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Phase diagram of symmetric binary fluid mixtures: First-order or second-order demixing
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Binary fluid mixtures of 1:1 concentration can demix in a phase transition of first order or of second order.
We analyze the two scenarios in density-concentration space and relate them to the structure of the line at
which the demixing coexistence surface cuts the liquid-vapor coexistence surface. These scenarios help us to
decide between first and second order for a model of a symmetric Lennard-Jones mixture. An optimized
reference hypernetted chain integral equation method is employed for calculating the correlation functions and
from there the pressure and chemical potentials. We conclude that demixing of a 1:1 mixture is of first order
in the whole range of parameters that we have investigated. We did not find a critical point in the 1:1
concentration plane.
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[. INTRODUCTION tion of the free energy of the system. We have developed
approximations, which go beyond “mean field” by including
In multicomponent systems such as fluid mixtures or incalculated correlation functions in the derivation of the free
fluids with internal degrees of freedom such as ferroelectrienergy. The general density functional approach leads to a
or ferromagnetic liquids or liquid crystals, different types of hierarchy of equations involving higher-order direct correla-
phase transitions can occur in neighboring regions of théion functions [23,24. The “mean field approximation”
space of thermodynamic variables. For a binary liquid, thecloses this hierarchy already at the first equation by neglect-
liquid-vapor and the mixing-demixing transition can be ex-ing correlations altogether or guessing a Boltzmann factor
pected. It is of interest how these phase transitions influendel5—-17. The second level of this hierarchy yields equations
each other, how the regions of different phases meet. for the two particle correlation functions. Closing the hierar-
In a series of recent papers by Wilding and co-workerschy on this level leads to the integral equations of liquid
[1-4] especially the case of a second-order demixing transitheory, to hypernetted chaifHNC) [25], reference HNC
tion line confluent with the first-order liquid-vapor transition (RHNC) [26,27], local or weighted density approximations
was studied. A critical end poiniCEP is expected in this [24,28-34 as well as to the Percus-Yevick equation or mean
situation when the second order demixing line meets the ligspherical approximatiofi25]. After calculating the correla-
uid side of the vapor-liquid coexistence line. For higher “de-tion functions by one of these approximate second level
mixing tendency” the demixing line can meet the critical equations one can employ them in the calculation of the free
point of the condensation curve forming a tricritical point energy at the first level of the hierarchy. Under several cir-
[5]. These points are expected to show singularities that wereumstances we have shown, that a careful calculation of the
first predicted by Fisher and co-workef§—8] who also correlation functions can lead to reliable free energ3%
derived universal amplitude ratios and later confirmed38]. This is shown again in Fig. 5 for the case of a binary
the properties of these singularities by model calculationsnixture with Lennard-Jones interactions.
on spherical model$9—-11] and on a model ferroelectric When studying a dipolar hard sphere liquid we have met
[12,13. The starting point for these considerations is alwaysalready a case where mean field calculations had predicted a
the supposition that the demixing transititr the ordering \ line of critical points for the transition to the dipolar order
in the case of the ferroelecjits of second order. [15], while our free energy with calculated correlations saw
Is the demixing transition of second order? This questiorthe transition as first order with a jump in density and order
we address in this paper. Wilding has studied a model for parametef36]. We, therefore, apply similar methods here to
symmetrical binary fluid mixture by simulations and hasanalyze the demixing transition in a model binary fluid mix-
found no contradiction with the assumption of second-ordeture. The model is the same as the one used in the simula-
demixing. Also mean field calculations indicate second-ordetions by Wilding, a symmetric mixture with equal-A and
transitions, expecially at elevated temperaturéd4—23. B-B Lennard-Jones interactions and decrea&dsl interac-
The mean field results have lead to a “generic scenario” asion.
depicted, e.g., in Fig. 1 of Ref4]. In numerical calculations, simulations as well as our inte-
The mean field approximation starts from an approxima-gral equation solutions, it is generally difficult to get results
at all close to critical points and to distinguish between
second-order and weak first order. We show in Sec. IV how
*Electronic address: frank.forstmann@physik.fu-berlin.de such a decision can be obtained.
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After fully defining the model(see Sec. )| the paper
discusses first some general properties of the phase diagram_4 >
of such a symmetric binary mixturéSec. Ill). We learn
where to look for coexisting phases and then in Sec. IV we
find a method to decide that in all the cases that we have
investigated, the demixing transition is of first order. Some
discussion and conclusions are summarized in Sec. V.

