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Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings
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~Received 30 November 2001; published 13 June 2002!

An efficient finite volume method is developed for the phase-field simulation of two-dimensional dendritic
growth in a forced flow at various supercoolings. The adaptive nature of the method allows the dendrite in a
large domain to evolve secondary structures, even at low supercoolings. In addition to good agreement with
previous calculations on the tip shape and speed, the effects of forced flow at various supercoolings are
investigated and compared with the Oseen-Ivantsov solution and good agreement is found. The steady dendrite
shape in all cases continues to have a self-affine nature and the invariant scaling parameters are in good
agreement with the estimation.
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I. INTRODUCTION

The development of microstructures is important in s
lidification processing, but it is a complicated physical pr
cess. For a nucleus in a supercooled environment, as
thermodynamic driving force overcomes the kinetic barr
it starts growth and the morphology develops. Without
kinetic effect and interfacial energy, the growth defines
well-known Stefan problem for a diffusive growth. Ivantso
@1# first obtained a simple exact solution, i.e.,VR5 f (D),
and demonstrated that the dendrite shape remains to be
bolic; V is the growth rate,R the tip radius, andD the di-
mensionless supercooling;D5(T2Tm)/(DH/Cp), whereT
is the temperature,Tm the melting point,DH the heat of
fusion, andCp the specific heat. The development of so
ability theory @2,3# has also led to further understanding
the growth operating state, where the anisotropic surface
ergy selects uniquely the tip velocity and shape. The sca
parameters52ad0 /VR2 depends only on the strength o
the anisotropy«; a is the thermal diffusivity andd0 the cap-
illary length. The theory has been validated recently
phase-field simulation. The extension of the microsovabi
theory for a parabolic dendrite under a uniform flow in tw
dimensions~2D! was made by Bouissou and Pelce@4#. How-
ever, the details of the structure development of dend
growth require a global model and this renders the numer
solution of a complete time-dependent Stefan probl
coupled with the fluid flow. Solving the problem using fro
tracking is extremely challenging due to the large deform
tion of the dendrite shape.

With the progress of phase-field simulation@5–8#, the
simulation of dendritic growth has been greatly simplifie
The phase field introduces a continuous phase-field vari
f(r ) to describe the interface through a rapid transition
the function. Nevertheless, the phase-field simulation is
exactly the same as the front tracking unless the sharp in
face limit, where the interface thickness is much smaller th
the capillary one, can be approached. Karma and Rappe@5#
provided simple criteria of choosing parameters such that
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sharp interface limit can be released to the order of the c
illary length. Moreover, the solvability theory has been va
dated by phase-field simulations in 2D and 3D, but on
focused on the purely diffusive regime. For the situation u
der a forced flow, Tong, Beckermann, and Karma@9# made
the first attempt to validate the Oseen-Ivantsov solution p
posed by Bouissou and Pelce@4# for a large supercooling
(D520.55). Their calculations agree well with the Osee
Ivantsov solution, but, interestingly, only if the dendrite t
radius is obtained from a parabolic function fitting the ove
all dendrite head. Their selection parameter depends we
on the flow rate. Some experimental works@10–12# have
also been proposed, but there is a lack of consensus in c
paring theory and simulation.

Although the work by Tong, Beckermann, and Karma@9#
has been a great success in validating the theory, their ca
lations are valid only for high supercoolings due to the use
a structured mesh in a small domain; the maximum dom
size in their calculations was only 102432048(Dxmin

2 ). As
they mentioned, the simulation for low supercoolings, high
flow velocities, and in 3D remain a great challenge for t
future. At a low supercooling~e.g.,D520.1!, the dendrite
tip growth rate is small~small growth Peclect number! and it
takes a long time to reach a steady state. To avoid the
field being affected, the domain size for simulation needs
be increased dramatically. To overcome this, an adaptive
proach is necessary. Provatas, Goldenfield, and Dantzig@6#
proposed an efficient adaptive finite element method
simulation, and their domain size was up to 102 4
351 200, where the ratio of the largest to smallest cell s
was 217. More importantly, their computing cost scales wi
the domain size (L2). By doing so, they have found a sma
difference in the tip velocity with the theory, and the ma
reason is believed to be the effect of side arms. If the si
arm effect is suppressed, the agreement between comput
and theory is improved. Still, forD520.1, their tip velocity
did not reach a steady state even after an extremely l
time. Again, their calculations did not consider melt flo
Adaptive meshes were considered by Tonhardt and Amb
@13# as well. However, they considered a shear flow pass
a seed on a wall and thus the comparison with theory was
possible. In addition, the side branching induced by the th
mal noises due to the convection at low supercooling
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only be simulated by the adaptive mesh. The developmen
the side branches also provides the foundation for the
development and better understanding the physics.

