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Transition to ordered intercalated columns in columnar liquid crystals
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A phenomenological description of the phase transition between the disordered columndd phasd the
ordered phas®,,, is presented in which the columns are ordered and displaced so as to relieve the intrinsic
frustration on a triangular lattice. A number of additional phases are predicted, including the one observed
experimentally for the hexa-hexylthiotriphenylene columnar liquid crystal.
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Columnar liquid crystal phases were first anticipatél  with the reciprocal vectork; € {B;,B,,—(B;+B,)} andc,
and then observe®]. The phasé,q is a two-dimensional andc; two constants. The resulting triangular lattice is de-
triangular lattice ordering of disordered columns. Hexa-picted in the contour plot of Fig. 1.
hexylthiotriphenylengdHHTT), a molecule made of a rigid For a second-order or weakly first-order transition, the
core with six hydrocarbon chains attached to it, has beemrlectronic density near the transition point takes the form
observed for 7&T<93°C in theDy4 phase. On lowering p(X)=po(X)+ dp(x), the density incremendp(x) trans-
the temperature, a transition to an ordered pHaggis ob-  forming according to afreal) irreducible representatiofiR)
served. In theD,,, phase, a three-column superlattice struc-of G,. In terms of the basis functions spanning the IR, one
ture sets in, with ordering along the columns of both thewrites dp(X) =2,y ¢;(x). To identify the possible IR’s of
positional and orientational degrees of freedom and an inteiG,, a choice is made of a vecté, from a point of high
calation between the columns. Using a phenomenologicadymmetry of the Brillouin zondassuming a transition to a
Landau approach, we investigate in this Brief Report thecommensurate phaseGiven the observed structure of the
Dyqg< Dy, transition, invoking only the positional degrees of superlatticg 5], we pick the reciprocal vector
freedom. Previous work has focused on transitions from the
Dyq phase to a different two-dimensional phd&8¢ or in-
volved an in-column ordering without the superlattice struc- ko=2B;+3iB,+C=A,+C. 3
ture or assuming a uniform columnar modulatidh Experi-
mentally, theD 4~ D, transition was studied by means of
high-resolution x ray$5,6] and is known to also involve the
orientational degrees of freedom, a situation which will be
considered in an upcoming paper on the subject.

Without long-range order along the columns, the high-_ e
temperature symmetry grou@, is not one of the classified tion. Application of all the 24 elements @, on K, deter-
230 crystallographic space groupd, but can be identified mines that the associated little grou;ﬁ§0=C3v : T.he char-

[8] as R®Z?%)ODg,. The point groupDg, for invertible — acter table of thé€real) IR’s 7 of Gk, shows the existence of
hexagons is of order 24, and comprises a total of 12 classetvo one-dimensional and one two-dimensional IR’s. The star
Primitive direct and reciprocal vectors describing the in-of kg comprises three more vectors:

plane ordering of th®,4 phase may be chosen as

The vectorC=(2w/c)&, provides the modulation along the
columnar direction. The planar componeij of k, was
shown to obey the Lifshitz condition in two dimensiofrgd
and it is clear from below that it also obeys Landau’s condi-

kg =1{ko,—Ko,k1,—Kkq} 4

.Y

wherea is the distance between adjacent sites. The lowest-
harmonics expansion of molecular density is

x/a
3 FIG. 1. Contour plot of theDy4 phase, after Eq(2) (usingc,
po(X)=Co+ 012 cogK;-x) 2 =3/2,c;=1). nght.er.r.eglons are of higher density. Also.shown are
=1 the D, andD,,, primitive cells and the column numbering.
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FIG. 2. Fourth-order phase diagram in tBe- 3, plane, show-

ing the two possible phases 1 and 2. The hatched region has no

stable phase.

with ky,=A;—C. kg lies in a single plane. Note that the
high-temperature symmetry gro@y, is identical to the one
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a, B1, and B, are phenomenological coefficients. The form
of the effectively two-dimensional free energy) has been
known to arise from the&€,, image groug10]. From mini-
mizing Eq. (7) for «<0 (i.e., T<T,.), two possible phases
arise as shown in Fig. 2.

