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Elastic behavior in contact dynamics of rigid particles

T. Unger'? L. Brendel® D. E. Wolf? and J. KertsZ
IDepartment of Theoretical Physics, Budapest University of Technology and Econoniits] Budapest, Hungary
2Institute of Physics, Gerhard-Mercator University Duisburg, D-47048 Duisburg, Germany
SLMGC, University of Montpellier 11, 34095 Montpellier cedex, France
(Received 27 March 2002; published 25 June 2002

The systematic errors due to the practical implementation of the contact dynamics method for simulation of
dense granular media are examined. It is shown that, using the usual iterative solver to simulate a chain of rigid
particles, effective elasticity and sound propagation with a finite velocity occur. The characteristics of these
phenomena are investigated analytically and numerically in order to assess the limits of applicability of this
simulation method and to compare it with soft particle molecular dynamics.
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I. INTRODUCTION IIl. THE CONTACT DYNAMICS METHOD

. . T First, let us point out the basic difference between MD on
In computational physics one can distinguish between two . :
. L : . one side and CD on the other. Both have in common, the
different validation tasks, which have to be solved in order to : . . .
. ! . Integration of Newton’s equation of motion where the occur-
make simulations a useful research tool. First, one mus ) )
. i . .~ .. ring forces are due to external fiel@gravity) or are—more
prove the validity of a simulation model by comparing its . .
. ] important—eontact forcesi.e., caused by contacts between
results to laboratory experiments, and second, equally impor-_" " . ; L
. articles or their contacts with confining walls.
tant, one must assess the systematic errors due to the practi-

X o . : The spirit of MD is to calculate the contact forces accord-
cal implementation in order to tell, how precisely the SIMU-.. 40 theircause e the(usually microscopicdeformation
lation results reflect the theoretical properties of the 9 1€ y b

of the contact region and the involved velocities. Since, the

P .
of validation problem for the simulation techniqueaaitact ful treatmen_t of cvery particle as a deformable_ body would
render the simulation of a large number of particles exceed-

dynamics(CD), which was developed ahout ten years agoin ly time consuming, a lot of models exist, how to replace
[1-3] with the aim to investigate granular medi in the gy 9, ' b

- T : . . the deformation by the local overldfp7], the latter being a
l'T't 1(_);‘]_h|gh {;‘?I((jjltf)]/ oftt)he particles ?t”a hlghlipgciklng de(rj]- virtual quantity obtained from the undeformed shapes.
sity. This method has been successtully applied 1o reproduce. q principles of CD are different: Here the contact forces

experiments(see, €.g.[5]). However, its systematic errors are calculated by virtue of theieffect which is to fulfill

and the computational effort to keep them tolerably smallog1ain constraints. Typically, such a constraint is the volume

have not been investigated in detail before. exclusion of the particles or the absence of sliding due to
This is in marked contrast to other discrete elementsagic friction. As can be seen immediately, this problem can-
methods for granular mediaf., e.q.,[6]), in particular, the  not be solved locally: In a cluster of particles where many
soft particle molecular dynamic§MD) simulation model, contacts are simultaneously present, the force at one contact
which has been widely used for more than 20 yedis  depends on adjacent contacts and so on. In that case the aim
During this time possible pitfalls such as tlietachment s to find a global force network, which is consistent with the
effect[8] and thebrake failure effecf9] could be discovered, constraints at all contacts. The method to carry out this cal-
analyzed, and hence avoided. culation is often called theolverin this context, which is
Contact dynamics simulations have been applied to studgommonly an iterative scheme, as the one we describe in the
a large variety of questions in dense granular systems, wheffellowing section. In order to make our points very clear, we
excluded volume interactions and static friction, so-calledeerform an analytical investigation for a one-dimensional ex-
unilateral constraints, are believed to be esseftial-14, ample but can prove the existence of the discovered effect in
but it should be mentioned that such constraints arise also ifwo dimensions as well.
other areas such as virtual reality, engineering, especially in
robotics, and operations research, where the numerical treat-
ments are similaf15,16]. A. The dynamical equations

