
PHYSICAL REVIEW E, VOLUME 65, 061305
Elastic behavior in contact dynamics of rigid particles
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The systematic errors due to the practical implementation of the contact dynamics method for simulation of
dense granular media are examined. It is shown that, using the usual iterative solver to simulate a chain of rigid
particles, effective elasticity and sound propagation with a finite velocity occur. The characteristics of these
phenomena are investigated analytically and numerically in order to assess the limits of applicability of this
simulation method and to compare it with soft particle molecular dynamics.
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I. INTRODUCTION

In computational physics one can distinguish between
different validation tasks, which have to be solved in orde
make simulations a useful research tool. First, one m
prove the validity of a simulation model by comparing
results to laboratory experiments, and second, equally im
tant, one must assess the systematic errors due to the p
cal implementation in order to tell, how precisely the sim
lation results reflect the theoretical properties of t
simulation model. In this paper we address the second
of validation problem for the simulation technique ofcontact
dynamics~CD!, which was developed about ten years a
@1–3# with the aim to investigate granular media@4# in the
limit of high rigidity of the particles at a high packing den
sity. This method has been successfully applied to reprod
experiments~see, e.g.,@5#!. However, its systematic error
and the computational effort to keep them tolerably sm
have not been investigated in detail before.

This is in marked contrast to other discrete eleme
methods for granular media~cf., e.g.,@6#!, in particular, the
soft particle molecular dynamics~MD! simulation model,
which has been widely used for more than 20 years@7#.
During this time possible pitfalls such as thedetachment
effect@8# and thebrake failure effect@9# could be discovered
analyzed, and hence avoided.

Contact dynamics simulations have been applied to st
a large variety of questions in dense granular systems, w
excluded volume interactions and static friction, so-cal
unilateral constraints, are believed to be essential@10–14#,
but it should be mentioned that such constraints arise als
other areas such as virtual reality, engineering, especiall
robotics, and operations research, where the numerical t
ments are similar@15,16#.

In a system of perfectly rigid particles, the sound veloc
would be infinite. This is, in principle, borne out by the co
tact dynamics simulation model. However, its practic
implementation will normally give rise to sound waves in t
granular material, as we are going to show in the followin
even if each single collision is modeled as being perfec
inelastic. Our aim is to elucidate this artifact after introdu
ing briefly the principles of this method.
1063-651X/2002/65~6!/061305~7!/$20.00 65 0613
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II. THE CONTACT DYNAMICS METHOD

First, let us point out the basic difference between MD
one side and CD on the other. Both have in common,
integration of Newton’s equation of motion where the occ
ring forces are due to external fields~gravity! or are—more
important—contact forces, i.e., caused by contacts betwee
particles or their contacts with confining walls.

The spirit of MD is to calculate the contact forces acco
ing to theircause, i.e., the~usually microscopic! deformation
of the contact region and the involved velocities. Since,
full treatment of every particle as a deformable body wou
render the simulation of a large number of particles exce
ingly time consuming, a lot of models exist, how to repla
the deformation by the local overlap@17#, the latter being a
virtual quantity obtained from the undeformed shapes.

The principles of CD are different: Here the contact forc
are calculated by virtue of theireffect, which is to fulfill
certain constraints. Typically, such a constraint is the volu
exclusion of the particles or the absence of sliding due
static friction. As can be seen immediately, this problem c
not be solved locally: In a cluster of particles where ma
contacts are simultaneously present, the force at one con
depends on adjacent contacts and so on. In that case the
is to find a global force network, which is consistent with t
constraints at all contacts. The method to carry out this c
culation is often called thesolver in this context, which is
commonly an iterative scheme, as the one we describe in
following section. In order to make our points very clear, w
perform an analytical investigation for a one-dimensional
ample but can prove the existence of the discovered effec
two dimensions as well.

A. The dynamical equations

As CD is designed to obey excluded volume constrai
exactly, particle collisions lead to discontinuous veloc
changes~‘‘shocks’’!, i.e., to nonsmooth mechanics@18#.
Therefore, higher order terms than that of employed in
Euler integration scheme are of no use. For thei th particle’s
positionsxi , this reads

xi~ t1Dt !5xi~ t !1v i~ t1Dt !Dt, ~1!
©2002 The American Physical Society05-1
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UNGER et al. PHYSICAL REVIEW E 65 061305
and correspondingly for its velocityv i we have

v i~ t1Dt !5v i~ t !1
Fi~ t1Dt !

m
Dt, ~2!

whereFi is the total force acting on the particle,m its mass,
andDt is the time step.

