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Continuum theory of partially fluidized granular flows
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A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination
of the equations for the flow velocity and shear stresses coupled with the order-parameter equation which
describes the transition between the flowing and static components of the granular system. We apply this theory
to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums,
and shear granular flows between two plates. We carry out quantitative comparisons between the theory and
experiment.
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I. INTRODUCTION

The dynamics of granular materials under shear stre
plays a fundamental role in many natural phenomena
technological applications@1–4#. When the shear stress e
ceeds a certain threshold, granular material undergoes a
sition from a solid state to a fluidized state~yield!. The
physical mechanism and properties of this transition are
not completely understood. In many important situations
granular material remains in a multiphase state when pa
it is fluidized while another part is solid.

On the theoretical side, a significant progress has b
achieved by large-scale molecular dynamics simulati
@5,6# and by continuum theory@7–12#. The current con-
tinuum theory of dense near-surface flows was pioneered
Bouchaud, Cates, Ravi Prakash, and Edwards~BCRE! @9#
and subsequently developed by de Gennes and co-wo
@7,10,11#. In their model, a granular system is spatially sep
rated into two phases, static and rolling. The interaction
tween the phases is implemented through certain conver
rates. This model describes certain features of thin n
surface granular flows including avalanches. However,
to its intrinsic assumptions, it only works when the granu
material is well separated into a thin surface flow and
immobile bulk. In many practically important situations, th
distinction between the ‘‘liquid’’ and ‘‘solid’’ phases is mor
subtle and itself is controlled by the dynamics.

The purpose of this paper is to develop a unifying desc
tion of such partially fluidized granular flows and apply th
theory to several problems of granular dynamics@13#. The
underlying idea of our approach is borrowed from the La
dau theory of phase transitions@14#. We assume that the
shear stresses in a partially fluidized granular matter
composed of two parts: the dynamic part proportional to
shear strain rate and the strain-independent~or ‘‘static’’ ! part.
The relative magnitude of the static shear stress is contro
by the order parameter~OP!, which varies from 0 in the
liquid phase to 1 in the solid phase. A possibility of descr
ing a granular flow as a multiphase system undergoin
phase transition has been proposed by de Gennes@7# without
further elaboration. Unlike ordinary matter, the phase tran
tion in granular matter is controlled not by the temperatu
but by the dynamics stresses themselves. In particular,
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Mohr-Coloumb yield failure condition@4# is equivalent to
the critical melting temperature of a solid. The OP can
related to the local entropy~and possibly density! @15# of the
granular material. OP dynamics is then coupled to the hyd
dynamic equation for the granular flow.

We apply this theory to several cases of granular flows
considerable interest. First, we will focus on gravity driv
free-surface granular flows which typically occur in shallo
chutes, sandpiles, and rotating drums. The most famous f
of such flows is an avalanche, and our theory yields a ra
detailed description of the avalanche dynamics. Then we
ply our theory to granular Couette flows induced in the bu
by a moving boundary. Our model captures important p
nomenology observed in these systems@16–28#.

The structure of the paper is as follows. In Sec. II w
describe a general formulation of the partially fluidize
granular flows. In Sec. III we focus on the free-surface flo
problem on an incline plane~chute flow!. In this section we
consider stability properties of stationary solutions, av
lanches in shallow chutes, transitions from triangular to u
hill avalanches, and comparison with experimental results
Sec. IV we study flows in deep layers. First, we consid
avalanches in deep chutes. Then, we apply our theory
granular flows in two-dimensional rotating drums. We sho
that our model exhibits avalanche flow at low rotation ra
and transition to steady flow at higher rotation rates. In S
V we extend our approach to shear granular flows and
cuss its connection with dry friction phenomena in granu
systems. In Sec. VI we discuss various implications of o
results.

