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Energy and symmetry of self-assembled two-dimensional dipole clusters in magnetic confinement
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We report on confined two-dimensior@D) dipole clusters formed by small ferromagnetic particles floating
at the liquid-air interface and confined by nonuniform external magnetic field. The particles self assemble into
hexagonally ordered clusters whose lattice constant can be magnetically tuned. We study Ehthareaergy
E, the chemical potentigl, and the lattice constamt, of 2D clusters as functions of particle numbéifor
N<130. We develop a continuum approximation which accounts fairly well for the smooth part of
©(N), S(N), anda(N) dependences. In addition to these dependences, we observe quasiperiodic fluctuations
with dips at “magic” numbers corresponding to particularly symmetric particle configurations. We demonstrate
that these fluctuations are related to the cluster symmetry and to the cluster center of mass position.
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[. INTRODUCTION ferromagnetic particles on a stationary liquid surface in a
magnetic confinement. We explore the dependence of their
Avrtificial crystals draw much attention as model systemsthermodynamic properties such as area, lattice constant, en-
by which to study quantum dotgl], quantum dot arrays, €rgy, and chemical potential on particle number. We show an
melting, crystallization, and lattice defecig@—8,1(. They interesting interplay between continuum and discrete proper-
can be fabricated step by step or can be formed spontané€s of these clusters. This is an interesting example of soft
ously in the system of interacting particles, such as supeicondensed matter in confined geometry and under external
paramagnetic particles in fluid9,10], charged dust particles field.
in plasma[11], vortices[12,13, electrons on surface of the
liquid helium[14], etc. Recently, artificial crystals have at-
tracted much interest due to their potential application as
photonic band-gap materialgl5]. In this context, self-
assembled structures resulting from van der Waals, capillary Our experimental setup has been designed to represent as
[16], electric[8], and magnetid3—6,9,17—19 interactions  closely as possible the generic system of interacting dipoles
are promising. An important issue here is tunability whichin a parabolic confinement. The “dipoles” are Nd-Fe-B fer-
can be achieved through external fields. In particular, a magomagnetic disk$Fig. 1) encapsulated within a light material
netic field can rotate the particl¢0,21, and affect crystal floating on the liquidwater, decane, efc.Particle magnetic
symmetry[19] or the lattice constarjtL0,18,22. moments are perpendicular to the liquid interface, so the par-
Self-assembly driven by magnetic forces can be realizeticles repel each other and self-assemble into hexagonally
in the system of magnetic particles at the air-liquid interfaceordered clusters which, in the absence of an external mag-
(interfacial colloidal crystals[23] or in the bulk of the liquid  netic field, fill the whole container. The liquid serves two
(ferrofluidg. The particles in ferrofluids self-assemble into goals:(i) lubrication—to allow self-assembly driven by weak
nonperiodic three-dimensiondBD) patterns[24] and are lateral forces, andii) stabilization against the flip. A con-
less promising as photonic crystals. Magnetic particles at theainer with the particles and liquid is encircled by a current-
liquid-air interface form 2D periodically ordered clusters andcarrying coil (radius r.=45 cm, height 5 cm, number of
thus are much more promising as photonic crystals. AlthouglurnsN,=127) which provides an inhomogeneous magnetic
floating superparamagnetic particles have been used for stufield in which to confine particles together and to vary the
ies of 2D melting4,5], floating ferromagnetic particles were size and the lattice constant of the resulting cluster. The mag-
used to demonstrate magnetic interactif®25,26 and vor-  netic field of the coil ig28]
tices in superconductof®7], application of floating ferro-
magnetic particles for tunable photonic crystal is quite novel. —
We have recently built a photonic crystal using a stack of 2D container styrofoam
self-assembled arrays of ferromagnetic particles on liquid in- \ \
terface with magnetic-field-dependent lateral lattice constant v
[18], and observed a tunable photonic stop band in the mi- 2 2 A
crowave rangg22]. This raises an interesting question of Xl DR —. . . -
; . ; stirring coil *(optional)
what determines the structure, size, and lattice constant of

the clusters of magnetic particles. In this paper, we study FG. 1. Experimental setup. Small permanent magnets encapsu-
experimentally and theoretically 2D clusters of macroscopigated within styrofoam disks float on the surface of the water. They
repel each other and are confined within a nonuniform magnetic
field produced by an external coil. Container diameter is 90 cm,
*Email address: golos@vms.huji.ac.il magnet diameter is 5 mm, float diameter is 2.5 cm.