In a system of perfectly rigid particles, the sound velocity ~ As CD is designed to obey excluded volume constraints
would be infinite. This is, in principle, borne out by the con- exactly, particle collisions lead to discontinuous velocity
tact dynamics simulation model. However, its practicalchanges(“shocks”), i.e., to nonsmooth mechanid48].
implementation will normally give rise to sound waves in the Therefore, higher order terms than that of employed in the

granular material, as we are going to show in the following,gy|er integration scheme are of no use. Foritheparticle’s
even if each single collision is modeled as being perfectlyygsitionsx; , this reads

inelastic. Our aim is to elucidate this artifact after introduc-
ing briefly the principles of this method. Xj(t+At)=x;(t) +v;(t+At)At, @
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R FIG. 2. A multi contact situation in a 1D array. External forces
FIG. 1. A pair of particles. act only on particles far away from those shown. Each particle is
subjected only to the contact forces of the adjacent ones.
and correspondingly for its velocity; we have
Note that this scheme corresponds to a completely inelastic
Fi(t+At) collision (i.e., with the so-calledestitution coefficienbeing
vi(t+ A =vi(t)+ TM' (2> zerg, which is accomplished in two time steps: At first the
gap closes, in the next step also the relative velocity van-
whereF; is the total force acting on the particla its mass, ishes.(Finite restitution coefficients can also be incorporated
and At is the time step. into this algorithm[20].)

A remark about the Euler schen@@) beingimplicit is in The above determination of the contact force has a draw-
order: Whereas in conventional MD the choice of evaluatingoack, though: Ifg,<0 occurs due to a previous inaccuracy,
the force for the previous or for the new configuration., at  then theelimination of this overlap is accompanied by a
t ort+ At, respectivelyis merely a matter of stability of the surplus of kinetic energy. Therefore, mostly thpiasi-
integration schemét., e.g.,[19]), the constraints in CD can inelastic shocKormula[3]
only be imposed on theewconfiguration. In this sense, the pos
integration scheme of CD is inevitably of implicit typ@ak- R = 1( — Ot
ing into account the configurational change during a time 2At\ At
step consistentlyfully implicit integration[3]] leads to dif-
ficulties that are analogous to implicite schemes in MD,is used instead of Eq(5), where gf**=max0,g;}. That
when the forces have to be evaluated for the yet unknowmeans, negative gaps are treated differently from(Bgin
new configuration. In one dimension, though, these difficul-such a way that an already existing overlap is not eliminated
ties do not arise. but only its further growth is inhibited. Hence the inelastic

shock law(6) is in a way even “more inelastic” than the
1. One contact original law (5), because it avoids overlap correcting im-
pulses which could destroy stable equilibrium states.

Fixt+ FSXt
T ®

tui— vy

We now turn to the force on thieh particleF; occurring
in Eq. (2): In order to determine it one has to know the
contact forces between the grains. In CD they are calculated
from the condition that the constraints must not be violated. We now address the question of how to solve the problem
In one dimension and if one disregards rotations, this is simof the constraint forces, if we consider not only one, but
ply the excluded volume contraint. To give a specific ex-many contacts at the same time. Figure 2 shows such a sys-
ample, let us consider two particles with equal masses tem, whereR; denotes the contact force between the particles
subjected to constant external for¢€sy. 1). A contact force i andi+ 1, and for the sake of simplicity we have no external
R (which is the reaction force due to the constraiatactive  force acting on them. Furthermore, we will concentrate on
only, if interpenetration needs to be prevented. Otherwisethe situation, where the neighboring pairs are permanently in
i.e., if the gapg would remain non-negativéno overlap  contact (i.e., gP{®*=0) which corresponds to compressed
anyway, it takes on its minimal valu&k=0 (this is ex- dense packings.

2. Many contacts

pressed in the CD literature &gnorini’s condition. With- For theith contact in this setuR_; andR; 1 play the
out the repulsiorR between the particles the gap at the endrole of the external forces in Ed6), though they are not
of a time step would be given by constant, their values are not known for the next time step,
FO4 RS m Ri—1t+atT Rivieat
9’29t+(02,t_01,t)At—lTZAtZ, (3) Ri,t+At:2_At(Ui,t_Ui+l,t)+ > - (7

according to Eq(1) and(2). However, the excluded volume Obviously, the contact force is coupled to the neighboring
constraint requires thaj,, »,=maxg’,0}. In order that this ~contacts and through those to further contacts. In a similar
results from Egs.(1) and (2), the contact forceR,.,, Way, in higher dimensions, large numbers of contacts are