II. GENERAL FORMULATION

We base the continuum description of granular flows
the momentum conservation equation

r0

Dv i

Dt
5

]s i j

]xj
1r0gi , j 51,2,3, ~1!

where v i are the components of velocity,r05const is the
density of material~we setr051), g is acceleration of grav-
ity, D/Dt5] t1v i]xi

denotes the material derivative, ands i j

denotes components of the stress tensor. We assume th
©2002 The American Physical Society03-1
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velocity obeys the incompressibility condition¹•v50. In-
deed, the relative changes of density for dense flows
typically very small ~of the order of a few percent!, and
therefore the compressibility is negligible in the momentu
dynamics. Still, these changes in density in fact are v
important, since the very onset of flow in granular materi
itself is related to dilatancy, i.e., small decrease in dens
Furthermore, these small variations in density substanti
influence transport coefficients and the constitutive relatio
In fact, our order-parameter equation~see below! is a phe-
nomenological way to describe the small but importa
changes in local ordering, and, consequently, density.

The momentum conservation equation~1! has to be aug-
mented by the appropriate boundary conditions~BCs!. As
usual, on solid walls we require no-slip conditionsv i50,
and on free surfaces, the kinematic boundary condition
assumed,

Dj

Dt
5vn , ~2!

wherej is the displacement of the free surface andvn is the
component of velocity normal to the surface.

The main difficulties in describing granular flows cent
around the constitutive relationships for stressess i j . These
relationships differ drastically for flowing and static config
rations of granular matter. For static regimes, the sh
stresses are determined by the applied forces, whereas in
and dilute granular flows the shear stresses are proporti
to shear strain rates. The transition from one regime to
other is controlled by so-called yield criteria, among whi
the most popular is the Mohr-Coloumb criterion relati
shear and normal stresses. The goal of this paper is to u
the description of these different regimes of granular dyna
ics within a single theory. The central premise of our theo
is that in partially fluidized flows, some of the grains a
sliding past each other, while others maintain prolong
static contacts with neighbors. Accordingly, we write t
stress tensor as a sum of the hydrodynamic part proporti
to the flow strain rateei j , and the strain-independent pa
s i j

s , i.e.,s i j 5ei j 1s i j
s . We assume that diagonal elements

the tensors i i
s coincide with the corresponding componen

of the ‘‘true’’ static stress tensors i i
0 for the immobile grain

configuration in the same geometry, and the shear stre
are reduced by the value of the order parameterr character-
izing the phase state of granular matter@29#. Thus, we write
the stress tensor in the form

s i j 5hS ]v i

]xj
1

]v j

]xi
D1s i j

s . ~3!

Here h is the viscosity coefficient,s i j
s 5rs i j

0 for i 5” j , and
s i i

s 5s i i
0 . In a static state,r51, s i j 5s i j

0 , v i50, whereas in
a fully fluidized stater50, and the shear stresses are sim
proportional to the strain rates as in ordinary fluids.

To complete the set of governing equations, we need
introduce constitutive relations for components of the sta
shear stress tensors i j , as well as an equation for the ord
parameterr. The issue of constitutive relations in stat
06130
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granular configurations is rather complex and not comple
understood@4,30#. It appears that in many cases the cons
tutive relations are determined by the construction hist
@31#. Recent studies elucidated the fundamental role of
force chain networks in the formation of the shear str
tensor@32#. We will assume that for any given problem, th
corresponding static constitutive relation has been specifi

Since in dense granular flows the energy is rapidly dis
pated due to inelastic collisions, we apply pure dissipat
dynamics for the order parameterr, which can be derived
from the free-energy-type functionalF:

Dr

Dt
52

dF
dr

. ~4!