II. EXPERIMENTAL PROCEDURE AND PROCESSING
OF THE RESULTS

confining coil
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SE, the energy deviation upon small uniform deformation
' 1) ri—r;(1+u), whereu<1 andr; is the equilibrium particle

position. In the equilibrium state the linear term & van-
wherel is the currentK, (k) andEg (k) are elliptical inte- ishes, leading to
grals of the first and second kind, akd=4rr/(r.+r)2. 5
For r<0.9., Eg. (1), with an accuracy of 2.5%, can be ~ N z
approximated by _3UEint+2U§1 ﬁzo’ (6)
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¢ whereE is the energy in the equilibrium. Therefore,

where Bg= uglN/2r is the field in the center of the coil. N ~

Forr<r,, Eqg. (1) reduces to parabolic dependerige r2. = 2 2 ri 7
In a moderate external magnetic field the particles are e T2\?2 ™

oriented in such a way that their magnetic moments are par- ( )

allel to each other and perpendicular to the liquid surface. At

higher fields the particles become spontaneously tilted and

the cluster splits into a few domains with different orienta-and Eq.(5) reduces to

tion of the particle magnetic moment with respect to the N ~»

vertical. This resembles the smecfie-smecticE phase E=> Fi 1+ 2/3 %)

transition in liquid crystals. At even higher fields, flip insta- =17 T? '

bility occurs, the tilt angle becomes 90°, and the cluster col- 1-— 1-—

lapses. This limits the range of magnetic fields that can be c e

used for such confinement, While Eq. (5) allows us to find energy by summation Nf

The particle configuration is determined by the radially . . .
dependent part of the Hamiltonian which, for macroscopicterms’ Eq.(8) contains oniyN terms and is less demanding

particles at ambient temperature, reduces to the sum of th\ggrr:i(:rlisgigti?nsc?ﬂu()r\?v?\l/g tggs)exsﬁre;:gﬁ/mgllé Sditr?rtmhg]ed
air interaction energy and the field energy, . ) oo ' 4
P 9y % dipole-dipole interaction lawE;,.~1/r3. Since we operate
N with finite-size particles, while Eq(3) assumes point di-

H=Ej,+ Eﬂeld:f_o E 5 +2 mB(ry). 3) poles,. the validity of Eq(3) should_ be verified.. Indegd,_ in-

TIS) ri—rg® =L teraction energy of two parallel axially magnetized di&tis
) ] . ameterD=5 mm, heighth=2 mm) situated at the distance
Here,m; andr; are particle magnetic moment and position, . _3_7 ¢m €>D,h) is Ej=(mom/4mr3)(1+3D2/8r2
respectively. Generally, Eq3) allows us to find the energy _ 1242 . )). In our case, the second term in the brackets
for known particle positions. This tedious task is facilitated g tributes~ 1%  the third term contributes 0.1% . Contri-

by the following analysis. For identical particles we intro- , ion of weak attractive capillary forces is also very small

mm;

duce distance scale and energy scale, (0.1%, therefore, Eq(8) is valid within 1%.
5 2 We focus here on the dependence of cluster parameters on
:( “Om) _ KoM (4)  the number of particles. We varied the particle number by
0| 37By 0 47Tr3’ adding/removing a particle at the cluster boundary, and then
measured particle positions in the equilibrium. To accelerate
and recast Eq3) in dimensionless form equilibration we applied “stimulated annealing;” in other
words, we stirred the particles using an oscillating magnetic
1 N ri2 field (Fig. 1) with slowly decreasing amplitude. After several
E:Eint+Efie|d:Z 3T 2 21 ©) minutes of stirring and subsequent relaxation, the particles
St = 1— i self-assemble into a well-ordered cluster with a quite repro-
r2 ducible configuration which remains stable for several days.

