PHYSICAL REVIEW E, VOLUME 65, 061403
Electrostatic interaction between two agueous microdroplets in an apolar medium
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In an apolar medium, the electrostatic interactions between two aqueous microdroplets coated with surfac-
tants are investigated by the mean-field theory. The electric field and ion distributions within the aqueous core
are described by the Poisson-Boltzmann equation. Under DebgkeHapproximation, the interaction energy
is obtained analytically. Due to the polarization effect, the Coulomb interaction is altered by the induced
multipoles in the aqueous droplet. The interaction, however, is insensitive to the ion concentration. In com-
parison with the Coulomb interaction, the repulsion for a pair of similarly charged droplets is reduced and the
attraction for a pair of oppositely charged droplets is enhanced. More importantly, the interaction between a
neutral and charged droplets is attractive. The effect of interdroplet interactions on the collision frequency is
also discussed.
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I. INTRODUCTION tions, can be explained by the migration of charged micro-
droplets in the applied electric fie[d0-12.

Microdroplets exist ubiquitously in emulsions and micro- The w/o microemulsion can exhibit a rich variety of
emulsions. Although emulsions are kinetically stable, microphysical behaviors, such as clustering and percolation. The
emulsions are thermodynamically stable dispersions. Aormation of various microstructures is eventually governed
water-in-oil (w/0) microemulsion consists of water droplets by the interdroplet interactions. For instance, it is generally
in a continuous oil medium, stabilized by a film of am- believed that the sharp increase in electrical conductivity
phiphiles at the droplet interface. These droplets, sometime®ver orders of magnitude characterized as a percolation
also called swollen reversed micelles, are approximatelyphenomenon, is associated with the formation of droplet
spherical with their diameters in the range 1-50 nm. Anclusters due to attractive interactioft3,14]. Besides the
increasing number of scientific and technological applicashort-range interactions, such as the overlap of the surfactant
tions are found for microemulsions, such as manufacturindail region, the electrostatic interaction may also play an es-
nanosized particles and biocatalysis synthetic reactions in osential role for microstructural transformations and enhanced
ganic solvent$1-6]. collisions between microdroplets. Though a microdroplet

The microdroplets iw/o microemulsions with ionic sur- possesses no more than a few elementary charges, the result-
factant contain strong electrolytes, such as counterions disag electric field is only weakly screened by the surrounding
sociated from the surfactant shells and added inorganic salipolar medium. As a result, the interactions between two
These ions are confined in the agueous cores because of thiearged droplets can display long-range Coulomb forces. In
low dielectric constant of the oil medium, ca. 2. To reduceaddition, there are induced interactions between charged and
the positive electrostatic free energy associated with formingieutral droplets due to the polarization of the aqueous core.
a net charge in a dielectric medium, which is similar to the  While the properties ofv/o microemulsions are exten-
Born energy, one would expect that the microdroplet is elecsively studied by numerous experimental methods, little is
troneutral by balancing the net charge of ionic surfactanknown about the interdroplet interactions. The microdroplets
shell with that of the ions within the aqueous core. Howeverjn microemulsions are often considered as a macrofluid. The
experimental evidences show that the exchange of materiatheoretical approaches developed for simple fluids are then
between microdroplets can take place through collisions wittadopted to evaluate the structure factor for various empirical
temporarily merging or formation of water channgf-9].  models of interdroplet interactiof$3,15,16. Following this
Since a microdroplet carrie®(10?) surfactant ions and analogy, Halle and Bjting [17] regarded thew/o micro-
counterions, the entropic penalty of precisely matching thesemulsion as a macroelectrolyte mixture based on a restricted
two large numbers is significant and comparable to the elegarimitive model. Then they adopted the Coulomb interac-
trostatic energy. Consequently, a substantial fraction of théons for the interaction potential with the bulk solvent per-
microdroplets acquires charges owing to the fluctuating exmittivity being replaced by an effective-medium permittivity.
change of surfactant ions at the droplet interface and theuzar and Bratko[18] calculated the electrostatic interac-
oppositely charged counterions in the aqueous interior. It hagons between two neutral microdroplets by means of Monte
been found that the electric conductivity wfo microemul-  Carlo simulation. The effects of ion-ion correlations are in-
sions, which is equivalent to that of dilute electrolyte solu-vestigated while the dielectric discontinuity is not taken into

account. The correlated fluctuations in the distribution of
mobile ions within electroneutral droplets give rise to attrac-
*Email address:hktsao@cc.ncu.edu.tw tive dispersion forces between adjacent microdroplets, which

1063-651X/2002/66)/06140310)/$20.00 65 061403-1 ©2002 The American Physical Society



HENG-KWONG TSAO, YU-JANE SHENG, AND SHING-BOR CHEN PHYSICAL REVIEW €5 061403

Without charges in the oil phase, the electric potential
satisfies the Laplace equation