=maxR’,0} must be taken into account, where coupled within cIu;ster; defined by the contact network.
Hence, the determination of the proper reaction forces be-
mg’ comes a global problem.
= AL 4) A standard way in CD is to solve this problem iteratively:

In one iteration step we calculate the forces according to the
oxt . —ext constraint conditions pretending that the corresponding
" Fi+F; 5) neighboring contacts already exhibit the right forces. In that

m [ —0
( 2 way the process traverses the list of contacts many times

T2At| At UV
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until satisfactory convergence is reachéar the question of  t* it corresponds to aarallel update(in the sense, that the

the convergence cf. the work81,22). _ _ right-hand side of Eq7) always employs the valud® from

For our one-dimensionallD) chain of particles, this the peginningof the iteration sweep, not the freshly updated
means that Eq7) simply gets the meaning of assignment  neq. |n the Appendix we shall show, though, that a random
of the right-hand side to the left-hand side, and one iteratioyeep update instead of a parallel one only renormalizes the

step consists of applying this assignment sequentially once tgy) e ofq to about 0.8, while leaving the form of the PDE
each contact. The order of this sequence is preferably ranintouched.

dom (with the pattern changing for every sweem order

not to create any bias in the information spreadi®g]. With

each sweep a globally consistent solution is approached, un-

til finally a chosen convergence criterion is fulfilled. To connect the velocity update, whose continuum version
In the following section we shall show, what kind of con- follows immediately from Eq(2) as

sequences the local update scheme presented here has on

large time and length scales.

B. Sound waves

d
(?tU: - E&XR, (12)

lll. THE LARGE SCALE DESCRIPTION to the force update, we must relate the “iteration tint&"to

In order to analyze the coarse grained behavior of théhe physical timd. Although, depending on the convergence
microscopic equations derived in the last section, we casriterion, there can be, in principle, a varying number of
also regarded them as the discretized form of a continuuriterations during one physical time stégt, we assume for
description, making a treatment in terms of partial differen-simplicity this numbem, being fixed.(Actually, in practice
tial equations(PDE) possible. In order to obtain the corre- this crude “criterion” is sometimes applied.
sponding PDEs, we consider the particle indeas space Hence, withAt=N,;At*, we can express everything in
variablex and replace the differences of consecutive quantiterms of the physical time
ties by derivatives, the error term for the first- and second- )
order derivatives being of first and second order, respec- #R=DdR—Bdw (13
tively. For example,vyiai—vi—Atdw and R +Ri_¢

—2R;—d?#2R, whered is the particle diameter. and D=gN d_z (14)
=qN,—,
At
A. The relaxation of the contact forces
While the continuum versions of the updatéds and (2) B=qN, m_d (15)
can be obtained straightforwardly, the force chaf@dacks At?

a time variable, for during the force iteration, being just a
calculation, no physical time passes. Hence, to be able t4/ith the Egs.(12) and(13) we obtained two coupled PDEs.
describe this force development as well, let us introduce &Ve can combine them to arrive at a wave equation with an
fictitious time t* with time interval At* for one iteration —additional damping term

step. With this, the continuum version of E@) reads

92R=c?92R+ d(DZR). (16)
O R=D3dR— Bd,v (8)
The sound velocity appearing is of finite value
’ d
with D =q ALt , (9) c=qN, H (17)
md This equation indicates that the CD simulation of the par-
B=q , (10 ticle chain, as presented in the preceeding section, can lead to
AtAt* sound propagation like in an elastic medium, which, how-
ever, contradicts the conception of perfect rigidity. The con-
1 straint conditions applied at the contacts should, in principle,
and qzi' (1D prohibit overlaps, i.e., prohibit elastic deformation of the

grains. It can be seen that this deviation from the perfect

This analytic form clearly reveals the nature of the iterationrigidity enters at the force relaxation: A finite number of
loop: The reaction forces relax towards the solution in a dif-iterations means a finite range for the information spreading
fusive way.(Note that thes,v term is constant in*, it only ~ and thus yields systematic errors in the calculated reaction
depends orx.) forces. As a consequence, the fifiteinvolves soft particles

