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H-function representations for stretched exponential relaxation and non-Debye susceptibilities
in glassy systems
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Analytical expressions in the time and frequency domains are derived for non-Debye relaxation processes.
The complex frequency-dependent susceptibility function for the stretched exponential relaxation function is
given for general values of the stretching exponent in termil-fiinctions. The relaxation functions corre-
sponding to the complex frequency-dependent Cole-Cole, Cole-Davidson, and Havriliak-Negami susceptibili-
ties are given in the time domain in terms léffunctions. It is found that a commonly used correspondence
between the stretching exponent of Kohlrausch functions and the stretching parameters of Havriliak-Negami
susceptibilities are not generally valid.
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Amorphous polymers and supercooled liquids near thehe Davidson-Cole expressi¢B]
glass transition temperature are well known to exhibit non-
exponential relaxation behavior in many experiméis Di- 1
electric spectroscopy, viscoelastic modulus measurements, x(uy=—, 0<vy<l, (4)
quasielastic light scattering, shear modulus and shear com- (1+ur,)”
pliance, as well as specific heat measurements all show
strong deviations from the exponential Debye relaxationor the combined Havriliak-Negami forf6] given in Eq.
function f(t) = exp(—t/7) wherer is the relaxation timg2]. (22) below. Most surprisingly, the analytical transformations
Most experimental works on glassy dynamics utilize onlybetween the time and frequency domains for general values
a small number of empirical nonexponential expressionsfthe parameters in these simple analytical expressions seem
when fitting to the observed experimental relaxation data. Alto be unknowr{ 7], and authors working in the time domain
of these phenomenological fitting formulas are obtained byisually employ the stretched exponential function while au-
the method of introducing a fractional “stretching” exponent thors working in the frequency domain use the stretched sus-
into the Debye expression in the time or frequency domainceptibilities.
In the time domain this method leads to the “stretched ex- Despite the fact that inserting the Kohlrausch function

ponential,” or Kohlrausch, relaxation function, given as into Eq.(2) does not yield3) or (4) [or the related Havriliak-
Negami susceptibility in Eq(22) below], practitioners have
f(t)=exd —(t/7p)f], 0<B=L, (1)  tried to establish a relationship between these functions in

order to facilitate the transition between the time and the
with exponents and time constant, [3]. Of course all  frequency domain§7]. Equally important for practical pur-
formulas obtained by the method of stretching exponents argoses is the transformation from expressi®)s (4), or (22)
constructed such that they reduce to the exponential Debyg the frequency domain to the corresponding relaxation
expression when the stretching exponent becomes unity. Reunctions in time[8]. It seems, therefore, that analytical ex-
laxation in the frequency domain is described in terms of gressions for the Kohlrausch susceptibility in the frequency

normalized complex susceptibility domain and for the Havriliak-Negami relaxation functions in
the time domain are of general importance and broad inter-
~ _X(w)—Xoo_l oot 5 est
(W= Xo— Xoo ~uL{f oK), @ Great research activities have ensued from the observa-

tion of Williams and Wattg3] that the Kohlrausch suscepti-
whereu=—iw, o is the frequencyy(w) is a dynamic sus- bility, obtained by inserting Eq.1) into Eqg.(2), has an ana-
ceptibility normalized by the corresponding isothermal susdytical expression wherB=1/2. Let me briefly recall their
ceptibility, xo=1lim,_,Rex(w) is the static susceptibility, result. One defines the normalized relaxation function as
X-=lim,_ .. Rex(w) gives the “instantaneous” response,

and £{f(t)}(u) is the Laplace transform of the relaxation é(t)/$(0) for t=0,

function f(t). Extending the method of stretching exponents f(t)= 0 for 1<0 5)
to the frequency domain, one obtains the Cole-Cole suscep- '

tibility [4]

where ¢(t) denotes an experimental relaxation function
A 1 (such as the electrical polarization in dielectric experiments
x(u)=——, 0<asl, (3) normalized by the isothermal susceptibili(0)= xo— X -
1+(ury)” Recall now the well known Laplace transfofi®]
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£{exp(—\ﬁ)}(u)=%—gu3’2ex;{ ! )erfc(z\/_)

where

(6)

