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Roughness-induced filling
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We study adsorption of a fluid on a periodically corrugated substrate using the mean-field version of the
effective Hamiltonian approach. We analyze the shape of the interface close to the wetting point of a planar
substrate, and the free energy of the system as a function of temperature and amplitude of the corrugation for
short-range and long-range interactions. We prove that the substrate roughness has no influence on the locus
and order of the wetting transition, when the planar substrate of the same chemical composition as the
corrugated one experiences critical wetting. For short-range interactions we observe the corrugation driven
filling transition. We show analytically that a thin-thick first-order transition occurs when the corrugation
amplitude of the substrate exceeds a critical value. The phase diagram of the adsorption on a sinusoidally
corrugated substrate at the bulk liquid-gas coexistence is obtained.
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[. INTRODUCTION wetting, the filling transition is driven by the roughness of
the substrate.

In recent years the adsorption of a fluid on a structured The organization of this paper is as follows. In Sec. Il we
substrate has been extensively studied experimentally aridtroduce the system and give the simple, qualitative argu-
theoretically. While the wetting of a planar, homogenousment that the corrugation of the substrate has no influence on
substrate is well understood todfy~13], the wetting of a  the location and the temperature of the transition. In Sec. llI
corrugated[14-37 or chemically heterogeneous substratewe recall the arguments for the existence of the corrugation
[38—47 is still a subject of wide interest and controversy. driven first-order wetting. This phenomenon was predicted
Apart from standard wetting transition, the liquid film ad- within the linearized version of the Hamiltonian approach
sorbed on a rough substrate can exhibit some new phenori27,31]. We discuss this approximation and its applicability.
ena. One of them is an additional thin-thick transition, calledwWith the help of the perturbative solution we show that the
filling transition[33,34]. It consists in filling up the hollows linear approximation is not justified in the regime where the
of the substrate with a liquid. Filling transition can be con-corrugation-induced wetting was found. For the long-range
tinuous, or first order, depending on a physical system. Aninteractions we show that within the framework of the linear
other phenomenon discussed in the literature is the change approximation one observes, not only the first-order wetting,
the location and order of the transitip7,31], it is the so  but additionally first-order dewetting followed by the con-
called roughness-induced first-order wetting. In this papetinuous wetting. In Sec. IV we discuss nonperturbatively the
we prove that(at the mean-field levglthe corrugation- system close to the wetting temperature of the planar sub-
induced wetting transition cannot exist. We argue that if astrate. Instead of solving a nonlinear equation for the shape
planar substrate exhibits critical wetting, corrugated substratef the interface, we minimize the effective Hamiltonian with
made of the same substance undergoes critical wetting asspect to two parameters: the mean distance between sub-
well, without any change in the transition temperature. Al-strate and interface, and the amplitude of the undulation of
though roughness of the substrate does not influence the wdhe film thickness. Similar analysis was made by Rasco
ting properties, it can induce the aforementioned filling tran-Parry, and Sartorf36]. We try to preserve the connection
sition. It is (if it exists) a first-order thin-thick transition, with the perturbative approach, and we obtain more informa-
independent of whether wetting is a first-order or continuougion concerning the phase diagram. This minimization proce-
transition. dure is completely performed for short-range interactions.

The wetting phenomena are studied with the help of dif-We discuss the free energy of the system as a function of the
ferent methods such as Landau thef®yl11,27,30, the ef- temperature and the amplitude of the corrugation, and show
fective Hamiltonians[8,10,11,28,30,33—-37 density func- that when the system is close to the wetting critical point of
tional theory[3,5,20, functional renormalizatiof6,8,10,11,  the planar substrate, the roughness of the substrate changes it
computer simulation$12,13, and others. Here we adopt a only insignificantly. Section V contains a proof of the non-
simple, mean-field version of the effective Hamiltonian ap-existence of the corrugation-induced wetting. Section VI
proach. When discussing without too far-reaching approxicontains our main result. In this section we analyze the filling
mations that were made in Ref®7,31], it does not reveal transition. When the corrugation amplitude of the substrate
the aforementioned change of the transition. On the otheexceeds the threshold value, first-order thin-thick transition
hand, it is well knowr[11] that in the case of a planar sub- occurs at temperatur&;(A,q)<T,, (A and q denote the
strate strong fluctuations can induce such change of the tragorrugation amplitude and the wavelength of the substrate,
sition. This fluctuation influence can perhaps be amplified byespectively. Thus, while increasing temperature the system
the corrugation of the substrate, but at the mean-field levetan exhibit a sequence of two transitions: the first-order fill-
the roughness of the substrate does not matter. Contrary tog, and next, the continuous wetting. We present the phase
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diagram of the system at the bulk liquid-gas coexistence. The -
adsorption on a sinusoidally corrugated substrate is deter-

mined by three parameters. First of them is the temperature,

the remaining two have geometric origin: the roughness am-

plitude of the substrate, and the wave number of the sub-

strate. We determine the coexistence line of the first-order 3
filling transition, its critical point, and spinodal lines. We
derive the mean-field values of critical exponents connected
to the filling critical point. In Sec. VIl we summarize our
results.

II. WETTING OF THE CORRUGATED SUBSTRATE

When discussing the wetting transition of the corrugated
substrate two important questions arise:

(1) Does the transition temperature remains unchanged as
compared to the planar substrate of the same chemical com-
position? (@)

(2) Does the wetting transition retains the same order?

A. The effective Hamiltonian approach

We consider the half space occupied by the fluid at bulk
liquid-gas coexistence. The substrate is described by the
function z=b(R) whereR denotes coordinates on the refer-
ence plane. The flat, planar substrate corresponds to the par-
ticular caseb(R)=0. The simplest phenomenological ap-
proach deals with the effective interface Hamiltonian 2

, (2.) o | 1P

T Vit o)
2

H[f]=f drR

where f(R) and I (R)=f(R)—b(R) are the interface posi-
tion and the film thickness, respectively. is the surface
tension of the free interface, and(l) is the effective inter- 1
face potential, which is—by assumption—the same as for the
planar substrate of the same chemical composition. The ef-
fective potential is chosen in such a way that it vanishes at (b)
infinity, therefore, Hamiltoniari2.1) describes the difference ' . .
between the free energy of the actual configuration, and thg_ﬁFIG'tl' l(a) P'ittOf the ft'rSt'Ogjer eﬁel‘:tgle pgtgm'&‘(l) fomr -
free energy of planar interface situated infinitely far from the merent values of temperature. LLurves -, 2, and 5 correspoiia to
substrate. We call the effective potential first order or secong:wer‘ equal to, and greater than the wetting temp?ra}ture.c’f the
) . . - lanar substrat&,, .., respectivelyl . denotes the equilibrium film
order, depending on the order of the wetting transition at th

. . ickness on a planar substrdte the figure only the value corre-
planar substrate. First-order potentjdig. 1a)] has two sponding to curve 2 is markgdb) Plot of the second-order effec-

minima, one at ,—a finite distance of the flat interface from e potentialw(1) for different values of the temperature. Curve 1

the planar substrate—and second one for the interface sityyrresponds to a temperature lower thay, , curve 2 corresponds

ated infinitely far from the substrate. If the temperature isyo a temperature equal to or greater tfgy, . |, denotes the equi-

lower than the wetting temperatufi,, of the planar sub- jibrium film thickness on a planar substrate.

strate, first minimum is deeper than the second one, and cor-

responds to negative value o{1); thus the equilibrium film  ate boundary conditions, which are, at the moment, not

thickness is equal tb, . At T,,, both minima have the same specified. It fulfils the Euler-Lagrange equation

depth—the first-order wetting occurs at this temperature. On

the contrary, the second-order potenfieig. 1(b)] has only oAT(R)=w'(I(R)), (2.2

one minimum atl .. The film thickness diverges continu-

ously to infinity when temperature risesTq.. Correspond-  where the prime denotes the derivative of the potential

ing value of the Hamiltoniar [l ;] is negative, and in- with respect to its argument.

