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Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations
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We investigate the dynamics of the sine-Gordon solitons perturbed by spatiotemporal external forces. We
prove the existence of internal~shape! modes of sine-Gordon solitons when they are in the presence of
inhomogeneous space-dependent external forces, provided some conditions~for these forces! hold. Additional
periodic time-dependent forces can sustain oscillations of the soliton width. We show that, in some cases, the
internal mode even can become unstable, causing the soliton to decay into an antisoliton and two solitons. In
general, in the presence of spatiotemporal forces the soliton behaves as a deformable~nonrigid! object. A
soliton moving in an array of inhomogeneities can also present sustained oscillations of its width. There are
very important phenomena~like the soliton-antisoliton collisions! where the existence of internal modes plays
a crucial role.
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The sine-Gordon solitons are very important in physi
They possess crucial applications in both particle phys
and condensed matter theory. For instance, in solid s
physics, they describe domain walls in ferromagnets, di
cations in crystals, charge density waves, fluxons in lo
Josephson junctions and Josephson transmission lines
@1–6#.

In general, nonintegrable soliton equations~e.g., thew4

equation and the double sine-Gordon! may possess interna
degrees of freedom that are crucial in many phenom
@7–10#. A recent discussion of internal modes of solita
waves can be found in Ref.@11#. However, it is well known
that the unperturbed~‘‘pure’’ ! sine-Gordon equation does n
have internal modes.

A very remarkable question is the following:can external
forces create internal modes in the sine-Gordon equation

Recently there has been a hot debate in the scientific
erature about the existence of internal modes of sine-Gor
solitons. Some authors@12–18# have claimed that they hav
found an internal quasimode described as a long-lived os
lation of the width of the sine-Gordon soliton.

On the other hand, a very recent and interesting pape
contradicting all these reports@19#. By considering the re-
sponse of the soliton to ac forces and initial distortio
Quinteroet al. show that neither intrinsic internal modes n
‘‘quasimodes’’ exist in contrast to previous reports. W
should stress that they use only time-dependent perturba
in their work.

In the present Rapid Communication we study the si
Gordon equation perturbed by spatiotemporal exter
forces:

f tt1gf t2fxx1sinf5F~x,t !. ~1!
1063-651X/2002/65~6!/065601~4!/$20.00 65 0656
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We will show that with some spatially inhomogeneo
forces, the internal modes can exist for the sine-Gord
equation.

We have shown in previous papers@20–26# that in equa-
tions as the following:

f tt1gf t2fxx1sinf5F1~x!, ~2!

if the forceF1(x) possesses a zerox* @F1(x* )50#, this can
be an equilibrium position for the soliton. If there is only on
zero, this is a stable equilibrium position for the soliton
@]F1(x)/]x#x* .0. For the antisoliton, it is stable i
@]F1(x)/]x#x* ,0.

Let us suppose thatF1(x) is defined as

F1~x!52~B221!sinh~Bx!/cosh2~Bx!. ~3!

This is a function with a zero in the pointx* 50.
We have chosen this function because of the follow

properties:~i! the exact solution for the soliton resting on th
equilibrium position can be obtained, and~ii ! the stability
problem of this soliton can be solved exactly. The resu
obtained with this function can be generalized qualitativ
to other systems topologically equivalent to this one. B
sides, real physical systems are related to this example@3#.
For instance, in a Josephson junction a perturbation that
be described by a function of typeF(x)5dR(x)/dx, where
R(x) is a bell-shaped function, is an Abrikosov vortex lyin
in the junction’s plane perpendicular to its local dimensi
@27#.

A similar function can describe a local deformation of
charge density wave system@28#.
©2002 The American Physical Society01-1
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Usually, functionR(x) is taken as the Dirac’sd function.
However, if we wish to model a finite-width inhomogeneit
function ~3! is a better choice.

The exact stationary solution of Eq.~2!, with F1(x) as
defined in Eq.~3!, is fk54arctan@exp(Bx)#.

The stability analysis, which considers small amplitu
oscillations aroundfk @f(k,x)5fk(x)1 f (x)elt#, leads to
the eigenvalue problem@20–26#: L̂ f 5G f , where L̂52]x

2

1@122cosh22(Bx)# andG52l22gl.
This problem can be solved exactly@29#. The eigenvalues

of the discrete spectrum@20–26# are given by the formula

Gn5B2~L12Ln2n2!21, ~4!

whereL(L11)52/B2.
The integer part ofL, i.e., @L#, yields the number of

eigenvalues in the discrete spectrum, which correspon
the soliton modes~this includes the translational modeG0,
and the internal or shape modesGn with n.0 @20–26#!.