We maintained constant external fiddg=0.6 mT, at which
wherer; andr are dimenssionless parameters. Note that thehe spontaneous tilt is absent, took the image of the cluster,
lattice constana scales withr g. For superparamagnetic par- and determined equilibrium particle positions. Then we cal-
ticles ry is field independent, sincen/By=const. Con- culated the energy using E(). The repeatability of energy
versely, for ferromagnetic particles with=const, the lattice  determination is~0.1-0.2 %. This was deduced from sev-
constant is field dependem;r0~Bgl’5 [18]. That is why eral experiments with the same cluster which was shaken
ferromagnetic particles may be more advantageous in thketween the measurements and then allowed to réfdms
field of tunable photonic crystals than superparamagnetiprocedure sometimes results in a slightly different cluster
particles[4,5,10,117. configuration, i.e., metastable states do occur. However, the

Our goal is to find cluster energy for known particle po- difference in energy between these states does not exceed
sitions. To this end we further simplify E¢). We consider ~0.15%) With known energy we find the chemical poten-
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FIG. 2. Cluster images with superimposed Delaunay triangula-
tion. Gray circles stand for normal coordination numb&r=@),
y
filled circles stand foZ=>5 (positive disclination and open circles
p p
stand forZ=7 (negative disclination (a) N=31—note pentagonal
g p g L L L I 1 L

faceting; (b) N=37—a perfect hexagonal packing. Note faceting 0.6 0

and absence of defecté;) N=70—an ordinary cluster. Note a

dislocation (5—7 pai) attached to a disclination(d) N=85—a

“magic” cluster. Note hexagonal structure, circular shape, and siXx g, 3. The lattice constant in the centy and at the cluster

topological disclinations close to the edge. edge aqqge (in dimensionless unils The inset shows their ratio.
Continuous lines show prediction of the continuum maodedpen-

tial, u=0JE/dN=E(N)—E(N—1). We calculate the scatg  dix). Continuous arrows show magic numbépsimary seriesand

[Eq. (4)] from the interparticle distances in small clustersdashed arrows show the secondary series. The magic numbers

(2-7 particles whose configurations are obvious, and find strongly correlate with the local minima B gqd N).

ro="7.05 cm. This yields a particle magnetic momentnof

=38 emu, which is consistent with the saturation magnetistrain results primarily from the radial density variation. In-

zation of Nd-Fe-B goM=1.22 T). The energy scalfEq. deed, Fig. 3 shows that the lattice constant in the centés

(4)]is Eq=0.41 uJ. We perform Voronoi construction on the lower than the lattice constant at the edugge. The ratio

cluster image and find cluster areé®,This can be defined as a.qqe/a, Slowly increases wittN and for N>50 is ~1.28

the sum of areas of Voronoi polyedra, or&s wD?/4 where  (Fig. 3, insel. The average strain associated with this lattice-

D is the cluster diameter. The areas calculated according toonstant variation igi~ (cgge—a) /R~4-5 %. Actually,

these two definitions differ by 3.5%, so we adopted an interthe strain is much smaller in the center and increases towards

mediate definitionS=7R? whereR is the averagecluster the edges. When the strain exceeds the elastic limit

radius. Delauney triangulation allows one to find cluster pe{~10-15 %) the defect&lislocations and disclinatiori$])

rimeter P and the number of particles at the periphéty. are formed. Apart from six topological disclinations which

The lattice constant at the edge is found fromy,. are present in all circular-shaped clust¢Figs. 4c) and

=P/N,. The lattice constant in the cente, is determined  2(d)] due to competition between the hexagonal ordering and

as the average nearest-neighbor distance for the partict@rcular-symmetric confinemerjtl], many clusters contain