creases to zero wheh, T, - The following qualitative analysis suggests the possibility
The equilibrium position of the interfad€ R) minimizes  of the nontrivial influence of the corrugation of the substrate

the effective Hamiltoniar{2.1) with respect to the appropri- on wetting transition. When the temperature is low, the
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second-order potential(l) has a deep and steep well with a it. Instead, they wrote about another phenomenon—
global (negativé minimum atl .—the mean-field film thick- corrugation-induced first-order unbending—which is, in our
ness on the planar substrate. For the potential contribution t&rminology, identical to the filling transition(Considering
the free energy it is advantageous that the film thicknesghe phonetic conformity of termsnbendingand unbinding
preserves the value close tq; any deviation from this Wwe prefer the terniilling). It is in agreement with the simple
value considerably raises the free energy of the systenthermodynamical description of the rough surfgé], tak-
However, Hamiltonian(2.1) contains also(always non- ing into consideration the competition between different sur-
negative square-gradient contribution due to the undulationface contribution to the free energy. It is interesting to clarify
of the film thickness. For a liquid film of nearly constant this problem, and to investigate in detail how the interface
thickness, the greater the corrugation of the substrate, tHeehaves at a temperature close to the wetting point. We dis-
greater is the undulation of the interface, and the greater i§Uss here only the effective mean-field Hamiltonian ap-
the value of the square-gradient contribution. Thus, there is Broach. There is a simple counterexample, which shows that
competition between both contributions to the free energy. Afoughness-induced wetting cannot exist. Let us consider a
high temperature, but smaller thay,., the potential well is ~ flat interfacef,, situated at a large but finite distance from the
broad and shallow. The negative potential contribution to theubstrate. The Hamiltoniaf2.1) evaluated for this interface
Hamiltonian is not so pronounced like at low temperaturescontains only potential contribution. For each value of the
The small undulation of the interface is favorable, and theemperature less thah, ,, we can situate the interface so far
film thickness should be large everywhere. The increase dhatw(lo(R))<0, what gives a negative value ®ff fo]. At
the free energy in the potential contribution to the Hamil-each temperature less thég,, the infinite configuration is
tonian (2.1) resulting from the flattening of the interface is not the configuration corresponding to the minimum of
small, and can be compensated by decreasing the gradieiamiltonian(2.1); thus, it cannot be the equilibrium configu-
contribution to the Hamiltonian. One can expect that the un+ation. There is a whole spectrum of stafewith a huge
dulation of the interface induced by the corrugation of themean distance between the interface and the substrate, and
substrate enforces the depinning transition. For large amplwith a small undulation of the interface, all of them have a
tude of the corrugation this gradient contribution could benegative value of{[f]. The equilibrium interface has to be
perhaps large enough that at a specific temperaturgituated at a finite distance from the substrate. The wetting
Tw(A,q)<T,. the free energy could have the same value agemperature cannot be shifted frafy, and wetting must be
the free energy of the completely wet system. Thus, it would® continuous transition. This conclusion also remains true if
be a first-order transition occurring &,(A,q) <Ty - we involve a more advanced Hamiltonian, for example, the
In the case of the first-order potential, the shift of the“drum-head” model. All contributions containing derivatives
transition temperature is obvioli84]. At the wetting tem-  Of the interface vanish for planar interface, and only potential
perature of the planar substralg,., both terms in Hamil- ~contribution survives. This argument, however, does not con-
tonian(2.1) are non-negative and the free energy of the finitetradicts the existence of the roughness-induced thin-thick
interfacial profile is positive, whereas the free energy of thefransition.
infinite configuration vanishes. At this temperature the infi- In this paper we discuss the periodically corrugated sub-
nite configuration is favorable. When the temperature is onlystrate described by the function
a little bit lower thanT,,,, it is so, as well. The effective
interfacial potentiats(l) is negative in the vicinity of ., but b(x)=A(1-cosqx). 2.3

its.integral_ is still positive. -'I.'he free energy of the finite SO- A is called the corrugation amplitude of the substrgts, the
Iutl_on va_mlshes at a specific tempera}ure lower tFrzm.. wave number of the substrate. The substrate is translationally
This indicates that in the case of the first-order potential the, o iny direction, what makes our problem quasi-one-
first-order wetting transition occurs at a temperature lowery, o <ional The half,space with=b(x) is occupied by the
than _the wetting temperature of the planar Substrate,_and _ﬂ}ﬁlid at bulk liquid-gas coexistence. We assume that the equi-
transition is a first-order one. The locus of the transition ISibrium interface has the same symmetry as the boundary and
determined both by the corrugation of the substrate and th\%e restrict our consideration to one segmnta,a], with

effective potentiak(l). . a=m/qg. Thus, in Hamiltonian(2.1) integration can be re-
The case of the second-order potential seems to be MOL& i ted only to this segment

complicated. Parry and collaboratdi&7,31] predicted that
for small corrugation of the substrate, the wetting transition a
occurs exactly aff,,,, and remains critical. However, when H[f]= f dx
the corrugation is strong enough, wetting occurs at a tem- e
perature lower thefl,,,, and ceases to be critical. Instead of Our model has to be additionally supplemented by the
the continuous transition the authors report first-order tranSiboundary conditions

tion. This phenomenon was called roughness-induced first-
order wetting. Its existence was argued in different ways: f (0)=f(a)=0. (2.5
with the help of the Landau theory, the effective Hamiltonian

approach, and using arguments following from the functionalThe Euler-Lagrange equatid.2) now takes the form
renormalization and scalling theory. In the subsequent papers o o

[35,36 the authors did not sustain this statement, or retract ofyx(X)=w' (1 (X)). (2.6)

. (2.9

9.2
>+ ()
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For T<T,., EQ. (2.6) has a solution situated at a finite 0.017 ¥[m]
distance from the substrate, and the solution situated at in-
finity. We are interested in competitigqmeasured by the free
energy between them. At the beginning of our analysis we
note a simple fact concerning the finite solution of E216).
Integrating twice this equation with respectx@ne obtains

the inequality

a? /\qg”n

f()—f(0)<5-ma{w' (D], 2.7 0 B

where make’(1)] denotes the maximal value of the deriva-
tive of w’(I(x)) over the segmenit0,a]. For the second-
order potential this maximal value decreases to zero vilhen
grows to the wetting temperature of the planar substrate. This
means thatindependently of the competitipithe finite so-
lution flattens whe " T,,.., if the interface fulfills the con-
dition f(a)>f(0). This simple fact is important and we ad- -0.01-
duce it often in this paper.

FIG. 2. Free energy = 2p§F/waq for short-range interactions
evaluated within the linear approximation as a function of the par-
B. Corrugation-induced first-order transition in the linear allel correlation length on a planar substragg,. This length is an

approximation: The shape of the interface increasing function of the temperature, and diverge$,gt. Dif-

Predictions of the corrugation-induced first-order wettingzﬁ;enstuﬂg:rsafg"ee(ff;n?éfotrzet\)/:tltl:) ?ﬁ <)tI)tht(e):orrreu§§:C<)tir:/;r;§I|tAt\Jde of
, B

were based on the I!near_lzed_versmn of the theo_r)_/. .The=1.3,1.38,1.45,1.5. Last two curves satisfy the conditimyA
Euler-Lagrange equation linearized around the equilibriu

- - . M. v2. As the free energy of the infinitely thick layer with planar
film thickness for the planar substratg has the following liquid-gas interface vanishes, these two curves exhibit the first-

form: order wetting at their specific temperatulgs(A)<T,, .
(dz 1)&_() 2A 2.9 ol |\
T2 o X)=— COSQgX, . a
dx® &, q q H[(Sf]:f dx(% (Sfx)2+(§—) +w(|w)],
-a (kg

where sl (x)=1(x)—1, is the deviation of the local equilib- (2.1
rium value |l (x) from its valuel . on the planar substrate.

