.
We have to say that the frequency of the oscillations ob-

For B2>1, the translational mode is stable and there are ngerved in the numerical simulations coincides with the one

internal modes. 1§ <B?<1, then the translational mode is

obtained theoretically using Eq4). The frequency of the

unstable. However, still there are no internal modes. Whevidth oscillations can be obtained using the equatians
1<B?<1 apart from the translational mode, there is one=\T'1, where I';=B%(3A—1)—1. All our experiments
internal mode. This internal mode is stable. In the case thatonfirm the prediction about the frequency of the shape os-
B2< % there can appear many other internal modes. The exgillations.

act number is[A]—1, where A(A+1)=2/B2 For B?
<2[A, (A, +1)], whereA, =(5+ y17)/2, the first internal
mode becomes unstable.

The most spectacular phenomenon occurs @t
<2[A, (A, +1)], A, =(5+17)/2. In this case, the first
internal mode is unstable. If we study the evolution of the

What happens when we shift the soliton center of massoliton from the initial condition$7) and(8) we will observe

away from the equilibrium position?
We have the following initial problem:

¢(x,0)=4arctafexd B(x—xg) 1}, (5)

$:(x,00=0. (6)

In the stable caseB?>1) the center of mass of the soli-
ton will make damped oscillationffor x,#0) around the
equilibrium pointx=0.

In the case that the translational mode is unstafle (
<B2<1), the soliton will move away indefinitely from the
equilibrium position.

Consider the next initial problem:

¢(x,0)=4arctafiexp Bx) ]+ C sinh(Bx)cosh *(BXx),
(7

¢:(x,0)=0. 8

In this initial problem the initial soliton is deformed.
For :<B?<% we will observe oscillations of the soliton
width (see Fig. L This is due to the fact that an internal

mode has been excited. Eventually, due to unavoidable errors
in the initial conditions or to energy exchange between the . . v Ty
internal mode and the translational mode, the soliton will

move away from the equilibrium positidnemember that the

equilibrium position is unstable for the soliton center of

mass.

the destruction of the solitofsee Fig. 2 Two solitons move
away (in different directiong to “infinity” (or to the bound-
aries of the systejrand an antisoliton is formed in the place
of the original soliton remaining there stabilized. In fact, the
conditionB?< 1 implies stability for the center of mass of an
antisoliton.

Note that in these situations, the sine-Gordon solitons do
not behave as rigid objects, which is what is expected from
them in general30]. The initial distortions of the width of
the soliton will eventually be damped due to dissipation.

20 -20

FIG. 2. Soliton’s destruction when the internal mode is unstable,
B2<2[A, (A, +1)], whereA, =(5+17)/2.
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T by the soliton in some cases.
However, we have corroborated that other spatiotemporal
! forces also can sustain the soliton width oscillations. This

S

includes the “ubiquitous” force=5(t) = fy cost).
The propagation of solitons in disordered media has been
studied intensively in recent yeda6,31].

ﬁ%%‘

Consider the equation

(0)

—~/ Pt yPi— bxxtsing=F(x), (10
) i
I whereF(x) is defined in such a way that it possesses many
i A A zeros, maxima, and minima. This system describes an array
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of inhomogeneities.
For our study, we have definegd(x) in the following

FIG. 3. Soliton profiles for different time instants governed by way:
Eqg.(9) (B=0.5D=0.2,y=0.1f,=0.70=0.55E=0.7).

Once the internal modes are possible, as in E2jsand
(3) with £ <B?< %, we need time-dependent external forces
to sustain the oscillations of the soliton width.
if we wish the soliton to remain in
some spatially localized zone, we need stable equmbrlum
positions for the center of mass of the soliton.

Let us consider the following spatiotemporal perturbation;

On the ot

bt ydi—
where
F1(x)
A
F,(x)=1¢ CcoshB(x+Xxy)]
A
B coshB(x—

and F3(x,t)=fqcos@t){1/cosR[ E(x+x;)]+ 1/cosH[ E(x
—X4)]}. The space-dependent forEg(x) creates a double-

her hand,

if =X <X<Xq,

¢XX+ Sin¢: F2(X) + F3(X,t),

q eB(x+xn) _ e.’:‘»B(x+xn)
_ _R2
F(X)_n;q 4(1 B) (eZB(x+xn)+1)2 ! (11)
where  x,=(n+2)In(y2+1)/B(n=—qg,—q+1,...4q

1,9), andg+2 is the number of extrema points B{x).

