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Roughness-induced filling
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~Received 6 July 2001; published 21 June 2002!

We study adsorption of a fluid on a periodically corrugated substrate using the mean-field version of the
effective Hamiltonian approach. We analyze the shape of the interface close to the wetting point of a planar
substrate, and the free energy of the system as a function of temperature and amplitude of the corrugation for
short-range and long-range interactions. We prove that the substrate roughness has no influence on the locus
and order of the wetting transition, when the planar substrate of the same chemical composition as the
corrugated one experiences critical wetting. For short-range interactions we observe the corrugation driven
filling transition. We show analytically that a thin-thick first-order transition occurs when the corrugation
amplitude of the substrate exceeds a critical value. The phase diagram of the adsorption on a sinusoidally
corrugated substrate at the bulk liquid-gas coexistence is obtained.
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I. INTRODUCTION

In recent years the adsorption of a fluid on a structu
substrate has been extensively studied experimentally
theoretically. While the wetting of a planar, homogeno
substrate is well understood today@1–13#, the wetting of a
corrugated@14–37# or chemically heterogeneous substra
@38–47# is still a subject of wide interest and controvers
Apart from standard wetting transition, the liquid film a
sorbed on a rough substrate can exhibit some new phen
ena. One of them is an additional thin-thick transition, cal
filling transition @33,34#. It consists in filling up the hollows
of the substrate with a liquid. Filling transition can be co
tinuous, or first order, depending on a physical system.
other phenomenon discussed in the literature is the chang
the location and order of the transition@27,31#, it is the so
called roughness-induced first-order wetting. In this pa
we prove that~at the mean-field level! the corrugation-
induced wetting transition cannot exist. We argue that i
planar substrate exhibits critical wetting, corrugated subst
made of the same substance undergoes critical wettin
well, without any change in the transition temperature.
though roughness of the substrate does not influence the
ting properties, it can induce the aforementioned filling tra
sition. It is ~if it exists! a first-order thin-thick transition
independent of whether wetting is a first-order or continuo
transition.

The wetting phenomena are studied with the help of d
ferent methods such as Landau theory@9,11,27,30#, the ef-
fective Hamiltonians@8,10,11,28,30,33–37#, density func-
tional theory@3,5,20#, functional renormalization@6,8,10,11#,
computer simulations@12,13#, and others. Here we adopt
simple, mean-field version of the effective Hamiltonian a
proach. When discussing without too far-reaching appro
mations that were made in Refs.@27,31#, it does not reveal
the aforementioned change of the transition. On the o
hand, it is well known@11# that in the case of a planar sub
strate strong fluctuations can induce such change of the
sition. This fluctuation influence can perhaps be amplified
the corrugation of the substrate, but at the mean-field le
the roughness of the substrate does not matter. Contra
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wetting, the filling transition is driven by the roughness
the substrate.

The organization of this paper is as follows. In Sec. II w
introduce the system and give the simple, qualitative ar
ment that the corrugation of the substrate has no influenc
the location and the temperature of the transition. In Sec
we recall the arguments for the existence of the corruga
driven first-order wetting. This phenomenon was predic
within the linearized version of the Hamiltonian approa
@27,31#. We discuss this approximation and its applicabili
With the help of the perturbative solution we show that t
linear approximation is not justified in the regime where t
corrugation-induced wetting was found. For the long-ran
interactions we show that within the framework of the line
approximation one observes, not only the first-order wetti
but additionally first-order dewetting followed by the co
tinuous wetting. In Sec. IV we discuss nonperturbatively
system close to the wetting temperature of the planar s
strate. Instead of solving a nonlinear equation for the sh
of the interface, we minimize the effective Hamiltonian wi
respect to two parameters: the mean distance between
strate and interface, and the amplitude of the undulation
the film thickness. Similar analysis was made by Rasc´n,
Parry, and Sartori@36#. We try to preserve the connectio
with the perturbative approach, and we obtain more inform
tion concerning the phase diagram. This minimization pro
dure is completely performed for short-range interactio
We discuss the free energy of the system as a function of
temperature and the amplitude of the corrugation, and sh
that when the system is close to the wetting critical point
the planar substrate, the roughness of the substrate chan
only insignificantly. Section V contains a proof of the no
existence of the corrugation-induced wetting. Section
contains our main result. In this section we analyze the fill
transition. When the corrugation amplitude of the substr
exceeds the threshold value, first-order thin-thick transit
occurs at temperatureTf(A,q),Twp ~A and q denote the
corrugation amplitude and the wavelength of the substr
respectively!. Thus, while increasing temperature the syst
can exhibit a sequence of two transitions: the first-order
ing, and next, the continuous wetting. We present the ph
©2002 The American Physical Society06-1
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K. REJMER PHYSICAL REVIEW E 65 061606
diagram of the system at the bulk liquid-gas coexistence.
adsorption on a sinusoidally corrugated substrate is de
mined by three parameters. First of them is the temperat
the remaining two have geometric origin: the roughness
plitude of the substrate, and the wave number of the s
strate. We determine the coexistence line of the first-or
filling transition, its critical point, and spinodal lines. W
derive the mean-field values of critical exponents connec
to the filling critical point. In Sec. VII we summarize ou
results.

II. WETTING OF THE CORRUGATED SUBSTRATE

When discussing the wetting transition of the corruga
substrate two important questions arise:

~1! Does the transition temperature remains unchange
compared to the planar substrate of the same chemical c
position?

~2! Does the wetting transition retains the same order

A. The effective Hamiltonian approach

We consider the half space occupied by the fluid at b
liquid-gas coexistence. The substrate is described by
function z5b(R) whereR denotes coordinates on the refe
ence plane. The flat, planar substrate corresponds to the
ticular caseb(R)50. The simplest phenomenological a
proach deals with the effective interface Hamiltonian

H@ f #5E dRFs2 ~¹ f !21v~ l !G , ~2.1!

where f (R) and l (R)5 f (R)2b(R) are the interface posi
tion and the film thickness, respectively.s is the surface
tension of the free interface, andv( l ) is the effective inter-
face potential, which is—by assumption—the same as for
planar substrate of the same chemical composition. The
fective potential is chosen in such a way that it vanishes
infinity, therefore, Hamiltonian~2.1! describes the differenc
between the free energy of the actual configuration, and
free energy of planar interface situated infinitely far from t
substrate. We call the effective potential first order or sec
order, depending on the order of the wetting transition at
planar substrate. First-order potential@Fig. 1~a!# has two
minima, one atl p—a finite distance of the flat interface from
the planar substrate—and second one for the interface
ated infinitely far from the substrate. If the temperature
lower than the wetting temperatureTwp of the planar sub-
strate, first minimum is deeper than the second one, and
responds to negative value ofv( l ); thus the equilibrium film
thickness is equal tol p . At Twp both minima have the sam
depth—the first-order wetting occurs at this temperature.
the contrary, the second-order potential@Fig. 1~b!# has only
one minimum atl p . The film thickness diverges continu
ously to infinity when temperature rises toTwp . Correspond-
ing value of the HamiltonianH@ l p# is negative, and in-
creases to zero whenT↗Twp .

The equilibrium position of the interfacef̄ (R) minimizes
the effective Hamiltonian~2.1! with respect to the appropri
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ate boundary conditions, which are, at the moment,
specified. It fulfils the Euler-Lagrange equation

sD f̄ ~R!5v8„ l̄ ~R!…, ~2.2!

where the prime denotes the derivative of the potentiav
with respect to its argument.

