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Class of self-limiting growth models in the presence of nonlinear diffusion
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The source term in a reaction-diffusion system, in general, does not involve explicit time dependence. A
class of self-limiting growth models dealing with animal and tumor growth and bacterial population in a
culture, on the other hand, are described by kinetics with explicit functions of time. We analyze a reaction-
diffusion system to study the propagation of spatial front for these models.
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. INTRODUCTION dan

gt = ne), 2
Reaction-diffusion systems are ubiquitous in almost all

bran'ches'of physicgl], chemistry[Z], and biology[3—5] wherer is a constant for the growth process apt) may be

dealing with population growth, fluid dynamics, pulse propa- ¢ ihe type (i) (t)=1 for exponential growth(ii) ¢(t)

gation in nerves, chemical reactions, optical, and other pro- exp(—at) for Gompertz growthiii) ¢(t)=texp( Bt)

cesses. The basic equation describes the dynamics of a fie[J(gir bgcterial growth Fétc g ' P

variablen(x,t), a function of space and time in terms of a The object of the present paper is to study a reaction-

source tefm(a'so known as reactmn_tebr@nd_a dl_ffus!on diffusion system with a reaction term describing a class of
term. An important early endeavor in this direction is theself-limiting growth processe). Since in many living or-

itUdy O.f ster:f—lllet;]ng growtth rrgc;d::nrlls to{ Vl‘:h'ch tthe most v;/ell ganisms concentration dependent diffusiyidy5,11-1% has
l'nown IS tﬁ 'Sd er eqLIJ_a idh ;j] a T?1 es w&ol acc(:joun a geen found to be essential to the modeling of reaction-
near growin and a noniinear decay. 1he mogel and many Oggq,qion systems we investigate the interplay of this nonlin-
Its _varlants have_found W'd.e appll_catlons both from a theo'ear diffusion and self-limiting growth process in the dynam-
retical and experimental point of vield]. A notable feature ics. We show that the model and its variant with a finite
of these models is that the source or the reaction terms do nﬂ’iemory transport16—25 admit of exact solutions. The de-

er:volve any.tex,?hcgat'nl]a dipeniﬁnce. On t?e other rt‘a.ndpendence of the rate of spread of the wave front on various
ere are situationf8—10] where the source terms contain parameters is explored.

explicit functions of time that put a constraint on the growth
process in the long time limit. For example, the Gompertz
growth[8,9] is a model used for study of growth of animals Il. THE REACTION-DIFFUSION SYSTEM

and tumors, where the growth rate is proportional to the cur- \yi consider a reaction-diffusion system with a source
rent value, but the proportionality factor decreases exponengm describing self-limiting growth and with a nonlinear

tially in time so that diffusion term in the following form:
dn an(x,t) d an
—=rnexp — at), 1 — = —Dn—
T o—at) (1a) L =eé()+ - Dn—, 3

wherer and « are positive experimentally determined con- WhereD is the diffusion coefficient. Our primary aim in this
stants. Similarly another type of model proposed to analyzé&ection is to provide an exact solution of &8). To this end
the growth of bacterial population in cultuf#0] is described ~ we first make use of the following transformation:
by .
q n(x,t)=u(x,t)exr<rf ¢>(t’)dt’) (4)
n 0
azkntexp(—ﬁtz). (1b)
in Eq. (3) to obtain

Again k and B8 are positive constants required to fit the ex- Ju(x,t) t o (a0
perimental data. An important feature of these models is that <9t’ =D ex;{ rf ¢(t’)dt’)ﬂ—x ua—x . (5
0

unlike the logistic growth process the asymptotic value of the
density functionn depends on its initial population. ) ) )
Keeping in view of these experimental observations it is Ve now introduce the scaled time variables
therefore, worthwhile to generalize the specific cases in .
terms of an explicit function of time(t) such that we write r= Df f(t')dt'=G(t) (say), (6a)
0

*Email address: pcdsr@mahendra.iacs.res.in where

1063-651X/2002/68)/0619095)/$20.00 65 061909-1 ©2002 The American Physical Society



SANDIP KAR, SUMAN KUMAR BANIK, AND DEB SHANKAR RAY

(@)

(b)

o
T

)
1A
/

FIG. 1. Evolution of spatial front in time for the model with
¢(t)=1. (a) The populatiom(x,t) is plotted againsk for different
times usingr=1.0 andD=1.0. (b) The same as ita) but for r
=0.001(arbitrary units.

f(t)—exp{rjtd)(t’)dt’}. (6b)
0
This reduces Eq5) to the following form:
au(x,7) 9 u(X,7)
ir ax[u(X’T) Ix ] @

with u(x,t)=u[x,G~%(7)]=u(x,7) where timet has been
expressed as an inverse functién 1(7) according to Egs.
(6a) and (6b).