The introduction of the constamf reflects a subtlety re- and a finite sound velocitg~ JN,. Note that in the limit of
garding the sequential character of the update discussed amn infiniteN,, the exact value of the forces is reached, which
the Appendix. In fact, since the POB) describes the change corresponds to the case-«, as it should be for rigid par-
of the whole fieldR(x) at once given its actual value at time ticles.
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FIG. 3. The initial configuration of the numerical experiment for
testing the properties of the sound waves.
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1. Dispersion

Performing a Fourier transformation on EG6), one ob- s036 | ¥
tains the properties of the different wave modes. The oscil-

lation frequencyw of the wave numbek is

300 350 400 450 500 550 600 650
t/ At

D?k?
4

FIG. 4. Damped oscillation in a contact dynamics simulation.
The dots indicate the measured data: the position of the rightmost
particle vs time(for details see the textThe line is an exponen-
tially damped sinus function, where the frequency and the damping
time is provided by our continuum model.

(18)

That meansw(k) becomes zero at a critical wave number

_2c 1

e T—

D N,

and waves wittk larger thark. (short wavelengthsare over-
damped. The damping timgk) for the oscillating modes is
given by

(19) the wavelength is given, the oscillating frequency and the

damping time can be calculated from Eq&8) and (20),
respectively. For comparison with the simulation we mea-
sured the motion of the rightmost particle. The expected mo-
tion is a damped oscillation
2 X(t)=xo+Aexp —t/7)sin(wt+ ¢), (21

(k)= —. (20

Dk where the offseky, the amplitudeA, and the phase shitb
have to be fittedin contrast taw and ) for a comparison. In
Fig. 4 the measured datdoty and the fitted curve can be
seen. It shows that the simulation is in good agreement with
our continuum description.

We derived the dispersion relatigh8) in the continuum
limit which is a good approximation for small wave num-
bers, but not near to the border of the Brillouin zoreg, (
=2m/d), where the effect of the spatial discreteness can b
strong. However, increasing the number of the iterations suf-
ficiently, k. becomes small compared kg,. Actually, for
N,=10 the formula(18) works well not only for small wave It is instructive to compare our test system to its simplest
numbers but also for all the oscillating modes, as could beD counterpart, where the contact forces depend linearly on
verified numerically. the local kinematic variables, i.e., the so-calleear spring/

dashpot model

C. Global elasticity

2. Numerical confirmation

In order to confirm the results of this section, we per- Ri==k(Xir1=X=d) = y(vir170) (22
formed the following numerical experiment: The starting . ) ) , .
configuration of the simulation consists of an array of 50With the spring stiffnessc and the damping coefficieng.
disks and an immobile wall, the geometry can be seen in FigEMPloying again the updatéd) and (2) for the positions

3. Initially the gap between the wall and the leftmost particle@Nd Velocities, respectively, the continuum limit yields the

is one disk diameterd), the gap between the particles is S&me type of PDE as in EL3) with its coefficients being

zero, and the array has zero velocity. Starting froaD, a
constant external forceF€X) is acting on the rightmost par-
ticle, which accelerates the array towards the \i@tly hori-
zontal motion takes plageAs simulation parameters we
choseN, =40 andF®'=0.05dmAt 2.

The collision with the wall induces a relative motion of
the grains and generates sound waves in the array. After

inherited from Eq(22):

yd?

(7tR=?r7)2<R—Kd(9XU. (23)

This allows us to relate the physical MD model parameters
t@ the “technical” CD parameters

transient period, the grains remain permanently in contact

(the whole array is pressed against the wallA&"). Since
the different wave modes have different relaxation time, afte

a while only the largest wavelength mode survives. This

N

At?

r Kk=qgqm (24

wavelength is four times the system size because the wall

represents a fixed boundary while the right side is free. Sinc

and
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2 4 FIG. 6. Oscillations in a 2D simulation are similar to the 1D

i case. Here the sound waves are generated in a random dense pack-
FIG. 5. The setup of a numerical experiment in two dimensions.i'_1g of diSkS'_ The dot_s are the meﬁsuref‘ position of th? upper wall vs
A dense packing of 1000 disks is prepared in a container via comi™€ (€€ Fig. 5 while the curve is a fitted exponentially damped

pressing the system by means of the mobile upper wall. sinus function.