The following qualitative analysis suggests the possibi
of the nontrivial influence of the corrugation of the substra
on wetting transition. When the temperature is low, t

FIG. 1. ~a! Plot of the first-order effective potentialv( l ) for
different values of temperature. Curves 1, 2, and 3 correspondT
lower, equal to, and greater than the wetting temperature of
planar substrateTwp , respectively.l p denotes the equilibrium film
thickness on a planar substrate~in the figure only the value corre
sponding to curve 2 is marked!. ~b! Plot of the second-order effec
tive potentialv( l ) for different values of the temperature. Curve
corresponds to a temperature lower thanTwp , curve 2 corresponds
to a temperature equal to or greater thanTwp . l p denotes the equi-
librium film thickness on a planar substrate.
6-2
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ROUGHNESS-INDUCED FILLING PHYSICAL REVIEW E65 061606
second-order potentialv( l ) has a deep and steep well with
global ~negative! minimum atl p—the mean-field film thick-
ness on the planar substrate. For the potential contributio
the free energy it is advantageous that the film thickn
preserves the value close tol p ; any deviation from this
value considerably raises the free energy of the syst
However, Hamiltonian~2.1! contains also~always non-
negative! square-gradient contribution due to the undulat
of the film thickness. For a liquid film of nearly consta
thickness, the greater the corrugation of the substrate,
greater is the undulation of the interface, and the greate
the value of the square-gradient contribution. Thus, there
competition between both contributions to the free energy
high temperature, but smaller thanTwp , the potential well is
broad and shallow. The negative potential contribution to
Hamiltonian is not so pronounced like at low temperatur
The small undulation of the interface is favorable, and
film thickness should be large everywhere. The increase
the free energy in the potential contribution to the Ham
tonian ~2.1! resulting from the flattening of the interface
small, and can be compensated by decreasing the gra
contribution to the Hamiltonian. One can expect that the
dulation of the interface induced by the corrugation of t
substrate enforces the depinning transition. For large am
tude of the corrugation this gradient contribution could
perhaps large enough that at a specific tempera
Tw(A,q),Twp the free energy could have the same value
the free energy of the completely wet system. Thus, it wo
be a first-order transition occurring atTw(A,q),Twp .

In the case of the first-order potential, the shift of t
transition temperature is obvious@34#. At the wetting tem-
perature of the planar substrateTwp , both terms in Hamil-
tonian~2.1! are non-negative and the free energy of the fin
interfacial profile is positive, whereas the free energy of
infinite configuration vanishes. At this temperature the in
nite configuration is favorable. When the temperature is o
a little bit lower thanTwp , it is so, as well. The effective
interfacial potentialv( l ) is negative in the vicinity ofl p , but
its integral is still positive. The free energy of the finite s
lution vanishes at a specific temperature lower thanTwp .
This indicates that in the case of the first-order potential
first-order wetting transition occurs at a temperature low
than the wetting temperature of the planar substrate, and
transition is a first-order one. The locus of the transition
determined both by the corrugation of the substrate and
effective potentialv( l ).

The case of the second-order potential seems to be m
complicated. Parry and collaborators@27,31# predicted that
for small corrugation of the substrate, the wetting transit
occurs exactly atTwp and remains critical. However, whe
the corrugation is strong enough, wetting occurs at a te
perature lower thenTwp and ceases to be critical. Instead
the continuous transition the authors report first-order tra
tion. This phenomenon was called roughness-induced fi
order wetting. Its existence was argued in different wa
with the help of the Landau theory, the effective Hamiltoni
approach, and using arguments following from the functio
renormalization and scalling theory. In the subsequent pa
@35,36# the authors did not sustain this statement, or retr
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it. Instead, they wrote about another phenomenon
corrugation-induced first-order unbending—which is, in o
terminology, identical to the filling transition.~Considering
the phonetic conformity of termsunbendingand unbinding
we prefer the termfilling!. It is in agreement with the simple
thermodynamical description of the rough surface@34#, tak-
ing into consideration the competition between different s
face contribution to the free energy. It is interesting to clar
this problem, and to investigate in detail how the interfa
behaves at a temperature close to the wetting point. We
cuss here only the effective mean-field Hamiltonian a
proach. There is a simple counterexample, which shows
roughness-induced wetting cannot exist. Let us conside
flat interfacef 0 situated at a large but finite distance from t
substrate. The Hamiltonian~2.1! evaluated for this interface
contains only potential contribution. For each value of t
temperature less thanTwp , we can situate the interface so fa
that v„l 0(R)…,0, what gives a negative value ofH@ f 0#. At
each temperature less thenTwp the infinite configuration is
not the configuration corresponding to the minimum
Hamiltonian~2.1!; thus, it cannot be the equilibrium configu
ration. There is a whole spectrum of statesf with a huge
mean distance between the interface and the substrate
with a small undulation of the interface, all of them have
negative value ofH@ f #. The equilibrium interface has to b
situated at a finite distance from the substrate. The wet
temperature cannot be shifted fromTwp and wetting must be
a continuous transition. This conclusion also remains tru
we involve a more advanced Hamiltonian, for example,
‘‘drum-head’’ model. All contributions containing derivative
of the interface vanish for planar interface, and only poten
contribution survives. This argument, however, does not c
tradicts the existence of the roughness-induced thin-th
transition.

In this paper we discuss the periodically corrugated s
strate described by the function

b~x!5A~12cosqx!. ~2.3!

A is called the corrugation amplitude of the substrate,q is the
wave number of the substrate. The substrate is translation
invariant iny direction, what makes our problem quasi-on
dimensional. The half space withz.b(x) is occupied by the
fluid at bulk liquid-gas coexistence. We assume that the e
librium interface has the same symmetry as the boundary
we restrict our consideration to one segment@2a,a#, with
a5p/q. Thus, in Hamiltonian~2.1! integration can be re-
stricted only to this segment

H@ f #5E
2a

a

dxFs2 f x
21v~ l !G . ~2.4!

Our model has to be additionally supplemented by
boundary conditions

f x~0!5 f x~a!50. ~2.5!

The Euler-Lagrange equation~2.2! now takes the form

s f̄ xx~x!5v8„ l̄ ~x!…. ~2.6!
6-3
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K. REJMER PHYSICAL REVIEW E 65 061606
For T,Twp , Eq. ~2.6! has a solution situated at a finit
distance from the substrate, and the solution situated a
finity. We are interested in competition~measured by the free
energy! between them. At the beginning of our analysis w
note a simple fact concerning the finite solution of Eq.~2.6!.
Integrating twice this equation with respect tox one obtains
the inequality

f ~a!2 f ~0!,
a2

2s
max@v8~ l !#, ~2.7!

where max@v8(l)# denotes the maximal value of the deriv
tive of v8„l (x)… over the segment@0,a#. For the second-
order potential this maximal value decreases to zero wheT
grows to the wetting temperature of the planar substrate. T
means that~independently of the competition! the finite so-
lution flattens whenT↗Twp , if the interface fulfills the con-
dition f (a). f (0). This simple fact is important and we ad
duce it often in this paper.

B. Corrugation-induced first-order transition in the linear
approximation: The shape of the interface

Predictions of the corrugation-induced first-order wetti
were based on the linearized version of the theory. T
Euler-Lagrange equation linearized around the equilibri
film thickness for the planar substratel p has the following
form:

S d2

dx22
1

j ip
2 D d l̄ ~x!52q2A cosqx, ~2.8!

whered l̄ (x)5 l̄ (x)2 l p is the deviation of the local equilib
rium value l̄ (x) from its value l p on the planar substrate
@Equation~2.6! can be linearized not necessarily aroundl p

but around another valuel 0 ~a priori arbitrary!, see Appendix
A.# The lengthj ip defined by the equation

v9~ l p!5
s

j ip
2 ~2.9!

is the parallel correlation length, also for the planar case.
linearization is justified by the fact that for the small corrg
gation ~i.e., for qA!1! deviationd l̄ (x) should be small, as
well. However, this way of thinking restricts consideratio
only to the small corrugation, or low temperature, when su
small deviation is energetically favorized. The solution
Eq. ~2.8! satisfying boundary conditionsd l̄ x(0)5d l̄ x(a)
50 has the form

d l̄ ~x!5
~qj ip!2

11~qj ip!2 A cosqx. ~2.10!

The formal applicability of this solution is restricted to su
range of the amplitudeA and temperature that the film thick
nessl p1d l (x) is positive. This function has to be subs
tuted to the Hamiltonian that, in linear approximation, tak
the following form:
06160
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H@d f #5E
2a

a

dxH s

2 F ~d f x!
21S d l

j ip
D 2G1v~ l p!J ,

~2.11!

whered f (x)5 f (x)2( l p1A). For the equilibrium solution
one obtains

d f̄ ~x!52
A

11~qj ip!2 cosqx. ~2.12!

This calculation is straightforward and gives the value of
free energy of the system

F5
spq

2pb
2

~pbA!2

11~qj ip!2 1
2p

q
v~ l p!. ~2.13!

