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Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings
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An efficient finite volume method is developed for the phase-field simulation of two-dimensional dendritic
growth in a forced flow at various supercoolings. The adaptive nature of the method allows the dendrite in a
large domain to evolve secondary structures, even at low supercoolings. In addition to good agreement with
previous calculations on the tip shape and speed, the effects of forced flow at various supercoolings are
investigated and compared with the Oseen-Ilvantsov solution and good agreement is found. The steady dendrite
shape in all cases continues to have a self-affine nature and the invariant scaling parameters are in good
agreement with the estimation.
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[. INTRODUCTION sharp interface limit can be released to the order of the cap-
illary length. Moreover, the solvability theory has been vali-
The development of microstructures is important in so-dated by phase-field simulations in 2D and 3D, but only
lidification processing, but it is a complicated physical pro-focused on the purely diffusive regime. For the situation un-
cess. For a nucleus in a supercooled environment, as ttier a forced flow, Tong, Beckermann, and KarfAa made
thermodynamic driving force overcomes the kinetic barrierthe first attempt to validate the Oseen-lvantsov solution pro-
it starts growth and the morphology develops. Without theposed by Bouissou and Pel¢é] for a large supercooling
kinetic effect and interfacial energy, the growth defines thg{A= —0.55). Their calculations agree well with the Oseen-
well-known Stefan problem for a diffusive growth. lvantsov Ivantsov solution, but, interestingly, only if the dendrite tip
[1] first obtained a simple exact solution, i.8/R=f(A), radius is obtained from a parabolic function fitting the over-
and demonstrated that the dendrite shape remains to be pardt dendrite head. Their selection parameter depends weakly
bolic; V is the growth rateR the tip radius, and\ the di- on the flow rate. Some experimental work0—-12 have
mensionless supercooling;=(T—T,)/(AH/C,), whereT  also been proposed, but there is a lack of consensus in com-
is the temperatureT,, the melting point,AH the heat of paring theory and simulation.
fusion, andC, the specific heat. The development of solv-  Although the work by Tong, Beckermann, and Karf8a
ability theory[2,3] has also led to further understanding of has been a great success in validating the theory, their calcu-
the growth operating state, where the anisotropic surface eations are valid only for high supercoolings due to the use of
ergy selects uniquely the tip velocity and shape. The scaling structured mesh in a small domain; the maximum domain
parametero=2ad,/VR? depends only on the strength of size in their calculations was only 1022048(Ax2,). As
the anisotropye; a is the thermal diffusivity andl, the cap- they mentioned, the simulation for low supercoolings, higher
illary length. The theory has been validated recently byflow velocities, and in 3D remain a great challenge for the
phase-field simulation. The extension of the microsovabilityfuture. At a low supercoolinge.g.,A=—0.1), the dendrite
theory for a parabolic dendrite under a uniform flow in two tip growth rate is smal{small growth Peclect numbeand it
dimensiong2D) was made by Bouissou and Pe|dé. How-  takes a long time to reach a steady state. To avoid the far
ever, the details of the structure development of dendritdield being affected, the domain size for simulation needs to
growth require a global model and this renders the numericabe increased dramatically. To overcome this, an adaptive ap-
solution of a complete time-dependent Stefan problenproach is necessary. Provatas, Goldenfield, and Dafézig
coupled with the fluid flow. Solving the problem using front proposed an efficient adaptive finite element method for
tracking is extremely challenging due to the large deformasimulation, and their domain size was up to 102400
tion of the dendrite shape. X 51200, where the ratio of the largest to smallest cell size
With the progress of phase-field simulati¢f—8], the  was 2”. More importantly, their computing cost scales with
simulation of dendritic growth has been greatly simplified.the domain sizel(?). By doing so, they have found a small
The phase field introduces a continuous phase-field variablgifference in the tip velocity with the theory, and the main
¢(r) to describe the interface through a rapid transition ofreason is believed to be the effect of side arms. If the side-
the function. Nevertheless, the phase-field simulation is noarm effect is suppressed, the agreement between computation
exactly the same as the front tracking unless the sharp inteand theory is improved. Still, foA = — 0.1, their tip velocity
face limit, where the interface thickness is much smaller thamlid not reach a steady state even after an extremely long
the capillary one, can be approached. Karma and Rdppel time. Again, their calculations did not consider melt flow.
provided simple criteria of choosing parameters such that thédaptive meshes were considered by Tonhardt and Amberg
[13] as well. However, they considered a shear flow passing
a seed on a wall and thus the comparison with theory was not
*Corresponding author. FAX: 886-2-2363-3917. Email addresspossible. In addition, the side branching induced by the ther-
cwlan@ccms.ntu.edu.tw mal noises due to the convection at low supercooling can
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only be simulated by the adaptive mesh. The development of 4e (P )+ (o )*
. . . X Y

the side branches also provides the foundation for theory A(n)=(1-3e)| 1+ 75— Vo o
development and better understanding the physics.