20 40 60 80 100 120 140

which is the closest to the center of the potentiat Q). one or few dislocationg~ig. 2(c)]. The dislocations and dis-
clinations usually reside in the vicinity of the cluster edge,
Il EXPERIMENTAL RESULTS AND COMPARISON while the .central part of the cluster can be r_nade_ fre_e of
TO THE MODEL defects. Figure 4 shows the number of dislocations in differ-

ent clusters. FON<110 there are clusters without disloca-

Figure 2 shows images of several clusters. The clusterSons or with 1-2 dislocations. Fé{> 110, dislocation den-
with smallN acquire very different forms and can even havesity dramatically increases. Numerical simulations of Ref.
pentagonal facetingFig. 2(@)], which is usually associated [1] for 2D Coulomb clusters in a parabolic confinement also
with quasicrystalg19]. At higher N, the particles are ar- suggest a dramatic increase in dislocation density Nor
ranged into an almost perfect hexagonal lattice. For shhall >140.
corresponding to perfect hexagonal packing, the cluster ac- In what follows, we study the dependence of the cluster
quires a hexagonal shaffeig. 2(b)]; for biggerN, the cluster  properties on particle number. Figure 5 shows almost mono-
tends to acquire a circular shagég. 2(c)], which inevitably  tonic dependences of the area and chemical potential on par-
results in deviations from the perfect hexagonal order. Theicle number with some fluctuations. To analyze the smooth
deviations are of two kinds: elastic strain and defects. Elastipart of these dependences we develop a continuum model
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FIG. 4. The number of dislocations in the 2D clusters as a func- o
tion of particle numbeN. Dashed line shows exact data, continuous 20
line is obtained after smoothing. Continuous arrows show magic 017 numerical
numbers(primary series and dashed arrows show the secondary
series. The magic nhumbers correlate with the minimum number of ¢ g5 710
dislocations.
. 0 £ L L 1 L L | 0
and calculate total cluster energy by replacing the $Em 0 20 40 60 80 100 120 140
(5)] by the integral over the cluster area. The simplest ap- N

proximation assuming constant particle dengitand para-
bolic confinement yields

Joolze
E= —+r
ap 2r3

Here,Ris the cluster radius is the lattice constant, anal
~4/7a®. The first term in Eq(9) representE;,,, while the
second term representsiq. For parabolic confinement
their ratio is 2:3this can be obtained from E(f) by setting
r.—=], hence, Eq.(9) yields 164>=3R2. Combining it
with the obvious relationR~aN¥%2, we find

FIG. 5. Cluster are&® (normalized to coil areaand chemical
potential [in the units ofE,, see Eq(4)] as functions of particle
numberN. The circles stand for experimental désanoothegl The
triangles show results of numerical simulati@#®9] for the dipoles
in a parabolic confinement. The dash-dotted line shows prediction
of a simplified model[Eqg. (10)] assuming constant density. The
dashed line shows our model predictiohppendi® for the para-
bolic confinemenB~r?2 and varying density. The solid lines show
our model predictiongAppendi® for the confining fieldB~r?2
/(1—r?) which has been used in our experiment. Note the good
correspondence between the experimental results and the model, as
well as between the numerical results and the corresponding model
prediction. Continuous arrows show magic numbgnsmary se-
ries) and dashed arrows show the secondary series. The magic num-
bers approximately correspond to the centers of plateaus,ip;.

R2
—+—=.
a3

ds=N 5

9

constant. The lattice constant in the center is accounted for
fairly well, while the lattice constant at the cluster edge is
slightly overestimated.

Since the parabolic confining potential is quite general, it
is important to check how deviation from parabolicity affects
whereK = gE/JS is the bulk compression modulus. Equation cluster structure. We compare our experiment res#it. 5,

(10) (dash-dotted line in Fig.)sunderestimates the chemical circleg for the dipole cluster imalmost parabolic confine-
potential forN>20 and does not account for the radial den-ment[Eq. (2)] to numerical simulations of the dipole cluster
sity gradient which is clearly observed in Fig.(tBe differ- in strictly parabolic confinemen{29] (Fig. 5, triangles For
ence betweem, andagqyyd. A more elaborate modéAp-  N<20 the chemical potential,,,; almost coincides with the
pendixy takes into accoun() spatial variation of the density, results of numerical simulationsu,,m, while for N

(i) surface tension, andii) deviation of the potential from  >20, ey mnum- This is expected since for small the
parabolicity. This model results in an algebraic equafieg.  particles are close to the center of the coil where the potential
(Al17), Appendi for the spatially dependent density which is very close to parabolic, while at bigghr more particles

is solved numerically for a given potential and vyields are in the area where the potential is more rigid than para-
a(N), S(N), andui(N). This model, with confining potential bolic. Therefore, deviation of the confining potent[&q.
given by Eq.(2), fits fairly well the experimentally found (2)] from parabolicity is important.