[Equation(2.6) can be linearized not necessarily around where 5f(x) =f(x) = (I, +A). For the equilibrium solution

but around another valdg (a priori arbitrary), see Appendix one obtains
A.] The length¢,,. defined by the equation A
St(x)=— COSQX. 2.1
o 0=~ 15(qg, 2% (212

W'(1,)=

(2.9

2
Sie This calculation is straightforward and gives the value of the
is the parallel correlation length, also for the planar case. Th&ee energy of the system
linearization is justified by the fact that for the small corrgu-
gation(i.e., for qA<1) deviation 5l (x) should be small, as o (pgA)?
well. However, this way of thinking restricts considerations  2p% 1+(qé),)?
only to the small corrugation, or low temperature, when such

small deviation is energetically favorized._The S%Jtion OfHere pg denotes the inverse correlation length in the bulk
Eq. (2.8) satisfying boundary conditionsl,(0)=élx(a)  liquid phase denoted by. The above expression is valid

2
+Fw(|77)' (2.13

=0 has the form both for the first- and for the second-order effective potential
()2 (). Now we restrict our consideration to the second case.

— . Qg First contribution to the free-energy is positive, whereas the

o100= 1+(q§nw)2ACOSqX' (210 second one is negative. Thus, it can happen that for ampli-

tude A large enough the free energy vanishes at a certain
The formal applicability of this solution is restricted to such temperaturel,(A,q) lower then theT,, .. (i.e., for finite val-
range of the amplitudé@ and temperature that the film thick- ues ofl . and ¢, ;). As the free energy of the interface situ-
nessl .+ 8l (x) is positive. This function has to be substi- ated at infinity vanishes as well, it means that first-order
tuted to the Hamiltonian that, in linear approximation, takeswetting might occur afT,,(A,q), provided the linear ap-
the following form: proximation is correctsee Fig. 2 However, one should be
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2/(s+2)

(2.20

corrugation is small, and in this case linearization of the TS ICor I e
theory is not justified.

We will investigate this problem separately for the shortThe nonuniversality of the above expression is striking; the
range, and for the long-range interactions. As a model of th@]uantityl“ explicity depends on the surface tensiomf the
short-range second-order interaction potential, we taken thgee interface, and moreover, depends also on the amplitude
interfacial potential of the form U of the repulsing part of the effective potentia(l). For

small value of the nonuniversal amplitudgV/T", the free
w(l)=Wtexp(—pgl)+U exp(—2pgl) (2.149 energy given by_ Eq2.19 is_alvya_ys negat_ive, as Iong_as the
parallel correlation length is finite. Continuous wetting oc-
whereW andU are positive, temperature independent ampli-curs atT,, . If this amplitude is large enough, the first-order
tudes of the attracting and repulsing potential, respectivelywetting occurs at a specific temperatirgA,q). If the tem-
andt=(T—-T,,)/ T, is the reduced temperature, which is perature grows, the first-order dewetting occurs at another
negative below wetting of the planar substrate, and vanishespecific temperaturd,(A,q)>T(A,q). Above this tem-
atT,,.. The free energy is equal to perature the substrate is once again partially wet and experi-
ences the continuous wetting &}, (see Fig. 3. At certain
range of temperaturest(,T,) below T, the wet state is
= — 5— 5. (2.15  stable, while forT>T, then substrate is only partially wet.
2pg [1+(ag)°  (aé4) We observe first-order dewetting B, followed by the con-
tinuous wetting affl,,,. Depending on the value of the am-
The first-order transition occurs at a temperature given implitudqu/F absolute values of minimum and maximum of
plicitly (through the temperature dependencegh by the  tne free-energy may differ about many orders of magnitude
equation (see Fig. 3. Thus, forT>T, partially wet state or fofT,
<T<T, completely wet state could be unstable with respect
to fluctuations, provided the linear approximations were

1
(q‘fuw)zzm, (2.19  valid.
7(PgA)“—

cautious as this result can violate the assumption that the ) 4(s—r)2’<5+2)(Uq5

_moq (pBA)2 2

Ill. THE FILM THICKNESS FAR AWAY
FROM THE CRITICAL WETTING
OF THE PLANAR SUBSTRATE

if and only if the condition

A)2>2, 21 . _ . .
(PgA) (2.19 In this section we solve Ed2.6) perturbatively. We dis-

is satisfied. The treshold of the first-order transition is de-Cuss the short-range interactions and long-range interactions
fined by the amplitud@4A* =v2. In the following subsec- separately, although the method is the same for both cases.

tion we look for the solution of Eq2.6) perturbatively. We _ _
find the solution as a power series expansiop iA. When A. Perturbative expansion

ppA>1 whatis the case of the first-order roughness-induced The general perturbative solution of EQ.6) satisfying

wetting, it is not allowed to neglect higher contributions andpoundary conditions,(0)=1,(a)=0 can be expressed as a
restrict considerations only to linearized theory. Thus, theyower series expansidg]

first-order wetting induced by the corrugation occurs for

such amplitude of the corrugation that linearization of the -

theory certainly is not justified. T60=1 + B. . cod axsir® ax 31
As a model of the long-range second-order interactions ) =ln i,jzzl h q . S

we take into consideration the potential of the form
Becausel (x) is even function ofx, only even powers of

Wt U singx give contribution to the film thicknest). The fol-
()= I_r+ e (2.189 lowing polynomial expression:
wherer ands are natural numberssgr) while W, U, andt 3 _ o nd - 2]
have the same meaning as in the previous case. The free- O (X) H;:n B; j cod gxsir qx 3.2

energy of the system is now equal to -
will be called thenth order contribution td (r). From Eq.

qA| 2 (2.6) it follows that these contributions satisfy the hierarchy
(—) of equations
F=2"r2 a - (2.19
29 [1+(9§.)° (9g,)>CH2] @2 1) _
—— —| 8l (1,(X) = — g2A cosqXx, (3.3
where (dX2 §2w> W q f
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FIG. 3. Free energ}lf=2pl2;F/mrq for long-range interactions
evaluated within the linear approximation as a function of the par-
allel correlation length on a planar substrate. Different plots corre-
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2
_ e oo=-i—w6k|)(ﬁ_)4+iiw“k|)
A & |7 240 TR 20 i

— — 1
X[ 81 (1)(X) 1281 (2)(%) + 55 o)1)

X{[ 81 (2)(X) 12+ 261 3,(x)

X 8l (1) ()} -+ . (3.6

This is a hierarchy of inhomogenous, linear, second-order
differential equations; each inhomogenity is defined in terms
of the solutions of previous equations. Thus, this hierarchy of
equations can be easily solved step by step. First of them,
Eqg. (3.3), is the linearization of Eq(2.6) aroundl .. The
solution of Eq.(3.3) has the form

(qgllﬂ')2 A
1+(aé,)° cosgx.

It depends on the effective interfacial potentia{l) only
through the parallel correlation lengéh,. . The forms of the
higher contributionssl ,)(x) are explicitlyw dependent, and
should be discussed separately for the short and for the long
range of effective interactions.