N fixed while the upper piston is mobile. Starting from a loose
'y=qm—|, (25) state, we compressed the system and waited, until the pack-
At ing reached an equilibrium statf¢ghe compression forcé&
This equivalence shows that on large scales the CD chaiialppl.Ied on the piston was kept co'nsbamhe S|mulat!on was
| carried out without gravity and with a Coulomb friction co-

should behave identical to its MD counterpart, e.g., it will ~% " . : .
exhibit a global shrinkage proportional to :fn extergnal com.Efficient of 0.05 for all the disk-disk and disk-wall contacts

pressive load. Note that a real congruence can be expectéﬁf";;ef' [514])' Ki laxed letel d
only for the collective behavior but not on the level of the er the packing was relaxed completely, we generate

contacts. In the CD method, as explained above, the contaéf)und waves by increasing the compression force abruptly to

forces are not related to the overlaps, which must merely b5+AF' Af_ter a transient period only one standing wave
gjode survivegboth the wave number vector and the collec-

tion and in fact are stochastic quantities because of our rarive motion are vertica where the piston, representing a

dom update procedure. Only on scales larger than the grafic® Poundary, oscillates with a relatively large amplitude.
size, where the fluctuations of these local “deformations” areve measured the vertical position .Of the piston versus t_|me
nd found that the data can be fitted by an exponentially

averaged out, the behavior can be smooth such as in an el ) R .
amped sine functiofFig. 6). Here, in contrast to the 1D

tic medium, as is shown in Fig. 4. X ) s
case, alsaw and 7 are fit parameters, since, due to the dif-

In Secs. Il B and IIl C, our calculation was based on the
erent geometry, the valug¢&8) and(20) cannot be adopted,

assumption of a constant number of iterations for every timiéj b  th q fth
step, and due to this premise the analytical treatment becanf¥!l: Pecause of the random structure of the system, a more

simple and directly comparable to the corresponding simulaSomplex treatment is required for' a quantitative.description.
tion. We should keep in mind, though, that the application of IOWever, we checked the most important relation, namely,
a convergence criterion involves a fluctuatiNg(i.e., it can ~ that the scaling properties of and 7 remain valid also for
vary from time step to time stgpand therefore steps with a the 2D random system, that is~ \/N—l and7~N, ~, which
different “stiffness” are mixed during the integration of mo- Means that the artificial wsqoela_stlcny of the particles de-
tion. Consequently, the behavior of the CD method is mord?ends on the number of thg iterations in the same manner as
complex in detail, but qualitatively the results for the con-We showed for the 1D chain.

stantN; remain relevant also heré-or example, the mecha-

nism resulting in soft particles or the way, how shock waves V. DISCUSSION

can arise with finite velocity. - o ) _ _
The artificial elasticity found in CD simulations was ana-

IV. 2D SIMULATION lyzed. We showed that the syst(_amatic errors of Fhe force
calculation can lead to a collective elastic behavior, even

After the analysis of the regular 1D system, the importanthough single contacts are assumed perfectly rigid and per-
question arises whether the behavior is similar in higher difectly inelastic. For the 1D chain of particles, we could, start-
mensions and less regular systems. Hence, we performed dBy from the “microscopic” laws, reproduce the numerical
simulations with two-dimensional random packings of disksresults analytically, including the dependence of the effective
and observed the same “elastic” wavésven transversal stiffness and viscous dissipation of the contacts on the com-
modes were found putational parameters\(,At).

The simulation presented here consists of 1000 disks with Besides elucidating the origin of the elastic behavior, the
radii distributed uniformly between,,;, andr ,.,=2rmin,» the ~ coarse grained description reveals important characteristics
mass of each disk being proportional to its area. Figure ®f the CD method, which were less obvious on the discrete
shows the geometry. The base and the two side walls adevel. We saw that using the iterative solver, the proper con-
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tact forces are approached in a diffusionlike manner that is aequence; i.e., if the contact labeleds updated beforg,
crucial information concerning the computational time. Thethenu;<u;.

conception of perfectly rigid particles requires that the cal- (2) Throughout this appendix, the notatié means the
culated forces are consistent even for contacts far from eackalue from the beginning of the iteration sweep, the value at
other. Therefore, the “diffusion length"/DAt must be the end isR;+AR;.

larger than the linear system size which defines a lower (3) We definedR; as the change according to a parallel
boundary for the number of iterations of the ordérd)?. update[cf. Eq. (7)], i.e.,