All this theoretical investigation produces the followin
results~note that parameterB will be our control parameter!:
For B2.1, the translational mode is stable and there are
internal modes. If13 ,B2,1, then the translational mode
unstable. However, still there are no internal modes. W
1
6 ,B2, 1

3 , apart from the translational mode, there is o
internal mode. This internal mode is stable. In the case
B2, 1

6 there can appear many other internal modes. The
act number is@L#21, where L(L11)52/B2. For B2

,2/@L* (L* 11)#, whereL* 5(51A17)/2, the first internal
mode becomes unstable.

What happens when we shift the soliton center of m
away from the equilibrium position?

We have the following initial problem:

f~x,0!54arctan$exp@B~x2x0!#%, ~5!

f t~x,0!50. ~6!

In the stable case (B2.1) the center of mass of the sol
ton will make damped oscillations~for x0Þ0) around the
equilibrium pointx50.

In the case that the translational mode is unstable1
3

,B2,1), the soliton will move away indefinitely from th
equilibrium position.

Consider the next initial problem:

f~x,0!54arctan@exp~Bx!#1C sinh~Bx!cosh2L~Bx!,
~7!

f t~x,0!50. ~8!

In this initial problem the initial soliton is deformed.
For 1

6 ,B2, 1
3 we will observe oscillations of the solito

width ~see Fig. 1!. This is due to the fact that an intern
mode has been excited. Eventually, due to unavoidable e
in the initial conditions or to energy exchange between
internal mode and the translational mode, the soliton w
move away from the equilibrium position~remember that the
equilibrium position is unstable for the soliton center
mass!.
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It is important to note that the instability of the transl
tional mode does not mean instability of the soliton structu

We have to say that the frequency of the oscillations
served in the numerical simulations coincides with the o
obtained theoretically using Eq.~4!. The frequency of the
width oscillations can be obtained using the equationsv1

5AG1, where G15B2(3L21)21. All our experiments
confirm the prediction about the frequency of the shape
cillations.

The most spectacular phenomenon occurs forB2

,2/@L* (L* 11)#, L* 5(51A17)/2. In this case, the firs
internal mode is unstable. If we study the evolution of t
soliton from the initial conditions~7! and~8! we will observe
the destruction of the soliton~see Fig. 2!. Two solitons move
away~in different directions! to ‘‘infinity’’ ~or to the bound-
aries of the system! and an antisoliton is formed in the plac
of the original soliton remaining there stabilized. In fact, t
conditionB2,1 implies stability for the center of mass of a
antisoliton.

Note that in these situations, the sine-Gordon solitons
not behave as rigid objects, which is what is expected fr
them in general@30#. The initial distortions of the width of
the soliton will eventually be damped due to dissipation.

FIG. 1. Soliton’s width oscillations when the internal mode c
be excited and it is stable,1

6 ,B2,
1
3 .

FIG. 2. Soliton’s destruction when the internal mode is unstab
B2,2/@L* (L* 11)#, whereL* 5(51A17)/2.
1-2
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Once the internal modes are possible, as in Eqs.~2! and
~3! with 1

6 ,B2, 1
3 , we need time-dependent external forc

to sustain the oscillations of the soliton width.
On the other hand, if we wish the soliton to remain

some spatially localized zone, we need stable equilibri
positions for the center of mass of the soliton.

Let us consider the following spatiotemporal perturbatio

f tt1gf t2fxx1sinf5F2~x!1F3~x,t !, ~9!

where

F2~x!55
F1~x! if 2x1<x<x1,

A

cosh@B~x1x1!#
2D if x,2x1,

D2
A

cosh@B~x2x1!#
if x.x1 ,

and F3(x,t)5 f 0 cos(vt)$1/cosh2@E(x1x1)#11/cosh2@E(x
2x1)#%. The space-dependent forceF2(x) creates a double
well potential for the soliton. At the same time, in the inte
val 2x1,x,x1, we have the same forceF1(x), which was
sufficient for the existence of the internal mode.

Actually, other forces can be used to excite the inter
mode. In fact, if we have a functionF(x) that can mimic
approximately the behavior of functionF1(x) @specially in
the interval2x1,x,x1, where2x1 andx1 are the extrema
of function F1(x)# when B satisfies the condition1

6 ,B2

, 1
3 , then this function is good for exciting the internal mod

And note that the behavior of functionF1(x) in the interval
2x1,x,x1 is a very common behavior for a function in a
interval where there is a zero and two extrema.