5|_(1)(X)= (3.7

B. Short-range interactions

Substituting to Eqs3.3—(3.6) the solution in the form of
the expansion given in Ed3.1), one obtains a system of
linear equations for coefficier;; . First- and second-order
contributions, i.e.,él 1y and &l ,) are given by the coeffi-
cients

(Aé,)?
BLOZW‘EH)ZA, (38)
(A&.)?
301=3 3 4(gg,2 %o 39
31+2 2
+2(98), B2, (3.10

B2072 1+ 4(q¢,,)? P

spond to the values of the corrugation amplitude of the substrate

equal to(from bottom to top, respectively A/I'=1,3,4,5. The first

The expression fobl ;)(x) coincides with the solutiohEg.

plot exhibits only the continuous wetting. Other curves exhibit more(z_lm of the linear equatiori2.8). It tends toA when tem-

complicated behavior: the first-order wetting at a specific tempera
ture T{(gqA/T’) (it is shown in the upper plptand the first-order

dewetting at another specific temperatdrgqA/I") greater than

perature increases td,,,. The second-order contribution
ol () tends to the constant Va|Lh)BA2 when temperature

the previous one. AbovE,(qA/T') the substrate remains only par- increases td . Third-order contributionsl 3y has an am-

tially wet and experiences continuous wettingTagt,, the wetting
temperature of the planar substrate.

d2 1 — 1 (3) 2
@ &, A x(x)=5 0(1)[0l1,()]% (34
( 2 1

_ 1 1
e g—lzw) ol 3 (x)= §w<4)(| AL () P+ ;w(s)

X(1,) 81 (1) (X) 81 (2(X), (3.5

plitude proportional tq:)ZBA?’ and vanishes at .. Fourth-
order contribution has an amplitude proportional |1§>A4
and atT,, is equal to—ﬁp%A“. This rule is general,
Psdl () has an amplitude proportional tp4A)", vanishing
at T,,. for odd n, and nonvanishing for even. Thus, the
equilibrium film thickness is given asymptotically by the ex-
pression

2
(A6x) 5 A cosgx+ Sf(x),

1+(pgéin) (3.13

T(x) =g+
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where First parametetl, is divergent wher grows toT,,,., while

B tends toA, and f vanishes in this limit. In this regime it
is possible to linearize Eq2.6) not around ,—as we have

diverges logarithmically when temperature growsTg,. done in the low-temperature regime—but rather arolgnd
The termsf(x) vanishes af,,, [if follows from Eq. (2.7)], +Bcosgx Herel, has the interpretation of the mean dis-
and the amplitudeo(gnw)zl[lJr(pﬁgnw)z]A of the film thick- ~ tance between interface and substrate, Braf the undula-
ness undulation tends to the constant vadudhe interface tion amplitude of the film thickness. This new linearization
described by the finite solution moves Continuously to infin-procedure leads to a linear equation ﬁ]‘r_ However, this

ity and becomes flat &k, in agreement with Eq2.7. = gquation is not useful as the equilibrium valued glandB
From these considerations it follows that the linearization.q 4in unknown.

of Eq. (2.6) aroundl , is not justified unless the amplitude \yg yse an alternative approach, analogous to the one that

PgA is less than one, or temperature is small. If this condiyy a5 given by Raseg Parry, and Sartofi36)]. It is based on

tion is not fulfilled, one must discuss the whole proﬂe() neglecting&f_that is (in the vicinity of T,,.) much smaller

and not only sl ;)(x). The prediction of the corrugation- hanT, andB, substitutingl,+ B cosgx instead ofl (x) into
induced first-order wetting was based on the linearized VelHamiltonian(2.1), and minimizing the Hamiltonian with re-
sion of_the theory. _It turns out, that this transn!on 0CCUTS iNgpact tol, andB. The neglected contribution contains higher
the regime of amplitud@ sA large enough that linearization 1erms of the Fourier series expansion that are relatively small
is no longer justified. The vyhole perturbative Xpansion ISy, the vicinity of the wetting point of planar substrdighat
needed, and the problem of its convergence arises. Instead ffiows from Eq.(2.7)]. (Here the absence of the bar sign
the perturbative solution of Eq2.6) we will employ in the  genotes that this quantity has an arbitrary value, not neces-
following section an alternative procedure of mvestlgatlon,sar"y an equilibrium ong.In this way the Hamiltonian in
which consists in direct minimization of the effective Hamil- Eq. (2.1) ceases to be a functional 6fx), but it becomes

tonian. simply a function of both|, andB,

To=1,+3ppA’— EpJA+---, (3.12

C. Long-range interactions 1 ) a
. . H(lg,B)=soqm(B—A)"+2 | dxw(ly+Bcosgx).
The same analysis can be made for the long-range inter- 2 0
actions described by the effective potential E2.18. For 4.2

this case one obtains L I .
Minimizing Hamiltonian (4.2) with respect tol, and B we

(9&,.)? qBiO obtain the equilibrium valuek, andB of these parameters.
Bo.1= 721+4(Q§w)2 CEBESEE (313 we discuss this procedure separately for short- and long-
i range interactions. In the following section we adopt this
1 1+2(q¢,,)2 qBio method also for the analysis of the filling transition.
B20=5 72 . 2 AT (3.14
2771+ 4(a61-)" (9gin) A. Short-range interactions
with B; o given by Eq.(3.8), and In this subsection we discuss short-range interactions with

the effective potential given by E¢2.14). We evaluate the

potential contribution to the free energy expandimground
(3.195 ; . . . .

I, and integrating this expansion step by step. In this way we

obtain
WhenT grows toT,,,., bothBg; andB, o vanish. The inter-
face moves to infinity and flattens just like for the previous
case. Apart from the nonuniversality, there is one more dif-
ference; for short-range interactiohs differs from | ., for
long-range interactions it does not. +U exp(—2pglo)P(2pgB) ], (4.3

r+s+3
Y=~ (S_r)1/<s+2) Squ

) 1U(s+2)

1 21
H(l,B)= quﬂ-(B—A)2+ F[tWexp(— Pslo)P(psB)

whered(s) is a function defined as
IV. INTERFACE CLOSE TO THE WETTING TRANSITION

From our previous considerations we know that the pro- B(s)= i " (4.4)
file of the interface satisfying Euler-Lagrange equation at a i=0 [(2n)!!]7' '

temperature close td,,,. is situated far away from the sub-

strate(but still at a finite distangeand it is almost flat. When where s=pgB. This series expansion is bounded by the
the temperature is close fb,,, the interface flattens, and function costs, and thus, it is convergent. It can be rewritten
film thickness at the equilibrium can be described by then terms of the hypergeometric functidf(«,y,s) [49] or
function modified Bessel functioh50]

1(x) =14+ B cosgqx+ 5f . (4.1) d(s)=exp(—S)F(,1,2)=Kq(s). (4.5
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Minimizing H(l,,B) we have to solve the pair of equations
(bars denote, as usual the equilibrium vajues

5,

20

21
(19,B)=— —[tWexp( Pyl O)KO(pBB)

+2U exp(—2plo)Ko(2psB)]=0,
(4.6) 151

(Tg.B)=oqm(B—A)+ — 8

lo

%l

X [tW exp(— pl0)Kp(p4B) jo- 2
+2U exp —2p3l 0)K((2p4B)]1=0.
(4.7)

(Prime denotes the derivative of the function with respect to
its argumen). Equation(4.6) givesl, as the function op;B, 5

3
w e s

PeA

lo(pgB)=1_+p5t In(
[Note thatKy(s) is the increasing function of, and in con-
sequence expression in brackets in E48) is greater than
one. Thus,ly(pgB)>1,.] Expanding the right-hand side P:B,
(rhs) of Eq. (4.8) (up to fourth-order terms iB) we obtain

P:B

2 3 8 10
p:B

2
P:B,
35 FIG. 4. Plot ofM(pgB,qé;,) [Eq.(4.12] as a function ofpzB
lo(pgB)=1,+5psB?—85psB*+- . (4.9  for different values ofq¢,,=0.1,0.15,0.3,1 curves 1,2,3,4, respec-
. tively). For small values ofi¢;, it is a nonmonotonic function. The
ForT,Ty.,, B tends toA [it follows from Eq.(2.7)], and  equilibrium amplitude of the undulation of the interfaBeis de-

asymptotically fined by the intersection point of this plot with the straight, hori-
o o zontal line, corresponding to the roughness amplitpga of the
lo=10(PgB)=,+35pgA’—GpjA*+---, (410  substrate. For the value pf;A corresponding to the horizontal line

curve 1 leads to a small amplitude of the film thickness undulation.
what reproduces results of our perturbative approach, ECurves 3 and 4 lead to large amplitudes of the film thickness undu-
(3.12. We substitute the expression 1g{p;B) given in Eq.  lation. Curve 2 corresponds to the first-order roughness-induced
(4.9 into Eq.(4.7). In this way we obtain an equation for the filling transition if the hatched surface areas shown in this figure are
equilibrium value ofB equal. Then the coexisting films have undulation amplitugleand

Bs.