In this study, we present an efficient phase-field simula- ;
. . i ; whereg¢ , and ¢ , represent ¢/ dx andd @/ dy, respectively,
tion based on an adaptive finite volume method. Since a X 24 .
extremely large domain (204 880102 400) and cell-size ra- Und e is the anisotropy strength of surface energy. In addi

. : . tion, N=wpa;/dy and mo=w3a;a,/doa+wiBy/dy; a

tio (up to 214718 are used and the computational cost is .’ 0e170 0~ fog1#27+0 070740, 91

optimum, scaling linearly with the domain size, we are able&géﬁzg’z dairr][(:')a]z_thOésziggt[ii’i]ﬁér;ttrc]:ir?gzvr?efolrergggug:é ?ﬁis
to simulate the dendritic growth at low supercoolings in a. o ’ . gie
forced flow, even at high flow velocities. This opens an adJs r_eallstlc _for low supercoolings. The calculation of the_ ve-
ditional window for the realistic simulation of dendritic locity requires the treatment of two-phase flow at the inter-
growth and makes the comparison with the theory possiblef.ace' and the model proposed by.Beckerm_anaI. [14] is
Our domain size is greater than that reported by Provata@lso adopted here. The conservation equations for mass and

Goldenfield, and Dantzig6] and the flow velocities are rhomentum are as follows, respectively:
larger than that used by Tong, Beckermann, and Kdi®ha

and this is not an upper limit. All the calculations are per- V-»=0, (4)
formed efficiently in a personal computéPentium-111/800 L

with 512 Mbyte SRAM and the simulation approach can be 1ov e

extended to 3D easily. D 7 TV (vw)=PV—VP+F, (5

In the following section, the model used is described

briefly. The numerical method, i.e., adaptive finite volumewhere Pe= v/« is the Prandtl number arfel accounts for the
method, for solving the model is introduced in Sec. Ill. Sec-dissipative force between the two phases. In this study, Pr
tion IV is devoted to results and discussion, where bench=23 1 is used, which is about the value for succinonitrile.

mark Comparisons with preViOUS calculations are preSGnteﬂ]SO, the dimensionless pressuﬁa has been rescaled by
in details. Furthermore, the validation of the Oseen-Ivontsov, 4 2/w2 wherep is the melt density; here, the melt and solid

solution at various supercoolings will be discussed. Finallygensities are assumed to be the same. The interactive force
the self-affine nature of the steady growth is presented beforg_ —0.5CP(¢+1)/wy]?w, whereC is an empirical con-

the conclusion is made. stant. Beckermanat al.[14] used the analytical result of the
Poiseuille flow between two plates to fit the model and got
Il. MATHEMATICAL FORMULATION C=2.757. In this study, we mainly focus on the dendritic

) . _ . growth in a uniform forced flow. In order to compare with
For comparison purposes, the dendritic growth is simuthe theory and previous calculations, the buoyancy convec-
lated using a phase-field model employed . The tem- o due to gravity is neglected, even though it can be added
perature is rescaled 0=Cp(T—Tp)/AH, whereCy is the  easily in the source term of the momentum equation. The
specific heat of the solid. The phase-field variaglis set o poundary conditions are straightforward for the above equa-
1in the solid,—1 in melt, and 0 at the interface. The time  tions. The far field temperature is set at the supercooling one
is rescaled by, which characterizes atomic movement, theang the velocity is determined by the stress-free condition.
length is rescaled by, which characterizes the interface The inlet velocity is given to b& and the outflow boundary
thickness, and the velocity is rescaled dfiv, wherea'is  condition is set by the overall mass balance, while the melt is
the dimensional thermal diffusivity. The energy and phaseincompressible. The pressure at the boundary is then ob-
field equations can be written as the following, respectivelytained by linear extrapolation from the interior points.