We adopt the standard Landau form forF;*dr @Du“ru2
1 f (r,f)#, which includes a ‘‘local potential energy’’ and
the diffusive spatial coupling. The potential energy dens
f (r,f) should have extrema atr50 andr51 correspond-
ing to uniform solid and liquid phases. According to th
Mohr-Coulomb yield criterion for noncohesive grains@4# or
its generalization@32#, the static equilibrium failure and tran
sition to flow is controlled by the value of the nondime
sional ratiof5maxusmn

0 /snn
0 u, where the maximum is sough

over all possible orthogonal directionsn andm in the bulk of
the granular material. We simply use this ratio as a param
in the potential energy for the OPr. Without loss of gener-
ality, we write the equation forr:

t
Dr

Dt
5 l 2¹2r2r~12r!F~r,f!. ~5!

Here t and l are the characteristic time and length, corr
spondingly. One can expect that the lengthl is of the order of
the grain size and the timet is the typical time between
collisions. For dense gravity driven flows, this scale can
estimated astg5Al /g. Further, according to observation
there are two angles which characterize the fluidization tr
sition in the bulk granular material, an internal friction ang
tan21f1 such that if f<f1 the static equilibrium is un-
stable, and the dynamic repose angle tan21f0 such that at
f,f0, the dynamic phaser50 is unstable. Values off0
and f1 depend on microscopic properties of the granu
material, and in general they do not coincide. Typically the
is a range in which both static and dynamics phases coe
~this is related to the so-called Bagnold hysteresis@16#!. The
simplest form ofF(r,f) which satisfies these constraints
F(r,f)52r1d, where

d5~f22f0
2!/~f1

22f0
2!. ~6!

Here we use a square off to avoid nonanalytical behavior a
sxz

0 50. Rescalingt→t/t andxi→xi / l leads to

Dr

Dt
5¹2r1r~12r!~r2d!. ~7!

This equation completes the general formulation of the c
tinuum theory for partially fluidized granular flows. In a
3-2
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CONTINUUM THEORY OF PARTIALLY FLUIDIZED . . . PHYSICAL REVIEW E65 061303
infinite system with fixed stress parameter 0,d,1 (f0
,f,f1), both static (r51) and dynamic (r50) phases
are linearly stable, and Eq.~7! possesses a moving front s
lution which connects these phases. The speed of the fro
the direction ofr50 is given by V5(122d)/A2. At d
51/2 both phases coexist. Ford,0, only the solid phase
survives, and atd.1, only the liquid phase survives. Th
dynamics of partially fluidized granular flows becomes mu
more interesting in confined systems with fixed or fr
boundaries.

III. SHALLOW GRANULAR FLOW
ON AN INCLINED PLANE

Let us now specialize our theory to the description
free-surface chute flows. We consider an initially flat layer
dry cohesionless grains of thicknessh on a sticky surface
tilted by anglew to the horizon. We introduce a Cartesia
coordinate frame aligned with the unperturbed~flat! surface
of the tilted layer with thez axis normal to the surface an
the x axis oriented downhill~see Fig. 1!. Coordinatez50
corresponds to the position of the~unperturbed! free surface
where the stress is absent, andz52h corresponds to the
bottom of the layer. In case of the stationary shear flow i
flat layer, the force balance of Eq.~1! yields the following
conditions:

szz,z1sxz,x52g cosw, sxz,z1sxx,x5g sinw, ~8!

where the subscripts after commas mean partial derivati
The solution to Eqs.~8! in the absence of lateral stress
syy5syx5syz50 is given by

szz52g coswz, sxz5g sinwz, sxx,x50. ~9!

Thus, in a stationary flow there is a simple relation b
tween shear and normal stresses,sxz52tanwszz, indepen-
dent of the flow profile. In a static equilibrium, the forc
balance also givessxz

0 52tanwszz
0 . Since by assumption

szz5szz
0 , we obtainsxz5sxz

0 . In a flowing regime, the tota
stresses are composed of the static contribution in the
cous strain-related terms. According to our conjecture,
same relation holds between the static parts of the stres
the flowing regime. In this section, we will consider the no
stationary process of avalanche flow, but we will assume
this simple constitutive relation between shear and nor
stresses is maintained in this regime as well, and deviat
from the stationary stress distribution are small. For the
layer of constant thickness, the value of parameterf in Eq.
~6! can be easily specified. In this case, the most unst