PgA=M(pgB,dé ), (4.11

where an equilibrium value of the mean distanf@. When tem-

perature is close td,,,, the factor pﬂg,m)*% 1. In conse-

M(p,B Q§uw)5p5§+ 2 . Ko(p,BB_) quence, the segmnd term on the_rhs_of@cﬂz is v_ery small
(aé») Ko(2psB) as compared t8. Thus, the equilibrium value @ is close
to A, as we expected. The expression in square brackets in
, — Ko(pgB) , = Eqg. (4.12 is the nonmonotonic function d8 (see Fig. 4,
Ko(2pgB) —————Ko(PgB) |- and the whole rhs of Eq4.12 is a nonmonotonic function
o(2PgB) providedqé, . is enough small. There is a range of tempera-

(4.12  tures such thatdepending on the value of the corrugation
amplitudeA, or wavenumben) Eq. (4.11) can have more

This is a transcendental equation that permits to find an equihan one solution. This existence of more than one solutions
librium value of the corrugation amplitude of the interfa®e  turns out to be related to the filling transition. We will dis-
as a function of parametes and g, which represent the cuss this case in Sec. VI. Here we restrict our considerations
geometry of the substratg; and ¢, which represent bulk to the case wheg,, is large enougtti.e., the temperature is
and surface thermodynamics, respectively. The solution oflose enough td,, ) that Eq.(4.11) has a unique solution
Eq. (4.11) has to be next substituted to Eg.8), to evaluate independently of the corrugation of the substrate.
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Looking for the coefficienB in the form 1 1 )
D ()=F E(k+1)’§k 1. (k=r,s). (4.19
R_ n N
_r1§=:1 A, (4.13 Close toT,,,. the fractionB/1 is much less than one, and the
expansion4.18 is convergent. Equatio.6) gives the fol-
we obtain lowing expression fot, as a function oB:
— (9 3 (9g.)* (B) 1is=n)
B=A 1+ APt Tl i
1+ (g2 BT+ (ag 7P PP g

(4.14) lo(pgB) =1, r(—B) , (4.20
r |0

The first contribution td coincides with the amplitudB, o

of the perturbative expansion E@.8). Higher contributions
are negligible when temperature is closeTtp, . Using Egs.
(4.8) and(4.12 to evaluate Hamiltoniaf2.6) we obtain the 1
free energy of the system I'() =P () + Eiq)(((i) (k=r,s).  (4.2)

where

[Equation(4.20 when solving together with Eq4.7) with
' respect toA corresponds to Eq10) in the paper of Rasen
Parry, and Sartoifi36].] Equation(4.20 is a transcendental
(4.19 equation foil ; as a function oB. We can solve this equation
perturbatively, substituting

moq  K3(pgB)
(9€1.)°P5 Ko(2psB)

F(T.A)= A(pB)-1

(Q&).)?

whereB is a function of the amplitudé obtained from Eq.
(4.12), and o

lo=1, a,B"].

Ko(s) ° ( 20 " )

Ko(2s)

(4.22

2
A(s)=

Kg(2s)

—Ko(s) (4.16

Ko(2s) Solving Eq.(4.20 up to second order iB we obtain

Expanding Eqgs(4.14) and(4.15 up to terms quadratic iA 2
one obtains the approximation of the free energy given in Eq. lo=I W( 1+
(2.15. First contribution in square bracket in E¢.15 fol-

lows from the gradient term and is a positive quantity. Due t
the factor¢;, this contribution vanishes whef grows to actions. In the former cask, has an additive correction

Twr - Close toT,,, the whole expression in square bracket 'Swhile in the present case it has a multiplicative correction.

negative. The interface situated at infinity has the free energ¥nen T grows toT,,. this factor tends to unity. Thus, as-
equal zero. Thus, the finite solution is the stable one. More- . — L ' "
mptotically | 5 is equal tol ., which is in agreement with

over, the square bracket also has the prefagigr The free y .
energy of the finite solution continuously grows to zero Whenresggflgz trjfaﬁe;t?;?g;\gigﬁsirg;%g d of E4.7) we obtain
temperature increases m,,. This proves that the corru- g-rang 4.

r+s+3/B

4

+oee) 4.23

Orhis is a behavior quite different than for short-range inter-

gated system experiences the continuous wettind,at, > [ we 5 U 5
independently of the magnitude &f A=B+ —|= ‘W(:) o =]
T Y T
B. Long-range interactions (4.29

Similar analysis can be performed for the long-range in- o — — )
teractions, Eq(2.18. In this case Unfortunately, in this cask, andB are not separated like for

short-range interactions: E¢4.24) depends not only ohy,

Mq) (E) + Eq) (E” but also onB/l . This makes the calculatiortalthough pos-
lg "\lo/ 1§ S\lg/|"  sible more cumbersome. Instead of solving E¢s6) and
(4.17 4.7 and_expressing the free energy only by the equilibrium

value of B we perform in the following section a rigorous

21

1
H(lo,B)zzmq(B—A)2+F

where analysis, valid for both kind of interactions.
o (k+2n-1)1
D)= k=D (2n)] 52", (4.18 V. THE PROOF OF THE NONEXISTENCE
i=o ( '(2mt] OF THE ROUGHNESS-INDUCED WETTING
where{=B/l,. For{<1, the power seriegl.18) is bounded Computational difficulties for the long-range interactions
by the functionz[ (1+ 2)**+(1— )Y ]. It can be rewritten are not the only reason for the search of an exact proof of the
as the Barnes’ extended hypergeometric function nonexistence of the roughness-induced first-order wetting. In
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Hamiltonian(4.2) we have omitted all contributions contain- interactions, the asymptotical difference between the square-
ing 5f and its derivatives. In the potential contribution to the gradient and potential contributions to the free energy is even
Hamiltonian, this neglected term is indeed small as commore pronouncedy(l) decays likd _°, while »’(l) decays
pared to the leading term(I,+ B cosgx). It is not obvious  faster, likel ;1)

that terms containing derivativéf, are also negligible. The This proof can be immediately generalized for the case of

expressions tff_x)z and ZB—A)f_x are compared toE an arbitrary, periodically corrugated substrate.
—A)?; all of them can vanish in the similar way. In order to
elucidate this problem we proceed in another way. We sub-

stitute the equilibrium solutiof of the Euler-Lagrange equa-  The filling transition occurs when the coexistence be-

tion (2.6) into Hamiltonian(2.4), and integrate gradient term tween thin and thick films adsorbed on the substrate is pos-

by parts. In this way we obtain sible. We discuss this transition in the case of short-range
interactions. We consider the Hamiltonian

VI. FILLING TRANSITION

J— a N J—
H[f]=2f0dx[—w’(l)f+w(|)]. (5.9 roq[12
H(o(pgB).psB,aé )= ?[7(PBB—DBA)2
We have to compare the value H[f_] to zero—the value of g

the free energy of the planar interface situated at infinity. _ 1 Kg(pﬁB)
Negative value ofH[ f] means that the substrate is only par- (9&,)° Ko(2pgB) |’
tially wet, positive value of+[ f] means that it is completely (6.1)

wet. The first term of the integrand in E¢(b.1) is positive.