II. THE BINARY LIQUID MIXTURE MODEL

We will study a mixture of two fluid species andB. The
particles interact via Lennard-Jones potentials

12 o 6
-1+]
As in the previous investigation2,4,14,39,40we reduce o . . .
the space of variables by taking the same diametefiar all the coexisting liquid might have a Q|ﬁerent concentratign
interactions and settingya= egg for the mutual interaction What does the symmetry of the diagram, of the free energy

between particles of the same kind. This equality leads to Qr of the interraction allow us to conclude about the demix-

symmetry of the free energy of the system with respect to th&19 coexistence surface? - .
exchange of the densitigs, and pg. The binding of the Let us consider t_he case where two coeX|st|r_19 demixing
particles of different kind,e g, is taken smaller, i.e.q phases lie symmetric with respect to con.centra(mncom-

— & alean<1. This fact induces a demixing phase transition™°"» and atc and 1-c). Symmetry requires

at lower temperatures and higher densities, when the poten- c)= 1-¢ 2

tial energy can be lowered by demixing, which avoids the #a(C)= el ) @
weakA-B bonds. We can increase the tendency for demixing
in the model by loweringe. Then demixing will already
occur at higher temperatures and lower densities.

p—->
o

r

Uij(r):48ij 1) FIG. 1. Schematic view of the coexistence surfaces: For gas-

liquid coexistence at the left, for demixing at the right.

1a(€)=pa(1-c).
Coexistence at symmetric points says

lll. THE PHASE DIAGRAM OF THE SYMMETRIC ma(C)= pa(l—Cc)=pua(c)=up(c).
BINARY FLUID MIXTURE

The conclusion is that only phases, wjh = ug within the
same phase at can coexist with the symmetric phase at 1

We want to discuss the phase diagram in the plane of the-c. Obviously a fluid withu,= wg at (p,c) has in any case
variables total densityp=pa+pg and concentrationc  a coexisting partner atp(1—c). We, therefore, expect that
=palp. When we imagine as the third dimension the tem-part of the coexistence surface for demixing is determined by
peratureT (T* =kgT/ean) We can draw the surfaces of co- ua=ug Within the same phase. The coexisting phases then
existence points, see Fig. 1. When the tendency for demixingave the same densigy and concentrations and 1-c.
is small, i.e.,.epg/epp= a close to(but smaller thanl, we On the planec=0.5 that was studied by Wilding and co-
get at low densities a liquid-vapor surface with a line ofworkers[1-4] u = ug because of symmetry. In Fig. 2 we
critical points along the concentration direction. At highershow a cut at fixed temperatufie through the surfaces of
densities, where in the free energy the potential energy domiFig. 1. We will imagine compression of the fluid along the
nates over the entropy, we get a demixing surface with aymmetry linec=0.5. At point Il in Fig. 2 the surfacec,
leading edge at equal concentration 0.5, because here the = ug meets the symmetry plane. If demixing occurs at this
lowering of potential energy on demixing is largest. Thepoint it will be of second order: The difference in concentra-
smallest density for demixingat fixed T) is found in a 1:1  tion grows continuously from zero and the coexisting phases
mixture. move along theu,= ug surface for increasing density or

The coexistence surfaces are symmetric with respect tpressure. A surfacg =g (line ly-1l-1, in Fig. 2) can be
the planec= 0.5, because the free energy of our system staysxpected due to the changes of the ordejugfand ug as
unchanged, if we go from concentratiorto 1—c for fixed  indicated in Fig. 2. For low densitieg minority< Mmajority
density p; only the ratio of minority molecules to majority because of the entropy of mixing; for high densities it is
matters irrespective oA or B. For clarity Fig. 1 leaves out more favorable to add a majority particle with strong binding
the very low temperatures. At lower temperatures the twgotential than a minority particle with weak-B interac-
surfaces cut each other. We imagine that by lowetdngie  tions, thereforeuminority™ Amajority -
move the demixing surface to lower densitiasd higherT) Another scenario is possible where dFig. 2) demixing
and this way make the surfaces cut. From drawing the sumccurs and phases, bBnd | necessarily on the lingua
faces of coexistence points it is not yet clear which phases g, are formed in a first order transition and coexist with
really coexist: If a vapor of concentratiany is compressed |. From | starts a line of first-order coexistence points con-

A. Consequences of symmetry
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FIG. 3. Same as Fig. 2 for the type of contact of the two sur-
0 faces that leads to second-order demixing.