FIG. 1. Schematic representation of a chute geometry.
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yield direction is parallel to the inclined plane, so we c
simply write f* 5usxz

0 /szz
0 u5tanw. In the following, we

will consider spatially and temporally inhomogeneous gra
lar flows. In such flows the layer thickness varies, and
parameterf becomes a variable determined by the loc
slope of the free surface. We will limit ourselves with th
case of small deviations of the local slope from the unp
turbed valuef* , i.e., u]xhu!tanw.

Let us now discuss the boundary conditions for the or
parameter and velocity. At the bottomz52h we setr51,
since the granular medium should be in a solid phase n
the no-slip surface. The boundary condition at the free s
face is less clear. Bearing in mind that the order paramete
related to the local entropy of grain configurations, and
suming zero entropy flux at the free surface, we choose
no-flux boundary condition for the order parameterrz50.

All components of velocity should be zero at the botto
z52h. The kinematic boundary condition~2! on the free
surface for an incompressible medium can be expresse
the form of the mass conservation law

] th52~]xJx1]yJy!, ~10!

whereJx,y5*2h
0 vx,ydz are in-plane components of the flu

of the granular material. In a typical situation of the chu
flows, the downhill velocityvx is much larger than the or
thogonaly componentvy , so the mass conservation co
straint can be simply expressed as

] th52]xJ. ~11!

The velocityvx is determined from the order parameter v
Eq. ~3! with the no-slip boundary conditionvx50 at z5
2h.

The mass conservation law Eq.~11! can be rewritten in
terms of the variabled, which is related to the gradient of th
local thickness]xh5f2f* . If we assume that the differ
ence between the critical valuesf0,1 is small, (f1
2f0)/f1!1, which is the case for most granular flows, a
the plane tilt is close to critical,f'f0,1, from Eq. ~6! we
obtain ~see also Fig. 1!

f5]xh'2
1

b
~d2d0!, ~12!

whereb51/(f12f0).0 andd05const corresponds to th
flow with constant thicknessh. Substituting Eq.~12! into Eq.
~11! one derives

] td5b]x
2J. ~13!

This equation should be used instead of the conservation
~11! for infinitely deep layers~sandpiles or heaps!, where the
thicknessh is not defined.

Because of the no-slip boundary condition at the bott
of the chute, for shallow layers the flow velocity is small,
the convective flux of the order parameter can be neglec
~see Sec. III B for details!, and the material derivativeDr/Dt
in Eq. ~7! can be replaced by] tr,
3-3
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IGOR S. ARANSON AND LEV S. TSIMRING PHYSICAL REVIEW E65 061303
] tr5¹2r1r~12r!~r2d!. ~14!

However, for fast flows this term may become important,
discussion below in Sec. IV B.

A. Stationary solutions and their stability

Let us first consider the granular flow in a uniform lay
of constant thicknessh. In this cased5d0 is a constant,
compare Eq.~12!. There always exists a stationary solutio
to Eq. ~14!, r51, corresponding to a flat layer of consta
thicknessh at the static equilibrium, which obviously satis
fies boundary conditionsr(2h)51,]zr(0)50. For d.1 it
is stable at smallh, but loses stability at a certain critica
thicknesshc.1. The most ‘‘dangerous’’ mode of instabilit
satisfying the above boundary conditions is of the formr
512Aelt cos(pz/2h), A!1. The eigenvalue of this mode i

l~h!5d212p2/4h2. ~15!

Hence the neutral curvel50 for the linear stability of the
solutionr51 is given by

hc5
p

2Ad21
. ~16!

For h.hc(d) grains spontaneously start to roll, and a gran
lar flow ensues.