S(N) andu(N) (solid lines in Fig. 5. Systematic deviations Deviations from the smooth dependendete fluctuations

at smallN are expected and arise from the inadequacy of th@en top of smooth dependenc&N) and w(N) (Fig. 5
continuum approach when only a few particles are presentvhich at first glance look like noise. Nevertheless, these fluc-
Figure 3 shows the prediction of this model for the latticetuations are quite reproducible, since they are a direct con-

3 1/5
Re(3) W e

1/5
—) , E~0.98\85,

u~15MN%, S~3.6WN°%5 K~1.5N, (10
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sequence of the crystalline order in the cluster. We find simi-
lar fluctuations in three experimental runs. These fluctuations
appear in all cluster properties and are very prominent,in L
where they amount to 8%. Note regions in whighand S
hardly change upon the addition of new particles. Corre-
sponding clusters are more dense, more symmetric, and hav i
lower energy. Any deviation from high symmetry is accom-
panied by energy and area increase.

Although the deviations from the perfect symmetry can be
guantified using continuous symmetry meadi@2], we ap-
ply here an approach of Koulakov and ShklovdgKii, who <
numerically studied the particles with Coulomb/hard-sphere
interaction in the parabolic confinement, and showed that the
position of the cluster center of mass with respect to the unit
cell may serve as an indicator of a deviation from the perfect=
symmetry. Referencfl] demonstrated that while the abso- B -
lute position of the cluster center of mass is always at the%
minimum of the external potential, its position in the unit cell
is preferably located at high symmetry poifitsr a hexago- 0.4
nal lattice these are pointd), (B), and(C)—see Fig. 6 We
measured distribution of the center-of-mass positions in the -
unit cell of our 2D dipole clusters and indeed found that it is
strongly peaked at positior{8), (B), and(C) (Fig. 6, upper

(b) »f&? 1

0.8

L L I L L I

pane). The middle panel in Fig. 6 shows,.,, a number of 04 20 40 60 80 100 120 140
nearest neighbors at the center-of-mass position, as a func N

tion of particle numbeffWe take one of the point®\), (B),

or (C) which is the closest to the center of mass and assign FIG. 6. Position of the cluster center of mass. Upper partal—
Nem=6 for (A), Nen=3 for (B), andN;,=2 for (C)]. We Unit cell and the positions of high symmetfa), (B), and(C). (b)

Distribution of the center-of-mass positions in the unit cell. Each

dependencél.,, vs N exhibits continuous regions where the point corresponds to a cluster _with a cert_a}in particle number
center of mass resides in the position of sixfold symmetryN\Ot€ that the center of mass sticks to positigas, (B), and (C).

(A), and (i) pronounced dips ilS/dN occur in these re- The centers of wide plateaus corresponding to most symmetric clus-
gio;]s Shallow dips correspond to positioR). We define ters withN.,,=6 are denoted by continuous arrows and the corre-

. _ b th di to th iddl sponding “magic” numbers are shown. The centers of shallow pla-
magic” numbers as those corresponding 1o the miadi€e g corresponding to the clusters witly,,=3 are denoted by

p_omts of the pIateaus, where the center of mass f_es'des N Ashed arrows and the corresponding secondary “magic” numbers
high-symmetry point. The primary “magic” serieNn  4re shown. Middle panel shows number of nearest-neightgrat
~18,35,55,85,116 - corresponds to the centers of the pla- the center-of-mass position. Lower panel sha@dN [in dimen-
teaus withN.,=6 and a secondary “magic” seriell,  sjonless units, see E¢4)]. The magic numbers correlate with the
~12,25,44,69,100 - corresponds to the centers of the pla- minima indS/dN.