P —p

and the demixing is of second-order for higferlf the cut
has a local minimum at=0.5 the demixing transitions in
the neighborhood are of first-order.

The first casgmaximun) is shown in Figure 3 with two
slices at two temperaturég, ., and T<T,,.«. Fig. 3@ has
Tmax€Xxactly equal to the maximum temperature of the cut, at
which the liquid line and the demixing line have only this
maximum point Il in common. Here V and Il coexist because
A= pug at c=0.5. If demixing would be of first order II
ould also coexist with phases, &nd I, a discrete distance
away from Il into which the system would demix when the
density is further increased after the vaporVahas been
completely compressed into the liquid at Il. At a temperature
infinitesimally smaller thaT .« [the cut Fig. 8b)], V' co-
Exists either with Il and II", the neighbors of II, or with [f
and I, the neighbors of land II,, respectively, becauge

FIG. 2. Schematic cut at constamtthrough the coexistence
surfaces.

necting to } and L. Here the points andb coexist as well
asc andd, but nota andc. This conclusion derives from the
fact, that the curvega(c,p) and ug(c,p) considered along
the line Ia-b-1, cross at | and at,l On the first-order line
betweerna andb there will be a critical poink where theu
and ug curves along the coexistence line simultaneouslﬁv
have their extrema.

So the demixing surface will be partly a surfagg(c)
= ug(c) with symmetric coexisting phasesand (1-c) . A
part of it towards smaller densities can be a surface of first
order transitions with both coexisting phases on the sam
side ofc=0.5 and twon lines of critical points symmetric at
fho ;tcce Q é;?gto \?Viﬁ my,:sgd ghsészh;t:t\(l)v_% s()lgrr;r:de tl:|iconr1i3§es changes continuously with. The first caseY’ with II’ and

2) border that part of the coexistence surface where coexist! » 18ads to the fact that on the lin€ fio I1; and II" to Il is
ing phases are symmetric at and 1-c with wa(C) ma= g and atT,,,x the whole demixing line is of typg
= 11g(C). =pug. Therefore demixing is of second order at Il under

If the temperature of the cufig. 2) increases the two further compression that contradicts the coexistence of I

critical pointsk on the first-order surface will move closer With ”,a and Ik, If in the seco/nd E:asla” coexists with I
together as will the points, Bnd |, because the larger weight @nd Ik, and not with If and IF', II” must coexist with one
of the entropy in the free energy favors mixing, smaller con-point on the vapor lindsayV) a discrete distance froii’.

centration differences. It might happen that finally the pointspoints betweelv andV’ coexist with points between’lland

temperature end, a tricritical point, of )X line of critical goes to IV to V and I to Il,. We conclude that now the

points atc=0.5. . : .
We can ask whether there can be coexistence betwe é/}/]hole interval between Il and JImust coexist withV, an

oints ot on the surfaca .= ux for densities hiaher than impossible situation. Therefore first-order demixing at Il in
Fhose of Land L in Fi Zﬂ\?Ve Aéguld not think of g scenario Fig. 3 is ruled out. Demixing at Il is of second order; i.e., the
J? : b n g Co ., difference in concentration of the coexisting phases goes to
where this situation did not lead to a violation of Gibbs

hase rule when the symmetrv and the continuous Connez_ero here if the point Il is approached from higher densities
P . y y Br from lower temperatures. Il is then a CEP oha line
tions where considered.

coming down from highell at c=0.5.