Here pb denotes the inverse correlation length in the bu
liquid phase denoted byb. The above expression is vali
both for the first- and for the second-order effective poten
v( l ). Now we restrict our consideration to the second ca
First contribution to the free-energy is positive, whereas
second one is negative. Thus, it can happen that for am
tude A large enough the free energy vanishes at a cer
temperatureTw(A,q) lower then theTwp ~i.e., for finite val-
ues of l p and j ip!. As the free energy of the interface situ
ated at infinity vanishes as well, it means that first-ord
wetting might occur atTw(A,q), provided the linear ap-
proximation is correct~see Fig. 2!. However, one should be

FIG. 2. Free energyC52pb
2F/psq for short-range interactions

evaluated within the linear approximation as a function of the p
allel correlation length on a planar substrate,j ip . This length is an
increasing function of the temperature, and diverges atTwp . Dif-
ferent plots correspond to the values of the corrugation amplitud
the substrate equal to~from bottom to top, respectively! pbA
51.3,1.38,1.45,1.5. Last two curves satisfy the conditionpbA
.&. As the free energy of the infinitely thick layer with plana
liquid-gas interface vanishes, these two curves exhibit the fi
order wetting at their specific temperaturesTw(A),Twp .
6-4
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ROUGHNESS-INDUCED FILLING PHYSICAL REVIEW E65 061606
cautious as this result can violate the assumption that
corrugation is small, and in this case linearization of t
theory is not justified.

We will investigate this problem separately for the sh
range, and for the long-range interactions. As a model of
short-range second-order interaction potential, we taken
interfacial potential of the form

v~ l !5Wt exp~2pbl !1U exp~22pbl ! , ~2.14!

whereW andU are positive, temperature independent amp
tudes of the attracting and repulsing potential, respectiv
and t5(T2Twp)/Twp is the reduced temperature, which
negative below wetting of the planar substrate, and vanis
at Twp . The free energy is equal to

F5
psq

2pb
2 F ~pbA!2

11~qj ip!22
2

~qj ip!2G . ~2.15!

The first-order transition occurs at a temperature given
plicitly ~through the temperature dependence ofj ip! by the
equation

~qj ip!25
1

1
2 ~pbA!221

, ~2.16!

if and only if the condition

~pbA!2.2, ~2.17!

is satisfied. The treshold of the first-order transition is d
fined by the amplitudepbA* 5&. In the following subsec-
tion we look for the solution of Eq.~2.6! perturbatively. We
find the solution as a power series expansion inpbA. When
pbA.1 what is the case of the first-order roughness-indu
wetting, it is not allowed to neglect higher contributions a
restrict considerations only to linearized theory. Thus,
first-order wetting induced by the corrugation occurs
such amplitude of the corrugation that linearization of t
theory certainly is not justified.

As a model of the long-range second-order interacti
we take into consideration the potential of the form

v~ l !5
Wt

l r 1
U

l s , ~2.18!

wherer ands are natural numbers (s.r ) while W, U, andt
have the same meaning as in the previous case. The
energy of the system is now equal to

F5
sp

2q
G2F S qA

G D 2

11~qj ip!22
1

~qj ip!2s/~s12!
G , ~2.19!

where
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4~s2r !2/~s12!

rss/~s12! S Uqs

s D 2/~s12!

. ~2.20!

The nonuniversality of the above expression is striking;
quantityG explicity depends on the surface tensions of the
free interface, and moreover, depends also on the ampli
U of the repulsing part of the effective potentialv( l ). For
small value of the nonuniversal amplitudeqA/G, the free
energy given by Eq.~2.19! is always negative, as long as th
parallel correlation length is finite. Continuous wetting o
curs atTwp . If this amplitude is large enough, the first-ord
wetting occurs at a specific temperatureT1(A,q). If the tem-
perature grows, the first-order dewetting occurs at ano
specific temperatureT2(A,q).T1(A,q). Above this tem-
perature the substrate is once again partially wet and exp
ences the continuous wetting atTwp ~see Fig. 3!. At certain
range of temperatures (T1 ,T2) below Twp the wet state is
stable, while forT.T2 then substrate is only partially we
We observe first-order dewetting atT2 , followed by the con-
tinuous wetting atTwp . Depending on the value of the am
plitude qA/G absolute values of minimum and maximum
the free-energy may differ about many orders of magnitu
~see Fig. 3!. Thus, for T.T2 partially wet state or forT1
,T,T2 completely wet state could be unstable with resp
to fluctuations, provided the linear approximations we
valid.

III. THE FILM THICKNESS FAR AWAY
FROM THE CRITICAL WETTING

OF THE PLANAR SUBSTRATE

In this section we solve Eq.~2.6! perturbatively. We dis-
cuss the short-range interactions and long-range interact
separately, although the method is the same for both cas

A. Perturbative expansion

The general perturbative solution of Eq.~2.6! satisfying
boundary conditionsl x(0)5 l x(a)50 can be expressed as
power series expansion@48#

l̄ ~x!5 l p1 (
i , j 51

`

Bi , j cosj qx sin2 j qx. ~3.1!

Becausel (x) is even function ofx, only even powers of
sinqx give contribution to the film thicknessl̄ (x). The fol-
lowing polynomial expression:

d l̄ ~n!~x!5 (
i 12 j 5n

Bi , j cosj qx sin2 j qx ~3.2!

will be called thenth order contribution tol̄ (r ). From Eq.
~2.6! it follows that these contributions satisfy the hierarc
of equations

S d2

dx22
1

j ip
2 D d l̄ ~1!~x!52q2A cosqx, ~3.3!
6-5
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K. REJMER PHYSICAL REVIEW E 65 061606
S d2

dx22
1

j ip
2 D d l̄ ~2!~x!5

1

2s
v~3!~ l p!@d l̄ ~1!~x!#2, ~3.4!

S d2

dx22
1

j ip
2 D d l̄ ~3!~x!5

1

6s
v~4!~ l p!@d l ~1!~x!#31

1

s
v~3!

3~ l p!d l̄ ~1!~x!d l̄ ~2!~x!, ~3.5!

FIG. 3. Free energyC52pb
2F/psq for long-range interactions

evaluated within the linear approximation as a function of the p
allel correlation length on a planar substrate. Different plots co
spond to the values of the corrugation amplitude of the subst
equal to~from bottom to top, respectively! qA/G51,3,4,5. The first
plot exhibits only the continuous wetting. Other curves exhibit m
complicated behavior: the first-order wetting at a specific temp
ture T1(qA/G) ~it is shown in the upper plot!, and the first-order
dewetting at another specific temperatureT2(qA/G) greater than
the previous one. AboveT2(qA/G) the substrate remains only pa
tially wet and experiences continuous wetting atTwp , the wetting
temperature of the planar substrate.
06160
S d2

dx22
1

j ip
2 D d l̄ ~4!~x!5

1

24s
v~5!~ l p!~d l̄ ~1!!

41
1

2s
v~4!~ l p!

3@d l̄ ~1!~x!#2d l̄ ~2!~x!1
1

2s
v~3!~ l p!

3$@d l̄ ~2!~x!#212d l̄ ~3!~x!

3d l̄ ~1!~x!%¯ . ~3.6!

This is a hierarchy of inhomogenous, linear, second-or
differential equations; each inhomogenity is defined in ter
of the solutions of previous equations. Thus, this hierarchy
equations can be easily solved step by step. First of th
Eq. ~3.3!, is the linearization of Eq.~2.6! around l p . The
solution of Eq.~3.3! has the form

d l̄ ~1!~x!5
~qj ip!2

11~qj ip!2 A cosqx. ~3.7!

It depends on the effective interfacial potentialv( l ) only
through the parallel correlation lengthj ip . The forms of the
higher contributionsd l̄ (n)(x) are explicitlyv dependent, and
should be discussed separately for the short and for the
range of effective interactions.

B. Short-range interactions

Substituting to Eqs.~3.3!–~3.6! the solution in the form of
the expansion given in Eq.~3.1!, one obtains a system o
linear equations for coefficientBi j . First- and second-orde
contributions, i.e.,d l̄ (1) and d l̄ (2) are given by the coeffi-
cients

B1,05
~qj ip!2

11~qj ip!2 A, ~3.8!

B0,153
~qj ip!2

114~qj ip!2 pbB1,0
2 , ~3.9!

B2,05
3

2

112~qj ip!2

114~qj ip!2 pbB1,0
2 . ~3.10!