Integrating Eq.(2.6) from 0 toa, due to the boundary con- [lo(PsB) is given by Eq.(4.8] as a function ofB. For B
ditions1,(0)=1,(a)=0 we obtain =B it determines the free energy of the system. For fixed
q¢,» Hamiltonian(6.1) has—independently of the value of
A—a single minimum providedq¢,,=0.492. For ¢,
<0.492 there exists such range of amplitddiat this mini-
mum splits into two minima separated by a maximum. In this
Equation(5.2) generalizes to the case of the corrugated subease Eq(4.11) has two or three solutions. The filling transi-
strate the condition tion emerges from the competition between these solutions.

We denote them bﬁi (i=1,2,3), and byF; the free ener-
gies correiponding to them. The film with the undulation
which defines the equilibrium film thickness on the planar amplitudeB, always has a free energy greater than the oth-

substrate. The position of the equilibrium interfdde) can €S- In fact, it corresponds to the maximum of
be rewritten as H(lo(pgB).psB.aé ), whereasB,, andBj correspond to
the local minima of Hamiltoniag6.1). The derivative of the
Hamiltonian(6.1) with respect taB fulfills the equation

fade'(T)zo. (5.2
0

w'(l1,)=0, (5.3

(=1, j2c0sqx+ F (X)=To+ AT(x),

B A
1+(pgéin 5.4 d
’ EH(IO(pﬁB)ipBB!qgllw):< )‘ (lo(pﬁB)rpﬁBingﬂ')y
lo

where (as we know from our previous consideratiptg is 6.2
divergent wherT T, . (It need not be equal th,, and for

short-range interactions it is Howhile 5f(x), andAf(x)  due to Eq(4.6). The function defined by Eq6.2) is equal to
vanish as temperature increases to the wetting temperature ¥¥(PsB.0¢-) — A [see Eq(4.11)]. The free energieB, and
the planar substrate. With the help of H§.2) we can re- F3 are related through the equation

write Eq.(5.1) as

IH
9B

5, d
_ a L Fo=F1+ | "dB=H(o(PsB).PB.GE ). (6.3
H[f]:zf dx[ — o' (DAT+o(D)]. (5.5 B1
0 This equation implies that ther@or fixed q¢,,) the first-

When interactions are short range, all contribution&)(c’?) order filling transition occurs when

and w’(l) asymptotically decay Iikegujr2 when temperature By

grows toT,,,.. However,o'(l) is multiplied by Af, which B, dBEH(l o(PgB).PsB.G¢7)=0 6.9
itself is decaying Iikeg,‘jf, as well.[See also Eq4.15.] In

consequence, the square-gradient contribution to the free eithe above equation indicates that the locus of the transition
ergy is asymptotically negligible as compared to the potentiais determined by the Maxwell’s construction. Equatiém)
contribution; the negative contribution to the free energypoints out that the surface areas between the plot of the func-
dominates over the positive one. In the case of long-rangéon M(p;B,qé,,) and the horizontal lingpgA shown on
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The critical point has coordinates

P[m'] S

(q§||77)c|:: 0.492, pBACF:2469 (65)

All numerical values are quoted with the error less than
0.001. The critical amplitud@r is the treshold value of the
corrugation amplitudeA; the corrugation-induced filling
transition occurs wheA=Ace. Whenqé, ,<(qé;.)ce, the
functionM(p;B,q¢, ) (for fixed q¢, ) displays a maximum
and a minimum separated by an inflection pojmB;
=1.203. At the critical point maximum and minimum van-
ish, they shrink into the inflection point. In the critical region
the coexistence line is described by the functifor details
see Appendix B

-4

f(ppBi) .
(A&7 203+ (a&))*

When g¢,, has a value fixed close to the critical one, and
pgB has a value close tp;B; the functionM(p;B,q¢; )

can be approximated by the polynomial of third order in
AB=B-B,;. Thus, the asymptotic behavior of different
quantities can be easily found. The undulation amplitudes
B, at thin-thick coexistence satisfy in the vicinity of the
filling-critical point following mean-field power laws:

-81 Tre—T 1/2
qE—>||n ( e ) for g=const,
— Ter
026  0.28 0.3 032 034 036 AB3 1~ e M2 (6.7)
2 ) cF for T=const.
FIG. 5. The free energW¥ = p;F/mwaq of the films adsorbed on dck

the sinusoidally corrugated substrate wjithA=4. Free energies

v, ¥,, and¥; correspond to undulation amplitudes of the film The coexistence line is described by the linear asymptotic
thicknessB,, B,, andB3, respectively. CO denotes the filling tran- law

sition point. Forqé, > (qé,,) co the equilibrium film has an undu-

lation amplitudeB;. Similarily, for q&,,<(0¢,.) co the equilibrium T T

film has an undulation amplitudB,. The metastable liquid films A A T for g=const,

may also exist. The line C&- corresponds to the metastable thin e T cF (6.8
film, while the line COS,. corresponds to the metastable thick film. Acr Ocr—d for T=const

S.. denotes the lower or upper spinodal point, respectively. Uce '

Fig. 4 are equal. Figure 5 presents the plot of the free enef."Us; EQ.(6.7) also reads as

giesFq, F,, andF3 as functions ofgé, .. It displays the
characteristic behavior of the chemical potential of the van AB, IN(
der Waals fluid at two-phase coexistence. The vajge, '
equal to 0.492 determines the critical point of the coexist- . . L .
ence line between the profile with large undulation and pro—':Or spmodals the asymptotic behavior is determined by the
file with small undulation of the film thickness. The critical following power law:
filling temperature depends on the wave numbeof the (

A— ACF 1/2

Ack

(6.9

substrate; it grows when decreasiqgFigure 6 presents the Torm T
adsorption diagram of the system expressed in variables A Ter
(a¢,,) ! and A. The wetting transition is described by the + qer—
straight vertical bold line ¢¢,,) =0, A=0. The point de- (

noted as CF is the critical filling point. There are three lines
terminating at this pOint. The middle line is the first-order The Singu|ar part of the free energy of the System at thin-
filling transition line. Lines situated below and above it arethick coexistencéqé,,<(qé,,)cr] behaves as

spinodals. They are border lines of metastable states: thick

3/2
) for g=const,

(6.10

3/2
) for T=const.
Qcr

metastable layer between the transition line and the lower FsingN[(Qﬁm)éF—(qgnw)z]z, (6.11
spinodal, and thin metastable layer between the transition
line and the upper spinodal. which leads to
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s. (TCF—T

2
) for gq=const,
TCF

51 pBA
(6.12

Fani™\ (qe—q

Ocr

2
) for T=const.
co

Y thick only The nonanalyticity of the free energy in filling critical region

s is described by the following power law:

/ +
Tor T\
Fsing'\'( ) .

thin only Tcr

thick stable
thin metastable

(6.13

This means that the exponeat defined by Eq.6.13 is
equal to zero. It follows from these considerations that there
are three significant variables: temperatdréit enters the
analysis through the parallel correlation length, on the
thick metastable planar substrajethe corrugation amplituda, and the wave
thin stable numberg. Albeit the last one is only a prefactor accompany-
ing &, it plays an important role. The filling criticality can
1 be achieved not only upon increasing the temperature but
also upon increasing the wave number. For constant tempera-
ture and corrugation amplitud® the greateqis, the greater
is the corrugation parametgA, the system is closer to the
(q&llw)'1 filling critical point. The change of the wave numbgr
O causes the vertical shift of interfaces. For smatjgr.e., for
s larger size of the segmenthe system is closer to wetting
(@ _ criticality, and the distance between interface and the sub-
3.2 pA o strate is larger. Figure 7 presents an example of coexisting
films at fixedT.