In this study, we present an efficient phase-field simu
tion based on an adaptive finite volume method. Since
extremely large domain (204 8003102 400) and cell-size ra
tio ~up to 214– 18! are used and the computational cost
optimum, scaling linearly with the domain size, we are a
to simulate the dendritic growth at low supercoolings in
forced flow, even at high flow velocities. This opens an a
ditional window for the realistic simulation of dendriti
growth and makes the comparison with the theory possi
Our domain size is greater than that reported by Prova
Goldenfield, and Dantzig@6# and the flow velocities are
larger than that used by Tong, Beckermann, and Karma@9#,
and this is not an upper limit. All the calculations are p
formed efficiently in a personal computer~Pentium-III/800
with 512 Mbyte SRAM! and the simulation approach can b
extended to 3D easily.

In the following section, the model used is describ
briefly. The numerical method, i.e., adaptive finite volum
method, for solving the model is introduced in Sec. III. Se
tion IV is devoted to results and discussion, where ben
mark comparisons with previous calculations are presen
in details. Furthermore, the validation of the Oseen-Ivont
solution at various supercoolings will be discussed. Fina
the self-affine nature of the steady growth is presented be
the conclusion is made.

II. MATHEMATICAL FORMULATION

For comparison purposes, the dendritic growth is sim
lated using a phase-field model employed in@5#. The tem-
perature is rescaled tou5Cp(T2Tm)/DH, whereCp is the
specific heat of the solid. The phase-field variablef is set to
1 in the solid,21 in melt, and 0 at the interface. The timet
is rescaled byt0 , which characterizes atomic movement, t
length is rescaled byw0 , which characterizes the interfac
thickness, and the velocity is rescaled bya/w0 , wherea is
the dimensional thermal diffusivity. The energy and pha
field equations can be written as the following, respective

]u

]t
1D“•~nu!5D¹2u1

1

2

]f

]t
, ~1!

A~n!2
]f

]t
5“•@A~n!2

“f#1@f2lu~12f2!#~12f2!

1
]

]x S u“fu2A~n!
]A~n!

]f ,x
D

1
]

]y S u“fu2A~n!
]A~n!

]f ,y
D , ~2!

where D is the dimensionless thermal diffusivity (D
5at0 /w0

2) and n is the velocity, and for the growth of a
dendrite having fourfold symmetry, such as succinonitr
~SCN!,
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A~n!5~123«!F11
4«

123«

~f ,x!
41~f ,y!4

u“fu4 G , ~3!

wheref ,x andf ,y represent]f/]x and]f/]y, respectively,
and « is the anisotropy strength of surface energy. In ad
tion, l5w0a1 /d0 and t05w0

3a1a2 /d0a1w0
2b0 /d0 ; a1

50.8839 anda250.6267@5,6#. In the above formulation, as
discussed in@5#, the kinetic effect can be neglected and th
is realistic for low supercoolings. The calculation of the v
locity requires the treatment of two-phase flow at the int
face, and the model proposed by Beckermannet al. @14# is
also adopted here. The conservation equations for mass
momentum are as follows, respectively:

“•n50, ~4!

1

D

]n

]t
1“•~nn!5Pr¹2n2¹P1F, ~5!

where Pr5n/a is the Prandtl number andF accounts for the
dissipative force between the two phases. In this study
523.1 is used, which is about the value for succinonitri
Also, the dimensionless pressureP has been rescaled b
ra2/w0

2, wherer is the melt density; here, the melt and sol
densities are assumed to be the same. The interactive f
F520.5CPr@(f11)/w0#2n, whereC is an empirical con-
stant. Beckermannet al. @14# used the analytical result of th
Poiseuille flow between two plates to fit the model and g
C52.757. In this study, we mainly focus on the dendri
growth in a uniform forced flow. In order to compare wit
the theory and previous calculations, the buoyancy conv
tion due to gravity is neglected, even though it can be ad
easily in the source term of the momentum equation. T
boundary conditions are straightforward for the above eq
tions. The far field temperature is set at the supercooling
and the velocity is determined by the stress-free conditi
The inlet velocity is given to beU and the outflow boundary
condition is set by the overall mass balance, while the me
incompressible. The pressure at the boundary is then
tained by linear extrapolation from the interior points.