The expression ford l (1)(x) coincides with the solution@Eq.
~2.10!# of the linear equation~2.8!. It tends toA when tem-
perature increases toTwp . The second-order contributio
d l̄ (2) tends to the constant value34 pbA2 when temperature
increases toTwp . Third-order contributiond l̄ (3) has an am-
plitude proportional topb

2A3 and vanishes atTwp . Fourth-
order contribution has an amplitude proportional topb

3A4

and at Twp is equal to 2 15
64 pb

3A4. This rule is general,

pbd l̄ (n) has an amplitude proportional to (pbA)n, vanishing
at Twp for odd n, and nonvanishing for evenn. Thus, the
equilibrium film thickness is given asymptotically by the e
pression

l̄ ~x!5 l̄ 01
~qj ip!2

11~pbj ip!2 A cosqx1d f̄ ~x!, ~3.11!
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where

l̄ 05 l p1 3
4 pbA22 15

64 pb
3A41¯ , ~3.12!

diverges logarithmically when temperature grows toTwp .
The termd f̄ (x) vanishes atTwp @if follows from Eq. ~2.7!#,
and the amplitude (qj ip)2/@11(pbj ip)2#A of the film thick-
ness undulation tends to the constant valueA. The interface
described by the finite solution moves continuously to infi
ity and becomes flat atTwp , in agreement with Eq.~2.7!.

From these considerations it follows that the linearizat
of Eq. ~2.6! aroundl p is not justified unless the amplitud
pbA is less than one, or temperature is small. If this con
tion is not fulfilled, one must discuss the whole profilel̄ (x)
and not onlyd l̄ (1)(x). The prediction of the corrugation
induced first-order wetting was based on the linearized v
sion of the theory. It turns out, that this transition occurs
the regime of amplitudepbA large enough that linearizatio
is no longer justified. The whole perturbative expansion
needed, and the problem of its convergence arises. Inste
the perturbative solution of Eq.~2.6! we will employ in the
following section an alternative procedure of investigatio
which consists in direct minimization of the effective Ham
tonian.

C. Long-range interactions

The same analysis can be made for the long-range in
actions described by the effective potential Eq.~2.18!. For
this case one obtains

B0,15g2

~qj ip!2

114~qj ip!2

qB1,0
2

~qj ip!2/~s12! , ~3.13!

B2,05
1

2
g2

112~qj ip!2

114~qj ip!2

qB1,0
2

~qj ip!2/~s12! , ~3.14!

with B1,0 given by Eq.~3.8!, and

g252
r 1s13

~s2r !1/~s12! S s

sUqsD 1/~s12!

. ~3.15!

WhenT grows toTwp , bothB0,1 andB2,0 vanish. The inter-
face moves to infinity and flattens just like for the previo
case. Apart from the nonuniversality, there is one more
ference; for short-range interactionsl 0 differs from l p , for
long-range interactions it does not.

IV. INTERFACE CLOSE TO THE WETTING TRANSITION

From our previous considerations we know that the p
file of the interface satisfying Euler-Lagrange equation a
temperature close toTwp is situated far away from the sub
strate~but still at a finite distance!, and it is almost flat. When
the temperature is close toTwp , the interface flattens, an
film thickness at the equilibrium can be described by
function

l̄ ~x!5 l̄ 01B̄ cosqx1d f̄ . ~4.1!
06160
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First parameter,l̄ 0 is divergent whenT grows toTwp , while
B̄ tends toA, andd f̄ vanishes in this limit. In this regime i
is possible to linearize Eq.~2.6! not aroundl p—as we have
done in the low-temperature regime—but rather aroundl̄ 0

1B̄ cosqx. Here l̄ 0 has the interpretation of the mean di
tance between interface and substrate, andB̄ of the undula-
tion amplitude of the film thickness. This new linearizatio
procedure leads to a linear equation ford f̄ . However, this
equation is not useful as the equilibrium values ofl̄ 0 and B̄
remain unknown.

We use an alternative approach, analogous to the one
was given by Rasco´n, Parry, and Sartori@36#. It is based on
neglectingd f̄ that is ~in the vicinity of Twp! much smaller
than l̄ 0 and B̄, substitutingl 01B cosqx instead ofl (x) into
Hamiltonian~2.1!, and minimizing the Hamiltonian with re
spect tol 0 andB. The neglected contribution contains high
terms of the Fourier series expansion that are relatively sm
in the vicinity of the wetting point of planar substrate@what
follows from Eq. ~2.7!#. ~Here the absence of the bar sig
denotes that this quantity has an arbitrary value, not ne
sarily an equilibrium one.! In this way the Hamiltonian in
Eq. ~2.1! ceases to be a functional off (x), but it becomes
simply a function of both,l 0 andB,

H~ l 0 ,B!5
1

2
sqp~B2A!212E

0

a

dx v~ l 01B cosqx!.

~4.2!

Minimizing Hamiltonian ~4.2! with respect tol 0 and B we
obtain the equilibrium valuesl̄ 0 and B̄ of these parameters
We discuss this procedure separately for short- and lo
range interactions. In the following section we adopt th
method also for the analysis of the filling transition.

A. Short-range interactions

In this subsection we discuss short-range interactions w
the effective potential given by Eq.~2.14!. We evaluate the
potential contribution to the free energy expandingv around
l 0 and integrating this expansion step by step. In this way
obtain

H~ l 0 ,B!5
1

2
sqp~B2A!21

2p

q
@ tW exp~2pbl 0!F~pbB!

1U exp~22pbl 0!F~2pbB!#, ~4.3!

whereF(s) is a function defined as

F~s!5 (
n50

`
s2n

@~2n!!! #2 , ~4.4!

where s5pbB. This series expansion is bounded by t
function coshs, and thus, it is convergent. It can be rewritte
in terms of the hypergeometric functionF(a,g,s) @49# or
modified Bessel function@50#

F~s!5exp~2s!F~ 1
2 ,1,2s!5K0~s!. ~4.5!
6-7
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Minimizing H( l 0 ,B) we have to solve the pair of equation
~bars denote, as usual the equilibrium values!

S ]H
] l 0

D U
B

~ l̄ 0 ,B̄!52
2ppb

q
@ tW exp~2pb l̄ 0!K0~pbB̄!

12U exp~22pb l̄ 0!K0~2pbB̄!#50,

~4.6!

S ]H
]B D U

l 0

~ l̄ 0 ,B̄!5sqp~B2A!1
2ppb

q

3@ tW exp~2pb l̄ 0!K08~pbB̄!

12U exp~22p3 l̄ 0!K08~2pbB̄!#50.

~4.7!

~Prime denotes the derivative of the function with respec
its argument.! Equation~4.6! givesl 0 as the function ofpbB,

l 0~pbB!5 l p1pb
21 lnS K0~2pbB!

K0~pbB! D . ~4.8!

@Note thatK0(s) is the increasing function ofs, and in con-
sequence expression in brackets in Eq.~4.8! is greater than
one. Thus,l 0(pbB). l p .# Expanding the right-hand sid
~rhs! of Eq. ~4.8! ~up to fourth-order terms inB! we obtain

l 0~pbB!5 l p1 3
4 pbB22 15

64 pb
3B41¯ . ~4.9!

For T↗Twp , B̄ tends toA @it follows from Eq. ~2.7!#, and
asymptotically

l̄ 0[ l 0~pbB̄!. l p1 3
4 pbA22 15

64 pb
3A41¯ , ~4.10!

what reproduces results of our perturbative approach,
~3.12!. We substitute the expression forl 0(pbB) given in Eq.
~4.8! into Eq.~4.7!. In this way we obtain an equation for th
equilibrium value ofB̄,

pbA5M ~pbB,qj ip!, ~4.11!

where

M ~pbB,qj ip![pbB̄1
2

~qj ip!2

K0~pbB̄!

K0~2pbB̄!

3FK08~2pbB̄!
K0~pbB̄!

K0~2pbB̄!
2K08~pbB̄!G .

~4.12!