In our array, there is a “superposition” of the “disorder”
‘with a dc component, which will cause the soliton to move to
the right all the time. When the soliton is moving over inter-
vals whered F(x)/dx<0, the internal mode can be excited.
In fact, the pointsx;, whereF(x;)=0 anddF(x;)/dx<0,
are “barriers” that the soliton can overcome due to its kinetic
energy. These “collisions” with the barriers will excite the
internal modes if in these intervals the functiB(x) mimics

9

-D if X<—xy, the behavior ofF,(x) when :<B?<%. The simulations
show that the width of the soliton will perform sustained
it x>x oscillations during its mqtion in a disordered medium.
X1)] b We have shown that in sine-Gordon equations perturbed

by inhomogeneougspace-dependentorcesF(x), the soli-
tons can possess internal modes.
Some of our results are in agreement with previous works

well potential for the soliton. At the same time, in the inter-[19,30. In fact, in Eq.(2), with F,(x) as in Eq.(3), if we put

val —Xx;<x<Xxj, we have the same forde;(x), which was
sufficient for the existence of the internal mode.
Actually, other forces can be used to excite the internal
mode. In fact, if we have a functioR(x) that can mimic
approximately the behavior of functiof,;(x) [specially in

B2=1, then there are no external forces, and from(&pwe
obtain that there are no internal modes in that case either.
Moreover, even when there is an inhomogeneous external
force, not for everyF(x) we have internal modes.

For instance, ifF(x) has a zero that corresponds to a

the interval—x; <x<x,, where—x,; andx; are the extrema stable equilibrium position for the soliton, even then the in-

of function F;(x)] when B satisfies the conditior} <B?

ternal modes are impossible. This explains why it has been

<3, then this function is good for exciting the internal mode. so difficult to find sine-Gordon internal modes. For the exis-

And note that the behavior of functidfy(x) in the interval

tence of internal modes for sine-Gordon solitons we need

—X;<X<X; is a very common behavior for a function in an zeros of functior(x) that corresponds to unstable positions

interval where there is a zero and two extrema.
The time-dependent force;(x,t) will cause the soliton

for the center of mass of the soliton. When the soliton center
of mass is very close to an unstable equilibrium position,

width to oscillate. The center of mass of the soliton will alsothere is a pair of forces acting in opposite directions on the
oscillate, jumping between the potential wells created by'body” of the soliton. This pair of forces should be suffi-

force F,(x).

Although the soliton is not always in the intervalx;
<x<Xy, it will return to this interval regularly. While the

ciently large to stretch the soliton “body,” such that the soli-
ton internal mode can be excited.
FunctionF (x) can possess several zeros corresponding to

soliton is in this interval, all the conditions hold for the in- unstable and stable equilibrium positions. For instance, we

ternal mode

to be excited.

have studied a forcé(x) that creates a double-well potential

Figure 3 shows the extraordinary deformations sufferedor the soliton.
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Periodic time-dependent forcébesides the spatially in- position for the soliton center of mass and the pair of forces
homogeneous forcgsan sustain the oscillations of the soli- acting on the soliton is too large, then the soliton can be

ton width. destroyed. o _ _
A soliton moving in an array of inhomogeneities can also  When the soliton is destroyed, it can be transformed into
undergo sustained oscillations of its width. an antisoliton and two new solitons. The topological charge

All this is possible because the internal mode of the soliiS conserved. We had found this phenomenon before for the
ton can exist when it is moving in media where there are®” €quatior[21,22. However, here we have shown not only

inhomogeneous space-dependent forces with unstable eq&h—at the sine-Gordon soliton internal mode can exist, but that
librium positions. it can become unstable and destroy the soliton. This is a

Nonetheless. we have discovered another more remar@pectaoular manifestation of the fact that the sine-Gordon
able phenomenon: The sine-Gordon internal mode not onI?OI'ton can behave as a deformafienrigid) object.
can exist for some external forces, ljut some situationsit A. Bellorin would like to thank CDCH-UCV for support
can become unstable. If we have an unstable equilibriunainder Project No. PI-03-11-4647-2000.
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