III. ADAPTIVE FINITE VOLUME METHOD

In order to have a large domain for calculation, wh
keeping the cells near the interface small enough, adap
mesh refinement~AMR! is necessary. For simplicity, we
have adopted a simple way to carry out refinement us
quadrilateral cells. A sample mesh is shown in Fig. 1~a!,
where two local details are illustrated. The typical cell
shown in Fig. 1~b!. For the refinement, the parent cell
subdivided into four daughter cells, while for coarsening,
daughter cells are deleted. Constructing the data structu
straightforward by using pointers and derived data types
FORTRAN90. A detailed description of the adaptive data stru
ture and a sample program can be found elsewhere@15#.
Before applying the finite volume approximation, the abo
conservation equations can be written with the followi
form:
1-2



rr
r

ite
v

d,

For

n of
n.
use
ay
sed

es,

is to
and
ad-
ast

er
the
er

ation
itic
p is
the
the

uler
qua-
for
raic
-

;

ADAPTIVE PHASE FIELD SIMULATION OF . . . PHYSICAL REVIEW E 65 061601
aw

]w

]t
1“•~bwnw!5“•Gw“w1Bw , ~6!

wherew represents the conservation variable, and the co
sponding coefficients are summarized in Table I. Then, fo
control cell, with an arbitrary number of neighbors, the fin
volume method is to integrate the conservation equation o
the finite volumeDV. After the Gauss theorem is applie

FIG. 1. ~a! Adaptive mesh for dendritic growth in a forced flow
~b! a sample finite volume cell.
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one can obtain a flux balance equation over the cell.
example, for a cellP shown in Fig. 1~b!, the flux balance can
be written as

S aw

]w

]t D
P

DV1(
f 51

Nf

bww fvf•Sf5(
f 51

Nf

Gw f
“w f•Sf1BwDV,

~7!

whereP denotes the nodal point at the cell center andf is the
midlocation of the cell face,Sf is the surface vector of the
face f. The number of facesNf of each cell is different and
depends on the refinement or coarsening. The calculatio
the cell value is simply by distance-weighted interpolatio
However, care must be taken for the diffusion term, beca
we do not want the vertex points to be involved, which m
complicate the coding. To do so, the approximation propo
by Mathur and Murthy@16# is adopted. Talking the facef in
Fig. 1~b! as an example,

“w•Sf5
wNb2wP

LPNb

Sf•Sf

Sf•ej
1~“w! f•S Sf2ej

Sf•Sf

Sf•ej
D , ~8!

wherees andej are unit vectors shown in Fig. 1~b!. Although
the above approximation does not require the vertex valu
the approximation of the gradient at the cell face@i.e.,
(¹w) f# is necessary. Two approaches can be used. One
evaluate the value at the cell center of the related cells
then the face value can be interpolated linearly from its
jacent cells. The other way is to find the best fit through le
squares from the neighbor cells@17#. Both approaches work
well, but the former takes less effort in computation. Furth
approximation for the time derivative is necessary and
implicit Euler scheme is adopted. Although a higher-ord
scheme can be used, it needs more memory and comput
at each time step. Moreover, in the simulation of dendr
growth, the refined zone is very thin. Hence, the time ste
restricted by the amount of interface movement such that
advancement of the new interface needs to be inside
zone. Therefore, since time step is small, the first-order E
scheme is adequate. After assembling the flux balance e
tions for all cells and imposing the boundary conditions
the boundary cells, one can solve the nonlinear algeb
equations~for each time step! easily. Due to the incompress
TABLE I. The corresponding coefficients for different conservation variables.

w aw bw Gw Bw

1 0 1 0 0
n 1/D 1 Pr 2“P1F
u 1 D D 1

2

]f

]t
f A(n)2 0 A(n)2

@f2lu~12f2!#~12f2!1
]

]x Su“fu2A~n!
]A~n!

]fx
D

1
]

]y S u“fu2A~n!
]A~n!

]fy
D
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TABLE II. Comparison of different methods for estimating the local tip radius.

Dxmin(w0)

Eq. ~12! Second-order fitting Fourth-order fitting

R(w0) Error ~%! R(w0) Error ~%! R(w0) Error ~%!