teus withN;,=3. The primary series may be approximated

by empirical dependendd,,~1+2.7%(s—1);s=0,1,2- - - analogous to the Thomas-Fermi model for atoms. However,
which is related to the perfect hexagonal packitg=1  due to different dimensionality and interaction laws, the
+3s(s—1);s=0,1,2- - -. The width of the plateaus approxi- magic numbers are different. While magic numbers are well
mately corresponds to one crystalline row, ®/8)%2. The  known for free-standing 3D clustef80] and have been
clusters with a “magic” or close to “magic” number of par- found in computer simulations for 2D clusters with various
ticles show almost perfect hexagonal packing and a minipair interaction lawg1,29,31, we are unaware of previous
mum of defectgFig. 4). Therefore, the center-of-mass posi- experimentalobservation of magic 2D clusters in a lateral
tion with respect to the unit cell is indeed a good indicator ofconfining field. The magic numbers in the system of few

observe thati) N, changes quasiperiodically iN'?, (ii)

cluster “quality.” interacting particles are ubiquitoyshemical elements, nu-
cleii, etc) and usually related to the shell structure of these
IV. DISCUSSION AND CONCLUSIONS systems. The magic clusters are more stable, since they are

highly symmetric and are characterized by local energy mini-

In a broad context, dependence of the cluster propertiesium. This is probably true for the systems entirely domi-
on the number of particlegFigs. 3—6 reminds us of the nated by the potential energy, while in general, highly sym-
Mendeleev table of elements, in particular, dependence ahetric configurations do not necessarily have the lowest
atomic radius and ionization potential on atomic numberenergy(spontaneous symmetry breakjng
which also show quasiperiodic oscillations in addition to  Quasiperiodic fluctuations in cluster properties were
smooth dependences. Magic clusters are actually analogs fifund in numerical simulations for the particles with dipole
noble gases, while the continuum mod@ppendiX is [29], Coulomb, and hard-sphefé] interactions. The value
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of fluctuations depends on the pair interaction law, increasingnass with respect to the unit cell is a good indicator of the

with the rigidity of the interaction potentidll]. Most prob-  cluster quality.

ably, the value of the fluctuations also depends on the con-

fining potential. Anyway, fluctuations in that were found in

numerical simulations for the dipole clusters in a parabolic

potential[29] (Fig. 5, triangleg are smaller than those found  This work was supported by the VW Foundation, the Is-

in our experiments with the dipole clusters in a more rigidraeli Science Foundation, and the Israeli Ministry of Science

potential(Fig. 5, circles. and Arts. We are grateful to B. Laikhtman for valuable dis-
In what follows, we estimate the value of the fluctuationscussions.

and the width of continuous regions in which the cluster

configuration is particularly symmetric. Consider a magic

cluster. Upon addition of new particles it undergoes energeti- APPENDIX: CONTINUUM MODEL OF A 2D DIPOLE

cally expensive elastic and plastic deformations in order to CLUSTER IN A PARABOLIC CONFINEMENT

keep the center of mass at the position of high symmetry. consider a planar assembly of identical magnetic dipoles
This occurs until another position of high symmetry becomesyith magnetic momentm oriented perpendicular to the
energetically favorable. Upon further addition, a rearrangeplane. The dipoles repel each other and are confined by the

ment of the whole clustefavalanchg occurs whereby the jynomogeneous magnetic field with almost parabolic radial
center of mass moves to a large distance, of the order of 8ependenc®=ar?+ Bré+- - . . The particle configuration

lattice-constanta. These avalanches are accompanied by getermined by the Hamiltonian which, for macroscopic

fluctua_tions in cluster properties. Addition of new partic_les toparticles at ambient temperature, reduces to potential energy
a magic cluster does not lead to the center-of-mass displace-

ment until approximately one crystalline row is added. If the
cluster were incompressible, the area would increasé®y _ Mo m;m;
~SAN/N. In reality, 5S is smaller due to relaxation. In fact, H=Einit Eriela= - & 20 —r 3 +§i: miB(ri).
immobility of the center of mass means that a highly sym- b (A1)
metric cluster adopts new particles without appreciable in-