A remark about the Euler scheme~2! being implicit is in
order: Whereas in conventional MD the choice of evaluat
the force for the previous or for the new configuration~i.e., at
t or t1Dt, respectively! is merely a matter of stability of the
integration scheme~cf., e.g.,@19#!, the constraints in CD can
only be imposed on thenewconfiguration. In this sense, th
integration scheme of CD is inevitably of implicit type.~Tak-
ing into account the configurational change during a ti
step consistently@fully implicit integration@3## leads to dif-
ficulties that are analogous to implicite schemes in M
when the forces have to be evaluated for the yet unkno
new configuration. In one dimension, though, these diffic
ties do not arise.!

1. One contact

We now turn to the force on thei th particleFi occurring
in Eq. ~2!: In order to determine it one has to know th
contact forces between the grains. In CD they are calcula
from the condition that the constraints must not be violat
In one dimension and if one disregards rotations, this is s
ply the excluded volume contraint. To give a specific e
ample, let us consider two particles with equal massem
subjected to constant external forces~Fig. 1!. A contact force
R ~which is the reaction force due to the constraint! is active
only, if interpenetration needs to be prevented. Otherw
i.e., if the gapg would remain non-negative~no overlap!
anyway, it takes on its minimal value,R50 ~this is ex-
pressed in the CD literature asSignorini’s condition!. With-
out the repulsionR between the particles the gap at the e
of a time step would be given by

g85gt1~v2,t2v1,t!Dt2
F1

ext1F2
ext

m
Dt2, ~3!

according to Eqs.~1! and~2!. However, the excluded volum
constraint requires thatgt1Dt5max$g8,0%. In order that this
results from Eqs.~1! and ~2!, the contact forceRt1Dt
5max$R8,0% must be taken into account, where

R852
mg8

2Dt2
, ~4!

5
m

2Dt S 2gt

Dt
1v1,t2v2,tD1

F1
ext1F2

ext

2
. ~5!

FIG. 1. A pair of particles.
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Note that this scheme corresponds to a completely inela
collision ~i.e., with the so-calledrestitution coefficientbeing
zero!, which is accomplished in two time steps: At first th
gap closes, in the next step also the relative velocity v
ishes.~Finite restitution coefficients can also be incorporat
into this algorithm@20#.!

The above determination of the contact force has a dr
back, though: Ifgt,0 occurs due to a previous inaccurac
then theelimination of this overlap is accompanied by
surplus of kinetic energy. Therefore, mostly thequasi-
inelastic shockformula @3#

R85
m

2Dt S 2gt
pos

Dt
1v1,t2v2,tD 1

F1
ext1F2

ext

2
~6!

is used instead of Eq.~5!, where gt
pos5max$0,gt%. That

means, negative gaps are treated differently from Eq.~5! in
such a way that an already existing overlap is not elimina
but only its further growth is inhibited. Hence the inelas
shock law~6! is in a way even ‘‘more inelastic’’ than the
original law ~5!, because it avoids overlap correcting im
pulses which could destroy stable equilibrium states.

2. Many contacts

We now address the question of how to solve the prob
of the constraint forces, if we consider not only one, b
many contacts at the same time. Figure 2 shows such a
tem, whereRi denotes the contact force between the partic
i andi 11, and for the sake of simplicity we have no extern
force acting on them. Furthermore, we will concentrate
the situation, where the neighboring pairs are permanentl
contact ~i.e., gi ,t

pos50) which corresponds to compresse
dense packings.

For the i th contact in this setup,Ri 21 andRi 11 play the
role of the external forces in Eq.~6!, though they are not
constant, their values are not known for the next time ste

Ri ,t1Dt5
m

2Dt
~v i ,t2v i 11,t!1

Ri 21,t1Dt1Ri 11,t1Dt

2
. ~7!

Obviously, the contact force is coupled to the neighbor
contacts and through those to further contacts. In a sim
way, in higher dimensions, large numbers of contacts
coupled within clusters defined by the contact netwo
Hence, the determination of the proper reaction forces
comes a global problem.