In the case where the cut line has a minimuraa.5 we
show that this minimum point must be a point of first-order
demixing transition. Figure 4 depicts the structure of two

We now want to understand how the topology of the cuttemperature slices: foF; just aboveT ,;, (at which the line
between the liquid-vapor surface and the demixing surface ig,b,1,c would shrink to a pointand atT,>T; above which
related to the order of the demixing transition. We considethe liquid surface and the demixing surface do not touch
the line in (p,c,T) space, at which the two surfaces cut andanymore. The essential difference to the case of Fig. 3 is the
show: fact, that in the neighborhood of the point where the two

If this cut line at the symmetry poird=0.5 has a maxi- surfaces touch at=0.5[point of convergence df and | in
mum with respect tdl, then this symmetry point is a CEP Fig. 4] there aretwo disconnected forbidden regiortsf

B. Topology of the cut of the coexsistence surfaces
and the order of the demixing transition
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for the demixing is always found at= 0.5, where the gain in
0y b potential energy on demixing is largest. Fotowards 1 or 0
b CEP the demixing needs very low temperatures or very high den-
sities, so the cutting line between the two surfaces goes to
I Ve L'egl low temperatures in these regions. If at fixed temperature the
convex curvature of the demixing surface near0.5 is
CEP larger than that of the liquid phase surface, the surfaces will
- y touch at one highest temperatirg,, and the touching point
\\ will be a critical end point according to the arguments around
P - - Fig. 3 [point Il in Fig. 3(a)_]. When the demixing syrface is
less curved than the liquid side of the vapor-liquid surface,
FIG. 4. Same as Fig. 2 for the type that is connected with first-the first touch between the surfaces, when one moves down
order demixing. from higher temperatures, will be at two symmetrical points
[CEP in Fig. 4b)] and lower temperatures are necessary to
metastablllty or |nStab|I|ty, betweea andb and betweerc hit the touching point at= 05’ which is then a local mini-
and d). On the slice just belowl,;, the vapor atc=0.5  mum of the cut line between the vapor liquid and the demix-
coexists with the neighbors af andd. Above T,j, V coex-  ing surface with the consequence of first-order demixing and
ists with L [Fig. 4@]. Further compression will lead to de- two CEP’s symmetrically at+ 0.5, as explained in connec-
mixing at I. If this demixing would be of second order, we tion with Fig. 4.
would have coexisting phasescaand 1-c symmetrical to . If the potential parameters of the model are such, that the
Due to this symmetry alsb andc would coexist. But if one ¢yt of the two surfaces at=0.5 is close to the critical vapor-
compresses the vapor @ 0.5 one can conclude, that there |iquid point, we always expect the first-order scenafig.
must be a pointV on the vapor line in Fig. @), which  4). The critical point of the condensation at&=0.5 is a
coexists simultaneously wita and b. Also the symmetric saddle point and, in general, constant temperature lines on

phaseg:, d, andv’ coexist. If nowb andc would coexist we the Vapor-liquid coexistence surface will cut, i.e., will have
WOUId have SiX, too many, Coexisting phases_ The 0n|y Waynﬂr"te curvature at this pOint. Therefore in this neighbor'
out which we see is a first-order nonsymmetric decomposifiood the demixing surface will first touch at two regions
tion in the neighborhood of I. I will coexist wite andf and ~ #0.5 before it touches at the symmetry poa# 0.5, con-
demix in first-order. Then it is possible that the neighbgr ~ Sidering it from higher temperatures downwards. This last
of e moves to point and coexists with the neighba, of | conclusion indicates only a good chance for first-order de-

moving tob until finally a, b andV coexist. Gibbs’ phase mixing, but when the d.eF“‘X‘”g. surface meets ;he liquid-
rule that states T vapor surface near the critical point for condensation, the two

surfaces influence each other and may deform.

(thermodynamic degrees of freedpm This concludes the general discussion of the phase dia-
gram scenarios for a symmetric binary fluid mixture. When
= (number of components-2—(phasep tuning the demixing strength in our model we can gener-