Equation(7) is the well-known Boltzmann nonlinear dif-
fusion equatiori1,26]. Now subject to the initial condition of
a unit point source at the origin,

n(x,0)= 8(x) =Uu(x,0)=u(x,0), (8)

we solve Eq.7) under the following boundary conditions:

9

lim u(x,7)=0, V>0

X— t

and

+ o
J’ u(x,mndx=1, V7r>0. (10
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FIG. 2. Evolution of spatial front in time for the model with
¢(t)=t exp(—Bt?). (a The populationn(x,t) is plotted againsk
for different times using =1.0, D=1.0, and3=0.1. (b) The same
as in (a) but for 8=0.01. (c) The populationn(x,t) is plotted
againstx att= 1.0 for differentr usingD=1.0 andB=0.01 (arbi-
trary unitg.

Next we seek the similarity solution of the nonlinear dif-
fusion Eq.(7). We make use of the well-known similarity
transformatior(1,5,26,27:

u=7 Yy(z) and z=xr 13 (11
in Eq. (7) to obtain
d( dv dv
3d72 UE +U+ZE:0. (12

On integration, Eq(12) yields
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dv This solution clearly has a sharp wave frontxat= A3,
3lvg | T2 =0. (13 which propagates at a speed

Since we are interested in the symmetric solutions with d
v'(0)=0, we have put the integration constant zero in going dt

from Eq. (12) to Eq. (13). On further integration Eq(13)
results in the solution To illustrate the spatial propagation of the population

5 o n(x,t) in time we plot in Fig. 1 the spatial shock-wave-like
v(2)=(A*=Z)/6, |7<A patterns for =1.0 andD=1.0. It is apparent that the sharp
=0, |7>A, (149  Peaked distribution at=0 starts spreading relatively slowly
with peak atx=0 diminishing with time up to a period
whereA is a constant that can be determined from the con=0.1. Beyond this time the spatial growth of population be-
dition (10) to obtain comes comparatively large and it diverges due to the com-
—(9/2)13 (14 bined effect of exponential growth and nonlinear diffusion.
' For a much lower growth rater £0.001), however, the
Therefore the solution of Eq7) in x and 7 is given by population spreads monotonically due to the nonlinear diffu-
sion that overwhelms the effect of growth process. This is
evident in Fig. 1b).
(i) ¢(t)=texppt?). With the above expression for

t) for bacterial self-limiting growth we obtain from Egs.
=0, [x>ArR (15) E%;))and (6b) 99 q

;A(Dr2)1’3exp(rt)[exp(rt) 11728 (19

1
u(x,7)= 6—T[A27-2/3— x?], |x|<Ar?

It is interesting to note that by virtue of the relatiof@=) f(t)=exp((—r/28)[exp(— Bt) — 1]} (19
and(6b) 7 is dependent onand¢(t) that control the growth

and self-limiting factors, respectively, of the source term.;nq
This implies that the shock-wave-like behavior with propa-

gating wave front ak=x;=A7® as evident from the simi- t
larity solutions(15) critically depends on the reaction terms. =D exp(r/2B) fo exf (—r/2B)exp(— Bt')]dt’.
Specifically, the wave front propagates in the medium with (20)
speed
dx; 1/9D\® t —213 By definingz=(r/28)exp(— Bt) the above expression can be
rTo §(7) f(t)[ jof(t')dt' (16)  reduced to the following form:
wheref(t) is given by Eq.(6a) and in turn depends on the r= —DM (r128)exe(= O exp — 2) dz. (21
functional form of(t). B (r/2B) z
We now consider two specific cases to illustrate the spa-
tial propagation patterns. The integral in Eq(21) can be put into a standard form with

() ¢(t)=1. For a constant value @f the model suggests the help of Ei functior{28] so thatr can be expressed as
an exponential growth. The relatig6a) in this case can then exp( 28)
be utilized to obtainf (t) =exp(t) so thatr=(D/r)[ exp(t) 7=D————[Ei(—r/28)—Ei((—r/28)exp — Bt))].

—1]. Putting this expression for in the solution(15) we B
have after using Eq4) (22)
n(x.t)= [A2{(D/r)[exp(rt) —1]}?3] - x? 17 The corresponding density(x,t) and the speed of the wave

(6D/r)[exp(rt)—1]exp(—rt) ° front dx; /dt at x; are given by

A?[Dexp(r/2B)! B1Ei(—r/2B) —Ei(— (r/28)exp( — Bt)) 13— x2
(6D/B)[Ei(—r/2B) —Ei((—r/2B)exp(— Bt))]exd (r/2B)exp( — Bt)]

n(x,t)= 23

and respectively.
In Figs. 4a) and 2Zb) we show the shock-wave-like

dxg exp(r/2B)\ 3 d spread of population by plotting(x,t) vs x for several val-
E=A< DT) gilEi(=r/2B) ues of time forD=1 andr=1. Sinceg puts a limit to the
growth at large time the peak of x,t) atx=0 as shown in

—Ei((—r/2B)exp — Bt))]*° (24 Fig. 2(@) (8=0.1) does not increase too much as compared
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to the earlier case considered in Figa)l It has been ob- In the limit of vanishing relaxation time, i.e., jt/~0 Eq.
served that for a unique value & 1.0 there is a monotonic (26) reduces to Eq(3). When memory effects are taken into
decrease in the peak populatinfx,t) atx=0. For smaller account, the dispersal of the organisms are not mutually in-
values of 8 [Fig. 2(b)] the spread is similar to that in Fig. dependent. Hence the correlation between the successive
1(a). In Fig. 2c) we exhibit the spatial front propagation for movement of the diffusing particles results in a delay in the
several values of growth rateat a timet=1.0 keepingD transport. Thus Eq26) is a typical form of a delayed trans-
=1 and8=0.01. It is apparent that with increase othe  port equation.