G DV.(v0)=DV20+ 1¢ (1) Ill. ADAPTIVE FINITE VOLUME METHOD
at 2 gt’
In order to have a large domain for calculation, while

keeping the cells near the interface small enough, adaptive

A(n)za—¢:V-[A(n)2V¢]+[¢—)\0(1—¢2)](1—¢2) mesh refinemenfAMR) is necessary. For simplicity, we
ot have adopted a simple way to carry out refinement using
P IA(N) quadrilateral cells. A sample mesh is shown in Figa),1
+ —(|V¢|2A(n) ) where two local details are illustrated. The typical cell is
Ix I x shown in Fig. 1b). For the refinement, the parent cell is

|V $|A(n)

JA(N) subdivided into four daughter cells, while for coarsening, the

), (2)  daughter cells are deleted. Constructing the data structure is
I,y straightforward by using pointers and derived data types of
FORTRAN9Q A detailed description of the adaptive data struc-
where D is the dimensionless thermal diffusivityD(  ture and a sample program can be found elsewh#5
=are/w3) and v is the velocity, and for the growth of a Before applying the finite volume approximation, the above
dendrite having fourfold symmetry, such as succinonitrileconservation equations can be written with the following
(SCN), form:

J
4+
ay
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FIG. 1. (a) Adaptive mesh for dendritic growth in a forced flow;

(b) a sample finite volume cell.
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one can obtain a flux balance equation over the cell. For
example, for a celP shown in Fig. 1b), the flux balance can
be written as

9 Ny N¢
ag,E) Av+f§_‘,l b¢¢fvf-sf=f§j T, Ve S+BAV,
. -

=1
(7)

whereP denotes the nodal point at the cell center &igdthe
midlocation of the cell faceS; is the surface vector of the
facef. The number of faceBl; of each cell is different and
depends on the refinement or coarsening. The calculation of
the cell value is simply by distance-weighted interpolation.
However, care must be taken for the diffusion term, because
we do not want the vertex points to be involved, which may
complicate the coding. To do so, the approximation proposed
by Mathur and Murthy{16] is adopted. Talking the fadein

Fig. 1(b) as an example,

St- S
St

v 'sz@Nb_QDP S-S
¢ Leno  Sk-€

+(V<P)f‘(5f_eg ), (8)

wheree; ande; are unit vectors shown in Fig(ld). Although

the above approximation does not require the vertex values,
the approximation of the gradient at the cell fagee.,
(V)] is necessary. Two approaches can be used. One is to
evaluate the value at the cell center of the related cells and
then the face value can be interpolated linearly from its ad-
jacent cells. The other way is to find the best fit through least
squares from the neighbor cell&7]. Both approaches work
well, but the former takes less effort in computation. Further
approximation for the time derivative is necessary and the
implicit Euler scheme is adopted. Although a higher-order
scheme can be used, it needs more memory and computation
at each time step. Moreover, in the simulation of dendritic
growth, the refined zone is very thin. Hence, the time step is
restricted by the amount of interface movement such that the
advancement of the new interface needs to be inside the

where ¢ represents the conservation variable, and the correzone. Therefore, since time step is small, the first-order Euler
sponding coefficients are summarized in Table I. Then, for &cheme is adequate. After assembling the flux balance equa-
control cell, with an arbitrary number of neighbors, the finitetions for all cells and imposing the boundary conditions for
volume method is to integrate the conservation equation ovahe boundary cells, one can solve the nonlinear algebraic
the finite volumeAV. After the Gauss theorem is applied, equationgfor each time stepeasily. Due to the incompress-

TABLE |. The corresponding coefficients for different conservation variables.

¢ a, b, B,
1 0 1 0
1/D 1 —VP+F
% 1 D 1d¢
2°a
¢ A(n)? 0 , L L A(n)
[¢—)\9(1—¢)](1—¢)+5((|V¢| A(n) 7% )
1% JA(n)
+W |V¢|2A(ﬂ)T¢)y)
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TABLE Il. Comparison of different methods for estimating the local tip radius.

Eqg. (12 Second-order fitting Fourth-order fitting
AXmin(Wo) R(wp) Error (%) R(wyg) Error (%) R(wg) Error (%)
0.4 1.78 71.65 1.62 49.58 1.2485 37.26
0.2 1.37 32.11 1.29 19.11 1.07 17.97
0.1 1.12 8.00 1.135 4.801 0.948 4.520
Rext 1.037 1.083 0.907

ibility of the melt, the pressure does not appear explicitly incontinuity. In addition, the side boundary is assumed to be
the equation of continuity, i.e., E¢4). An iteration scheme far enough, so that zero gradient of the velocity, or the stress-
for the velocity/pressure coupling is also required. Thefree condition, is imposed.