V2¢,=0 for r;>a andr,>a. 1

Within the aqueous core, by assuming the ions follow the
Boltzmann distribution, one has

Z.e
FIG. 1. Coordinate system for the electrostatic interactions be- n.(r)= ngexp[ ———[i(r)—Cy]¢, 2
tween two aqueous microdroplets immersed in an apolar medium. kT

f bl itude to the classical der W wheren. andz. are the concentrations and valency of the
ﬁ]rteergcgg;nspara € magnitude to the classical van der aansitive and negative ions, respectivel{. are the reference

In this paper the electrostatic interactions between tw concentrations corresponding to the electric potential inside

microdroplets are investigated by the mean-field theor;ih(ra ?r:gpfgﬁgu?ek 'tgﬁft;g?jr;or;krg%?ltfhrga?ﬁngzr;:g?;l
Since there are no mobile charges in the apolar phase, trz: arge. 1.610°%° C gince thé Zer0 potential is chosen at
electrostatic potential must satisfy the Laplace equation. ge, L. | b

Within the microdroplet, the distribution of mobile ions can infinity, the reference potential ass_ociated With the droklet
be described by the sophisticated statistical mechanical theg-k' must be .depende_nt upon the interparticle distaRice
ries such as the integral equatidesy., MSA and HNGand The electric potential inside the dropleét can then be

molecular simulations. However, the Poisson-BoItzmanndetermInEd by the PB equation,

(PB) equation, despite its drawbactsuch as finite ion size (1)
effects, is possibly the simplest model in depicting the ion Vepi=— for ry<a or r,<a, 3
distribution and the electric field inside a sph¢i®]. The €180

results are often accurate at low enough ion concentratiorwith
[20,21]. The nonlinear nature of the PB equation, neverthe-
less, renders the problem analytically intractable except for p(N)=(n,z,+n_z_)e, (4)
simplest geometries. Thus, the solution is usually displayed

in a numerical form. Lack of analytical expressions makes itwhereg is the permittivity of a vacuum. Under the Debye-
strenuous to analyze the systems from every possible aspadtickel approximation, Eq(3) can be simplified as

in an orderly manner. In the present work, we adopt the

Debye-Hickel approximation, which leads to a linearized PB V2¢hi=ri(hi—Cy—Ny) for k=1,2, (5)
equation. When the electrostatic potential is low enough, the
linearized PB equation should be adequate to describe thehere
electric field within the aqueous core. We expect that the

; : . . : L 0,2, 10,232
linearized PB equation can provide us with the detailed in- (nizi+n-z7)e

2_
sight into the electrostatic interactions of this system and K= g180kgT ©®
reveal important features of the problem.

The paper is organized as follows. In Sec. Il the govern-and
ing equations and boundary conditions for two microdroplet
interactions are introduced. Two fundamental problems are n%z,+n%z_ kgT
considered in Sec. lll, including cases of common and dif- ?\k=m e @

+4+ —c—

ference charge densities. The analytical solutions of electric

potentials inside and outside the microdroplet are obtainedr, Debye-Hakel parametek? and\, (or n%) can be de-

The electrostatic free energy and interaction energy are the o A o i
calculated in Sec. IV. Finally, the induced interactionsaded by the total positive and negative ions within the drop

between neutral and charged microdroplets and the eﬁec{gt k. For the case of counterions only,=kgT/z:e, where

of interdroplet interactions on the collision frequenc areZC Is the valency of counterions.
P q y The governing equation€l) and (5) are subject to the

discussed. following conditions:
Il. FORMULATION bo=¢i atr=a, 8
Consider two aqueous droplets with dielectric constgnt e160V i Ni+e60V - Ny=—0y at r,=a, (9
immersed in an oil environment with dielectric constant
as shown in Fig. 1. The center-to-center separation between ¢,—0 atr—o, (10)
the two spherical droplets R. The surface of the dropldt
(k=1,2) carries charges with density, and there are mo- ¢; isfinite atr,=0, (11

bile ions enclosed in the droplet of radiasThese ions are
dissociated either from the surface or the added electrolytesind
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— on the {4, ;) coordinate system and the other an ,(6,),
8180J V¢i-ndA=—4ma‘o, for k=12, (12  as defined in Fig. 1. Owing to the azimuthal symmetry and
Ay . . . . .
using the method of twin spherical harmonic expansions, the
wheren; (n,) is the inwardly(outwardly directed normal ~ Solution of the Laplace equatidd) for ¢, is given by
vector. The first two boundary conditiof®) and(9) express

"
that the electric potential and its normal derivative are con- bo= 2 f, ( a n+1Pn(cosal)+ _)n an(cosaz) _
tinuous across the oil-water boundary. The third condition ry a