crease in area, namelySdN~0. Indeed, our experimental
observations show deep minima @&dN (Fig. 6). Corre-
sponding deviation from the smooth dependence is #&is
~sAN where s=(dSdN),,. is the area per particle and
AN=~(N/3)¥? (one crystalline row Since s~0.65/N
[Eq. (10)], then 6S~0.65/(3N)*2 This fluctuation origi-
nates from the cluster relaxation which occurs via elastic an
plastic deformations. If the deformatianwere purely elas-
tic, thenu= 8§S/2S and the corresponding variation of the
energy or of the chemical potential &u=KSw#/2~0.1 u,
whereK is the bulk compression modulus. Experimentally

observed fluctuations (0.1-0.Q5 are smaller due to plastic local hexagonal symmetryii) gradient of confining forces.

deformation(formation of dislocations Our aim is to find the density, energy, and radius of the

We expect that th_e <_jisloca_tions resiple_ close _to the Clusmcrluster as a function of the particle numbrTo solve this
edge where the strain is maximum. This is confirmed by ou roblem, we develop a continuum model and find the rela-

experiments. With respect to dislocation arrangement in bi ion between the energy and the density of the cluster by

clusters, Ref[1] argues that the dislocations should aggre- laci h . Al the int L We fi
gate into a grain-boundary concentric to the cluster outeFep acing the sums ifEq. (A1)] by the integral. We find

shell, while Ref.[33] conjectures that the dislocations ar-
range into a lattice of their own. Which scenario holds in
reality may depend on the specific form @f the pair inter-
action and(ii) the confining potential. Further experiments
should clarify this issue.

In conclusion, we demonstrate self-assembled 2D dipol
clusters with a magnetically tunable lattice constant. Experi-
mentally found dependences of the cluster area, chemical MOmZ Rp(r')ds’
potential, and lattice constant as functions of particle number €int(r)= 8 f
are fairly well described by our continuum model. Quasi-
periodic deviations from the smooth dependenegéN) and
S(N) occur at certain magic numbers and correspond to eds the interaction energy per particle. In contrast to Coulomb
pecially symmetric cluster configurations. These magic cluselusters where pure continuum approach is posdiB#,
ters are characterized by higher stability, lower elastic straindipole-dipole interaction diverges at short distances, hence,
and small number of defects. Position of the cluster center ofve introduce the cutofa* distance. Since the main contri-

ACKNOWLEDGMENTS

The first term here is the pair interaction energy and the
second term is the field energifhe factor of 2 in the de-
nominator of the first term appears because each particle is
counted twicg The interplay between these two terms dic-
tates particle arrangement. In a radially symmetric magnetic
field the particles organize into an almost circular cluster
entered at the minimum of the magnetic field. Circular sym-
metry of the interparticle interaction forces drives the par-
ticles into a mostly symmetric configuration, namely, hex-
agonal lattice, which is, however, distorted due (0
competition between the circular-symmetric confinement and

EZJR(Eim-i‘mB)pdS, (A2)
0

g\/herep(r) is the particle densityR is the cluster radius, and

(A3)
a* |r_r/|3
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bution to the integralEq. (A3)] comes from the nearest Vp V[r(o,—0g)]
neighbors where density is almost constant, we get) —t
=p(r), perform integration, and find

; 5 +VU=0. (A11)

To solve Eq(Al1l) we have to simplify the second term. For

2
Mo p (A4) a particular case of incompressikleonstant densijysolid

Eint(r)z 87

27 ARE(r/R)

a* RZ—r2 under parabolic potentigB5], Eq. (A11) may be recast as
HereE, (k) is the elliptical integral of the second kind which Vp
for all our practical needs can be replaced by the polynomial —+VU=0, (A12)
approximation, vp
T where
Ee(k)= 5 (1K) +K, (A5)

v=(1+3v)/4, (A13)