This is a transcendental equation that permits to find an e
librium value of the corrugation amplitude of the interfaceB̄
as a function of parametersA and q, which represent the
geometry of the substratepb andj ip , which represent bulk
and surface thermodynamics, respectively. The solution
Eq. ~4.11! has to be next substituted to Eq.~4.8!, to evaluate
06160
o

q.

i-

of

an equilibrium value of the mean distancel̄ 0 . When tem-
perature is close toTwp , the factor (pbj ip)22!1. In conse-
quence, the second term on the rhs of Eq.~4.12! is very small
as compared toB̄. Thus, the equilibrium value ofB̄ is close
to A, as we expected. The expression in square bracke
Eq. ~4.12! is the nonmonotonic function ofB̄ ~see Fig. 4!,
and the whole rhs of Eq.~4.12! is a nonmonotonic function
providedqj ip is enough small. There is a range of tempe
tures such that~depending on the value of the corrugatio
amplitudeA, or wavenumberq! Eq. ~4.11! can have more
than one solution. This existence of more than one soluti
turns out to be related to the filling transition. We will dis
cuss this case in Sec. VI. Here we restrict our considerat
to the case whenj ip is large enough~i.e., the temperature is
close enough toTwp! that Eq.~4.11! has a unique solution
independently of the corrugation of the substrate.

FIG. 4. Plot ofM (pbB,qj ip) @Eq. ~4.12!# as a function ofpbB
for different values ofqj ip50.1,0.15,0.3,1 curves 1,2,3,4, respe
tively!. For small values ofqj ip it is a nonmonotonic function. The

equilibrium amplitude of the undulation of the interfaceB̄ is de-
fined by the intersection point of this plot with the straight, ho
zontal line, corresponding to the roughness amplitudepbA of the
substrate. For the value ofpbA corresponding to the horizontal lin
curve 1 leads to a small amplitude of the film thickness undulati
Curves 3 and 4 lead to large amplitudes of the film thickness un
lation. Curve 2 corresponds to the first-order roughness-indu
filling transition if the hatched surface areas shown in this figure
equal. Then the coexisting films have undulation amplitudesB1 and
B3 .
6-8
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Looking for the coefficientB̄ in the form

B̄5 (
n51

`

anAn, ~4.13!

we obtain

B̄5A
~qj ip!2

11~qj ip!2 F11
3

8

~qj ip!4

@11~qj ip!2#3 ~p3A!21¯G .
~4.14!

The first contribution toB̄ coincides with the amplitudeB1,0
of the perturbative expansion Eq.~3.8!. Higher contributions
are negligible when temperature is close toTwp . Using Eqs.
~4.8! and~4.12! to evaluate Hamiltonian~2.6! we obtain the
free energy of the system

F~T,A!5
psq

~qj ip!2pb
2

K0
2~pbB̄!

K0~2pbB̄!
F 2

~qj ip!2
L~pbB̄!21G ,

~4.15!

whereB̄ is a function of the amplitudeA obtained from Eq.
~4.11!, and

L~s!5
1

K0~2s! FK08~2s!
K0~s!

K0~2s!
2K08~s!G2

. ~4.16!

Expanding Eqs.~4.14! and~4.15! up to terms quadratic inA
one obtains the approximation of the free energy given in
~2.15!. First contribution in square bracket in Eq.~4.15! fol-
lows from the gradient term and is a positive quantity. Due
the factorj ip

22 this contribution vanishes whenT grows to
Twp . Close toTwp the whole expression in square bracket
negative. The interface situated at infinity has the free ene
equal zero. Thus, the finite solution is the stable one. Mo
over, the square bracket also has the prefactorj ip

22. The free
energy of the finite solution continuously grows to zero wh
temperature increases toTwp . This proves that the corru
gated system experiences the continuous wetting atTwp ,
independently of the magnitude ofA.

B. Long-range interactions

Similar analysis can be performed for the long-range
teractions, Eq.~2.18!. In this case

H~ l 0 ,B!5
1

2
psq~B2A!21

2p

q F tW

l 0
m F r S B

l 0
D1

U

l 0
m FsS B

l 0
D G ,

~4.17!

where

Fk~z!5 (
n50

`
~k12n21!!

~k21!! @~2n!!! #2 z2n, ~4.18!

wherez5B/ l 0 . Forz,1, the power series~4.18! is bounded
by the function1

2 @(11z)1/k1(12z)1/k#. It can be rewritten
as the Barnes’ extended hypergeometric function
06160
q.

o

y
-

n

-

Fk~z!5FXS 1

2
~k11!,

1

2
kD ,1,z2C ~k5r ,s!. ~4.19!

Close toTwp the fractionB̄/ l̄ 0 is much less than one, and th
expansion~4.18! is convergent. Equation~4.6! gives the fol-
lowing expression forl 0 as a function ofB:

l 0~pbB!5 l pS GsS B

l 0
D

G r S B

l 0
D D

1/~s2r !

, ~4.20!

where

Gk~z!5Fk~z!1
1

k
zFk8~z! ~k5r ,s!. ~4.21!

@Equation~4.20! when solving together with Eq.~4.7! with
respect toA corresponds to Eq.~10! in the paper of Rasco´n,
Parry, and Sartori@36#.# Equation~4.20! is a transcendenta
equation forl 0 as a function ofB. We can solve this equation
perturbatively, substituting

l 05 l pS (
n50

`

anBnD . ~4.22!

Solving Eq.~4.20! up to second order inB we obtain

l 05 l pS 11
r 1s13

4 S B

l p
D 2

1¯ D . ~4.23!

This is a behavior quite different than for short-range int
actions. In the former casel p has an additive correction
while in the present case it has a multiplicative correctio
When T grows toTwp this factor tends to unity. Thus, as
ymptotically l̄ 0 is equal tol p , which is in agreement with
results of the perturbative approach.

For long-range interactions instead of Eq.~4.7! we obtain

A5B̄1
2

sq2 F Wt

l̄ 0
r 11

F r8S B̄

l̄ 0

D 1
U

l̄ 0
s11

Fs8S B̄

l̄ 0

D G .

~4.24!

Unfortunately, in this casel̄ 0 andB̄ are not separated like fo
short-range interactions: Eq.~4.24! depends not only onl̄ 0 ,
but also onB̄/ l̄ 0 . This makes the calculations~although pos-
sible! more cumbersome. Instead of solving Eqs.~4.6! and
~4.7! and expressing the free energy only by the equilibriu
value of B̄ we perform in the following section a rigorou
analysis, valid for both kind of interactions.

V. THE PROOF OF THE NONEXISTENCE
OF THE ROUGHNESS-INDUCED WETTING

Computational difficulties for the long-range interactio
are not the only reason for the search of an exact proof of
nonexistence of the roughness-induced first-order wetting
6-9
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Hamiltonian~4.2! we have omitted all contributions contain
ing d f̄ and its derivatives. In the potential contribution to t
Hamiltonian, this neglected term is indeed small as co
pared to the leading termv( l̄ 01B̄ cosqx). It is not obvious
that terms containing derivatived f̄ x are also negligible. The
expressions (d f̄ x)

2 and 2(B2A) f̄ x are compared to (B̄
2A)2; all of them can vanish in the similar way. In order
elucidate this problem we proceed in another way. We s
stitute the equilibrium solutionf̄ of the Euler-Lagrange equa
tion ~2.6! into Hamiltonian~2.4!, and integrate gradient term
by parts. In this way we obtain

H@ f̄ #52E
0

a

dx@2v8~ l̄ ! f̄ 1v~ l̄ !#. ~5.1!

We have to compare the value ofH@ f̄ # to zero—the value of
the free energy of the planar interface situated at infin
Negative value ofH@ f̄ # means that the substrate is only pa
tially wet, positive value ofH@ f̄ # means that it is completely
wet. The first term of the integrand in Eq.~5.1! is positive.
Integrating Eq.~2.6! from 0 to a, due to the boundary con
ditions l̄ x(0)5 l̄ x(a)50 we obtain

E
0

a

dx v8~ l̄ !50. ~5.2!

Equation~5.2! generalizes to the case of the corrugated s
strate the condition

v8~ l p!50, ~5.3!

which defines the equilibrium film thicknessl p on the planar
substrate. The position of the equilibrium interfacef̄ (x) can
be rewritten as

f̄ ~x!5 l̄ 02
A

11~pbj ip!2 cosqx1d f̄ ~x!5 l̄ 01D f̄ ~x!,

~5.4!

where~as we know from our previous considerations! l̄ 0 is
divergent whenT↗Tip . ~It need not be equal tol p , and for
short-range interactions it is not!, while d f̄ (x), and D f̄ (x)
vanish as temperature increases to the wetting temperatu
the planar substrate. With the help of Eq.~5.2! we can re-
write Eq. ~5.1! as

H@ f̄ #52E
0

a

dx@2v8~ l̄ !D f̄ 1v~ l̄ !#. ~5.5!