(10) comes from choosing the origin of the potential to be at (15
infinity. The last condition(12) represents the total mobile

charges within the droplet, —4ma®s,. Note that we ex- Since the potential distributions around both droplets are

press the total number of mobile ions within a droplet inidentical, only one set of the coefficierts is necessary. To
terms of an area charge density. Wheno = o, the drop-  @PPly the boundary condition at the surface of either droplet
let is electroneutral. However, it is not necessary that to dgtermlne the_ coef_ﬂment[sn, we transform one of the .
equalso. because the droplet can possess net charaes multipole expansions into the other set of spherical coordi-
the fgct that the total r?umbers pof positiver nega?ivel nates through an addition theorem of Legendre functions de-

ions in the droplet 1 can differ from those in droplet 2 Ieads”ved by Hobsor{22),
to different values of«? in the linearized PB equatiof8).

This would complicate the analysis. In this study, for sim- 1\t "l (ntq
plicity, we assumex;=xk,=k (A;=A,=\) and then the e n(COSt) = ﬁ &g
problem is always represented by two fundamental prob-
lems, which can be resolved analytically.
q(00393—k)
Ill. TWO FUNDAMENTAL PROBLEMS
For two spherical droplets of the same radius, the charges for rz_<R. (16)
associated with the dropl&tcan be characterized by the two
area charge densities, and oy. To simplify the analysis, The general solution of the linearized PB equationder

we express the area charge densities of the droplets in terrg@n be expressed in terms of the modified spherical Bessel

of common charge density (;) and the difference charge function of the first and third kind. Inside the spheres the
densitycy (o) e potential must be finite at=0 and thus the general form
d d/»

reduces to

1
slote) (13

ge=5(01+03), o= -
¢i<rk,ek>=nZo Anin( kM) P(cOsO)+C+N,  (17)
and -

1 I wherei,(X) is related to the modified Bessel function of half
o4=5(01703),  0g=5(01= ). (14 integer ordet . 1,5(X) by in(X)= V(7/2X)1 5 1/2(X).
Using Egs.(15—(17), a system of linear equations for
Since the Laplace equation, the linearized PB equation, andn, @, C} is obtained from Eqs(8)—(12) according to the
the boundary conditions are all linear, now we have twoorthogonality property associated with the Legendre polyno-
fundamental problems. The first case is two droplets of thénials. First of all, the coefficiend, is determined by the

same area charge densities,ando, and the second one is Poundary conditior(12),
two droplet_s possessing oppositely charged area densities, .

i.e., =(oq4,04). The electric potentials driven by the com- _ Oc
mon and difference charge densities can be evaluated inde-
pendently and then superimposed to give the electric poten-
tial of the system. In other words, solutions to the case of
common charge density = o,) and the case of difference wherei,(x) means the derivative[i,(x)]/dx. The rest of
charge density ¢,=— o) are to be used to construct the the coefficients can be found by applying the boundary con-

- T 18
K&q80i o( kA) (18

solution for two microdroplets of arbitrary charges. ditions (8) and (9),
A.C harge density(o;= o= 0y=0, . o, (mEn|fa)menet
ommon charge density(o,=0,=0., 0,=0,=0) ai (xa)+ (CH+N\)Spo=f ot 2 . a ,
The Laplace equation can be solved in spherical coordi- m=0 n R

nates by the method of separation of variables. Since the (19
electric potential decreases to zero at large distances from the
droplet, only the decaying harmonics are retained: one basethd
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., 2 S m-+n (k) &2 < (k—1) n+mjfa)mme
=——|—(n+ + =— i — =
ani’(ka) cae (n+1)f, nmE:Ofm . f 0, Ka mE:lfm . g
a m+n+1 o
x| — + for k=2, (29
R P Sno, (20)
. and
whered,,=1 for n=m, §,,=0 otherwise.
Apparently, the electric potential and hence the coeffi- w m+1
cients vary with the separatioR. WhenR—, the above ch=>3 fgll;—l)(i) . for k=1, (30)
result reduces to that associated with an isolated droplet, m=0 R
Ac.a Acca o, ig(ka where
fa=—=>, Cr=—=———° _?( R
€280 €280 K€180i,(ka)
P g, N iy(ka) g, Nt 1liy(ka)
and On| ka; —|= 1___a'/ e xa i’ :
&1 €1 Kaj (ka) €1 Ka j (ka)
f*=at=0 for n>1. 22 (3

— . Note that—1<0,<1. Fore,<gq, O is essentially 1.
where A= 0.~ o.. For a neutral dropletAc,=0. This n f2=f1 y

result can serve as a leading order solution and is denoted by

a superscript “*.” B. Difference charge density(o,=—0,=0y, 01=—0,=07)