A standard way in CD is to solve this problem iterativel
In one iteration step we calculate the forces according to
constraint conditions pretending that the correspond
neighboring contacts already exhibit the right forces. In t
way the process traverses the list of contacts many tim

FIG. 2. A multi contact situation in a 1D array. External forc
act only on particles far away from those shown. Each particle
subjected only to the contact forces of the adjacent ones.
5-2
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ELASTIC BEHAVIOR IN CONTACT DYNAMICS OF . . . PHYSICAL REVIEW E 65 061305
until satisfactory convergence is reached~for the question of
the convergence cf. the works@21,22#!.

For our one-dimensional~1D! chain of particles, this
means that Eq.~7! simply gets the meaning of anassignment
of the right-hand side to the left-hand side, and one itera
step consists of applying this assignment sequentially onc
each contact. The order of this sequence is preferably
dom ~with the pattern changing for every sweep!, in order
not to create any bias in the information spreading@23#. With
each sweep a globally consistent solution is approached
til finally a chosen convergence criterion is fulfilled.

In the following section we shall show, what kind of co
sequences the local update scheme presented here h
large time and length scales.

III. THE LARGE SCALE DESCRIPTION

In order to analyze the coarse grained behavior of
microscopic equations derived in the last section, we
also regarded them as the discretized form of a continu
description, making a treatment in terms of partial differe
tial equations~PDE! possible. In order to obtain the corre
sponding PDEs, we consider the particle indexi as space
variablex and replace the differences of consecutive qua
ties by derivatives, the error term for the first- and seco
order derivatives being of first and second order, resp
tively. For example,v t1Dt2v t→Dt ] tv and Ri 111Ri 21

22Ri→d2]x
2R, whered is the particle diameter.

A. The relaxation of the contact forces

While the continuum versions of the updates~1! and ~2!
can be obtained straightforwardly, the force change~7! lacks
a time variable, for during the force iteration, being just
calculation, no physical time passes. Hence, to be abl
describe this force development as well, let us introduc
fictitious time t* with time interval Dt* for one iteration
step. With this, the continuum version of Eq.~7! reads

] t* R5D]x
2R2b]xv ~8!

with D5q
d2

Dt*
, ~9!

b5q
md

DtDt*
, ~10!

and q5
1

2
. ~11!

This analytic form clearly reveals the nature of the iterat
loop: The reaction forces relax towards the solution in a d
fusive way.~Note that the]xv term is constant int* , it only
depends onx.!

The introduction of the constantq reflects a subtlety re
garding the sequential character of the update discusse
the Appendix. In fact, since the PDE~8! describes the chang
of the whole fieldR(x) at once, given its actual value at time
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t* , it corresponds to aparallel update~in the sense, that the
right-hand side of Eq.~7! always employs the valuesRi from
the beginningof the iteration sweep, not the freshly updat
ones!. In the Appendix we shall show, though, that a rando
sweep update instead of a parallel one only renormalizes
value ofq to about 0.8, while leaving the form of the PD
untouched.

B. Sound waves

To connect the velocity update, whose continuum vers
follows immediately from Eq.~2! as

] tv52
d

m
]xR, ~12!

to the force update, we must relate the ‘‘iteration time’’t* to
the physical timet. Although, depending on the convergen
criterion, there can be, in principle, a varying number
iterations during one physical time stepDt, we assume for
simplicity this numberNI being fixed.~Actually, in practice
this crude ‘‘criterion’’ is sometimes applied.!

Hence, withDt5NIDt* , we can express everything i
terms of the physical time

] tR5D]x
2R2b]xv ~13!

and D5qNI

d2

Dt
, ~14!

b5qNI

md

Dt2
. ~15!

With the Eqs.~12! and~13! we obtained two coupled PDEs
We can combine them to arrive at a wave equation with
additional damping term

] t
2R5c2]x

2R1] t~D]x
2R!. ~16!

The sound velocity appearing is of finite value

c5AqNI

d

Dt
. ~17!