In addition to the trivial stater51, for large enoughh
there exist nontrivial stationary solutions satisfying the abo
BC. These solutions correspond to the bold lines in the ph
plane plots, Fig. 2. These solutions describe stationary gra
lar flows supported by a constant supply of granular mate
upstream. For 1/2,d,1 there exists a separatrix of th
saddler51,rz50, which corresponds to the localized nea
surface flow in an infinitely deep layer.

The velocity profile corresponding to a stationary profi
of r(z) can be easily found from Eq.~3! taking into account
that sxz5sxz

0 ,

]vx

]z
5~12r!sxz

0 52m~12r!z, ~17!

wherem5gsinw/h. The flux of grains in the stationary flow
J is given by

J5E
2h

0

vx~z!dz52mE
2h

0 E
2h

z

@12r~z8!#z8dz8dz

5mE
2h

0

z2~12r!dz. ~18!

The flux of supplied granular materialJ controls the
thickness of the layer and the velocity profile. Figure
shows the thickness of the layer as a function of fluxJ at
several values ofd. For a fixedJ, there are two values ofh
which correspond to two different regimes of granular flo
on an inclined plane. The lower branch corresponds to
flow which involves the whole layer, while the upper bran
corresponds to a flow which is localized near the surfa
06130
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Profilesr(z) corresponding to the different branches at t
same value of the flux are shown in Fig. 3~b!. The selection
and the stability of these solutions depend strongly on
particular problem at hand. Since for fixedh Eq. ~14! has a
free-energy functional@see Eq.~4!#, F5 1

2 @rz
21r4/21dr2

22/3(d11)r3#, stable solutions should correspond to t
minimum of F. It is easy to check that the lower branc
corresponds to the minimum of the free energyF, and there-
fore it is stable, whereas the upper branch is unstable~corre-
sponds to the maximum ofF). If the flux J is fixed by the
boundary condition atx50, the corresponding unstabl
mode, which at largeh is close to the translation mode]zr,
is prohibited because it would violate the mass conserva
constraint. However, even in this case the solutions co
sponding to the upper branch can be unstable with respe
spatially nonuniform perturbations. Actually, it can be eas
shown that this type of instability occurs for parts of th
upper branch solutions corresponding todJ/dd,0. Indeed,
assuming small deviations of the local slope, we can line
ize Eq.~13!,

] td15b
]J

]d
]x

2d1 , ~19!

where d15d2d0. For ]J/]d,0 it is a diffusion equation
with a negative diffusion coefficient, which is subject to
long-wavelength instability. On the other hand, if the slo
of the free surface is fixed everywhere, this instability is a
suppressed.

FIG. 2. Phase plane of stationary Eq.~14! for three typical val-
ues ofd: ~a! d,0.5, ~b! 0.5,d,1, and~c! d.1.
3-4
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FIG. 3. Bifurcation diagram of the stationary flow regimes with a fixed granular flux.~a! Thickness of the layerh as a function ofJ/m
at severald ~the value ofd is shown near each line!. The parts of the curves corresponding to unstable solutions are shown by dashed
The thick line, given by the envelope condition]J(h,d)/]d50, separates stable and unstable parts of the upper branches. Thick dash
shows the stability exchange line]J(h,d)/]h50. Inset: Normalized sloped vs flux J/m for infinitely deep chute (h→`), the OPr is given
by Eq.~21!. The branch below the dashed line@the conditiondJ(d)/dd50] is unstable.~b! Vertical profilesr(z) corresponding to the lowe
~solid! and upper~dashed! branches at the same value of flux (J/m523.0) ford50.65.
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The two branches merge at the minimum valuehs(d),
wheredJ/dh50. At h,hs , there is no stationary granula
flow solution and only nonstationary regimes are poss
~see below!. The value ofhs can be found as a minimum o
the following integral as a function ofr0, the value ofr at
the surfacez50,

hs5minE
r0

1 dr

Ar4

2
2

2~d11!r3

3
1dr22c~r0!