When interactions are short range, all contributions tov( l̄ )
andv8( l̄ ) asymptotically decay likej ip

22 when temperature

grows toTwp . However,v8( l̄ ) is multiplied byD f̄ , which
itself is decaying likej ip

22, as well.@See also Eq.~4.15!.# In
consequence, the square-gradient contribution to the free
ergy is asymptotically negligible as compared to the poten
contribution; the negative contribution to the free ener
dominates over the positive one. In the case of long-ra
06160
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interactions, the asymptotical difference between the squ
gradient and potential contributions to the free energy is e
more pronounced;v( l̄ ) decays likel p

2s , while v8( l̄ ) decays
faster, likel p

2(s11) .
This proof can be immediately generalized for the case

an arbitrary, periodically corrugated substrate.

VI. FILLING TRANSITION

The filling transition occurs when the coexistence b
tween thin and thick films adsorbed on the substrate is p
sible. We discuss this transition in the case of short-ra
interactions. We consider the Hamiltonian

H„l 0~pbB!,pbB,qj ip…5
psq

pb
2 F12

2
~pbB2pbA!2

2
1

~qj ip!2

K0
2~pbB!

K0~2pbB!
G ,

~6.1!

@l 0(pbB) is given by Eq.~4.8!# as a function ofB. For B

5B̄ it determines the free energy of the system. For fix
qj ip Hamiltonian ~6.1! has—independently of the value o
A—a single minimum providedqj ip>0.492. For qj ip

,0.492 there exists such range of amplitudeA that this mini-
mum splits into two minima separated by a maximum. In t
case Eq.~4.11! has two or three solutions. The filling trans
tion emerges from the competition between these solutio
We denote them byB̄i ( i 51,2,3), and byFi the free ener-
gies corresponding to them. The film with the undulati
amplitudeB̄2 always has a free energy greater than the o
ers. In fact, it corresponds to the maximum
H„l 0(pbB),pbB,qj ip…, whereasB̄1 , and B̄3 correspond to
the local minima of Hamiltonian~6.1!. The derivative of the
Hamiltonian~6.1! with respect toB fulfills the equation

d

dB
H„l 0~pbB!,pbB,qj ip…5S ]H

]B D U
l 0

„l 0~pbB!,pbB,qj ip…,

~6.2!

due to Eq.~4.6!. The function defined by Eq.~6.2! is equal to
M (pbB,qj ip)2A @see Eq.~4.11!#. The free energiesF1 and
F3 are related through the equation

F35F11E
B̄1

B̄3
dB

d

dB
H„l 0~pbB!,pbB,qj ip…. ~6.3!

This equation implies that there~for fixed qj ip! the first-
order filling transition occurs when

E
B̄1

B̄3
dB

d

dB
H„l 0~pbB!,pbB,qj ip…50 ~6.4!

The above equation indicates that the locus of the transi
is determined by the Maxwell’s construction. Equation~6.4!
points out that the surface areas between the plot of the fu
tion M (pbB,qj ip) and the horizontal linepbA shown on
6-10



ne

a

is
ro
al

bl
e

e
er
re
hi
w
tio

an

-
n

nd

in
t
es

e

otic

the

in-

m
-

-

in
.
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Fig. 4 are equal. Figure 5 presents the plot of the free e
gies F1 , F2 , and F3 as functions ofqj ip . It displays the
characteristic behavior of the chemical potential of the v
der Waals fluid at two-phase coexistence. The valueqj ip

equal to 0.492 determines the critical point of the coex
ence line between the profile with large undulation and p
file with small undulation of the film thickness. The critic
filling temperature depends on the wave numberq of the
substrate; it grows when decreasingq. Figure 6 presents the
adsorption diagram of the system expressed in varia
(qj ip)21 and A. The wetting transition is described by th
straight vertical bold line (qj ip)2150, A>0. The point de-
noted as CF is the critical filling point. There are three lin
terminating at this point. The middle line is the first-ord
filling transition line. Lines situated below and above it a
spinodals. They are border lines of metastable states: t
metastable layer between the transition line and the lo
spinodal, and thin metastable layer between the transi
line and the upper spinodal.

FIG. 5. The free energyC5pb
2F/psq of the films adsorbed on

the sinusoidally corrugated substrate withpbA54. Free energies
C1 , C2 , andC3 correspond to undulation amplitudes of the fil
thicknessB1 , B2 , andB3 , respectively. CO denotes the filling tran
sition point. Forqj ip.(qj ip)CO the equilibrium film has an undu
lation amplitudeB3 . Similarily, for qj ip,(qj ip)CO the equilibrium
film has an undulation amplitudeB1 . The metastable liquid films
may also exist. The line CO-S2 corresponds to the metastable th
film, while the line CO-S1 corresponds to the metastable thick film
S6 denotes the lower or upper spinodal point, respectively.
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The critical point has coordinates

~qj ip!CF50.492, pbACF52.469. ~6.5!

All numerical values are quoted with the error less th
0.001. The critical amplitudeACF is the treshold value of the
corrugation amplitudeA; the corrugation-induced filling
transition occurs whenA>ACF. Whenqj ip,(qj ip)CF, the
functionM (pbB,qj ip) ~for fixed qj ip! displays a maximum
and a minimum separated by an inflection pointpbBi
51.203. At the critical point maximum and minimum van
ish, they shrink into the inflection point. In the critical regio
the coexistence line is described by the function~for details
see Appendix B!

pbA5pbBi1
f ~pbBi !

~qj ip!2 51.2031
0.306

~qj ip!2 . ~6.6!

When qj ip has a value fixed close to the critical one, a
pbB has a value close topbBi the functionM (pbB,qj ip)
can be approximated by the polynomial of third order
DB5B2Bi . Thus, the asymptotic behavior of differen
quantities can be easily found. The undulation amplitud
B3,1 at thin-thick coexistence satisfy in the vicinity of th
filling-critical point following mean-field power laws:

DB̄3,1;H S TCF2T

TCF
D 1/2

for q5const,

S qCF2q

qCF
D 1/2

for T5const.

~6.7!

The coexistence line is described by the linear asympt
law

ACF2A

ACF
;H TCF2T

TCF
for q5const,

qCF2q

qCF
for T5const.

~6.8!

Thus, Eq.~6.7! also reads as

DB̄3,1;S A2ACF

ACF
D 1/2

. ~6.9!

For spinodals the asymptotic behavior is determined by
following power law:

A22A1;H S TCF2T

TCF
D 3/2

for q5const,

S qCF2q

qCF
D 3/2

for T5const.

~6.10!

The singular part of the free energy of the system at th
thick coexistence@qj ip,(qj ip)CF# behaves as

Fsing;@~qj ip!CF
2 2~qj ip!2#2, ~6.11!

which leads to
6-11
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FIG. 6. ~a! The adsorption diagram of the sinusoidally corr
gated substrate at the bulk liquid-gas coexistence. Bold vertical
(qj ip)2150, A>0 is the location of the wetting transition. Th
first-order filling transition line is denoted here by CO, the critic
filling point by CF,S6 are the corresponding spinodals. Above t
coexistence line the equilibrium liquid film is thick, but below th
upper spinodalS2 a thin metastable layer may exist. Below th
coexistence line the thin layer is stable, but above the lower s
odal S1 a metastable, thick liquid film may exist.~b! The coexist-
ence line in the critical region. CO denotes the coexistence
obtained numerically~CF is the critical filling point!. The curve
above the coexistence line is defined by Eq.~6.6!. In the vicinity of
the critical point both lines coincide.
06160
Fsing;H S TCF2T

TCF
D 2

for q5const,

S qCF2q

qCF
D 2

for T5const.

~6.12!

The nonanalyticity of the free energy in filling critical regio
is described by the following power law:

Fsing;S TCF2T

TCF
D 22aF

. ~6.13!