The same condition is obtained if we want to avoid other

consequences of the effective softness. For example, if we SR= (b v+ Ri-1tRi+1—2R; (AD)
want the sound to travel a larger distance thaguring one T2A T it 2 '

time step(i.e., c>L/At) or if we would like all possible

wave modes to be overdampéck., with \;>L no oscilla- @S 0pposed to thiotal changeAR; .

tions). All these cases are equivalent, one is forced to apply a Given that, it can easily be seen haR; depends on the
relatively large number of iterations|,~L2. Going further ~ update order. If, e.g., the siteis updated earlier than its
on this line, the scaling with respect to the number of pareighborsii.e., ui_1>u;<Uu;.,), thenAR;=JR;, butin the
ticlesn can be determined: One step of the iteration consist§ase Ui—1>Ui>Ui41<Ui,2, We get AR;=6R;+6R;.,/2

of as many force updates as there are contacts, which [§ecause for contadt Eq. (7) employs the already updated
proportional ton. Therefore, the computational effort of one force at contact+1]. Similarly (but with less probability
time step scales with the particle number likl, , which is ~ @ven very far contacts can contributeA®; , which can be
~n2in 2D or ~n®3in 3D. Therefore, a large CD simulation summarized in the following way:

is computationally more costly than MD, where the compu- 1

tational effort scales liken. This is the price for simulating _ -

rigid particles without getting elasticity artifacts, which can- (ARi)=oR;+ Z o (ProRi 1+ PR ). (A2)
not be done with MD.

To avoid this superlinear scaling when dealing with largeHere, p, is the probability thatAR; contains information
systems, we can also accept the finite stiffness by kedying from the update of a contact at distancehat isp, = P(u;
constant independently of Then, besides gaining a running >u;, > --->U;,,). (This definition holds true for contribu-
time of the order ofn, of course, elastic deformations and tions from contacts with labels higher thgrbut due to left-
sound waves can arise with an increasing number of the paright symmetry the same value is inevitably obtained for the
ticles, and consequently they have to be monitored. We wartorresponding lower ones.
to mention the idea, though, that in certain situations advan- The value ofp, can be obtained from the following com-
tage can be taken of the artifact. For example, when beinginatorial consideration: Given an indé&and a distance,
applied deliberately, Coulombian friction can be combinedwe can classify the set of all update orders into groups such
with global elasticity easily; this way considerable computa-that the sequences in one group differ only in the permuta-
tional time could be saved and even better performance thaiions of the elements;, i<j<i+r. Such a group contains
MD could be achieved. (r+1)! sequences, but only one of them satisfies the condi-

tion u;>u;.1>Uj;>>--->U;;,. Since all update se-
quences are equally probable, the valueppfis equal to
ACKNOWLEDGMENTS 1U(r+1)!.

; -1 : : .
This work was supported by DAAD and Federal Mogul The factor[2(r+ 1)!] -, relating the contacts and i

. +r, decays faster than exponentially; already fer8, it
Technology GmbH. Partial support by OTKA T029985, 6 :
T035028 is acknowledged. drops below 10°. Therefore, the sum in EGA2) reaches

only the immediate vicinity of contadt such that, for our
large wavelength considerations, the approximati) , ,

APPENDIX: q FOR THE RANDOM SWEEP UPDATE ~ 6R, can be applied. This allows us to calculate the average
change of the contact force

To find the proper value of the constagptappearing in .
Sec. lll, two more things have to be taken into account: First
the sequential type of the force update, and second that the (AR)=dR, 1+2|Zl m - 5Ri(4\/é_ ®)-
order is random. The latter results in a stochastic force relax- ’ (A3)
ation, i.e., the change d®; in one iteration sweep is a sto-
chastic variable. In order to obtain a similar equation as Eq. Thus, it is shown that the random sweep results in a larger
(8) we shall determine the average valueR;), where the change ofR; than the parallel update. EquatigA3) pro-
average for site is meant to be taken over all possible up- vides also the sought value of the parameteis
date sequences.

Before going any further, let us introduce the following B 4\e-5 .
notations: q=—7—~0.797, (Ad)
(1) For N being the total number of contacts, the mapping
u:{l,... N}—{1,... N} denotes the order of the update which completes the continuum description given in Sec. Ill.
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