This equation indicates that the CD simulation of the p
ticle chain, as presented in the preceeding section, can lea
sound propagation like in an elastic medium, which, ho
ever, contradicts the conception of perfect rigidity. The co
straint conditions applied at the contacts should, in princip
prohibit overlaps, i.e., prohibit elastic deformation of th
grains. It can be seen that this deviation from the perf
rigidity enters at the force relaxation: A finite number
iterations means a finite range for the information spread
and thus yields systematic errors in the calculated reac
forces. As a consequence, the finiteNI involves soft particles
and a finite sound velocityc;ANI . Note that in the limit of
an infiniteNI , the exact value of the forces is reached, wh
corresponds to the casec→`, as it should be for rigid par-
ticles.
5-3
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UNGER et al. PHYSICAL REVIEW E 65 061305
1. Dispersion

Performing a Fourier transformation on Eq.~16!, one ob-
tains the properties of the different wave modes. The os
lation frequencyv of the wave numberk is

v~k!5kAc22
D2k2

4
. ~18!

That means,v(k) becomes zero at a critical wave numbe

kc5
2c

D
;

1

ANI

, ~19!

and waves withk larger thankc ~short wavelengths! are over-
damped. The damping timet(k) for the oscillating modes is
given by

t~k!5
2

Dk2
. ~20!

We derived the dispersion relation~18! in the continuum
limit which is a good approximation for small wave num
bers, but not near to the border of the Brillouin zone (kBr
52p/d), where the effect of the spatial discreteness can
strong. However, increasing the number of the iterations s
ficiently, kc becomes small compared tokBr . Actually, for
NI>10 the formula~18! works well not only for small wave
numbers but also for all the oscillating modes, as could
verified numerically.

2. Numerical confirmation

In order to confirm the results of this section, we pe
formed the following numerical experiment: The startin
configuration of the simulation consists of an array of
disks and an immobile wall, the geometry can be seen in F
3. Initially the gap between the wall and the leftmost partic
is one disk diameter (d), the gap between the particles
zero, and the array has zero velocity. Starting fromt50, a
constant external force (Fext) is acting on the rightmost par
ticle, which accelerates the array towards the wall~only hori-
zontal motion takes place!. As simulation parameters we
choseNI540 andFext50.05dmDt22.

The collision with the wall induces a relative motion o
the grains and generates sound waves in the array. Aft
transient period, the grains remain permanently in con
~the whole array is pressed against the wall byFext). Since
the different wave modes have different relaxation time, a
a while only the largest wavelength mode survives. T
wavelength is four times the system size because the
represents a fixed boundary while the right side is free. Si

FIG. 3. The initial configuration of the numerical experiment f
testing the properties of the sound waves.
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the wavelength is given, the oscillating frequency and
damping time can be calculated from Eqs.~18! and ~20!,
respectively. For comparison with the simulation we me
sured the motion of the rightmost particle. The expected m
tion is a damped oscillation

x~ t !5x01A exp~2t/t!sin~vt1f!, ~21!

where the offsetx0, the amplitudeA, and the phase shiftf
have to be fitted~in contrast tov andt) for a comparison. In
Fig. 4 the measured data~dots! and the fitted curve can b
seen. It shows that the simulation is in good agreement w
our continuum description.

C. Global elasticity

It is instructive to compare our test system to its simpl
MD counterpart, where the contact forces depend linearly
the local kinematic variables, i.e., the so-calledlinear spring/
dashpot model

Ri52k~xi 112xi2d!2g~v i 112v i ! ~22!

with the spring stiffnessk and the damping coefficientg.
Employing again the updates~1! and ~2! for the positions
and velocities, respectively, the continuum limit yields t
same type of PDE as in Eq.~13! with its coefficients being
inherited from Eq.~22!:

] tR5
gd2

m
]x

2R2kd]xv. ~23!

This allows us to relate the physical MD model paramet
to the ‘‘technical’’ CD parameters

k5qm
NI

Dt2
~24!

and

FIG. 4. Damped oscillation in a contact dynamics simulatio
The dots indicate the measured data: the position of the rightm
particle vs time~for details see the text!. The line is an exponen-
tially damped sinus function, where the frequency and the damp
time is provided by our continuum model.
5-4
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g5qm
NI

Dt
. ~25!

This equivalence shows that on large scales the CD c
should behave identical to its MD counterpart, e.g., it w
exhibit a global shrinkage proportional to an external co
pressive load. Note that a real congruence can be expe
only for the collective behavior but not on the level of th
contacts. In the CD method, as explained above, the con
forces are not related to the overlaps, which must merely
regarded as due to the incompleteness of the force calc
tion and in fact are stochastic quantities because of our
dom update procedure. Only on scales larger than the g
size, where the fluctuations of these local ‘‘deformations’’ a
averaged out, the behavior can be smooth such as in an
tic medium, as is shown in Fig. 4.