Phase 1 haky,|=0 and|y,|=+—a/B; or |y,|=0 and
|y1|=\—alB;. For both cases, with,=|vy|e'¢ (i=1,2),
the various values ofp; correspond to equivalent density
increments, shifted in the coordinate system alongzthes.
After picking ¢;=0, one has nedf,

3
5p<x>=2¢—a/ﬁ1i§1 cog (Q=C)-x]. (®)

The two degenerate phades from the signs in Eq(8)] are
related by an inversion in a plane perpendicular tozbgis
and by rotations of-7/3 and 7 around thez axis. Their

considered i3], but since they investigated a transition to a Structure is of period along thez axis. They are also invari-
phase with no order along the columnar direction, the con@nt under translation by a superlattice vector of the form

tinuousz translation remains unbroken.

Choosing an IRr of C5,, the basis functions are written
as a producte;=u(k;)¥ ,(k;), where ¥ (k;) are scalar
functions under translations and span a basisr,ofvhile
u(k;) is a linear combination, invariant und@ko. At this

point, we select the invariant representationA;. In that
case,V ,(k;)=1 and the basis functions are

3

3
p1=2, QT gy=2 &QATOx ©)
i=1 =1
along with their complex conjugatesQ; e {A;,A,,—(A;
+A,)} span the new superlattice witk,= (B,—B,)/3. The
density increment reads

2
6p<x>=§l [yii(x)+c.cl. (6)

dp at a given site of the triangular lattice of columns has two =
components: an amplitude and a phase representing the ver-

tical position of the maximum ofp. It is thus expected that
the phase transition behavior is that of the plapay) model

n;a; +n,a, with ny, n, integers anda;=b;+b, and a,
=2b,—h; the primitive vectors forming the basis for the
superlattice(Fig. 1). Overall, it is verified that the phases 1
given by Eq.(8) are invariant over the symmetry operations
of the space group 166: D@d). Physically, the modulations
of columns 0, 1, and 2as shown in Fig. Lin phase 1(+)
are shifted alongz by 0, ¢/3, and Z/3, respectively(see
Fig. 3.

Phases 1 are breaking a discrete chiral symmetry in addi-
tion to the continuous translation symmetry in the columnar
direction. Indeed, let us label every corner of the triangles in
the basal plane by the smallest displacemgsitive or

z=c/3

S

on a triangular lattice. On the other hand, we argue that it is
the frustrated antiferromagnetic planar model since maxima
of the density modulation on the three columns of a triangu-
lar plaquette may not be admitted at the samealue. A
period ¢ along thez axis is imposed. Hence, for the three-
dimensional systems considered here, the analogy would be
with a ferromagnetic stacking of the antiferromagnetic planar
model on triangular layers.

Expanding the free enerdyto fourth order, the following
three invariants are generated:

B1
F=a(lyil*+|v2l*) + 7 (lya*+ 72l

22 (. 0
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FIG. 3. Density profile p(x) for phase 1, shown forz

=0, c/3, 2c/3.
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FIG. 4. Contour plot for densitp(x) in phase 2A, depicted at FIG. 5. Contour plot for densitp(x) in phase 2B, shown at
z=0 andc/2. =0 andc/2.

negative of their column in the columnar direction. Two ) )
sequences are then possible when the triangle is traversedfpr plots of the total density(x) (for n=0) show a shift of

a clockwise direction: (G;c/3,—c/3) and (0+c/3, ¢/2 in occupancy between columns 0 and columns 1 and 2.
+c¢/3). The two phases, characterized mC in Eq. (8),  The amount of density modulation is larger in columns 0
belong to two topologically distinct classes of patterns of thethan for columns 1 and 2. Phase 2A breaks the continuous
above sequences. Global translation in the columnar diredranslation symmetry in the columnar direction but no dis-
tion preserves these distinct classes. Under the above condirete chiral symmetry is present in that case. All configura-
tions, our system belongs to the same chiral universalityions belong to a single class of patterns convertible into
class as the three-dimensional ferromagnetic stacking afach other by a global translation in the columnar direction