reaction dominates over diffusion so that the peak population We now consider a specific caggt) =1. Substitution of

at x=0 increases compared to spreading. the traveling wave fornN(z)[ =n(x,t)] with z=x+ct sat-
isfies
[ll. EFFECT OF FINITE MEMORY TRANSPORT
_ o #°N N d( oN
We now generalize the proposed reaction-diffusion model c?——=c(r— 'y)— +ryN+D y—( N —) (27
to include the effect of finite memory transport. It has been e 9z

observed that an animal’s movement at a particular instant of

time often depends on its motion in the immediate past. Thisvherec is the speed of the traveling wave to be determined.
results in a delay in population flux, or a memory in the We now consider the trial solution of E(R7) of the form
diffusion coefficient. A number of attempts have been madeN(z) =N, exp62) subject to the initial condition that at

in the recent literaturfl6—29 to analyze the delayed popu- =0, N=N,, wheres and b are positive constants to be
lation growth in several models and related context in heatletermined. Substitution of this solution in EQ7) yields
conduction and transport processes. To consider a finitthe following relation:

memory in the present model we modify the nonlinear dif-

fusion term in Eq.(3) to the following form: [c?s?b?Z2C~ D+ c?sh(b—1)z(P~ P —csh(r—y)z(P~ Y
an(x,t) t —rylexp(s?)—DyNgsh[2sb 2P~ 1)
=m0+ Dy [ exi—y(t- ] yIeXRSZ) Do
0 +(b—1)z*~2]exp2s2)=L(2)=0. (28)
an(x, )
Xn(x,) T (25 For L(2)=0, for all z the coefficients of exs) and

exp(z2) within the square brackets must vanish identically.
where y refers to the inverse of relaxation time. The popu-For this the only acceptable solution fois b=1. We obtain
lation flux takes into account the relaxation effect due to the

delay of the particles in adopting a definite direction of 25°DyNo=0 (293
propagation. Differentiating both sides of the above equation
with respect ta and using it again we obtain and
a°n p an 202 celf — ) r
2 =(r¢— 7) +(f¢+r¢>7)n+— Dyn—|. c?s?—cs(r—y)—ry=0. (290
(26)  From the above two equations the solution $ds given by
|
c[(Ly) = (Ur)1+{c?[(1ly) - (1/r)]2+4/r[(02/y)+2DNO]}1/2 30
2[(c?/yr)+(2DNg/r)]
|
In the limit of instantaneous relaxation, i.e.y340 Eg.(30) To determine the speed of the propagation of the wave
yields front we now rearrange the solution ferin Eq. (30) to
obtain
_of- 1+[1+(DNor/c2)]1’2} @1
#ONo )= Ay 2SO

L i . 2s
Furthermore the above expression in the limit of weak diffu-

sionD—0 we obtain from Eq(31) after a Taylor expansion

For real values o€, the quantity inside the square root must
s— r 32) be positive, which determines the minimum valuecofor
c’ s=r/c [Eq. (32)] as
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2r2D yN, generically different. We point out in passing that thedepen-

Chin=""""5- (34)  dence on initial concentration on speed as shown in(&4).

(r+y)? is rather an unusual feature in reaction-diffusion system.

Equation (27), therefore, admits of an exact traveling-
wave-like solution: IV. CONCLUSIONS
N(z) In this paper we have analyzed a class of reaction-
diffusion systems in which the kinetic term describes the
F{c(r—yH[cz(r— y)2+4r y(c?+ ZD),NO)]UZl self-limiting growth processes of the Gompertz type and is
=Ngex 5 z. an explicit function of time. We have shown that the model
2(c*+2DyNp)

can be solved exactly to analyze the spatial front propagation

(35) problem. To make the model more realistic we have included

It is interesting to observe that the speed of the travelinghe effect of finite relaxation to concentration-dependent dif-
wave front not only depends on nonlinear diffusion andfusiveé processes. In view of the fact that the source terms
growth rate but also on the initial concentration and memorynave their direct relevance on experimental measurement on
A comparison of the solutions in this section and in the pre-2nimal and tumor growth or bacterial culture we think that
ceding one shows that E(85) does not reduce to E¢L7)in  the solutions discussed in this paper will be pertinent in the
the limit of vanishing relaxation time (%~ 0) although Eq.  context of reaction-diffusion systems, in general.
(26) goes over to Eq(3) under this condition. This is be-
cause of the fact that the n_ature _of the partiql differential ACKNOWLEDGMENT
equation changes due to the inclusion of relaxation terms and
also the boundary conditions for the shock-wave-like “dif- The authors are indebted to CS{Rouncil of Scientific
fusing solutions”(17) are different for the traveling wave and Industrial ResearghGovernment of India, for financial
front solution(35). The nature of the two solutions are thus support.
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