~ ally expect a region of first-order demixing. We will ask in
can be saved becausea,b do not coexist with the symmet- the following section, if we at all find a symmetrical
ric systemV’, c, d. The pointsa,b,c,d must be in regions Lennnard-Jones mixture where demixing of a fluid with
of the coexistence surface wheug(c) # ug(c) (see Fig. 2,  =0.5 is a transition of second-order.
therefore, a symmetrical second-order demixing transition
starting at | is not possible.
At higher temperature$Fig. 4b)] we expecta and b IV. RESULTS OF MODEL CALCULATIONS

moving together into a critical point with a symmetrical , ) . .
counterpart at,d [CEP in Fig. 4b)]. These critical points We now apply model calculations to investigate which of

are the end points of the two lines of critical points on the the possible scenarios we find for the case of a symmetrical

demixing surfacdat c#0.5) that were discussed before and Lennar_dTJones mixture._We use a RHNC calculali2,27
that cross the constafitcut of Fig. 2 ink. for deriving the correlation functions and employ those for

We last discuss which situation. minimum or maximum the calculation of the thermodynamic properties: the chemi-

has to be expected. This depends on the curvature of the twiit Potential and the pressure at chosen temperature, density,

surfaces when they meet. In our system, where demixing i€Nd concentration. We have optimized the calculation by
introduced by reduction of the binding between the mo|_choosmg the diameter of the reference hard sphere system

ecules of different kind, the liquid curve at a given tempera-SUCh that the calculated free enerdy chemical potentials

ture is convex towards lower densities, because=e0.5 the ~ “« @nd pressur@ are as consistent as possible by minimiz-
cohesion and, therefore, the liquid density coexisting withn9 [41]

the vapor is decreased compared to the puce B liquids.

The same reason leads to a decreased critical temperature for

the vapor-liquid transition at=0.5. Also the demixing ARHNC_ p/\/— ( S apa— P). 3)
curve has the same convexity, because the smallest density i
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0.05

0.04-|

0.03

0.0z

FIG. 5. Liquid-vapor coexistence curves for a binary mixture.
The coexisting concentrations are shown at given presBire FIG. 6. The “spinodal” surface for a mixture Witleag/€xn
=Po>lepn, €apl€apn=0.7T* =1. Dots are simulation results from —081.

Ref. [39].

0

This quantity could actually be made zero in all cases inves
tigated and we have shown in other circumstances, that th
thermodynamic properties derived this way are extremel
accurate when compared to simulation resi8%. We dem-
onstrate this in Fig. 5 by comparing our coexistence curves
a fixed temperatur@* =kT/e,p=1 to GEMC simulation re-
sults for a symmetrical Lennard-Jones mixture with
=gpplean=0.7 by Lopeg39,40. In our calculation we find
the points on the coexistence curve by searching for W8 on the lineua= ug (see points,l, in Fig. 2. We see,
phasels,é',(lzl') and o",c") with Ml/_\:r“}l’ '“_IB:r“g_ and pres-  that the ,P) points in Fig. 7 form a typical first-order
sure P'=P". The agreement with the simulation results is jhstapility loop. We cannot follow the whole loop because
very satisfactory and proves the reliability of our free energiye encounter the instability region of our calculation, but at
and thermodynamic data. larger distance from the=0.5 line we can evaluatg
The temperature in Fig. 5 is rather low and, therefore, the:,us again and find it well below the values @& 0.5. We,
vapor-liquid phase transition as well as the demixing is NOtherefore, conclude, that the dash-dottgdR) curve of Fig.
close to possible c_ritical regions. When thesg regions a9 tums back and cuts theu(P) line for c=0.5 at a point
approached, experiments and model calculations get intgigerent from the cross point in Fig. 7. The point of this cut
problems. With our method the problem is the appearance qf e first-order transition point shown as point I in Fig. 2.
regions in phase space where the integral equation have e parameterg and c for the cut yield the coexisting
solutions, where integrals over correlation functions get infi-,, - <o I,J, 1, in Fig. 2.
nite, because fluctuations and corresponding susceptibilities We believe that by finding. aboves . s(c=0.5) near the
get infi.nite[25,42. Due to the approximations'these instabil- crossing point of theua= ug lines we can decide that the
ity regions (which should correspond to regions below thedemixing phase transition is of first order. We have carried

spl_nodals or be_yound C”t'.cal regldnsove_r hear C”t'.cal out this investigation in the region 0.2%x<<0.81 and al-
points the coexistence region and make it inaccessible for

this method of calculatiofi38]. In addition to parts of the

Fig. 2, we find uap rising on this line aboveu, g(c
g0_5)_ This fact rules out the demixing phase transition be-
Xause the Gibbs free energy would grow when demixing
would set in, instead of going into the minimum. The system,
atﬁerefore, would stay mixed. In our opinion this calculation
shows that there is no second-order transition on thedine
=0.5 for«=0.8 andT*=1. Then only a first-order transi-
tion is possible. The coexisting phases in this case must also