0.4 1.78 71.65 1.62 49.58 1.2485 37.26
0.2 1.37 32.11 1.29 19.11 1.07 17.97
0.1 1.12 8.00 1.135 4.801 0.948 4.520
Rext 1.037 1.083 0.907
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ibility of the melt, the pressure does not appear explicitly
the equation of continuity, i.e., Eq.~4!. An iteration scheme
for the velocity/pressure coupling is also required. T
SIMPLE scheme@18# and momentum interpolation@19# are
further adopted. In addition, the Gauss-Siedel method is u
for inner iterations~linearized equations! for all variables.
We have also used the ILU~0!-preconditioned GMRES
method@15#, but the overall performance has not improv
much.

The simulation starts from a small seed with an artific
hyperbolic tangent function for temperature and the pha
field variable:

u50, uxu,R0 ,

u5D~12e2~ uxu2R0!!, uxu>R0 , ~9!

f52tanh@~ uxu2R0!/&#,

whereR0 is the initial radius of the seed. Furthermore, t
velocity at the inlet is set to be uniform atU. The outflow
boundary conditions also need to stratify the overall fl
ry
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e
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o
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continuity. In addition, the side boundary is assumed to
far enough, so that zero gradient of the velocity, or the stre
free condition, is imposed.

Before presenting the results for comparison with t
theory, we have defined the growth Peclet numberPc
5VR/2D, whereR is the tip radius. Similarly, the flow Pe
clet number is defined asPf5UR/2D. Based on these two
dimensionless numbers, the Oseen-Ivantsov solution
tained by Bouissou and Pelce@4# for a parabolic dendrite can
be represented as the following:

D5Pc exp~Pc2Pf !

3E
1

`
expH 2Pch1Pf S 21E

1

h

@g~§!/A§#d§2h D J
Ah

dh.

~10!

where
g~§!5
A§ erfc~ARe§/2!1A2/~p Re!@exp~2Re/2!2exp~2Re§/2!#

erfc~ARe/2!
.

a
to
ive

ra-
ery
ings
cal-
Also, the Reynold number is defined as Re5UR/n52PfPr,
wheren is the kinematic viscosity, erfc is the complementa
error function. For diffusive growthPf50 and Eq.~10! can
be reduced to the Ivantsov solution

D5APce
PcE

Pc

` e2t

At
dt5ApPce

Pc erfc~APc!. ~11!

For a given supercooling, one can calculate the Peclet n
ber Pc . If the tip radiusR is known, the tip speed can b
calculated. However, the question left over is how to e
mate the tip radius and where does the tip radius need t
used for the comparison with the theory. Because the pr
ous solutions neglect the interfacial energy, the local tip
dius may not be a right value to use. Indeed, in a rec
calculation by Tong, Beckermann, and Karma@9#, they
showed that a good agreement of their phase-field simula
-

i-
be
i-
-

nt

n

with Eq. ~10! was obtained at a high supercooling (D5
20.55), but only when the tip radius was obtained by
parabolic fitting of the overall dendrite head. In addition,
be more convincing, we have also performed an extens
comparison of several ways for estimating the local tip
dius. Interestingly, we have found that the local radius is v
sensitive to the mesh used, especially at high supercool
@21#. For the present scheme, the local curvature can be
culated at the cellP havingf50 at the tip as follows:

kP5
1

DV E k dV5
21

DV E “•S “f

u“fu DdV

5
21

DV R S “f

u“fu D •ndS>
21

DV (
f 51

Nf S “f

u“fu D
f

•nfDS.

~12!
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The tip radiusR51/kP . Because the exact position off
50 may not be right at the cell center, the above appro
mation, which is based on the mean-value theory, has
error of the order of the cell size. In other words, it is e
pected to have only first-order accuracy. Another way
estimating the local tip radius is by using a polynomial fitti
~up to second or fourth orders!, i.e., y(x)5ax41bx21c,
k(x)5uy9u/(11y83/2), wherey95]2y/]x2 and y85]y/]x.
Still, the tip shape is obtained by interpolation from t
phase field atf50 and the error depends on the interpo
tion error as well. For a parabolic shape, the radius of c
vature is constant everywhere. The results of the calcula
tip radius by different approaches forD520.55 are shown
in Table II, whereRext is obtained by Richardson extrapol
tion from the finest two grids; the calculation by Eq.~12! has
only first-order accuracy; in fact, the convergence order
tained from the calculations is found to be better, being ab