_ 2 (2
erfc (x)—\/;fx exp—y°)dy (7)

denotes the complementary error function. Inserting this into

Eq. (2) and restoringr, yields the known result3]
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they contain most special functions of mathematical physics
as special cases ariil) their Laplace transform is again an
H-function. Moreover, they possess series expansions that
are generalizations of hypergeometric series.

Based on the convenient properties lffunctions, the
first objective can now be tackled. An analytical expression
for the Laplace transform of the Kohlrausch function is ob-
tained as

(18)

E{exq—(tlfﬁ)ﬂ]}(u)zHﬂ(u3 ) (12)

(1.1

;{ ) ( ) The result is readily obtained from calculating formally
u)= - \/ ex erfc (8)
( 4UTﬁ 2\ UTﬁ

f fn(s)e U7z 5ds dz

7;(s)uS I'(1-s)ds

for the complex susceptibility. According {@] there are no E{Hm (2)}(u)=
other cases o3#1 for which an analytical expression is

known for the Kohlrausch susceptibility. My objectives in

this paper ardi) to provide analytical expressions for the

Kohlrausch susceptibility in the frequency domain in terms

of H-functions for allg, (ii) to derive analytical expressions

for the Davidson-Cole, Cole-Cole, and Havriliak-Negami re- 1
laxation functions in the time domain, aifid ) to show that T u Ptla

the approximate correspondence between Kohlrausch and

2 i

1/(0,1)(az,Aq), -
u|(by,By), ...

: ,(ap,Ap))
1(bq !Bq)

Havriliak-Negami expressions ifv] is limited to a narrow
frequency range.

The objectives of this paper are achieved by employing

method based on so-callétifunctions[10]. The H-function
of order (m,n,p,q) e N* and with parameteré\ e R, (i
=1,...p), BieRy (i=1,...9), aeC (i=1,...p),
andb;eC (i=1,...q) is defined forzeC, z#0 by the
contour integra(10,11]

m, n (al!Al) e l(apIAp)> 1 s
Hoal 2 (b,,By), ... (bg.By) |~ 21 ) 797 US
©)
where the integrand is
i1;[1 F(bi+Bis)i1:[l I'(1-a,—As)
n(s)=—p (10

q
T(a+As) [  T(1-b—Bs)
i=m+

I
i=n+1

In Eq. (9) z~S=exp{—slog|z—iargz} and arg is not nec-
essarily the principal value. The integersn,p,q must sat-

isfy

(11)

(13

‘,ysing the identification

(14

_ 410 t)#-
exr[—(t/rﬁ)ﬁ]—Hm[(;) (071)},

and then employing identities amordrfunctions[11,12.
Equation(12) answers the question raised in REf] con-
cerning the existence of an analytical expression. It will be
seen thaH-functions are not more difficult to compute than
other transcendental functions. Inserting Efj2) into (2)
leads, after some transformations involvidefunction iden-
tities, to the Kohlrausch susceptibility in the simple form

y(u)=1—-H? ((UT ) ‘ ) (15

11 B (1B
This analytical result reduces the calculation of the Kohl-
rausch susceptibility to a Mellin-Barnes integral of the form
9.