antiferromagnetic planar spins on triangular layers. combined with a lattice translation in the basal plane. The
In phase 2]y:|=|y,| and in terms ofpy=¢,— ¢, and  totally frustrated tripartite triangular lattice is transformed
em=73(¢1+ ¢,) the density increment becomes into a bipartite unfrustrated honeycomb lattice with the cen-
ters of the honeycombs forming a triangular lattice in a dis-
laced plane. This phase is not predicted for the antiferro-
3p(X)=4\=al (B1+ B2)cod C-x~ 3 ¢q) D ' b

magnetic planar model on a triangular lattice. It is rendered
3 possible in our model since there exists here the possibility
XE cog Q- X— ). (9 of having modulations of different amplitudes on neighbor-
=1 ing columns. The phase transition and critical properties are
P : those of an antiferromagnetic planar model on a bipartite
Clearly, ¢4 represents the freedom of arbitrarily moving the lattice. Phase 2A is the ordered columnar structure observed

density along the axis. Arbitrary values of,,,, however, do . -
not in general yield equivalent densities. In-plane transla_experlmentally for HHTTLS], at least for the positional de-

tions by vectorsn;b;+n,b, (n;,n, integers are used to grees of freedom. The transformgtlon of the 'h|gh-
relate densities witlp,.’s differing by +2m/3, and rotations temperature fully frustrated tripartite triangular lattice into a

around thez axis by /3 connect densities witkp low-temperature bipartite unfrustrated honeycomb lattice is
y=m me”Pm  gyfficient to drive the system to a stable intercalated ordered
+ . Thus, the space of degener@jgx) can be specified in

the rangeg,,e[0,7/6]. To determine the stable configura- columnar structure.

. ; . .. For B,>0, phase 2B is obtained with,,=(2n+ 1) /6.
tions, the Landau free energy is expanded to sixth order wit . L I o
the addition of the following terms: Iq’he resulting density is shown in Fig. Bor n=1). The

corresponding space group symmetry of this phase is 194:
(Dgh). It can be seen that in phase 2B columns 1 and 2
B3 4 alternate in occupancy with their maxima separatect
F6:€(|71|6+|7’2|6)+ 3(7’?7’% RN with no ordering Fi)n co)I/umn 0. All degeneratepground%ates
of phase 2B belong to one class of columnar patterns, all
5 breaking the continuous translation symmetry along zhe
+ E[|71|2|72|2(| il + 172 10 auis. Ng additional discrete chiral symr¥1etry isypresegt. This
phase corresponds to a partially ordered phase of the planar
In Eq. (10), only the second term depends on the phasenodel. Again, frustration drives the system to ordered phase
angles and it is rewritten asBg/6)|y.|3|y.|3cos6p,. We  with one-third of the columns remaining disordered.
note that this term is absent in ti@, model. The condition An interesting topology emerges for the phase diagram in
IFldpm=0 imposes thatp,,=nw/6 wheren is an integer. theT-g3;-8, space, for a giveiB,. For 8,<,, two sheets
Two situations are then possible, depending on the sign aff critical points extend, respectively, in the two regighs
Ba. <0 andpB,>0. The line of critical points aB,=0 and g,
For 84<0, ¢,=2n/6 gives the stable phase 2A, invari- <8, borders a sheet of first-order transitions connecting
ant under the space group 191:Dg,). In Fig. 4, the con- phases 2A and 2B beloW,.. These two sheets of critical
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points belong to the nonchiral antiferromagnetic planartwo sets of sheets pinch the line of second-order transitions
model (h=2) universality class in three dimensions. bordering the sheet of first-order transitions beldw and

For B,>B,, a single sheet of critical points exists, all 3,=3,.
belonging to the chiral antiferromagnetic planar model (
=2) universality class in three dimensions. R&T,., B1 This work was supported by the Natural Sciences and
=pf,, and 8,=0, a multicritical point emerges where the Engineering Research Council of Canada.
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