FIG. 2. ~a! The local tip shape and the best-fitting parabola,~b!
the overall tip and the best-fitting parabola,D520.55 andU50.
06160
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1.5. As shown, whenDxmin is not much smaller than the
local radius, an accurate estimation by Eq.~12! is not pos-
sible. On the other hand, if the cell size is reduced, the
curacy is greatly improved. However, the computational c
increases as well. From Table II, it is clear that the high
order estimation through polynomial fitting gives a bet
result. Nevertheless, although the minimum cell size is fou
adequate for the phase-field simulation@5,9#, the estimation
of the local tip radius may still be erroneous. In addition,
shown in Fig. 2~a!, the tip does not fit locally to a parabol
nicely due to the effect of interfacial energy@6#. On the con-
trary, the overall shape of the dendrite can be fitted nicely
shown in Fig. 2~b!, by a parabola. More importantly, thi
overall tip radius, which is constant everywhere, is not s
sitive to the mesh size.

FIG. 3. Calculated tip speed at various parameters. The m
and the phase and thermal fields~size: 2128w0,x,128w0 ;
2128w0,y,128w0! are also illustrated fort5150t0 . In all cases,
the solvability limit can be approached easily.

FIG. 4. Calculated local tip shapes for different supercoolings

U50; ȳ5y2ytip; ytip is they coordinate of the tip.
1-5
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TABLE III. Comparison for diffusive growth at high supercooling («50.05).

D d0 /w0 D LD(w0) Level Dxmin(w0)
Theoretical
tip speed

Karma and
Rappel@5# Present Error~%!

20.55 0.139 4 128 6 0.4 0.017 0 0.017 4 0.001 71 0.6
20.55 0.185 3 1024 9 0.4 0.017 0 0.001 75 0.001 69 0.6
20.55 0.277 2 1024 9 0.4 0.017 0 0.001 68 0.001 67 1.2
20.50 0.185 3 256 7 0.4 0.009 85 0.010 05 0.009 87 0.2
20.45 0.139 4 1024 9 0.4 0.005 45 0.005 40 0.005 41 1.1
20.45 0.185 3 1024 9 0.4 0.005 45 0.005 57 0.005 40 0.9
20.30 0.055 10 1000 8 0.52 0.000 68 0.000 64 0.000 664 3.7
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IV. RESULTS AND DISCUSSION

A. Benchmark comparison for diffusive growth

Before presenting the results for convective growth,
have to make sure that the calculations for diffusive grow
are consistent with previous studies. For high supercoolin
Karma and Rappel@5# have presented detailed benchma
ing, and their results agree very well with the prediction
the solvability theory. Therefore, we have repeated the s
calculations forD520.55 first. Figure 3 shows the evolu
tion of the tip speed; the dendrite shape~phase-field vari-
06160
e
h
s,
-
f
e

able!, isotherms, and mesh att5150t0 are also illustrated. In
this case, only six levels of meshes are used in the AMR.
shown in Fig. 3, the tip speed reaches a steady state qu
for three different parameters. Interestingly, due to the f
growth rate, the growth of each arm is quite independen
the other. Also, the domain size has very little effect on
result. Further comparisons can be found in Table III, wh
different parameters and domain sizes are also used for c
parison. As shown, good agreement is found. Moreover,
tip shapes at various supercoolings are compared with pr
ous results in Fig. 4. Again, good agreement is obtain
:

FIG. 5. Mesh for D520.25

(U50) at different length scales
~a! the full domain,~b! domain for
the dendrite only,~c! a local view
of the mesh, ~d! the isotherms
around the dendrite.
1-6
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More importantly, as mentioned previously, the overall de
drite shapes remain parabolic, even though the local den
shape deviates from the analytical shape slightly due to
interfacial energy.

The present AMR scheme is particularly efficient in t
phase-field simulation. For a uniform mesh, if the dom
size isLD and the minimum cell sizeDxmin , the total cell
number is (LD /Dxmin)

2. Then, for a given tip growth rateV
and time stept0 , one needsLD /(Vt0) time steps to grow a
dendrite to the size of the domain. Then, if the solution ti
at each step is about to be the same, the total CPU time
calculation using a uniform mesh becomes

~CPU time!uniform }
LD

Vt0
S LD

Dxmin
D 2

5F 1

VDxmin
2 t0

GLD
3.