CF

Kk wetting

3.19

3] VIl. SUMMARY

2.9] In some physical systems the adsorption of a liquid on a
two-dimensional corrugated substrate is not restricted to a
2.8] simple (first order or continuoyswetting. One of the pos-
sible scenarios is the sequence of two transitions: first-order
271 thin-thick transition followed by the continuous wetting.
Such behavior was found experimentally when investigating
261 the wetting of hexanéor, more generally, alkangby water
[51]. In this system, thin-thick transition that precedes wet-
25] ting is driven by the competition between short-range and
cF @& Iong-_range e]_‘fecti\_/e interactions. Similar_ sequence can hap-
245 3T 35 53 54 25 6 pen in a quite different system Wltf_‘l smp[er interactions

' ' ‘ ‘ : : (only short-range or only long-range interactipnshen the
substrate is not planar, but exhibits large enough corrugation.
In this paper we have studied the influence of the roughness
of the substrate on the adsorption phenomena. Unfortunately,
the experimental results in this field today are not rich
enough and they do not allow to compare theoretical results
with experimental data.

(b)

FIG. 6. (@) The adsorption diagram of the sinusoidally corru-
gated substrate at the bulk liquid-gas coexistence. Bold vertical lin
(9¢,,) "1=0, A=0 is the location of the wetting transition. The
first-order filling transition line is denoted here by CO, the critical

filling point by CF, S.. are the corresponding spinodals. Above the . T
coexistence line the equilibrium liquid film is thick, but below the Our first conclusion is that the roughness of the substrate

upper spinoda_ a thin metastable layer may exist. Below the h_a_s no influence on the order of the mean-f_leld Wettlng_tran-
coexistence line the thin layer is stable, but above the lower spinSition. If planar substrate experiences continuous wetting at

odalS, a metastable, thick liquid film may exigh) The coexist- temperaturel,,, the sinusoidally corrugated substrate also
ence line in the critical region. CO denotes the coexistence lin€XPeriences continuous wetting transition at the same tem-

obtained numerically(CF is the critical filing point. The curve  perature. The form of the Hamiltonian used in this work in

above the coexistence line is defined by E&6). In the vicinity of ~ principe is restricted only to small roughness of the substrate.
the critical point both lines coincide. We have used this form not only for its simplicity. It was
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pﬁfs(x) simple, direct minimization makes it possible to describe the

asymptotic properties of the system close to the wetting
point, and describe the filling transition. An analogous
method was used in R€f36]. Our analysis is more detailed;
we have established the connection of this method to the
perturbative approach, and we have extracted more informa-
tion (i.e., coexistence line, spinodals, critical exponents, and
nonexistence of the roughness driven first-order wetting tran-
sition). Rigorous approach excludes the possibility of the ex-
istence of the mean-field roughness driven first-order wet-
ting. Beyond the mean-field theory there is an open problem
concerning the influence of the fluctuations on the wetting
transition. This problem is worth of an effort because the
fluctuations of the liquid-gas interface situated over a flat
substrate can change the temperature and the order of wet-
ting transition. One can expect that roughness of the sub-
strate comes into a play through the fluctuations of the inter-
face[11].

Although the corrugation of the substrate does not influ-
ence the wetting transition, it induces another phenomenon,
namely, the corrugation-induced filling transition. For the
wedge geometry the filling transition occurs for each value
o] of the opening angle of the wedge, and has the same order as
the wetting transitiorfat least for a very open wedgé&Vhen
the substrate has a saw shape, the fillifiggt-ordey transi-
tion occurs only when wetting is a first-order transition, and

=t = , the corrugation amplitude of the substrate is large enough.

-3 —2 -1 1 2 3 . . -
gx Qn the contrary, on the sinusoidally cgrrugated s_ubstrate f|_II-
ing transition occurs even when wetting is continuous. It is

FIG. 7. The example of coexisting films on sinusoidally corru- &lways a first-order transition and ceases to exist when the
gated substratep(;A=4.112). The hatched area represents the sub¥oughness amplitude of the substrate has a value less than the
strate;f,(x) andf,(x) are liquid-gas interfaces of coexisting films. critical one. Our main result is the adsorption diagram at the

liquid-gas bulk coexistence. We have found the analytical

used in the papeii31], where the corrugation-induced wet- expressions determining the coexistence line, and spinodals
ting was predicted with its help. The simplification of this in the vicinity of the filling critical point, and we have cal-
model is not so important, because the roughness of the subylated mean-field values of the critical exponents.
strate depends on bothandq. Even with a huge value of  The fjlling transition(in both cases, i.e., in the wedge and
the amplitudeA, the corrugation can be small if the wave g, the sinusoidally corrugated substjaies predicted when
numberq is small enough. Instead of Hamiltonid®.1) we using purely thermodynamical argumengst,33,34. If the
could use the more complicated “drum-head” model balance between different surface contributions to the free
- energy is taken into account, one can expect that the phase
~(V1+2-1)+ () (y1+bd)|, (7.)  transition between an empty well and a well partially filled
2 with a liquid appears. Thermodynamic prediction of the fill-

ing temperature in a wedge is exact but the order of the
where the factor/1+ by reflects enlargement of the area of yansition is not determined at this level. On the contrary, in
the substrate due to its corrugation. It could even be supplghe case of the sinusoidal substrate, thermodynamics predicts
mented by the curvature contributions. Independently of posthe order of the transition well, but other predictions are not
sible generalizations, our general argument against the exigpnfirmed by the mean-field theory. In particular, thermody-
tence of the corrugation-induced wetting given in Sec. lingmics states the existence of the filling transition indepen-
remains valid. For each value of the temperature less thaaenﬂy of the corrugation amplitude. It is an open question
Ty, there always exists a flat, planar interface, such that thg/hy in some cases thermodynamics and mean-field theory

situated at infinity does not correspond to the global mini-

mum of Hamiltonian. In Sec. IV and Sec. V we have de-

scribed in details how the substra.te_bec':omes wet. We have ACKNOWLEDGMENT

used a simple method of the minimization of the effective

Hamiltonian. It permits to avoid looking for solutions of the ~ We thank M. Mapiokowski for many helpful discussions
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Psf4(X)

H[f]=f dx
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APPENDIX A A w'(lg,)
I4(x)=lo4— 1—5COSQX+

In this appendix we prove that the linearization of Eq. 2~ (cos qx—cosg' gx),

(2.6) is an unambiguous procedure. In Sec. 1I1B we have (A8)
linearized Eq(2.6) around the equilibrium value of the film
thicknesd , at the planar substrate. It is possible to linearize A (|o )
this equation around another valiyg(a priori arbitrary. The l6(X) =lo,— 3gCOSAX+ — 7~ ———(cos gx— § cos’qx
linearized equation can be written in the following form:
+ 2 cofgx). (A9)
N , _wl(|o) w"(lo)
(1=$AL"(8) =sL/(s)+8A= — o=+~ 7 L(s). In the above expressiotg_denotes solution of the EGA6)

(A1) corresponding to the appropriate valuenofThe free energy

) corresponding td,(x) is equal to
where [ (x)=1y+L(s) and s=cosgx. The solution of Eq.