, ~20!

where c(r0)5r0
4/222(d11)r0

3/31dr0
2. This integral can

be calculated analytically ford→` andd→1/2. It is easy to
show that for larged, the critical solution of Eq.~14! has a
form r511A cos(kz) with A!1 and k5(d21)1/2, and
therefore,hs(d)→hc(d). For d→1/2, the critical phase tra
jectory comes close to two saddle pointsr50 andr51, and
an asymptotic evaluation of Eq.~20! gives hs52A2 ln(d
21/2)1const. This expression agrees qualitatively with t
empirical formulaf2f0;exp@2hs/h0# proposed in Refs.
@20,22#.

The neutral stability curvehc(d) and the critical line
hs(d) limiting the region of existence of nontrivial stationa
granular flow solutions are shown in Fig. 4. They divide t
parameter plane (d,h) in three regions. Ath,hs(d), the
trivial static equilibriumr51 is the only stationary solution
of Eq. ~14! for the chosen BC. Forhs(d),h,hc(d), there is
a bistable regime, the static equilibrium state coexists w
the stationary flow. Forh.hc(d), the static regime is lin-
early unstable, and the only stable regime corresponds to
granular flow. This qualitative picture completely agrees w
the recent experimental findings@20,22#. Moreover, for no-
slip bottom BCs~corresponding to ourr51), authors of
Ref. @20# found a region of bistability in the parameter pla
06130
e

e

h
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(h,w) which has a shape very similar to our stability diagra
in Fig. 4 ~see below Sec. III E!.

As we mentioned above, the upper branches of theh(J)
curves in Fig. 3 correspond to the case of a near-surface fl
For large enoughh this regime can become unstable wi
respect to a spontaneous change of the sloped. As was out-
lined above, the change of stability occurs at a tangent p
between a curveh(J) and an envelopehe(J) to the family of
curvesh(J) for various d, where ]d J50. The instability

FIG. 4. Stability diagram. Dashed line shows neutral cur
hc(d), Eq.~16!, and solid line shows the existence limit of fluidize
statehs(d), Eq. ~20!. Dot-dashed curve depicts the transition lin
from triangular to uphill avalanches obtained from solution of E
~14! and~11! for m50.4 andb50.25. The line with circles shows
the results obtained in quasilinear limit, Eqs.~24! and ~25! ~Sec.
III B ! for b50.25 and the value ofm which corresponds toa
50.05. Inset: opening angle of a downhill avalanchec ~in degrees!
vs d for b50.25 anda50.015 and two different values of the laye
thickness.
3-5
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IGOR S. ARANSON AND LEV S. TSIMRING PHYSICAL REVIEW E65 061303
would exhibit itself as accumulation of granular mater
near the top of the inclined plane leading to the change
slope. This process will result in an unlimited growth of loc
depthh, and att→` the new stationary solution correspon
ing to h→` will be achieved. This regime can be describ
by an analytical formula which corresponds to the separa
in Fig. 2~b! ~cf. Ref. @33#!:

r5
A~d11!~d21/2!cosh~zA12d!12d21

A~d11!~d21/2!cosh~zA12d!122d
. ~21!

In this deep-layer solution, the parameterd, which corre-
sponds to the slope of the free surface, is not related to
slope of the inclined plane~the free surface can be more
less steep than the underlying plane, as in sandpiles!. Rather,
d is determined by the value ofJ. The dependence of th
sloped vs flux J for solution ~21! is shown in Fig. 3, inset.
The conditionJ5const gives rise to two stationary values
d. The upper branch approachesd51 as J→` as J
;1/A12d. For the lower branch, the width of the fluidize
zone z0, defined byr(z5z0)51/2 is growing asz0; ln(d
21/2) for d→1/2. Correspondingly, in this case one has
relation between the fluxJ andd,

J;E
2`

0

z2~12r!dz;z0
3;u ln~d21/2!u3. ~22!