This means that the exponentaF defined by Eq.~6.13! is
equal to zero. It follows from these considerations that th
are three significant variables: temperatureT ~it enters the
analysis through the parallel correlation lengthj ip on the
planar substrate!, the corrugation amplitudeA, and the wave
numberq. Albeit the last one is only a prefactor accompan
ing j ip , it plays an important role. The filling criticality can
be achieved not only upon increasing the temperature
also upon increasing the wave number. For constant temp
ture and corrugation amplitudeA, the greaterq is, the greater
is the corrugation parameterqA, the system is closer to th
filling critical point. The change of the wave numberq
causes the vertical shift of interfaces. For smallerq ~i.e., for
larger size of the segment! the system is closer to wettin
criticality, and the distance between interface and the s
strate is larger. Figure 7 presents an example of coexis
films at fixedT.

VII. SUMMARY

In some physical systems the adsorption of a liquid o
two-dimensional corrugated substrate is not restricted t
simple ~first order or continuous! wetting. One of the pos-
sible scenarios is the sequence of two transitions: first-o
thin-thick transition followed by the continuous wetting
Such behavior was found experimentally when investigat
the wetting of hexane~or, more generally, alkanes! by water
@51#. In this system, thin-thick transition that precedes w
ting is driven by the competition between short-range a
long-range effective interactions. Similar sequence can h
pen in a quite different system with simpler interactio
~only short-range or only long-range interactions!, when the
substrate is not planar, but exhibits large enough corrugat
In this paper we have studied the influence of the roughn
of the substrate on the adsorption phenomena. Unfortuna
the experimental results in this field today are not ri
enough and they do not allow to compare theoretical res
with experimental data.

Our first conclusion is that the roughness of the subst
has no influence on the order of the mean-field wetting tr
sition. If planar substrate experiences continuous wetting
temperatureTwp , the sinusoidally corrugated substrate al
experiences continuous wetting transition at the same t
perature. The form of the Hamiltonian used in this work
principe is restricted only to small roughness of the substr
We have used this form not only for its simplicity. It wa
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l
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e
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ROUGHNESS-INDUCED FILLING PHYSICAL REVIEW E65 061606
used in the paper@31#, where the corrugation-induced we
ting was predicted with its help. The simplification of th
model is not so important, because the roughness of the
strate depends on bothA andq. Even with a huge value o
the amplitudeA, the corrugation can be small if the wav
numberq is small enough. Instead of Hamiltonian~2.1! we
could use the more complicated ‘‘drum-head’’ model

H@ f #5E dxFs2 ~A11 f x
221!1v~ l !~A11bx

2!G , ~7.1!

where the factorA11bx
2 reflects enlargement of the area

the substrate due to its corrugation. It could even be sup
mented by the curvature contributions. Independently of p
sible generalizations, our general argument against the e
tence of the corrugation-induced wetting given in Sec.
remains valid. For each value of the temperature less t
Twp there always exists a flat, planar interface, such that
effective Hamiltonian~7.1! is negative, i.e., the interfac
situated at infinity does not correspond to the global m
mum of Hamiltonian. In Sec. IV and Sec. V we have d
scribed in details how the substrate becomes wet. We h
used a simple method of the minimization of the effect
Hamiltonian. It permits to avoid looking for solutions of th
nonlinear equation, which is usually a difficult problem. Th

FIG. 7. The example of coexisting films on sinusoidally corr
gated substrate (pbA54.112). The hatched area represents the s
strate;f 1(x) and f 2(x) are liquid-gas interfaces of coexisting film
06160
b-

e-
s-
is-
I
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e

-
-
ve

simple, direct minimization makes it possible to describe
asymptotic properties of the system close to the wett
point, and describe the filling transition. An analogo
method was used in Ref.@36#. Our analysis is more detailed
we have established the connection of this method to
perturbative approach, and we have extracted more infor
tion ~i.e., coexistence line, spinodals, critical exponents, a
nonexistence of the roughness driven first-order wetting tr
sition!. Rigorous approach excludes the possibility of the e
istence of the mean-field roughness driven first-order w
ting. Beyond the mean-field theory there is an open prob
concerning the influence of the fluctuations on the wett
transition. This problem is worth of an effort because t
fluctuations of the liquid-gas interface situated over a
substrate can change the temperature and the order of
ting transition. One can expect that roughness of the s
strate comes into a play through the fluctuations of the in
face @11#.

Although the corrugation of the substrate does not infl
ence the wetting transition, it induces another phenomen
namely, the corrugation-induced filling transition. For t
wedge geometry the filling transition occurs for each va
of the opening angle of the wedge, and has the same ord
the wetting transition~at least for a very open wedge!. When
the substrate has a saw shape, the filling~first-order! transi-
tion occurs only when wetting is a first-order transition, a
the corrugation amplitude of the substrate is large enou
On the contrary, on the sinusoidally corrugated substrate
ing transition occurs even when wetting is continuous. It
always a first-order transition and ceases to exist when
roughness amplitude of the substrate has a value less tha
critical one. Our main result is the adsorption diagram at
liquid-gas bulk coexistence. We have found the analyti
expressions determining the coexistence line, and spino
in the vicinity of the filling critical point, and we have cal
culated mean-field values of the critical exponents.

The filling transition~in both cases, i.e., in the wedge an
on the sinusoidally corrugated substrate! was predicted when
using purely thermodynamical arguments@24,33,34#. If the
balance between different surface contributions to the f
energy is taken into account, one can expect that the ph
transition between an empty well and a well partially fille
with a liquid appears. Thermodynamic prediction of the fi
ing temperature in a wedge is exact but the order of
transition is not determined at this level. On the contrary,
the case of the sinusoidal substrate, thermodynamics pre
the order of the transition well, but other predictions are n
confirmed by the mean-field theory. In particular, thermod
namics states the existence of the filling transition indep
dently of the corrugation amplitude. It is an open quest
why in some cases thermodynamics and mean-field the
are in good agreement and in some cases they are not.
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APPENDIX A

In this appendix we prove that the linearization of E
~2.6! is an unambiguous procedure. In Sec. II B we ha
linearized Eq.~2.6! around the equilibrium value of the film
thicknessl p at the planar substrate. It is possible to linear
this equation around another valuel 0 ~a priori arbitrary!. The
linearized equation can be written in the following form:

~12s2!L9~s!2sL8~s!1sA5
v8~ l 0!

sq2 1
v9~ l 0!

sq2 L~s!.

~A1!

where l (x)5 l 01L(s) and s5cosqx. The solution of Eq.
~A1! can be formally written in the form of a power serie
expansion

L~s!5 (
k50

`

l ks
k, ~A2!

with coefficients satisfying equations

l 25
v8~ l 0!

sq2 , ~A3!

l 35
1

6 F S 11
v9~ l 0!

sq2 D l 12AG , ~A4!

and fork.3

l k125
1

~k12!~k11! S k21
v9~ l 0!

sq2 D l k , ~A5!

wherel 0 and l 1 are arbitrary numbers. First, we look for th
solution that is a polynomial of thenth order. In this case the
coefficientl n12 vanishes~l n11 vanishes as well! and we get
the following equation definingl 0 :

v9~ l 0!52n2sq2. ~A6!

For a fixed temperature the existence of the solutions of
above equation depends on the wavelength of the substraq.
The smaller the value ofq the greater must ben, such that
there exists at least one solution. Note that for a large va
of the amplitudeA of the roughness of the substrate the wa
numberq has to be small in order to fulfill the conditio
qA!1. When temperature increases, the solutions co
sponding to largen cease to exist, and close toTwp only the
basic solution described Sec. II B survives. The condit
l n1150 leads to the conclusion that~exceptl 1! all odd co-
efficients have to vanish; otherwisev8( l 0)50, which, how-
ever, for second-order interaction potential is in contradict
with a negative value ofv9( l 0). There is an additional re
striction imposed on each solution, namely, thatl (x) must be
positive for eachx. Here, we list the solutions correspondin
to n52,4,6:

l 2~x!5 l 02
2

A

3
cosqx1

v8~ l 02
!

sq2 cos2 qx, ~A7!
06160
.
e

e

e

e
e

e-

n

n

l 4~x!5 l 04
2

A

15
cosqx1

v8~ l 04
!

sq2 ~cos2 qx2cos4 qx!,

~A8!

l 6~x!5 l 06
2

A

35
cosqx1

v8~ l 06
!

sq2 ~cos2 qx2 8
3 cos3qx

1 16
9 cos6qx!. ~A9!