(A1) can be formally written in the form of a power series . _moq|4 1(®'(lo) 2l o I
expansion =5 |3 + > s + Fw( 02).
(A10)
- k
L(S)_go lis”, (A2) Let us recall the free energy of the basic solution from Sec.
IIA. It is equal to
with coefficients satisfying equations )
_moq A 27
wl(lo) Fl—_z —1+(q§”77)2+?(1)(|ﬂ.) (All)
2= o (A3)

The first contribution td=, is evidently greater than the first
1 o"(1o) contribution toF;. As |, corresponds to the absolute mini-
I3:g[( )Il A}, (A4) mum of the effective potentiab, the same holds for the
o second contributions to both expressions. In consequence,
F,<F, what makes the solutioi(x) uninteresting. Never-
theless, we take this solution into consideration for a mo-
u(|o)) ment. In Eq.(A10) we replacd, by an arbitrary valug,,
I,

|k+2:(k+2)(k+l) (k2+ prs (A5)  and evaluate derivatives &, with respect td ,

2

and fork>3

wherel, andl; are arbitrary numbers. First, we look for the
solution that is a polynomial of theth order. In this case the dlo q
coefficientl,, , vanishedl, ,; vanishes as welland we get
the following equation definingy:

dF, 2 (I
—2=—7Tw'0[ «llo) (A12)

40'q2 ’

This derivative vanishes wheo'' (1) = —40¢? what defines
lo, [Eq. (A6) in the case ofn=2; moreover, note that
w"(lg)=—n%cq?. (AB)  w'(lo,)#0]. In general, Eq(A10) has two squtioni;(l) and

1) (I(1)<I(2)) The second derivative &, evaluated ao,
For a fixed temperature the existence of the solutions of the Zequal o

above equation depends on the wavelength of the subqtrate

The smaller the value af the greater must be, such that d%F, .
there eX|sts_ at least one solution. Note that for a large value e = _gw///(|02)w'(|02). (A13)
of the amplitudeA of the roughness of the substrate the wave 0 |1y )=—40q2 oq

2

numberq has to be small in order to fulfill the condition
gA<1. When temperature increases, the solutions correror hoth values ofo, the first derivativen’ (o) is positive,

sponding to largen cease to exist, and close Tq,,, only the m (1)
basic solution described Sec. IIB survives. The cond|t|onWh(:“re&lS the third derivative (IO) Is negative forl " and

l,+1=0 leads to the conclusion thégxceptl,) all odd co-  Positive forl§ value ofl,,. Thus, functionF(Io) has the
efficients have to vanish; otherwis€ (1) =0, which, how-  maximum atl(l) and minimum al(z) The free energy of

ever, for second-order interaction potential is in contradictionne apove descnbed additional solut|ons contains the contri-
with a negative value ob"(lp). There is an additional re- pion dependent on the amplitude of the corrugation of the
striction imposed on each solution, namely, &) mustbe g psirate. This contribution has the form

positive for eaclx. Here, we list the solutions corresponding (raqi2)[n2(qA)?/(n?2—1)], which is always greater than

ton=2,46: the corresponding contribution to the free energy for the ba-
0'(lg) sic solution, which is equal to #oq/2){(qA)?%/[1

A 0, +(qé¢))?]}. The total free energy of these solutions is greater
1200 =lo, ~ 3 cosax+ 7 CoS' X, A7) than the free energy of the solution linearized arolind
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Moreover—and this is the crucial point—these solutions dowe expandM aroundpgB; up to third-order terms in\B
not correspond to the minima of the Hamiltonigh1l). The  =B-—B; in the vicinity of the critical filling point. With the
second variation of the Hamiltonian is given by the follow- help of Egs.(B2) and (B4) we obtain

ing expression:

1
M(p.BBingﬂ'): pBBi+ pBAB-F _—

. 2
1= [ doa) ot loana. a1 1
~a X[F(PgB) — (A7) ErAP B
For the variationAl of the film thickness of the formil +5f”(pgBi)(PgAB)°]. (BS)

=c cosqgy, it is equal to
, For the equilibrium solution,M(pgB,q¢,,)=psA, and
w (lo)} (A15) moreover the Maxwell’'s construction has to be fulfilled. For
a'q? |’ a given value ofA we chosej¢;, in such way, that Eq6.6)
is fulfilled. Thus
The necessary condition of the minimum of the Hamiltonian

1+

8?H=moqc?

is AB Lem , , ,
Gz 241" (PaB) (PpAB)*+ (06i)*~ (9 )2 =O.
0" (Io) o

oqr - b (A16)

Equation(B6) has three solutiong§B=0 and

which is violated in the case of these polynomial solutions. 6

When the conditior(A6) is not fulfilled for any value of, — \/_ 2 2

Egs.(A2)—(A5) define an infinite power series expansion. It ABs==x f"(pgBi) [(Qdim)ce—(agir)"]. (B7)

is convergent for arbitrary values tf andl,, what follows ) ] ) ] o

from Raabe’s criterion. Even in the cakg=| there is a Ve Will show that the choice given in E(G.6) satisfies the

family of convergent expansions corresponding to the fred1@xwell's construction within our approximation

choice ofl; (for ly=1, the expansion exhibits only odd pow- 5 (Q£,.)2 AB)2

ers ofs). On the other hand the formal power series expan-f +dB[M(p B,q&..)—p A]:Hl_ 9éim)ce| (PgAB)

sion corresponding th.”(s) is not convergent, antexcept B_ pr TSI ER (Aé1.)° ] 2pg

the aforementioned uninteresting polynomial solutjois. ”

(A2) does not define new solutions of E@.8). Thus, the _ " (pgBi)

linearization of Eq.(2.6) aroundl , is a unique choice, and 24p,

there are no other solutions of the linearized theory than Eq.

(2.10. As for both solutions 4B)? has the same value, the above

integral vanishes, and,=B_, B,=B;, B3=B, . Equation

APPENDIX B (6.6) states that asymptotically along the coexistence Ane

g’s the quadratic function ofqg¢,,) ~*. Moreover, we have

shown that close to the critical filling point the Maxwell’s

construction is equivalent to such choiceqdf, , (for a fixed

A) that the straight horizontal lingzA in Fig. 4 intersects the

plot of the functionM at the inflection point. Numerically

B,
(B8)

(pBAB)Al}
B_

In this appendix we present the details of calculation
leading to the determination of the critical properties of the
system. We rewrite the functioM(pzB,qé,,) defined by
Eqg. (4.12 in the following form:

1 obtained phase diagraiffrig. 6) displays rather the linear
M(pgB,qé,,)=pgB+ ﬁf(pBB)_ (B1) depender_lce oA on (qgw)*l_. It does not _contradic.:t.s the
A~ asymptotics obtained analytically. In fact, in the critical re-

gion one observes the crossover between line and quadratic
behavior of the coexistence lijsee Fig. €)].

In a similar manner we determine the location of spin-
odals in the vicinity of the critical filling point. They are

Both functionsM andf have the same inflection poipt;B;
=1.203. In this point

f"(pgBi) =M"(pgBi,a;») =0, (B2 gefined by the condition
In the filling critical point additionally M’(pgB,q¢,) =0. (B9)
M’ (pgB; ,(dé)~)ce)=0. (B3)  We denote the solutions of E¢B9) by Bs. ; the plus sign

_ o . corresponds to greater value of the ampliti&laVe expand
(Prime denotes the derivative with respectpigB; .) Equa-  Eq. (B9) aroundpzB; up to square terms iABg=B¢—B;.
tion (B3) can be rewritten in the following form In this way we obtain

t'(psBi) =~ (A1) er (B4) 31"(ppB) (PpABS)*= (&) & (éi-)°.  (BLO)
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The location of the spinodal is determined by the condition H(o(pgB),PgB,a& ) =H(lo(PsBI).PEBI A& )

Az (9€)7)=M(pgBs- ,qé)5), (B11) 1 d*H
_ _ _ +3 W(pﬁBi 19€)7)
where A_ is the upper, and\, is the lower spinodal. Ex- B
panding the rhs of the above equation up to term linear in X(pﬁAB+)2 (B13)
AB and substitutingBs-- [solutions of Eq.(B10)] into Eg. -
(B11) we obtain

1 \/T With the help of Eq(B7) we obtain
A_ _A+ T = "
(ng'n') (qgll ) (qguw)%': f (pBB|)
X[(aé1) g (611> PUPeB. A8 = TUPLB 81m)
(B12)

3 2 272
) - fm(p B)(q§ )2 [(ngﬂ')CF_(qgl\ﬂ') ] .
Next, we determine the free energy of the system close to B= Im/cF
the critical filling point. We expand the Hamiltoniai®.1) (B14)
aroundB; up to square terms IAB..,
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