SIMPLE scheme[18] and momentum interpolatiofL9] are Before presenting the results for comparison with the
further adopted. In addition, the Gauss-Siedel method is usettheory, we have defined the growth Peclet numlier
for inner iterations(linearized equationsfor all variables. =VR/2D, whereR is the tip radius. Similarly, the flow Pe-

We have also used the IL0)-preconditioned GMRES clet number is defined aB;=UR/2D. Based on these two

method[15], but the overall performance has not improveddimensionless numbers, the Oseen-lvantsov solution ob-

much. tained by Bouissou and Pelf4] for a parabolic dendrite can
The simulation starts from a small seed with an artificialbe represented as the following:

hyperbolic tangent function for temperature and the phase-

field variable:
A=P.expP.—Py)
9=0, |x|<Ry,
n
o=A(1—e (MRo), |x|=Ry, ) meXp‘ Ponrt 1| 2 L[g(;)/ﬁ]dg 7’)}

X N d».

$=—tanH (|x| — Ro)/V2], ! U
(10

where R, is the initial radius of the seed. Furthermore, the
velocity at the inlet is set to be uniform &t The outflow
boundary conditions also need to stratify the overall flowwhere

Js erfo VRes/2) + \2/(7 Re)[ exp( — Re/2 — exp( — Reg/2)]

erfo VRe/2

Also, the Reynold number is defined as=RéR/»=2P;Pr,  with Eq. (10) was obtained at a high supercoolind €
wherev is the kinematic viscosity, erfc is the complementary —0.55), but only when the tip radius was obtained by a
error function. For diffusive growtlP;=0 and Eq.(10) can  parabolic fitting of the overall dendrite head. In addition, to
be reduced to the Ivantsov solution be more convincing, we have also performed an extensive
comparison of several ways for estimating the local tip ra-
dius. Interestingly, we have found that the local radius is very
A=\Peee f Tdt— JaPePeerfd\VPy). (1) sensitive to the mesh used, especially at high supercoolings
[21]. For the present scheme, the local curvature can be cal-

culated at the celP havin 0 at the tip as follows:
For a given supercooling, one can calculate the Peclet num 9¢= P

ber P... If the tip radiusR is known, the tip speed can be

calculated. However, the question left over is how to esti- 1 -1 Vo
mate the tip radius and where does the tip radius need to be KP:WJ xdV= AV f v |V¢|)
used for the comparison with the theory. Because the previ-

ous solutions neglect the interfacial energy, the local tip ra- Vo - ¢
dius may not be a right value to use. Indeed, in a recent 3g (|V¢|) ndS= E (|V¢|) -NfAS.
calculation by Tong, Beckermann, and Karrfi@l, they

showed that a good agreement of their phase-field simulation (12
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FIG. 2. (a) The local tip shape and the best-fitting parabde,
the overall tip and the best-fitting paraboles= —0.55 andU =0.

The tip radiusR=1/xp. Because the exact position gf

=0 may not be right at the cell center, the above approxi-
mation, which is based on the mean-value theory, has ar

error of the order of the cell size. In other words, it is ex-

pected to have only first-order accuracy. Another way for -5

estimating the local tip radius is by using a polynomial fitting
(up to second or fourth ordersi.e., y(x)=ax*+bx?+c,
k(X)=y"|/(1+y'%?), wherey”=d%y/ox? andy’ = gyl x.
Still, the tip shape is obtained by interpolation from the
phase field atp)=0 and the error depends on the interpola-

tion error as well. For a parabolic shape, the radius of cur-
vature is constant everywhere. The results of the calculatec

tip radius by different approaches far=—0.55 are shown
in Table 1, whereRg,; is obtained by Richardson extrapola-
tion from the finest two grids; the calculation by Ef2) has

only first-order accuracy; in fact, the convergence order ob-
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FIG. 3. Calculated tip speed at various parameters. The mesh
and the phase and thermal fieldsize: —128ny<x<<128wj;
—128ny<y<128wy) are also illustrated far=150r;. In all cases,
the solvability limit can be approached easily.

40 160 200

1.5. As shown, whem\ X, is not much smaller than the
local radius, an accurate estimation by EtR) is not pos-
sible. On the other hand, if the cell size is reduced, the ac-
curacy is greatly improved. However, the computational cost
increases as well. From Table I, it is clear that the higher-
order estimation through polynomial fitting gives a better
result. Nevertheless, although the minimum cell size is found
adequate for the phase-field simulatid@9], the estimation

of the local tip radius may still be erroneous. In addition, as
shown in Fig. 2a), the tip does not fit locally to a parabola
nicely due to the effect of interfacial enerf§]. On the con-
trary, the overall shape of the dendrite can be fitted nicely, as
shown in Fig. 2Zb), by a parabola. More importantly, this
overall tip radius, which is constant everywhere, is not sen-
sitive to the mesh size.