Both branches merge at some minimumJ5Jc . In the
vicinity of Jc the flux and the angle are related asJ'Jc
1const3(d2dc)

21•••. According to the condition]J/]d
.0, only the upper one corresponds to a stable near-sur
flow, and the lower one corresponds to an unstable regime
the stable regime, the slope of the sandpile increases with
flow, and for very largeJ the slope of the free surfaced
approaches 1. This behavior agrees qualitatively with the
servations of Ref.@28#.

However, if the change ofd is limited, the instability of
the lower branch can be suppressed. We believe that in
@27#, placing the mouth of the hopper supplying the sa
directly on the surface of the sandpile limits the variation
d and can possibly stabilize the lower branch. Moreov
since the instability is of a convective type, the length of t
system may not be sufficient for it to develop.

At J,Jc the stationary flow does not exist. In this regim
the granular material accumulates and discharges in the
of avalanches periodically in time~see below Sec. III B!.
This phenomenology is also consistent with recent exp
ments in Refs.@28,34#, where the transition from intermed
ate avalanches to a steady flow is reported. Moreover, as
expects from mass conservation, if the flow is represente
a periodic sequence of well-separated avalanches each c
ing an amount of grain, the time between consequent a
lanches should beT0;J21, in agreement with experimen
@28#. Our theory predicts that at the onset of steady flow
angle of the sandpile should show critical behaviord2dc

;AJ2Jc. However, in experiment@28# the critical transition
has not been detected, possibly because the slope cha
within a narrow range.
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Reference@28# also reports an increase of the width of th
fluidized layerz0 with increase of the applied fluxJ, which is
consistent with Eq.~21!. Also in agreement with the theory
the heap angle in Ref.@28# increased withJ, which corre-
sponds to the upper~stable! branch of the dependenced(J)
shown in Fig. 3, inset.

A similar transition is known for partially filled rotating
drums when the rotation speed is varied. For low rotat
speeds the flow in the drum occurs in the form of a perio
sequence of avalanches, whereas for larger rotation spee
steady surface flow ensues@35#. We discuss this case below
in Sec. IV C.

We compared the velocity profiles measured in Re
@27,28# with our theory. The velocity can be determined fro
Eq. ~17! using the expression for the order parameter~21!. A
typical velocity profilev(z) vs z is shown in Fig. 5. For
convenience we scaledv(z) by the value at the open surfac
v(0). In agreement with the experimental data the station
profile has an exponential tail, i.e.,v(z);exp(2z/ds), where
ds51/A12d. For the lower branch ofd(J), which appar-
ently describes the flow in the experiment by Komatsuet al.
@27#, the parameterd at high flow rate approaches 1/2~see
inset of Fig. 3!, i.e., the decay lengthds5 lA2' l /0.707. Here
l is the characteristic length in Eq.~5!. The experimental
value is ds'd/0.72, which fixes the characteristic leng
equal to the grain size, i.e.,l 5d. Moreover, experimenta
data of Ref.@27# strongly indicate the independence of th
decay lengthds on the value of flux in the wide range of flu
values and grain diameter. This behavior again correspo
to the lower branch ofd(J) dependence. The value of th
characteristic lengthl agrees with other independent expe
mental observations~see, for example, Refs.@20,22#!.

Lemieux and Durian@28# also found exponential decay o
velocity under surface:v;exp@2z/(0.15 cm)# for the grain
diameterd50.3360.03 mm. In their experiment, unlike Re
@27#, the particles were allowed to fall on the top of th
sandpile, thereby relaxing the constraint on the slope of
sandpile. In this case, an upper branch of the functiond(J)

FIG. 5. Stationary velocity profilesv(z) vs the distance from
free surfacez/d for different grain sizesd ~mm! and supplied flux
valuesJ(g/sec) from Ref.@27#. The solid lines show theoretica
results for two different values ofd.
3-6
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CONTINUUM THEORY OF PARTIALLY FLUIDIZED . . . PHYSICAL REVIEW E65 061303
should be selected, and for that branch the sloped.0.72, so
the characteristic decay length indeed should be larger
particle sized. In fact, it should be directly proportional t
the flux J. It would be interesting to test this prediction
future experiments.