For a finite separatioR, Egs.(19) and(20) can also be For the case of difference charge density, the electric po-
solved analytically by the iteration method. L&, f,, and  tentials around both droplets are identical but opposite in
C be expressed in terms of an infinite series, sign due to antisymmetry. The solution of the Laplace equa-

tion can be expressed as

s

a,=>, al’, fn=20 f0 . and C:‘Eo c®. (23
1= 1=

) * a n+1 n+1
=0 _
</>o—n20 On (ﬁ) F’n(cosﬁl)—(E) Pn(cosby) |,
The leading terma{?, (¥, andC(® can be easily chosen (32)
as those associated with an isolated droplet, which are inde-
pendent ofR. That is, where only one set of the coefficierds is used.
©0)— (0)— 0 Like Eqg. (17), the general solution of the linearized PB
ay’=ay, f)=f;, andcC®=c*. (24)  equation is given by
Substituting Eq(24) into Egs.(19) and (20) and using Eq. %
(24) yields the following recurrence relations fae1: ¢§k)(rk,9k)=(—l)kl{ > (k)
n=0
* n+m)/g\mtntl
(k) (k) s —f(k) (k—1) _
a a)+CY8 0=1"+ f
o In(xa) o mzzo m n /IR XPh(cosf)+D+N| for k=1,2. (33
(25)
and Utilizing Egs. (32 and(33), a system of linear equations for
the coefficient{g,, b,,, D} is obtained from Eqs8)—(12).
e °° n+m With Eq. (12), the coefficient, is readily decided,
alil(ka)= ——| —(n+DfP+n> flkD q ° Y
Kagq m=0 n —
gq
a\mtn+l b0=+,- (34)
x| 5 (26) Ke 180l o( KA)
. The remainder of the coefficients will then be obtained by
According to Eqs(18) and(26), one has substituting Eqs(32) and (33) into Egs.(8) and (9),
al®=0 andf{?=0 for k=1. (27) . M (g e
The solutions forf ¥ andC® are then given by b”'”(Ka)+(D+)\)5”°:g”_m§=:o 9ml /IR :
(35)
(1) &2 o 3)"
= — p— — =
i 0, xa; o fo R , h=1, (28 and
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and

DW= _

S g

a m+1
) for k=1. (46)

We have solved two fundamental problems, Ed$) and

When R—, the results for the isolated droplet 1 are (17) for common charge density and Eq82) and(33) for

recovered,
Aoga Aogqa oy ig(ka
e P I U ST
€280 €280  K&180 jj(ka)
and
gr=br=0 for n=1, (38

WhereAad:ad—;d.
Again, b,, g,,, andD can be expressed in terms of infi-
nite series,

b —2 b, g —E o,

and D=2, DO,
i=0
(39

The leading term®(?, g{?’, andD(® are selected as those

for an isolated droplet,
bO=b%, g®=gr, andD@=D*. (40
Inserting Eq(39) into Egs.(35) and(36) gives the following

recurrence relations fde=1:

n+m a m+n+1
b(k)l (Ka)+D(k)5o g(k)_ E g(k 1) . =
(41)
and
n+m
b{Ki; p(ka)=—— —(n+1)g— nz gl 1)( . )
a m+n+1
X R (42
From Egs.(34) and(42), one obtains
b{?=0 andg{®=0 for k=1. (43

The final results fog'’ andD® can then be written as

e a n+1
L=0, Ka;s—i gl® =/ . n=L (44)
n+m a n+m+1
=@ Ze (k=1) _
n n Ka’ 1 mE_ g n R

for k=2, (45)

difference charge density. The coefficients are obtained ana-
lytically in Eq. (23) for the former and in Eq(39) for the

latter. For the arbitrary charge paitg; (o1) and o, (05),

one can readily prove that the governing equations and
boundary conditions are satisfied by the linear superposition
of the solutions of the common charge pair with= (o
+0,)/2 and the difference charge pair withy= (o,
—0,)/2. Note that the reference potential inside the droplet
k, Cy, as defined in Eq(2), is related to the reference po-
tentials associated with two fundamental problems @y
=C+D andC,=C-D.

IV. INTERNAL ENERGY

The electrostatic free enerdy,, of the present system is
evaluated by combining the electrostatic internal endigy

and the entropy associated with mobile iorsTS,,. The
electrostatic energy contribution is
Ue|=f p¢idr3+f o¢dr ——f |V ¢;|%dr3
Vi
E9E
- °f |V pol2dr?, (47)
VO

and the entropy contribution is given by

—TSe,=kBTfV.[n+(In n,—1)+n_(Inn_—1)]dr3.
| (49

The last two terms irlJ,, represent the self-energy of the
electric field in the aqueous pha¥g and the oil phas¥/,
respectively.

Using the divergence theorem and EE), the internal
energy becomes

=;j pdidri+ 1] o¢dr?. (49

Substituting the Boltzmann distributid) into Eq. (48) for
n;, the entropy is expressed as

UeI

22

=1 ==

[Ckf Pdr3_f pepydr®
Vik Vi

-TS)=— + const,

“ n;zje(¢;—Cy)dr?
V.