0 Present study
------- Solvability theory
0A=-0.3
-15f oA =—O.45}Provatas etal.[21],
o A=-0.55 /
Z_-35¢
[>
-55}
-75
-150 -100 -50 0

x/dgy

FIG. 4. Calculated local tip shapes for different supercoolings at

tained from the calculations is found to be better, being abouy = o. V:y_ytip; Yip is they coordinate of the tip.
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TABLE lll. Comparison for diffusive growth at high supercooling=0.05).

Theoretical Karma and

A do/wyg D Lp(wg) Level AXmin(Wo) tip speed Rappel[5] Present Errof%)
—0.55 0.139 4 128 6 0.4 0.0170 0.0174 0.00171 0.6
—0.55 0.185 3 1024 9 0.4 0.0170 0.00175 0.00169 0.6
—0.55 0.277 2 1024 9 0.4 0.0170 0.001 68 0.001 67 1.2
—0.50 0.185 3 256 7 0.4 0.009 85 0.01005 0.009 87 0.2
—0.45 0.139 4 1024 9 0.4 0.005 45 0.005 40 0.005 41 11
—0.45 0.185 3 1024 9 0.4 0.005 45 0.005 57 0.005 40 0.9
—-0.30 0.055 10 1000 8 0.52 0.000 68 0.000 64 0.000 664 3.75

IV. RESULTS AND DISCUSSION able), isotherms, and mesh &t 1507, are also illustrated. In

this case, only six levels of meshes are used in the AMR. As
shown in Fig. 3, the tip speed reaches a steady state quickly
Before presenting the results for convective growth, wefor three different parameters. Interestingly, due to the fast
have to make sure that the calculations for diffusive growthgrowth rate, the growth of each arm is quite independent of
are consistent with previous studies. For high supercoolingghe other. Also, the domain size has very little effect on the
Karma and Rapp€l5] have presented detailed benchmark-result. Further comparisons can be found in Table 1lI, where
ing, and their results agree very well with the prediction ofdifferent parameters and domain sizes are also used for com-
the solvability theory. Therefore, we have repeated the samgarison. As shown, good agreement is found. Moreover, the
calculations forA=—0.55 first. Figure 3 shows the evolu- tip shapes at various supercoolings are compared with previ-
tion of the tip speed; the dendrite shaf@hase-field vari- ous results in Fig. 4. Again, good agreement is obtained.

A. Benchmark comparison for diffusive growth

(a) (b)

102400 1706.67:
L

z 5 oa
> ; H I .

] EERsEERRnEe

RARe ‘ el | FIG. 5. Mesh forA=-0.25

% x/w 102400 0 X/ w 1766.67 (U=0) at different length scales:

0 0 (a) the full domain,(b) domain for
the dendrite only(c) a local view
(C) : : (d) of the mesh,(d) the isotherms
120 2000 around the dendrite.
WSS NN [
S
> ] T T+ 3 I
W G T4
s I [Ty
RN
u -H
FE
%% . 320 x/vlvol E—TY
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0.5
t /TO e o Present study
. . . . s o Tongetal.[9]
FIG. 6. Evolution of dimensionless tip speedXt —0.25 and 0.4
—0.1. . )
) . ) 0.3 =
More importantly, as mentioned previously, the overall den- o . Lt
drite shapes remain parabolic, even though the local dendrite 0.0 Oseen-lvantsov solution
shape deviates from the analytical shape slightly due to the o5
interfacial energy. o1 oo
The present AMR scheme is particularly efficient in the c _e%e
phase-field simulation. For a uniform mesh, if the domain r
size isLp and the minimum cell siz&Xx,,,, the total cell % 0.2 0.4 0.6 0.8 1
number is Lp/AXqin)?. Then, for a given tip growth rate P

and time stepry, one need$ /(V7y) time steps to grow a ) _

dendrite to the size of the domain. Then, if the solution time _FIG. 7. The effect of flow on the dendrite shape and tip speed,

at each step is about to be the same, the total CPU time for @ overall dendrite head: from the left to the right the figure size is
’ -8

calculation using a uniform mesh becomes SWo<x< —40Wp; = 25Wo=y <25Wg, — 47T Wg=<X<

— 4375wy — 25Wo<y<25w,, and (—2005ny<x<—1965N,;

_ Lo [ Lp \2 1 —20Wo<y<20w,), respectively.(b) The effect of flow Pelet
(CPU timauniform o Vol i ) = VA LpS. number; the dashed line i@) is the best-fitted parabola, iib) the
o min Xmin70 opened symbols are the results using the local tip radius.

However, for an AMR scheme, if most of the fine cells are
used to describe the thermal boundary layhicknessd)
near the interface, the cell number required is abou
SLp/AX2. - 5~alV. Again, for the same number of time
stepsLp /(V 7o), the CPU time for a calculation using ARM

zone. If the new interface is beyond the refined zone, signifi-
{:ant numerical noises are introduced.