For practical purposes it is also of interest to have series
expansions for the analytical results. A Taylor series expan-
sion can be obtained from E¢P) using the calculus of resi-
dues. It reads for thel1} function

and empty products are interpreted as being unity. For the

conditions on the other parameters and the path of integra-

tion the reader is referred to the literatyded] (see[12], p.
120ff for a brief summary The importance of these func-
tions for the present purpose arises from the facts that

uf @A) & (-1 (b+(1-a+k)B/A)
M 0,B)) &b AT (k+1)
x 7z~ (1—a+k)/A (16)
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TABLE I. Normalized relaxation functionsf(0)= 1] with relaxation timer. Series expansions in the rightmost column are asymptotic
series whenever the range of validity of a series expansion is given as a limit.

f(t) H-function Series
Debye exptt/7) t]— * —1k [t\k ¢
i > rs[Y tee
7((0,1) o '(k+1)\ 7 T

Kohlrausch expt (t/75)%) o [P~ =(—)k (At
H“( } <01)) kz-of<k+1>(f_ﬁ) B
exf —(/75)], ——oo
Cole-Cole E [ —(t/7,)¢] 2(0,1) 5(—Dk (e ¢
5([ (o, a)) 2, Takr ) (?) o
> (_1)k+l ( t )*ak t
2 Tan T
Cole-Davidson L(yti7,) 1 (1,1 1 & (—1) (t Kty ¢
' BT (y(Y,l)(O,l)) T & (k+y>r<k+1) o 5
exp(—t/ry)(l)yll & B [ }k o
I \r, +§J,Ul“) s
Havriliak-Negami 1 1S (=D T(k+7) e LI
e | B ,
e 12( ™ <y,1><o,a>> T Tak+ayt T+ Dy ™
a*l ii 1)k+11"(k+,y) ifak i .
T()& TA—akl(k+1)\7y) 7y

for B—A<0. Using this result, the Kohlrausch susceptibility susceptibilities in the frequency domain, théirfunction
is found to have the series expansidor |U7'B|>0) representations, and their power series expansions. In these
tables the notation

(- T(Bk+1) gk
X(U I(ZO F(k+1) (UTE) ’ (17) o

F(a,X)=f y*~te™Vdy (19
which reduces its computation to elementary additions and :
multiplications. The result agrees with a direct evaluation of
the Laplace transform of the series expansion for thejenotes the complementary incomplete gamma function, and
stretched exponential function. Finally, the asymptotic exthe abbreviation
pansion

o0 k
k
)= 1——2( ¥ (k+1)/8] ur) L (18 E.(X)= Z . Taki D)

(urp) 20
= T'(k+1) B

holds for [u74—0. It shows that the imaginary part in- is the Mittag-Leffler function. In addition, the shorthand no-
creases linearly at low frequencies similarly to the Cole-tation
Davidson susceptibility.

Using the method oH-functions sketched above also al-
lows one to find analytical expressions for the relaxation ( Ny
functions corresponding to stretched susceptibilities. The re- Ha(x)= H (1 )
sults are summarized in the two tables below. Table | gives
all relaxation functions, theid-function representations, and
their power series expansions, while Table || summarizes thevas introduced for writing the Kohlrausch susceptibility.

(21)
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TABLE Il. Normalized frequency-dependent complex susceptibilities- {-iw). Series expansions in the rightmost column are
asymptotic series whenever the range of validity of a series expansion is given as a limit.

() H-function Series
Debye 1+1UT Hﬂ(migﬁ) k2000(—1)‘<(UT)“, lur|<1
-3 1 e
S
1_;0 (_1F)?|;Erﬁlk)+l)<”ﬁ)fﬂkv |ury|>0
Cole-Cole m H}}((ura)ﬂg:z) k2:)(—1)k(ura)“k, ur,|<1
-3 (1) D, ur o1
Cole-Davidson m %Y)Hﬂ(un/ E(l),—l)%l)) g%(wy)k, lur,|<1
2 ey
Havriliak-Negami [1+(ulTH)a]v %Hﬁ((um“i;gy'n 2 (—1)kr(k+y)(UTH)ak’ lumy|<1

i=o T'(yI(k+1)

S CDTkEy)

) TOpT(ken) U Juml>1

Having computable analytical expressions at hand for theéive stretching exponent. The first fg, the location of the
Kohlrausch susceptibility, it becomes possible to investigateanaximum of the imaginary part. The secondfis, the lo-
the mappings between the Kohlrausch susceptibility and theation of the lower half-width point of the imaginary part.