However, for an AMR scheme, if most of the fine cells a
used to describe the thermal boundary layer~thicknessd!
near the interface, the cell number required is ab
dLD /Dxmin

2 ; d;a/V. Again, for the same number of tim
stepsLD /(Vt0), the CPU time for a calculation using ARM
is only about

~CPU time!AMR ;
LD

Vt0
S dLD

Dxmin
D 2

5F a

V2Dxmin
2 t0

GLD
2.

Therefore, when the calculation domain is increased,
AMR scheme is much more efficient. In our scheme,
CPU time is scaled by aboutLD

2.1. The calculation using an
explicit scheme for time integration does not reduce
overall CPU time much, as compared with the impli
scheme, because the largest time step is limited by
Courant-Friedricks-Lewey condition. For the implic
scheme used here, although each time step requires
CPU time for the solution of nonlinear equations, the tim
step allowed can be much larger. Nevertheless, the lar
time step is still restricted by the thickness of the refin

FIG. 6. Evolution of dimensionless tip speed atD520.25 and
20.1.
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zone. If the new interface is beyond the refined zone, sign
cant numerical noises are introduced.

The benchmark comparison for low supercoolings
much more difficult. Unlike that at high supercoolings, t
growth is much slower at low supercoolings. Hence, the ti
to reach a steady state is also much longer. Furthermore,
to the thermal diffusion of the side arms, the tip speed m
not converge to the solvability limit@6#. Indeed, in order to
prevent the far field boundary from being affected, the d
main size needs to be much larger. Provatas, Goldenfi
and Dantzig@6# proposed heuristic criteria: the domain si
required is about (5 – 10)D/V and the time for reaching a
steady state is estimated to beD/V2. For D520.1, the do-
main size required is about 102 4003102 400(Dxmin)

2, while
the minimum cell size is about 0.833w0 . Moreover, the time
for reaching a steady state is longer than 106t0 . Figure 5
shows the meshes at different view scales and the calcul
isotherms att560 000t0 @Fig. 5~d!#. As shown, unlike that in
Fig. 3, the isotherms are much more diffusive. The calcula
tip speeds atD520.1 and20.25 are shown in Fig. 6, re
spectively; we have purposely presented them in a log-

FIG. 7. The effect of flow on the dendrite shape and tip spe
~a! overall dendrite head: from the left to the right the figure size
285w0,x,240w0 ;225w0,y,25w0 , 2477.5w0,x,
2437.5w0 ;225w0,y,25w0 , and (22005w0,x,21965w0 ;
220w0,y,20w0), respectively.~b! The effect of flow Pe´clet
number; the dashed line in~a! is the best-fitted parabola, in~b! the
opened symbols are the results using the local tip radius.
1-7
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scale in order to see the asymptotic decay rate at longer t
As shown, for both cases, the growth rate is slightly low
than the prediction of the solvability theory at a longer tim
It is realizable that due to the growth of side arms the grow
environment is getting warmer as compared with that o
single arm, which is assumed in theory. Accordingly, t
growth rate is reduced. These results slightly differ fro
those by Provatas, Goldenfield, and Dantzig@6#.

B. Effects of forced flow atDÄÀ0.55

Recently, Tong, Beckermann, and Karma@9# performed
elegant calculations to study the effects of a forced flow
the selection of tip shape and velocity. Their results ag
quite well with the Oseen-Ivantsov solution if the tip radi
is estimated by a parabolic fitting to the overall dendr
head. We have also performed the same calculations u
the AMR scheme. The comparison is shown in Fig. 7. In F
7~a!, we again illustrate the suitability of using a parabola
fit the upstream dendrite head grown at different flow rat
As shown, beside a small area at the tip, the overall dend
head can be represented by a simple parabola very well.
comparison with the Oseen-Ivantsov solution and the pr
ous calculations@9# is further illustrated in Fig. 7~b!, where
the results~open symbols! using the local tip radius~second-
order fitting! for the Peclet numbers are included. As show
good agreement with the theory~solid line! is found when
the overall tip radius is used. Nevertheless, we have fur
examined the effects of domain size forU5w0 /t0 , and the
results are summarized in Table IV. As shown, our co
verged velocity is slightly lower than that obtained by Ton
Beckermann, and Karma@9#, where the largest domain siz
used by them was 102432048(Dxmin)

2, or the total number
of cells number were 102432048. As shown in Table IV,
increasing the domain size slightly reduces the tip veloc
For the domain size up to 204834096(Dxmin)

2, being more
than ten times the dendrite size, the effect of domain size
be neglected. However, if the domain is small, the fluid flo
boundary condition at the boundary is affected. In oth
words, even at high supercooling, the domain size canno
too small, e.g., 2563512(Dxmin)

2, for convective growth,
even though it is enough for diffusive growth. It is partic
larly true for the materials studied here~succinonitrile! that
06160
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the kinematic viscosity is much larger than the thermal d
fusivity (Pr5nm /am523.1); here, the momentum bounda
layer is thicker than the thermal one.