The benchmark comparison for low supercoolings is
much more difficult. Unlike that at high supercoolings, the
growth is much slower at low supercoolings. Hence, the time

is only about to reach a steady state is also much longer. Furthermore, due
L Sl |2 to the thermal diffusion of the side arms, the tip speed may
(CPU timeAMR ~ _D< D\ _ @ L2 not converge to the solvability limii6]. Indeed, in order to
V79 \ AXmin V2Axﬁ1mro P prevent the far field boundary from being affected, the do-

main size needs to be much larger. Provatas, Goldenfield,
Therefore, when the calculation domain is increased, amand Dantzig[6] proposed heuristic criteria: the domain size
AMR scheme is much more efficient. In our scheme, therequired is about (5—10@)/V and the time for reaching a
CPU time is scaled by abol3*. The calculation using an steady state is estimated to béV2. For A=—0.1, the do-
explicit scheme for time integration does not reduce themain size required is about 102 40002 4004 X i), While
overall CPU time much, as compared with the implicit the minimum cell size is about 0.883. Moreover, the time
scheme, because the largest time step is limited by théor reaching a steady state is longer tharf70 Figure 5
Courant-Friedricks-Lewey condition. For the implicit shows the meshes at different view scales and the calculated
scheme used here, although each time step requires masotherms at=60 000, [Fig. 5(d)]. As shown, unlike that in
CPU time for the solution of nonlinear equations, the timeFig. 3, the isotherms are much more diffusive. The calculated
step allowed can be much larger. Nevertheless, the largeip speeds at\=—0.1 and—0.25 are shown in Fig. 6, re-
time step is still restricted by the thickness of the refinedspectively; we have purposely presented them in a log-log
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scale in order to see the asymptotic decay rate at longer time  ;¢°
As shown, for both cases, the growth rate is slightly lower
than the prediction of the solvability theory at a longer time.
It is realizable that due to the growth of side arms the growth

—— U=3.2 wo/ 1
—— U=2.0 wy/1o

environment is getting warmer as compared with that of a 107} —— U=1.0wo/%
single arm, which is assumed in theory. Accordingly, the I U=0wa/m
growth rate is reduced. These results slightly differ from
those by Provatas, Goldenfield, and Danf{fi E 107}
> Upstream
B. Effects of forced flow atA=—0.55

Recently, Tong, Beckermann, and Karf®d performed 107 . S ——
elegant calculations to study the effects of a forced flow on Solvability theory e
the selection of tip shape and velocity. Their results agree ) Downstréam = S |
quite well with the Oseen-lvantsov solution if the tip radius 107 = — ~ — - .
is estimated by a parabolic fitting to the overall dendrite 10 10 10 10 10 10
head. We have also performed the same calculations using t /%o

the AMR SCh.eme' The comparison IS show_n inFig. 7. In Fig. FIG. 8. Effects of flow velocity on the upstream and down-
7_(a), we again |Ilustrate_z the suitability of using a parabola togyeom tip speedsy = — 0.25,
fit the upstream dendrite head grown at different flow rates.
ﬁ:azhggv:bzerse'dre a sTa(\jllsrea at thle tip, tr;)e Ioverall delrlld_rl_'tﬁm kinematic viscosity is much larger than the thermal dif-
. epresented by a simple paraboia very Wetl. r.}Esivity (Pr=v,/a,=23.1); here, the momentum boundary
comparison with the Oseen-lvantsov solution and the prevu—{,jwer is thicker than the thermal one
ous calculation$9] is further illustrated in Fig. (b), where '
the resultgopen symbolsusing the local tip radiussecond-
order fitting for the Peclet numbers are included. As shown,
good agreement with the theofgolid line) is found when The growth behavior for diffusive growth, such as that in
the overall tip radius is used. Nevertheless, we have furtheFig. 6, is typical for low supercoolings. This is due to the
examined the effects of domain size fd=wg/ 7y, and the  much lower growth rate and the thicker thermal boundary
results are summarized in Table IV. As shown, our condayer. As a result, the comparison of the simulation with the
verged velocity is slightly lower than that obtained by Tong,theory becomes difficult. In addition, as just mentioned, the
Beckermann, and Karm®], where the largest domain size interaction of side arms makes the comparison even more
used by them was 10242048(AX,,;)%, or the total number difficult. For diffusive growth, a simple way for comparison
of cells number were 10242048. As shown in Table IV, is to reduce the side-arm effect by reducing the domain size
increasing the domain size slightly reduces the tip velocityin the side-arm directiofi6]. This also reduces the warming
For the domain size up to 20481096(A x,,i,)%, being more  effect from the side arnfreleasing the heat of fusion during
than ten times the dendrite size, the effect of domain size cagrowth). Even so, as shown by Provatas, Goldenfield, and
be neglected. However, if the domain is small, the fluid flowDantzig[6], some discrepancy with the theory still exists.
boundary condition at the boundary is affected. In other Interestingly, once the tip velocity is enhanced by the
words, even at high supercooling, the domain size cannot b#ow, we find that the tip velocity reaches a steady state more
too small, e.g., 258 512(AX,,)? for convective growth, quickly and the upstream tip growth becomes similar to the
even though it is enough for diffusive growth. It is particu- case at high supercooling. As shown in Fig. 8, fbe
larly true for the materials studied hefsuccinonitrilg that ~ —0.25, with a forced flow, the growth velocity of the up-