-3

k=1

+const,

(50
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where the constant denotes the terms independent of thehereAo.=(Ao1+A0,)/2 andAoy=(Ao—Ac,)/2. The
separatiorR. The combination of Eq949) and (50) yields linear superposition principle is still valid since only the lin-
the total free energy ear terms are kept in the interaction energy calculation. The
L L 5 above result indicates that there are no interactions between
two neutral droplets from the viewpoint of mean-field theory.
Fel(R)= EJA‘T‘ﬁdrz_ sz_P¢idf3+kZl Cu(R) The dependence of the interaction energy on the separa-
' tion is shown through the reference potenti@landD. Ac-
cording to Eqs(27)—(30) and Eqgs(43)—(46), the potentials
C andD are expanded in terms of infinite series afR),

a\?
R

a 9
+6®1®2(§) —(0,+403)

X j pdr3+ const. (52)
Vi k

a
R

Equation(51) is derived without making the assumption
of linearization of the Boltzmann distribution. The integra-
tions in Eq.(51) can be carried out analytically under the
Debye-Hickel approximation. To be consistent with the lin- P
earized PB equatio(B), we consider the leading order con- 3\ R
tributions and discard higher order termseaf/kgT. Due to

a 4 a\®
C(R)—c<°>:fg°>[(§)—®l —@z(ﬁ) +202

8

the orthogonality property associated with the Legendre % a 10 10 a H (59)
polynomials, only thé®; mode in¢i(k) gives contributions to R R
the free energy. That is, the coefficiersg and C are re-
quired for the case of common charge density bpéndD  and
for difference charge density. As a consequence, the total free
energy of common charge density case becomes 0 a a|* a\® ol & !
D(R)-DO@=g —( S|-0, 5| -0,/ 5| —203 5
R R R R
Feo(R 1 1 C(R
D 2 (et 3 f pkdr3) “an a\® a\® ,
KeT k=112 2\ v, KeT ~ 03| 5| ~6010;| 5| —(0,+403)
2
e
+O(% + const. (52) .2 10+O a\t -
. R R |’ 9
For the case of difference charge density, we have
2 V. RESULTS AND DISCUSSION
Fe(R) el 1 ) 1 5| |D(R)
T & (=) s (4mate) + 5 V_Pkdr KT The electrostatic interaction between two aqueous micro-

droplets immersed in an oil medium is investigated. Two
2 fundamental problems, including two spherical droplets of
kB_T) +const. (53 common and dif[erence charge densities, are considered. Un-
der the Debye-Hekel approximation, the ion distributions
The interaction energW(R) is defined as the difference inside the droplets and the electric field are evaluated ana-

between the free enerdy,, of the droplets at separatidh  Iytically. The interaction energy can then be obtained based
and infinity, on the free energy calculations.

In spite of the fact that linearization of the P@PB)
W(R)=F4(R)—Fg (). (549) equation is a necessary step to make the problem analytically
tractable, the validity of the Debye-ldkel (DH) approxima-
Since the interaction energy is related to the separationjon in the present study can be justified as follows. When the
dependent terms, one has electric potential is small compared to the thermal energy,
e¢pl/kgT<1, the DH assumptioriLPB) is an accurate ap-
We(R)=4ma’Acd C(R) - C@], (55 proximation to the full PB equation. With a small amount of
ionic additives such as salt and ionic surfactant, the micro-
droplets formed by nonionic surfactants suclCas; possess
Wy(R)=4ma?AcyD(R)— D], (56) low electrical conductivity and also show percolation phe-
nomendg23]. These systems are not highly charged and cer-
for difference charge density. For the dropletwith net tainly LPB can be applied.
charge densitied o= o«— oy, the two-droplet interaction ~ Wheneg/kgT~1, LPB can also be valid. As discussed in
energy can be expressed as Ref.[24] for the counterion distribution within a microdrop-
let, a comparison of the surface potential obtained from PB
W(R)=27a%{Ac;[C1(R)— C{V1+Ac,[C,(R)— CT} with that from LPB shows that LPB is valid if the dimen-
sionless surface charge density=oeal(g,e0kgT)<10.
=4ma’{Ao[C(R)—CO]+ Aoy D(R)—DO1}, Hereo is the surface charge density and related to the num-
(57)  ber of counterions. This condition can be satisfied by a mi-

+0

for common charge density and
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crodroplet of radiusa=2.8 nm with 20 counterionsA 0.00
~5.1 (AOT w/o microemulsion [18,25. Addition of salt

can increase the upper limit & furthermore and therefore -0.01
the validity range of the DH approximation. For highly

charged systems for whicA is as large as 20, we have 0.02

performed Monte Carlo simulations based on a primitive
model and the Poisson equation recently. The results show
that the DH approximation can give a quite reasonable esti-
mation of the polarizability, which is responsible for the in-
duction interaction as will be shown in E(65). © -0.04
The formulation in the present work is, indeed, the in-
verse problem of two particles of low dielectric constant in 0.05
an agueous solutiof26]. The potential is set to zero at in-
finity and thus the reference concentratiofisin the Boltz-