. . . -2, 242 T T
coexistence surface our calculation, therefore, yields a sur- .
face of an inaccessible region, a “spinodal” surface. u
For the case otxr=0.81 this surface is shown in Fig. 6 2 24k

[43]. We see two symmetrical hills with a deep valley near
c=0.5. It means that we have to expect critical regions sym-
metrical atc# 0.5, but on the plane=0.5 fluctuations or 2.216 |
compressibilities do not appear to be large and, therefore, it
is improbable that we have there second-order transitions.

We have discussed in Sec. 1l A that fo= 0.5 a second- 2281 e
order transition can only happen at the point, where the line " #e—cross point
ua(p,c)=ug(p,c) crosses the symmetry line=0.5 (in a /"
cut at fixed temperatuygpoint Il in Fig. 2). We, therefore, < L L L L . L
1. 37 1.372 1. 374 1. 376 P

investigate this neighborhood by calculatingandP. Figure
7 shows a graph of results for such a case. We find a rising FIG. 7. The chemical potentiat* = u/exn On the linec=0.5
line of ua g(c=0.5) with increasing andP. When the line  (——) and on the lingua=pug (—-—- — ) for epg/€an=0.8, T*
ua=up atc#0.5 crosses the line fa=0.5 (at point Il in =1, P*=Po%/epa.
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ways found first-order. Especially also in the regi@s 0.7  of first-order. There exist two critical lines symmetrically
and T*~1, where Wildings simulationd?] indicate a away from c=0.5 with two CEP’s at two symmetrical
second-order transition, our calculations say first order. Bemaxima of the cut line at#0.5. At higher temperatures
cause of the instability region in our procedure, we cannothese critical lines can meet at=0.5 and from thereon to
derive the density of the phases that coexist with the one &iigher T demixing atc=0.5 would be of second-order. We
¢=0.5. It could be that the jump in the density and in con-pave argued that the first-order scenario is very probable

centration is so small that a simulation has difficulty distin-\yhen the two surfaces meet near the critical point of the
guishing it from a continuous second-order transition. liquid-vapor transition at=0.5.

Finally we have made model calculations for a Lennard-
V. CONCLUSIONS Jones mixture with equah-A andB-B interactions and de-
) o creasedA\-B interactions. With the optimized RHNC integral
_ We have discussed the order of the demixing phase transquation method we calculated the correlation functions and
sition of a symmetrical binary fluid mixture.The symmetry of getermined pressure andh , ug for givenT,p andc. Testing
the molecular interactions makes the free energy and all thefhen the second-order scenario shows that the Gibbs free
modynamic quantities symmetric with respect to exchange ognergy of the demixed phases lies above that of the mixed
the particles of kindA andB. This symmetry together with  phase. Therefore the other alternative appBBmixing is of
considerations of continuity of phases with continuousgirst order. We think that our method can distinguish between
change of parameters and Gibbs phase rule made it possibd@cond order and weak first order, which is difficult also for
to get complete information about the scenarios of first-ordegjmuylations or even experimentally.
and of second-order demixing. It was possible to connect \ye have searched over a wide range of parameters of our
these scenarios to the way the demixing coexistence surfaggodel (0.255€5p/€pn=0.81) anddid not find a case of

and the liquid-vapor coexistence surface cut each other:  gecond-order demixingn the symmetry plane= 0.5 for the
When the cut line of these two surfaces crosses the symsymmetric Lennard-Jones mixture.

metry planec= 0.5 in amaximumwith respect tol, at T ax,
the demixing aff>T,,,4 for c=0.5 is ofsecond orderThe
line c=0.5 on the demixing surface is a line of critical points
with a CEP afT ,4y-

When the cut line has #cal minimumat c=0.5 with The financial support of the Deutsche Forschungsgemein-
respect tal the demixing in the neighborhood of this point is schaft is gratefully acknowledged.
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