In the above expressionsl 0n
denotes solution of the Eq.~A6!

corresponding to the appropriate value ofn. The free energy
corresponding tol 2(x) is equal to

F25
psq

2
F4

3
A21

1

2
S v8~ l 02

!

sq2 D 2G1
2p

q
v~ l 02

!.

~A10!

Let us recall the free energy of the basic solution from S
II A. It is equal to

F15
psq

2

A2

11~qj ip!2 1
2p

q
v~ l p!. ~A11!

The first contribution toF2 is evidently greater than the firs
contribution toF1 . As l p corresponds to the absolute min
mum of the effective potentialv, the same holds for the
second contributions to both expressions. In conseque
F1,F2 what makes the solutionl 2(x) uninteresting. Never-
theless, we take this solution into consideration for a m
ment. In Eq.~A10! we replacel 02

by an arbitrary valuel 0 ,

and evaluate derivatives ofF2 with respect tol 0 ,

dF2

dl0
5

2p

q
v8~ l 0!F11

v9~ l 0!

4sq2 G . ~A12!

This derivative vanishes whenv9( l 0)524sq2 what defines
l 02

@Eq. ~A6! in the case ofn52; moreover, note tha

v8( l 02
)Þ0#. In general, Eq.~A10! has two solutionsl 02

(1) and

l 02

(2) ( l 02

(1), l 02

(2)). The second derivative ofF2 evaluated atl 02

is equal to

d2F2

dl0
2 U

v9~ l 02
!524sq2

5
p

2sq3 v-~ l 02
!v8~ l 02

!. ~A13!

For both values ofl 02
the first derivativev8( l 02

) is positive,

whereas the third derivativev-( l 02
) is negative forl 02

(1) and

positive for l 02

(2) value of l 02
. Thus, functionF2( l 0) has the

maximum atl 02

(1) , and minimum atl 02

(2) . The free energy of

the above described additional solutions contains the co
bution dependent on the amplitude of the corrugation of
substrate. This contribution has the for
(psq/2)@n2(qA)2/(n221)#, which is always greater than
the corresponding contribution to the free energy for the
sic solution, which is equal to (psq/2)$(qA)2/@1
1(qj i)2#%. The total free energy of these solutions is grea
than the free energy of the solution linearized aroundl p .
6-14
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ROUGHNESS-INDUCED FILLING PHYSICAL REVIEW E65 061606
Moreover—and this is the crucial point—these solutions
not correspond to the minima of the Hamiltonian~2.11!. The
second variation of the Hamiltonian is given by the follow
ing expression:

d2H5E
2a

a

dx@s~D l x!
21v9~ l 0!~D l !2#. ~A14!

For the variationD l of the film thickness of the formD l
5c cosqx, it is equal to

d2H5psqc2F11
v9~ l 0!

s8q2 G . ~A15!

The necessary condition of the minimum of the Hamilton
is

v9~ l 0!

sq2 .21, ~A16!

which is violated in the case of these polynomial solutio
When the condition~A6! is not fulfilled for any value ofn,
Eqs.~A2!–~A5! define an infinite power series expansion.
is convergent for arbitrary values ofl 0 and l 1 , what follows
from Raabe’s criterion. Even in the casel 05 l p there is a
family of convergent expansions corresponding to the f
choice ofl 1 ~for l 05 l p the expansion exhibits only odd pow
ers ofs!. On the other hand the formal power series exp
sion corresponding toL9(s) is not convergent, and~except
the aforementioned uninteresting polynomial solutions! Eq.
~A2! does not define new solutions of Eq.~2.8!. Thus, the
linearization of Eq.~2.6! aroundl p is a unique choice, and
there are no other solutions of the linearized theory than
~2.10!.

APPENDIX B

In this appendix we present the details of calculatio
leading to the determination of the critical properties of t
system. We rewrite the functionM (pbB,qj ip) defined by
Eq. ~4.12! in the following form:

M ~pbB,qj ip!5pbB1
1

~qj ip!2 f ~pbB!. ~B1!

Both functionsM and f have the same inflection pointpbBi
51.203. In this point

f 9~pbBi !5M 9~pbBi ,qj ip!50, ~B2!

In the filling critical point additionally

M 8„pbBi ,~qj ip!CF…50. ~B3!

~Prime denotes the derivative with respect topbBi .! Equa-
tion ~B3! can be rewritten in the following form

f 8~pbBi !52~qj ip!CF
2 . ~B4!
06160
o

.

t

e
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We expandM aroundpbBi up to third-order terms inDB
5B2Bi in the vicinity of the critical filling point. With the
help of Eqs.~B2! and ~B4! we obtain

M ~pbB,qj ip!5pbBi1pbDB1
1

~qj ip!2

3@ f ~pbBi !2~qj ip!CF
2 DpbB

1 1
6 f-~pbBi !~pbDB!3#. ~B5!

For the equilibrium solution,M (pbB̄,qj ip)5pbA, and
moreover the Maxwell’s construction has to be fulfilled. F
a given value ofA we choseqj ip in such way, that Eq.~6.6!
is fulfilled. Thus

DB

~qj ip!2 @ 1
6 f-~pbBi !~pbDB!21~qj ip!22~qj ip!CF

2 #50.

~B6!

Equation~B6! has three solutions;DB50 and

DB656A 6

f-~pbBi !
@~qj ip!CF

2 2~qj ip!2#. ~B7!

We will show that the choice given in Eq.~6.6! satisfies the
Maxwell’s construction within our approximation

E
B2

B1

dB@M ~pbB,qj ip!2pbA#5H F12
~qj ip!CF

2

~qj ip!2 G ~pbDB!2

2pb

2
f-~pbBi !

24p3
~pbDB!4J U

B2

B1

. ~B8!

As for both solutions (DB)2 has the same value, the abov
integral vanishes, andB̄15B2 , B̄25Bi , B̄35B1 . Equation
~6.6! states that asymptotically along the coexistence lineA
is the quadratic function of (qj ip)21. Moreover, we have
shown that close to the critical filling point the Maxwell
construction is equivalent to such choice ofqj ip ~for a fixed
A! that the straight horizontal linepbA in Fig. 4 intersects the
plot of the functionM at the inflection point. Numerically
obtained phase diagram~Fig. 6! displays rather the linea
dependence ofA on (qj ip)21. It does not contradicts the
asymptotics obtained analytically. In fact, in the critical r
gion one observes the crossover between line and quad
behavior of the coexistence line@see Fig. 6~b!#.

In a similar manner we determine the location of sp
odals in the vicinity of the critical filling point. They are
defined by the condition

M 8~pbB,qj ip!50. ~B9!

We denote the solutions of Eq.~B9! by Bs6 ; the plus sign
corresponds to greater value of the amplitudeB. We expand
Eq. ~B9! aroundpbBi up to square terms inDBs5Bs2Bi .
In this way we obtain

1
2 f-~pbBi !~pbDBs!

25~qj ip!CF
2 2~qj ip!2. ~B10!
6-15
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The location of the spinodal is determined by the conditi

A7~qj ip!5M ~pbBs6 ,qj ip!, ~B11!

whereA2 is the upper, andA1 is the lower spinodal. Ex-
panding the rhs of the above equation up to term linea
DB and substitutingBs6 @solutions of Eq.~B10!# into Eq.
~B11! we obtain

A2~qj ip!2A1~qj ip!5
1

~qj ip!CF
2 A 8

f-~pbBi !

3@~qj ip!CF
2 2~qj ip!2#3/2.

~B12!

Next, we determine the free energy of the system clos
the critical filling point. We expand the Hamiltonian~6.1!
aroundBi up to square terms inDB6 ,
es
y,

es

.

. E

et
y,

tt.

v.

06160
n

to

H„l 0~pbB!,pbB,qj ip…5H„l 0~pbBi !,pbBi ,qj ip…

1
1

2

d2H
d~pbB!2 ~pbBi ,qj ip!

3~pbDB6!2 ~B13!

With the help of Eq.~B7! we obtain

H~pbB,qj ip!5H~pbBi ,qj ip!

2
3

f-~pbBi !~qj ip!CF
2 @~qj ip!CF

2 2~qj ip!2#2.

~B14!
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whereD1 ,D2 ,..., arearbitrary numbers. This transformatio
does not changel (x) and resembles the gauge transformati
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