-0.03

BT T

R . -0.06 —— Eq. (30)
mann distribution, Eq(2), are determined afterwards, | Eq. (58)
z.e(¢;—C) '0'0720 2|5 3Io 3I5 4Io 4I5 5Io 5I5 6.0
0 _ + i 3: . . R . .
fvlnt 1 T dr°=N_, (60) R/a

whereN. is the total number of positive and negative ions
inside the droplet, respectively. The reference concentrations
are independent of the interdroplet distance and essentially L
the average concentrations within the droplet, e’ 005 7
=N. /V;. In the present work, we assume the Debyeskél
parameters are the same for both droplets. This approxima-

tion is reasonable as long &8, — k| <k;. When k;# ko, 010k i
one still can obtain the interaction by solving the linear equa- 2 -
tions ofa, andf,, e.g., Eqs(19) and(20), for both droplets n
numerically.
The electrostatic interactions between two aqueous micro- -0.15 .

droplets with mobile ions inside, immersed in a low dielec-
tric solvent, are obtained in Eq&5) and (58) for common :
charge density and in Eqg$56) and (59) for difference 020 — Eq. (46)

charge density. This interaction energy is similar to the inter- -t | Eaq. (59)
molecular interactions involving the polarization of mol- e S —
ecules. The leading term is simply the Coulomb interaction, ' ' ' ' ' ' ' '

(4ma’Ao)?l(4me,e0R). The second term represents the Ria

charge-induced dipole interaction with; being related to FIG. 2. The variation of the dimensionless induced interaction
the polarizability, —[(47a’Ac)20,a%]/(47e,e0RY). It energy with the dimensionless interparticle distaita for two
will be explained later in detail. fundamental case$a) common charge density an@) difference

The polarization due to the existence of net charge leadsharge density.
to extra contributions to the interaction energy in addition
to the Coulomb interaction. The induction interaction differences between the two fundamental cases can be illus-
for common charge density is given as #d°Ao.)?  trated by comparing the two approximate solutions. The two
I(4mre4e0a)Ch 4 with CX=[C—CO-CcW/f®) The di- cases have opposite signs in the terms with odd powers, such
mensionless induced interaction enel@y, against the in- as®2(a/R)’, which reflects the polarization at the droplet 1
terparticle distance is plotted in Fig(a? at ka=1. The ap- due to the induced charge at the droplet 2.
proximate solution by keeping terms up ta/R)° in Eq. The electrical interactions for two microdroplets with any
(58) agrees quite well with the exact solution, Eg0). Simi-  charge densities can always be obtained by the linear super-
larly, Fig. 2b) shows the variation of the dimensionless in- position of two fundamental problems. For a droplet with net
duction interactionD?,,=[D—D©@—D®W/g{®) with Rfor ~ chargeQ and a neutral one, the interaction energy can be
difference charge density ati=1. The deviation of the ap- calculated according to Eqe57)—(59),
proximate solution, Eq(59), from the exact solution, Eq.

(46), becomes significant when two droplets are near contact. We — Q? 0 a 4+ 0 a 6+® a 8
Both C() and D™ denote the Coulomb contributions. The T 2(4mesegal HR 2| R 3R
induced interactions are essentially attractive for both cases 10 1

and the energy associated with difference charge density is +(0,+403) a 10 a (61)
larger than that associated with common charge density. The 4 VIR R
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It is an attractive interaction. In other words, the droplet with  TABLE I. The effect of ion concentrationga, on the electro-
net charge can polarize the neutral droplet and induce dipolstatic interactions of two microdroplets at contaRt: 2a, for two
quadrupole, and multipoles, i.e." Dole. Since the induced fundamental cases.

charge of opposite sign is located on the side near the

charged droplet, the polarization yields an attraction. Ka c-c@-ct D-D®-D®
The induction interaction has been considered in someg 4 —0.0544 —0.2083

detail in Refs[17] and[27]. Since the dielectric constant of 10 00549 02125

water is much larger than that of oil, the aqueous droplets are, 0.0570 0.2539

approximated as conducting spheres. Besides the assumptiotf00 00575 0.2890

e,/e,— 0, their analytical expression is obtained based on a ) '

point charge located at the center of the spheres. In our ap-

proach, the accuracy of the DH approximation has been jusgith

tified. In addition, the effect of dielectric mismatch is cor-

rectly considered and can be applied to systems with finite g5

ratio of dielectric constants. Moreover, our approach takes a=3e0e,V104 (65)