In Secs. III B and III C, our calculation was based on t
assumption of a constant number of iterations for every t
step, and due to this premise the analytical treatment bec
simple and directly comparable to the corresponding sim
tion. We should keep in mind, though, that the application
a convergence criterion involves a fluctuatingNI ~i.e., it can
vary from time step to time step!, and therefore steps with
different ‘‘stiffness’’ are mixed during the integration of mo
tion. Consequently, the behavior of the CD method is m
complex in detail, but qualitatively the results for the co
stantNI remain relevant also here.~For example, the mecha
nism resulting in soft particles or the way, how shock wav
can arise with finite velocity.!

IV. 2D SIMULATION

After the analysis of the regular 1D system, the import
question arises whether the behavior is similar in higher
mensions and less regular systems. Hence, we performed
simulations with two-dimensional random packings of dis
and observed the same ‘‘elastic’’ waves~even transversa
modes were found!.

The simulation presented here consists of 1000 disks w
radii distributed uniformly betweenr min andr max52rmin , the
mass of each disk being proportional to its area. Figur
shows the geometry. The base and the two side walls

FIG. 5. The setup of a numerical experiment in two dimensio
A dense packing of 1000 disks is prepared in a container via c
pressing the system by means of the mobile upper wall.
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fixed while the upper piston is mobile. Starting from a loo
state, we compressed the system and waited, until the p
ing reached an equilibrium state~the compression forceF
applied on the piston was kept constant!. The simulation was
carried out without gravity and with a Coulomb friction co
efficient of 0.05 for all the disk-disk and disk-wall contac
~cf. Ref. @24#!.

After the packing was relaxed completely, we genera
sound waves by increasing the compression force abrupt
F1DF. After a transient period only one standing wa
mode survives~both the wave number vector and the colle
tive motion are vertical!, where the piston, representing
free boundary, oscillates with a relatively large amplitud
We measured the vertical position of the piston versus t
and found that the data can be fitted by an exponenti
damped sine function~Fig. 6!. Here, in contrast to the 1D
case, alsov and t are fit parameters, since, due to the d
ferent geometry, the values~18! and~20! cannot be adopted
but, because of the random structure of the system, a m
complex treatment is required for a quantitative descripti
However, we checked the most important relation, nam
that the scaling properties ofv and t remain valid also for
the 2D random system, that isv;ANI andt;NI

21 , which
means that the artificial viscoelasticity of the particles d
pends on the number of the iterations in the same manne
we showed for the 1D chain.

V. DISCUSSION

The artificial elasticity found in CD simulations was an
lyzed. We showed that the systematic errors of the fo
calculation can lead to a collective elastic behavior, ev
though single contacts are assumed perfectly rigid and
fectly inelastic. For the 1D chain of particles, we could, sta
ing from the ‘‘microscopic’’ laws, reproduce the numeric
results analytically, including the dependence of the effect
stiffness and viscous dissipation of the contacts on the c
putational parameters (NI ,Dt).

Besides elucidating the origin of the elastic behavior,
coarse grained description reveals important characteris
of the CD method, which were less obvious on the discr
level. We saw that using the iterative solver, the proper c

.
-

FIG. 6. Oscillations in a 2D simulation are similar to the 1
case. Here the sound waves are generated in a random dense
ing of disks. The dots are the measured position of the upper wa
time ~see Fig. 5!, while the curve is a fitted exponentially dampe
sinus function.
5-5
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tact forces are approached in a diffusionlike manner that
crucial information concerning the computational time. T
conception of perfectly rigid particles requires that the c
culated forces are consistent even for contacts far from e
other. Therefore, the ‘‘diffusion length’’ADDt must be
larger than the linear system sizeL, which defines a lower
boundary for the number of iterations of the order (L/d)2.
The same condition is obtained if we want to avoid oth
consequences of the effective softness. For example, if
want the sound to travel a larger distance thanL during one
time step~i.e., c.L/Dt) or if we would like all possible
wave modes to be overdamped~i.e., with lc.L no oscilla-
tions!. All these cases are equivalent, one is forced to app
relatively large number of iterations,NI;L2. Going further
on this line, the scaling with respect to the number of p
ticlesn can be determined: One step of the iteration cons
of as many force updates as there are contacts, whic
proportional ton. Therefore, the computational effort of on
time step scales with the particle number likenNI , which is
;n2 in 2D or ;n5/3 in 3D. Therefore, a large CD simulatio
is computationally more costly than MD, where the comp
tational effort scales liken. This is the price for simulating
rigid particles without getting elasticity artifacts, which ca
not be done with MD.