C. Effects of forced flow at low supercoolings

TABLE |V. Effect of domain size for convective growti\ —0.55).

Domain size InitialCV's Level AXmin Vdy/a? No. of CV's (t=100r)
256x 128 20x10 6 0.4 0.0260 6256
512X 256 2010 7 0.4 0.0232 6187
1024x 512 2010 8 0.4 0.0224 6240

2048x 1024 20< 10 9 0.4 0.0224 6223

4096x 2048 20< 10 10 0.4 0.0223 6215
512X 256 40< 20 6 0.4 0.0231 6823
1024x 512 80x 40 6 0.4 0.0224 9335

2048x1024 160< 80 6 0.4 0.0224 19159

2048< 1024 20< 10 10 0.2 0.0226 21991

4096x 2048 20< 10 11 0.2 0.0227 22011

@Upstream tip velocity of Tong, Beckermann, and Karma of 0.0240.
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FIG. 9. Calculated flow and thermal fields and the dendrite shapes at different ¢@nes:2000r,, (b) t=4000r,, (c) 8000, (d) a
local view of the back flow ofb), A=—0.25 andU =2w,/7,.

stream tip approaches a steady state quickly; that for diffuthat are amplified by the flow. For a purely diffusive growth
sive growth(or U=0) is put together for comparison. The at the same supercooling or lower, the same mesh does not
downstream arm grows slower, but the growth rate boundsiduce any side branches along the arms at all. The side
back after a longer time. Selected flow and temperature fieldsranching increases with the increasing flow velocity and
for U=2w,/7, at different times are shown in Fig. 9. As decreasing supercooling. Further refining the mesh delays
shown, at the upstream, due to the flow, the thermal boundslightly the onset of the side branching. In reality, the side
ary layer is much thinner at the tip front. As a result, thebranching due to the flow is typicE20] and it may be due to
growth is faster there, as shown in Fig. 8. Due to the fasthermal noises. However, from the stability point of view, it
growth, the growth reaches a steady state quickly. More imis believed that the branching state is more stable than the
portantly, as shown in Fig. 9, the isotherms are pushed tosmooth one. Therefore, the branching shown in Fig. 9 is
ward the side arms. Accordingly, the thermal influence frombelieved to be physical.
the side arms is suppressed. In other words, the upstream If we further convert the steady growth velocities and the
dendrite grows like a single one. tip radii (using one half of the arjninto the growth Peclet

In addition, as shown in the lower part of Fig. 8, the number as a function of the flow Peclet number, the com-
downstream arm shows some abnormal growth behavior. Agarison with the Oseen-Ivantsov solution is shown in Fig. 10.
shown, when the convection is strong, the downstream tig\s shown, the agreement is quite satisfactory. Nevertheless,
growth is getting slower at the beginning. However, at athe calculated Peclet numbers are slightly lower than the ana-
longer time, the velocity reaches a minimum and then startlytical ones.
to increase. We examine the local flow field near the down- The calculation forA=—0.1 show similar result$22],
stream in Fig. 9. At the beginning, there is no clear vortexbut the side branching becomes much more significant. The
[Fig. Aa@)]. However, after the boundary separation at acomparison with the Oseen-lvantsov solution is shown in
longer time[Figs. 9b) and 9c)], there is a wake behind the Fig. 11. Again, the agreement is satisfactory. The calculated
side arms as shown in Fig(d®, which is a local view of Fig. growthP.’s are slightly lower than the analytical ones. Now,
9(c). Because the back flow increases, the isotherms arie question left over is whether or not the dendrite arm still
pushed toward the downstream tip. Hence, the local growthemains parabolic. Indeed, we have found a positive sign
rate is enhanced. from the comparison with the Oseen-lvantsov solution,