Havriliak-Negami susceptibility6] The third isf , , the location of the upper half-width point of
the imaginary part. The half-width points are defined as the
. 1 frequencies at which the imaginary part has decayed to half
x(u)=————— (22)  of its maximum value.
L+ (ury)®)” Figure 2 shows that while the Cole-Cole susceptibility

(dashed line for maximum, solid line with triangles for the
half widthg is symmetric, the other two susceptibilities are
asymmetric. For small values g8 (respectively,y) the

that were postulated in Réf7]. Table | and Fig. 5 of Ref.7]
present fits for the Kohlrausch susceptibility using the

Havriliak-Negami expression as a fit function. Figure 1010 payidson is more strongly asymmetric than the Kohl-
shows the real and imaginary parts of the Kohlrausch susssch susceptibility. Note also that the lower half-width
ceptibility with 8=0.25 plotted as crosses<( in a doubly  hqint moves to higher frequencies for diminishiggn the
logarithmic plot. The corresponding Havriliak-Negami fit cole-Davidson case. The total width of the relaxation peak in
from [7] with a=0.5164, y=0.3706, andry/7,=10 is  decades is the difference between the upper and the lower
shown as the solid line. In all calculations.=1 andxo  half width. Fora=8=y=0.2 the total width of the Cole-
=10 unless stated otherwise. Cole function is roughly 7 decades, the width of the Kohl-

Because it is known that the phenomenological susceptirausch susceptibility is roughly 5 decades, and that of the
bility functions are often inadequate for fitting experimental Cole-Davidson is roughly 2.5 decades. Figures 2 and 1 dem-
relaxation spectra, some researchers prefer to discuss nohstrate that the mapping between the Kohlrausch parameter
stretching exponents but the width of the imaginary part3 and the Cole-Davidson parametgethat is often employed
[13]. Figure 2 plots three characteristic frequencies for allby practitioners[2] becomes increasingly inaccurate for
three stretched susceptibility functions against their respecsmall values of the stretching exponents.

061510-4



H-FUNCTION REPRESENTATIONS FOR STRETCHED . .. PHYSICAL REVIEWGE 061510

H

N

N

log (1 1109, (1) 0g,q(1) 2]
(=)

0 02 0.4 06 0.8 1
a.By
FIG. 2. Location of the frequency of the maximufy, fre-
quencyf _ of the lower half width, and frequendy, of the upper
half width of the imaginary part of Cole-Cole, Kohlrausch, and
Cole-Davidson susceptibility functions as a function of the respec-
A 351012345678 010 tive stret_ching exponenta, 3, y. The upper and lower half-width
log, ,(HZ] frequencied .. are indicated by solid lines connected with symbols
[Cole-Cole susceptibility function/{), Kohlrausch susceptibility
FIG. 1. Comparison of the Havriliak-Negami #olid line) with (O), Cole-Davidson [d)]. The location of the maximum of the
a=0.5164,y=0.3706, andry =10 for a Kohlrausch susceptibility imaginary part is indicated by a dashed line for the Cole-Cole func-
(X) with 8=0.25 andrz=1. The values were taken from RET], tion, by a solid line without symbols for the Kohlrausch function,
p. 7310, Table I. In all caseg,.=1 andy,=10. and by a dash-dotted line for the Cole-Davidson function. The re-
laxation time is always=1.
In summary, the present paper has given unified represen-
tations of nonexponential relaxation and non-Debye suscegunctions. TheH-function representations given here can
tibilities in terms ofH-functions. These representations leadhelp to facilitate the computational transformation between
to computable expressions that were used to investigate thbe frequency and time domains in theoretical considerations
relations between the Kohlrausch susceptibility and other fiand experiment.
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