which is fairly good for 0<k<1. The first term in Eq(A4)
is the interaction energy per patrticle in the infinite cluster,v is the Poisson ratio. The same Edé12) holds for the
while the second term represents the finite-size effect or sufiquid (even compressibjefor which v=1 and y=1. We
face correction. The cutoff distana* is found from the assume that EqA12), with y given by Eq.(A13), holds also
comparison to the corresponding lattice sum for the 2D infifor our (compressiblg dipole cluster. Results of Ref8]
nite hexagonal lattice of parallel dipoles. Referef@kcal-  yield Poisson ratio for hexagonally ordered dipole cluster
culated this sum and found1/r3=11.03343, wherea, is ~ =0.82, hence;y=0.865.
the lattice constant. The corresponding integral for an infinite  Since the pressure is uniquely determined by density, the
cluster with constant density yields Eqg. (A12) allows us to introduce the chemical potentjal

Vu=VU+Vp/yp. We combine EqgA9) and(A12) to find

27 —. (AB) 5

* r_rl3 a-k m
 [r=r’| Vu=mVB+

2i~ =p(r)ds” _ p
r? Mo
4y

2R (sze|(r/R)

2.297V (p¥?)— —V

. o 2 s ¥p RZ—r?
Since for the hexagonal lattice=8/3;3a;, a*~0.88,
~1.09 Y2 Note thata* depends om. (A14)

Since the integralEq. (A3)] diverges also at the upper

limit r—R, we introduce another cutoff* which is deter-
mined from the comparison of E¢A4) to the lattice sum for
a particle at the edge of an infinite half-plane, namely,
>1/r3=6.72A3. Equation(A4) transforms into

where in the equilibriun¥V x=0. The different terms in Eq.
(A14) may be estimated as follows. The first term in square
brackets is the dominant one and represents the bulk internal
energy. The second term represents surface correction and is
smaller by a factoa,/R<<1 everywhere except at the cluster

w2 edge. If the surface correction were totally negligible, then
27p 3 2mp B 4r*“p

k) — A7 Eq. (A14) would yield a power-law dependenge~(R?
emt(r ) % R 2 2\’ ( ) 2\2/3 h . .
a R(R“—r*%) —r<)“". We substitute this power-law dependence into Eq.
(Al14) and note that the last term may be represented as a
which results in implicit dependence gradient of some function
r*~R—0.822*(r*). A8
) (A8) 1_[ p?Eq(r/R) r2

The hydrostatic pressure is found from= — dejn/IV _;V RZ_ 2 ~Vp| 7= RZ_ 2] (A15)

which in 2D reduces tp= — dejn/IS= p2de€in/ Ip Wheres

is the area per particle. Equatioh4) yields the equation of The elliptical integral has been replaced here by the polyno-

state mial approximatiof Eq. (A5)]. We substitute EqA15) into
L1oM? o 2Rp%E(1/R) Eq. (A14), perform integration, and find
P="7- 1.38mp~— T2 | (A9)
- wom? a2 2mp 2pr?
L _ . . u=mB(r)+ 2.29mp%2— +
The density is found from the equation describing equi- Amy R R(R?-r?)
librium of compressible solid under radial forf&5]
=mB(R). (A16)
do, oO,—0g _
W’L r +p(nVU=0. (A10) The first term in the square brackets is the elastic energy of

compression and the last two terms represent surface tension.
Here,o, andog are the radial and azimuthal components of  To find the density we introduce dimensionless variables
the stress tensor. We express the stregsrough the hydro-  z=(7R?p)¥?, x=r/R, b(x)=B(r)/B(R) and recast Eq.
static pressur@= (o, + 0g)/2 and rewrite Eq(A10) as (A16) as follows:
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from Eq. (A8) which reduces ta* =4r*?/(R>—r*?). Inte-

2 R 5
— Y(r_) [1-b(x)]=0. gration of the density yields the particle number
0

X
12934272 ——— -1
m(1—x?)

(AL7) N(R)= Jr*pds=2JX*(R)22(x,R)xdx (A18)
0 0

Here, rq is the distance scale determined by the magnetidhe functionN(R) is reverted resulting in an explicit depen-
field [Eq. (4)]. We solve Eq(A17) for givenR, x, b(x) and  dence R(N). The chemical potential is found from Eg.
find z(x,R), p(x,R). The cutoff distance* is determined (A16).
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