To avoid this superlinear scaling when dealing with lar
systems, we can also accept the finite stiffness by keepinNI
constant independently ofn. Then, besides gaining a runnin
time of the order ofn, of course, elastic deformations an
sound waves can arise with an increasing number of the
ticles, and consequently they have to be monitored. We w
to mention the idea, though, that in certain situations adv
tage can be taken of the artifact. For example, when be
applied deliberately, Coulombian friction can be combin
with global elasticity easily; this way considerable compu
tional time could be saved and even better performance
MD could be achieved.
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APPENDIX: q FOR THE RANDOM SWEEP UPDATE

To find the proper value of the constantq appearing in
Sec. III, two more things have to be taken into account: F
the sequential type of the force update, and second tha
order is random. The latter results in a stochastic force re
ation, i.e., the change ofRi in one iteration sweep is a sto
chastic variable. In order to obtain a similar equation as
~8! we shall determine the average value^DRi&, where the
average for sitei is meant to be taken over all possible u
date sequences.

Before going any further, let us introduce the followin
notations:

~1! For N being the total number of contacts, the mappi
u:$1, . . . ,N%→$1, . . . ,N% denotes the order of the upda
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sequence; i.e., if the contact labeledi is updated beforej,
thenui,uj .

~2! Throughout this appendix, the notationRi means the
value from the beginning of the iteration sweep, the value
the end isRi1DRi .

~3! We definedRi as the change according to a paral
update@cf. Eq. ~7!#, i.e.,

dRi5
m

2Dt
~v i2v i 11!1

Ri 211Ri 1122Ri

2
, ~A1!

as opposed to thetotal changeDRi .
Given that, it can easily be seen howDRi depends on the

update order. If, e.g., the sitei is updated earlier than its
neighbors~i.e., ui 21.ui,ui 11), thenDRi5dRi , but in the
case ui 21.ui.ui 11,ui 12, we get DRi5dRi1dRi 11/2
@because for contacti, Eq. ~7! employs the already update
force at contacti 11#. Similarly ~but with less probability!
even very far contacts can contribute toDRi , which can be
summarized in the following way:

^DRi&5dRi1(
r

1

2r
~prdRi 2r1prdRi 1r !. ~A2!

Here, pr is the probability thatDRi contains information
from the update of a contact at distancer, that ispr5P(ui
.ui 11.•••.ui 1r). ~This definition holds true for contribu
tions from contacts with labels higher thani, but due to left-
right symmetry the same value is inevitably obtained for
corresponding lower ones.!

The value ofpr can be obtained from the following com
binatorial consideration: Given an indexi and a distancer,
we can classify the set of all update orders into groups s
that the sequences in one group differ only in the permu
tions of the elementsuj , i< j < i 1r . Such a group contains
(r 11)! sequences, but only one of them satisfies the con
tion ui.ui 11.ui 12.•••.ui 1r . Since all update se
quences are equally probable, the value ofpr is equal to
1/(r 11)!.

The factor @2r(r 11)!#21, relating the contactsi and i
1r , decays faster than exponentially; already forr 58, it
drops below 1026. Therefore, the sum in Eq.~A2! reaches
only the immediate vicinity of contacti, such that, for our
large wavelength considerations, the approximationdRi 1r
'dRi can be applied. This allows us to calculate the aver
change of the contact force

^DRi&5dRiS 112(
r 51

`
1

2r~r 11!!
D 5dRi~4Ae25!.

~A3!

Thus, it is shown that the random sweep results in a lar
change ofRi than the parallel update. Equation~A3! pro-
vides also the sought value of the parameterq as

q5
4Ae25

2
'0.797, ~A4!

which completes the continuum description given in Sec.
5-6
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