The time-dependent forceF3(x,t) will cause the soliton
width to oscillate. The center of mass of the soliton will al
oscillate, jumping between the potential wells created
force F2(x).

Although the soliton is not always in the interval2x1
,x,x1, it will return to this interval regularly. While the
soliton is in this interval, all the conditions hold for the in
ternal mode to be excited.

Figure 3 shows the extraordinary deformations suffe

FIG. 3. Soliton profiles for different time instants governed
Eq. ~9! (B50.5,D50.2,g50.1,f 050.7,v50.55,E50.7).
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by the soliton in some cases.
However, we have corroborated that other spatiotemp

forces also can sustain the soliton width oscillations. T
includes the ‘‘ubiquitous’’ forceF3(t)5 f 0 cos(v t).

The propagation of solitons in disordered media has b
studied intensively in recent years@26,31#.

Consider the equation

f tt1gf t2fxx1sinf5F~x!, ~10!

whereF(x) is defined in such a way that it possesses ma
zeros, maxima, and minima. This system describes an a
of inhomogeneities.

For our study, we have definedF(x) in the following
way:

F~x!5 (
n52q

q

4~12B2!
eB(x1xn)2e3B(x1xn)

~e2B(x1xn)11!2
, ~11!

where xn5(n12)ln(A211)/B (n52q,2q11, . . . ,q
21,q), andq12 is the number of extrema points ofF(x).

In our array, there is a ‘‘superposition’’ of the ‘‘disorder
with a dc component, which will cause the soliton to move
the right all the time. When the soliton is moving over inte
vals wheredF(x)/dx,0, the internal mode can be excite
In fact, the pointsxi , whereF(xi)50 anddF(xi)/dx,0,
are ‘‘barriers’’ that the soliton can overcome due to its kine
energy. These ‘‘collisions’’ with the barriers will excite th
internal modes if in these intervals the functionF(x) mimics
the behavior ofF1(x) when 1

6 ,B2, 1
3 . The simulations

show that the width of the soliton will perform sustaine
oscillations during its motion in a disordered medium.

We have shown that in sine-Gordon equations pertur
by inhomogeneous~space-dependent! forcesF(x), the soli-
tons can possess internal modes.

Some of our results are in agreement with previous wo
@19,30#. In fact, in Eq.~2!, with F1(x) as in Eq.~3!, if we put
B251, then there are no external forces, and from Eq.~4! we
obtain that there are no internal modes in that case eithe

Moreover, even when there is an inhomogeneous exte
force, not for everyF(x) we have internal modes.

For instance, ifF(x) has a zero that corresponds to
stable equilibrium position for the soliton, even then the
ternal modes are impossible. This explains why it has b
so difficult to find sine-Gordon internal modes. For the ex
tence of internal modes for sine-Gordon solitons we ne
zeros of functionF(x) that corresponds to unstable positio
for the center of mass of the soliton. When the soliton cen
of mass is very close to an unstable equilibrium positio
there is a pair of forces acting in opposite directions on
‘‘body’’ of the soliton. This pair of forces should be suffi
ciently large to stretch the soliton ‘‘body,’’ such that the so
ton internal mode can be excited.

FunctionF(x) can possess several zeros correspondin
unstable and stable equilibrium positions. For instance,
have studied a forceF(x) that creates a double-well potenti
for the soliton.
1-3
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Periodic time-dependent forces~besides the spatially in
homogeneous forces! can sustain the oscillations of the so
ton width.

A soliton moving in an array of inhomogeneities can a
undergo sustained oscillations of its width.

All this is possible because the internal mode of the s
ton can exist when it is moving in media where there
inhomogeneous space-dependent forces with unstable
librium positions.

Nonetheless, we have discovered another more rem
able phenomenon: The sine-Gordon internal mode not o
can exist for some external forces, but~in some situations! it
can become unstable. If we have an unstable equilibr
D

D

rd

ys
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position for the soliton center of mass and the pair of forc
acting on the soliton is too large, then the soliton can
destroyed.

When the soliton is destroyed, it can be transformed i
an antisoliton and two new solitons. The topological cha
is conserved. We had found this phenomenon before for
f4 equation@21,22#. However, here we have shown not on
that the sine-Gordon soliton internal mode can exist, but t
it can become unstable and destroy the soliton. This i
spectacular manifestation of the fact that the sine-Gor
soliton can behave as a deformable~nonrigid! object.

A. Bellorı́n would like to thank CDCH-UCV for suppor
under Project No. PI-03-11-4647-2000.
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