C. Effects of forced flow at low supercoolings

The growth behavior for diffusive growth, such as that
Fig. 6, is typical for low supercoolings. This is due to th
much lower growth rate and the thicker thermal bound
layer. As a result, the comparison of the simulation with t
theory becomes difficult. In addition, as just mentioned,
interaction of side arms makes the comparison even m
difficult. For diffusive growth, a simple way for compariso
is to reduce the side-arm effect by reducing the domain s
in the side-arm direction@6#. This also reduces the warmin
effect from the side arm~releasing the heat of fusion durin
growth!. Even so, as shown by Provatas, Goldenfield, a
Dantzig @6#, some discrepancy with the theory still exists.

Interestingly, once the tip velocity is enhanced by t
flow, we find that the tip velocity reaches a steady state m
quickly and the upstream tip growth becomes similar to
case at high supercooling. As shown in Fig. 8, forD5
20.25, with a forced flow, the growth velocity of the up

FIG. 8. Effects of flow velocity on the upstream and dow
stream tip speeds,D520.25.
TABLE IV. Effect of domain size for convective growth (D520.55).

Domain size InitialCV’s Level Dxmin Vd0 /aa No. of CV’s (t5100t0)

2563128 20310 6 0.4 0.0260 6256
5123256 20310 7 0.4 0.0232 6187
10243512 20310 8 0.4 0.0224 6240
204831024 20310 9 0.4 0.0224 6223
409632048 20310 10 0.4 0.0223 6215
5123256 40320 6 0.4 0.0231 6823
10243512 80340 6 0.4 0.0224 9335
204831024 160380 6 0.4 0.0224 19 159
204831024 20310 10 0.2 0.0226 21 991
409632048 20310 11 0.2 0.0227 22 011

aUpstream tip velocity of Tong, Beckermann, and Karma of 0.0240.
1-8
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FIG. 9. Calculated flow and thermal fields and the dendrite shapes at different times:~a! t52000t0 , ~b! t54000t0 , ~c! 8000t0 , ~d! a
local view of the back flow of~b!, D520.25 andU52w0 /t0 .
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stream tip approaches a steady state quickly; that for di
sive growth~or U50! is put together for comparison. Th
downstream arm grows slower, but the growth rate bou
back after a longer time. Selected flow and temperature fi
for U52w0 /t0 at different times are shown in Fig. 9. A
shown, at the upstream, due to the flow, the thermal bou
ary layer is much thinner at the tip front. As a result, t
growth is faster there, as shown in Fig. 8. Due to the f
growth, the growth reaches a steady state quickly. More
portantly, as shown in Fig. 9, the isotherms are pushed
ward the side arms. Accordingly, the thermal influence fr
the side arms is suppressed. In other words, the upstr
dendrite grows like a single one.

In addition, as shown in the lower part of Fig. 8, th
downstream arm shows some abnormal growth behavior
shown, when the convection is strong, the downstream
growth is getting slower at the beginning. However, a
longer time, the velocity reaches a minimum and then st
to increase. We examine the local flow field near the dow
stream in Fig. 9. At the beginning, there is no clear vor
@Fig. 9~a!#. However, after the boundary separation at
longer time@Figs. 9~b! and 9~c!#, there is a wake behind th
side arms as shown in Fig. 9~d!, which is a local view of Fig.
9~c!. Because the back flow increases, the isotherms
pushed toward the downstream tip. Hence, the local gro
rate is enhanced.

Notably, as shown by the upstream arm, many s
branches are induced, while other arms remain smooth.
is believed to be the cause of noises~likely to be numerical!
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that are amplified by the flow. For a purely diffusive grow
at the same supercooling or lower, the same mesh does
induce any side branches along the arms at all. The
branching increases with the increasing flow velocity a
decreasing supercooling. Further refining the mesh de
slightly the onset of the side branching. In reality, the s
branching due to the flow is typical@20# and it may be due to
thermal noises. However, from the stability point of view,
is believed that the branching state is more stable than
smooth one. Therefore, the branching shown in Fig. 9
believed to be physical.