Notably, as shown by the upstream arm, many sidevhich assumes a parabolic dendrite shape, even though there
branches are induced, while other arms remain smooth. Thisre many side branches along the arm. To further illustrate
is believed to be the cause of noigékely to be numerical  that, we have performed a simple self-affine transformation

061601-9



C. W. LAN, C. M. HSU, C. C. LIU, AND Y. C. CHANG PHYSICAL REVIEW E65 061601

S o025 (a)

0.06

0.05

0.02 = present study

— Oseen-Ivantsov
0.01 solution

(X'Xb)/xmux

001 02 03 04 05
Py

FIG. 10. The effect of flow Reet numberP; on the growth
Peclet numbeP, for A= —0.25.

by scalingx using X—Xp)/Xmax @andy using y/ymayx for the
steady-state arm shape at different growth periods ranging

from 2000, to 8000r; X, is the base positionx,,,, the

maximum arm length, ang,,,, the dendrite width by ignor-

ing the side branches. Far= —0.25, as shown in Fig. 1) (b)
the rescaled shape remains to be parabolic and the shape 1.0
seems to be universal. Beside the side branches, the overall
shape is almost the same as the diffusive one, as shown in
Fig. 12b). In other words, the self-affine shape is not af-
fected much by the flow. Interestingly, it is affected very
little by the supercooling as weJR2]. For a steady growth,
with or without the flow, if X4 iS proportional tot? and

Ymax t0 t7, then the best fitting giveg~1 and »~0.5, as
shown in Table V. This scaling result can be easily under-
stood. Since both the velocity,~dx/dt~ Bt#~1 and the
radius of curvatur®~ (d?x/dy?) “1~t27"# are constant at
steady state, one shall gét=1 and»=0.5. The exponents
further indicate clearly that the overall tip shape continues to
be parabolic, even though the local tip is not. In other words,
because the tip head continues to be parabolic, the results
thus agree reasonably well with the Oseen-lvantsov solution.

.V/Ynjxax

(X‘Xb) /Xmax

V. CONCLUSIONS Y/ ¥ oax

An efficient adaptive finite volume method is developed FIG. 12. Self-affine shapega) U=1w,/7y, (b) U=0, nine
for the phase-field simulation of dendritic growth in a forced shapes front=2000r, to 8000r, are usedA = —0.25.

flow at various supercoolings for PR23.1. The scheme is
efficient in that the computational time is proportional to the
domain size. The calculations for high supercoolinmg=(
—0.55) agree very well with previous calculations and

0.04

0.03

TABLE V. Self-affine parameter@ and » in different super-

. 0.02 coolings and flow rates.
0.01 m present study A UWo/ 7o) B "
— Oseen-Ivantsov —-0.25 1 1.0828 0.4410
solution 2 1.0693 0.5065
05 0.5 10 15 3.2 1.0904 0.5210
P, -0.1 5 1.0698 0.5445
10 1.058 0.4452

FIG. 11. The effect of flow Reet numberP; on the growth
Peclet numberP, for A=—0.1.
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theory if the upstream tip radius is obtained from the overallcan reach a steady state quickly. More importantly, due to the
dendrite head at the upstream. Even with high supercoolinglow, the thermal effect of the side arms is suppressed. As a
we find that the domain size cannot be too small because thesult, we have found that the calculated results agree well
far field flow boundary can be easily affected due to thewith the Oseen-lvantsov solution. Side branches along the
thicker momentum boundary layer from the dendrite. As aypstream are induced easily with the increasing flow and
result, the domain size required for this is much larger thajecreasing supercooling. Nevertheless, the overall arm shape
that for diffusive growth. continues to be parabolic and is not affected much by the

For low supercoolings, without convection, our resultsfiow, As a result, at steady state, the upstream arm shape
agree reasonably well with previous calculations. Due to thontinues to have a self-affine nature.

small tip velocity, it takes a long time to reach a steady state.
Therefore, the domain size needs to be extremely large to
avoid the far field from being affected. Although for such a
large domain, while keeping very small cells at the interface,
the calculation is difficult to be carried out by a structured C.W.L would like thank Professor R. F. Sakerka for intro-
mesh, it can be easily be resolved by the present adaptivducing this topic and for valuable discussions. Fruitful dis-
scheme. Even so, the time for reaching a steady state for thmissions with Professor Amberg at the beginning of this
tip speed is extremely long. However, with a forced flow, thestudy are also appreciated. This research was sponsored by
upstream tip speed is enhanced. As a result, the upstream tipe National Science Council of the Republic of China.
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