into account both the distribution of counterions and its con-

tribution to the induction interaction due to teatropyasso- For ka<1, we recover the classical result for a dielectric

ciated with mobile ions. At large separation asyd>e,, our  sphere ofe;,; immersed in a medium ok,, ©;=(e;

result, Eq.(61) reduces to their asymptotic result. Note that —¢,)/(e,+2¢,) [29]. On the other hand, foka>1, 0,

there is a typographical error in E(Z.4) of Ref.[16]. For  =1-—3¢,/kae;. As a consequenc®),=1 for e,<e; and

finite values ofe, / £,, however, the induction interaction can the polarizability associated with an aqueous microdroplet is

vary significantly with the ratio of the Debye length and the essentially determined by the volume of the droplet and the

droplet size ka. dielectric constant of the oil medium. Note that the charge
The importance of the induction interaction depends onQ)—nonpolar ¢) intermolecular interaction is given by

how close two microdroplets can approach each other. It has Q2a/[2(47e,¢,)2R*] [30]. Using the polarizability asso-

already been clearly demonstrated by experiments that tengiated with the microdroplet and accounting for two such

porary mergéfusion) of microemulsion droplets occurs very interactions, one can obtain the next ordeR*interdroplet

often and is responsible for material exchange between meontribution.

crodroplets[7-9,28. Thus, we believe that the short-range  The physical explanation dd, with n>1 can be illus-

steric repulsion due to the surfactant tail is unable to prevenated by considering the interaction of a point chafyeith

the contact of two aqueous cores. For two charged microa neutral microdroplet. The electric potential around the neu-

droplets, the Coulomb interaction dominates Risa. At tral droplet due to the polarization is given by

near contact condition, however, the induction attraction can

Ka,—|.
€1

be as large as about 40% of the Coulomb interaction. When Q a\""t a\"+!
one of the droplets is neutral, the induction attractiorRat $o=— Ame,e0a | R ngl On T Pn(cosd)
=2ais about 0.7, 2.7, and &3T at 298 K for the charged
droplet of Q=1,2, and &, respectively. Consequently, the for a<r<R. (66)
induction interaction may play an important role in determin-
ing the equilibrium structure of the microemulsion. The interaction energy is then obtained as
The physical meaning 00, can be comprehended by .
considering the polarization of a microdroplet under an ex- 1 Q? a\2n*2
ternally applied electric fieldE,.. The electric potentials in- W(R)=— 24me,epai sy "R 67

side and outside a microdroplet are given, respectively, by
_ Under an externally applied field by a point charge, the neu-
|o—0o o ig(kr)—ip(xa) tral droplet is polarized and multipoles are then induced. Evi-
bi= at dently, ®, is related to the polarizability associated with the

€0€2 K&p€y ié(xa) N ’ I . .
2" pole. The corresponding contribution to the interaction
i1(kr) a energy is attractive fol®,>0 and decays like B2,
+(1_1)i(Ta) FEoc'r (62 Equation(67) also points out that the primary contributions
! to the attraction between a charged and a neutral droplets are
and caused by the polarization due to the net charge.
The effect of ion concentrations within the aqueous core
o—o) a? a\?2 r] E,-r on the electrostatic interactions is demonstrated in Table I.
bo= vty b R (63)  We consider a few values ofa from xa<1 to xa>1.

Although the induced contribution does increase with in-
The induced dipole moment is related to polarizabiliter ~ Creasingga, the interaction energy is quite insensitivexa.
by [29] This result is indicative of the weak influence of the ion
concentrations on the interactions between aqueous droplets
p=«aE.., (64) in an apolar medium, i.eg,<e4. One can analyze this con-

061403-8



ELECTROSTATIC INTERACTION BETWEEN TWO . ..

TABLE II. The rate constants;; for collisions of two micro-

PHYSICAL REVIEW B5 061403

Since our approach is based on the mean-field theory, it

droplets with net chargesandj. koo andky are the rate constants predicts no interaction between uncharged microdroplets ac-

for hard sphere and Coulomb interactions, respectively.

i j ki /koo kij /Koo
+1 +1 1.25x10°? 2.02x10°2
+1 -1 14.06 14.16
+1 0 1 2.40

sequence furthermore by considering the valu@®gfin the
asymptotic limits ofka. For ka<<1,

where the asymptotic expression,,_1(2)/i,(2)=(2n
+1)/z for z<1, is used. In this limit®,, is independent of

ka. As g,=¢g4, ©,=0 for n=1 and therefore the interac-

tion energy reduces to the Coulomb interaction. Wiegn

cording to Eq.(57). However, just analogous to the disper-
sion force between neutral atoms, ion fluctuations inside a
microdroplet can generate an instantaneous dipole moment
and result in attractiof18,32. In addition, van der Waals
attraction also provide an interaction energy-oAa/12(R
—2a) as (R—2a)<a. The Hamaker constant &s=kgT for
water/hydrocarbon system. When the separatiorRis 2a)
~all2, the magnitude of the van der Waals interaction en-
ergy is about kgT, which is less than the induction interac-
tion for Q=2e. Though the van der Waals interaction di-
verges af— 2a, steric repulsions due to surfactant tails and
shape fluctuations of microdroplets will most likely prevent
the aqueous cores from making very close approach to one
another.