If we further convert the steady growth velocities and t
tip radii ~using one half of the arm! into the growth Peclet
number as a function of the flow Peclet number, the co
parison with the Oseen-Ivantsov solution is shown in Fig.
As shown, the agreement is quite satisfactory. Neverthel
the calculated Peclet numbers are slightly lower than the a
lytical ones.

The calculation forD520.1 show similar results@22#,
but the side branching becomes much more significant.
comparison with the Oseen-Ivantsov solution is shown
Fig. 11. Again, the agreement is satisfactory. The calcula
growthPc’s are slightly lower than the analytical ones. No
the question left over is whether or not the dendrite arm s
remains parabolic. Indeed, we have found a positive s
from the comparison with the Oseen-Ivantsov solutio
which assumes a parabolic dendrite shape, even though
are many side branches along the arm. To further illustr
that, we have performed a simple self-affine transformat
1-9
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by scalingx using (x2xb)/xmax and y using y/ymax for the
steady-state arm shape at different growth periods ran
from 2000t0 to 8000t0 ; xb is the base position,xmax the
maximum arm length, andymax the dendrite width by ignor-
ing the side branches. ForD520.25, as shown in Fig. 12~a!
the rescaled shape remains to be parabolic and the s
seems to be universal. Beside the side branches, the ov
shape is almost the same as the diffusive one, as show
Fig. 12~b!. In other words, the self-affine shape is not a
fected much by the flow. Interestingly, it is affected ve
little by the supercooling as well@22#. For a steady growth
with or without the flow, if xmax is proportional totb and
ymax to th, then the best fitting givesb;1 andh;0.5, as
shown in Table V. This scaling result can be easily und
stood. Since both the velocityVt;dx/dt;btb21 and the
radius of curvatureR;(d2x/dy2)21;t2h2b are constant a
steady state, one shall getb51 andh50.5. The exponents
further indicate clearly that the overall tip shape continues
be parabolic, even though the local tip is not. In other wor
because the tip head continues to be parabolic, the re
thus agree reasonably well with the Oseen-Ivantsov solut

V. CONCLUSIONS

An efficient adaptive finite volume method is develop
for the phase-field simulation of dendritic growth in a forc

FIG. 10. The effect of flow Pe´clet numberPf on the growth
Peclet numberPc for D520.25.

FIG. 11. The effect of flow Pe´clet numberPf on the growth
Péclet numberPc for D520.1.
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flow at various supercoolings for Pr523.1. The scheme is
efficient in that the computational time is proportional to t
domain size. The calculations for high supercooling (D5
20.55) agree very well with previous calculations a

FIG. 12. Self-affine shapes:~a! U51w0 /t0 , ~b! U50, nine
shapes fromt52000t0 to 8000t0 are used,D520.25.

TABLE V. Self-affine parametersb and h in different super-
coolings and flow rates.

D U(w0 /t0) b h

20.25 1 1.0828 0.4410
2 1.0693 0.5065

3.2 1.0904 0.5210
20.1 5 1.0698 0.5445

10 1.058 0.4452
1-10
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theory if the upstream tip radius is obtained from the ove
dendrite head at the upstream. Even with high supercoo
we find that the domain size cannot be too small because
far field flow boundary can be easily affected due to
thicker momentum boundary layer from the dendrite. As
result, the domain size required for this is much larger th
that for diffusive growth.

For low supercoolings, without convection, our resu
agree reasonably well with previous calculations. Due to
small tip velocity, it takes a long time to reach a steady st
Therefore, the domain size needs to be extremely larg
avoid the far field from being affected. Although for such
large domain, while keeping very small cells at the interfa
the calculation is difficult to be carried out by a structur
mesh, it can be easily be resolved by the present adap
scheme. Even so, the time for reaching a steady state fo
tip speed is extremely long. However, with a forced flow, t
upstream tip speed is enhanced. As a result, the upstrea
ti

et
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can reach a steady state quickly. More importantly, due to
flow, the thermal effect of the side arms is suppressed. A
result, we have found that the calculated results agree
with the Oseen-Ivantsov solution. Side branches along
upstream are induced easily with the increasing flow a
decreasing supercooling. Nevertheless, the overall arm s
continues to be parabolic and is not affected much by
flow. As a result, at steady state, the upstream arm sh
continues to have a self-affine nature.
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