We have dealt with a two-body problem by the method of
twin-spherical harmonic expansion. When current results are
applied to a many-body problem, one must be careful about
polarization near the oil/water interface and the boundary
effect of the system since electrostatic interactions are long
ranged,~1/R. In principle, a rigorous approach based on
similar multipole expansion can be applied to a many-body

#¢1, there is anO(R™“) leading contribution due to the system. Because the induction interaction is relatively short
charge-induced dipole interaction and our result becomes theinged, 1R*, we believe that the current results are usable in
interaction between two dielectric spheres in a medium. Oy many-body problem by the assumption of pairwise additiv-

the other hand, foka>1,
Eo n
€1 Ka
®n_ €9 n+1
1+ —=——
€1 Ka

Here the asymptotic expressioii(z)/i,(z)=1—z"1 for z
>1, is employed. Whem<«xa(eq/e,), ®,=1. Since the
interaction is dominated by the first few poles, the depen-
dence uporxa is insignificant as long as,<e;.

ity.

In the present work, the size of the droplet is assumed the
same. It is obviously an atypical situation. For two micro-
droplets of unequal sizes, nevertheless, one can still estimate
the interaction approximately based on current results. As
two droplets are slightly different in size, one can adopt an
arithmetic mean of radii in Eq57). On the other hand, for
large size ratio, the interaction can be approximated by Eqg.
(61) for the interaction between a point charge and a micro-
droplet. The effect of externally applied electric field is not
considered here. The interaction of two microdroplets may
be substantially influenced in such a circumstance. More-

Because of Brownian motion, two microdroplets ap-
proach one another very frequently. During these Brownia
collisions, the electrostatic interactions may have a profoun
effect on the rate of encounter. For a diffusion-limited pro-

over, the interactions may be significantly altered for micro-
réiroplets containing nanoparticl€33,34.

cess, the rate of collision ikn3, whereny is the number
concentration of the droplet. The rate constarfor two-
droplet collisions is related to the interaction energy{ 8Y]
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k=8mDa
R2

. -1 009.
fR=2a

, (68)
where D is the Brownian diffusivity. The ratio of the rate  The solutions off ) andC® can be solved by the itera-

constant for two droplets with net chargeandj, k;; , to that  tjon method as shown in Eq&27)—(30). Here we perform

of hard spheresky,, is given in Table II. In addition to the the process and obtain the analytical form. Inserting(E4).
contribution associated with hard spheres, the rate constafpio Eq.(30), one has

kﬁ includes the Coulomb term only bk, takes into account

the complete electrostatic interactions. The result points out
that the induced attraction between a charged and a neutral
droplet enhances their collision rates more than two times.
The polarization effect on the rate constant is more signifi-

cant for the attraction than the repulsion. Using Eq.(28), C® is obtained,

APPENDIX

a 1

C(1)=f80) =

(A1)
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> 2n+2 As a consequence, one can deduce that
@— _§(0 a
CP=—f0% Ol = (A2) . .
n=1 fgk):(_l)kf80)®nn2=1 ...n2=l ®”1”'®”k71
According to Egs(28) and(29), we have ! Kt
n-+ny Ne_o+Ne_q | [a\nt2Mt - +ne-g)+k
* n+m a n+2m+2 X P — ,
1P=100,> O = (A3) Ny M1 IR
m=1

(A7)

©

Substituting the aboye result into E@0), C*) is obtained,

n+m)/a)2n+m c®=(—1)k-1£(0) ® ...0
CO=tO> > 0,0, = . (A4) (=07 nlzzl nzzl LR
n=1m=1 R
, . ni+n, Ne_o+N_q) [ a) 2t +ne-a)+k
Repeating the same procedure yields N e N R
®  w 2 k—1
n+m\/ m+p
fP=—10,2 2 0,0, (A8B)
m=1 p=1 m P
a\n+t2m+2p+3 Similarly, for the case of difference charge density, the ref-
X\ R (A5)  erence potentiaD® is given by
and .. . L D(k):_gBO)nzl nz . ®n1“.®”k—1
n+mj/m = -1=
cOw=—fOY 3 > 0,010, P 1 k-1
A=1m=1p=1 p ni+n, Ne_p+Ne_q) [ a) 2t +n-1)+k
X - _
a\2(n+m+p)+4 n, Ni_1 R
X J—
R (A6) (A9)
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