Pouliquen@22# proposed a scaling for the mean veloc

v̄5J/h vs thickness of the layerh in the stationary flow
regime, v̄}h3/2/hs , which works for various anglesw as
well as for different grain sizes, which is consistent with t
so-called Bagnold scaling~see also results of large-scale m
lecular dynamics simulations in Ref.@5#!. Equation ~18!
yieldsv}(h2hs)

1/2 for smallh2hs andv}h2 for largeh. It
is plausible that the experimentally found scaling expon
3/2 is the result of the crossover between the two differ
regimes. However, renormalizationv̄/Agh, h/hs as in Ref.
@22# does not collapse our results onto a single curve, p
haps due to the assumption of a simple Newtonian rela
between the strainvz and the hydrodynamic part of the she
stresssxz with a fixed viscosityh @see Eq.~3!#. In fact, the
viscosity itself may depend onr andz in some fashion.

B. Nonstationary dynamics in a single mode approximation

In the vicinity of the neutral curve~16! Eqs.~1! and~14!
can be significantly simplified. We may look for a solution
the form ~compare Sec. III A!

r512A~x,y,t !cosS p

2h
zD1w, ~23!

whereA!1 is now a slowly varying function oft, x, andy,
andw!A is a small correction to the solution. At the neutr
curve defined by the conditionl(d,h)5d212p2/4h250
the expression~23! with A5const,h5const is an exact so
lution to the linearized Eq.~14!. In the vicinity of the neutral
curve defined by the conditionulu!1, the ansatz~23! with
the slowly-varying functionsA,h gives an approximate so
lution to the full Eq.~14!. The functionA itself is determined
as a result of the orthogonality~or solvability! condition with
respect to the function cos@(p/2h)z#.

Substituting ansatz~23! into Eq. ~7!, one obtains in the
first order inw the expressionL̂w5Ĥ, whereL̂5]z

21d21

is the linearized operator, and inhomogeneityĤ does not
contain terms linear inw and depends only onA and its
derivatives. Applying the solvability condition
*2h

0 Ĥ cos(pz/2h)dz50, one obtains in the first order,

At5lA1¹'
2 A1

8~22d!

3p
A22

3

4
A32āh2A]xA, ~24!

where ¹'
2 5]x

21]y
2 and ā5m(3p2216)/3p350.146m.

Equation ~24! must be coupled to the mass conservat
equation which reads as~here we neglect the contributio
from the flux along they axis Jy;]yh!J):

]h

]t
52

]J

]x
52a

]h3A

]x
, ~25!
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whereJ was calculated from Eq.~18! using ansatz~23! and
a52m(p228)/p350.12m. Taking into account that varia
tions inh also change the local surface slope, we replaced in
Eq. ~24! by d02bhx , see Eq.~12!.

In deriving these equations we assumed that (22d)A2

and A3 are of the same order, i.e.,d'2, however qualita-
tively a similar equation with a different nonlinearity can b
obtained for anyd andh.

The last term in Eq.~24! originates from the convective
termv“r in Eq. ~7!. For not very large thickness of the laye
h and in the large viscosity limitm!1 this term can be
neglected with respect to other terms in Eq.~24!. However,
for thick layers the convective term cannot be neglected
cause the magnitude of this term grows ash2.

We studied Eqs.~24! and ~25! numerically and analyti-
cally in one and two dimensions. First, we considered
flow with the fixed supplied flux in one dimensionx. In this
situation the fluxJ5const is introduced via the boundar
condition in Eq.~25! at x50. For large values of the flux we
indeed observed the transition to the steady flux regime@see
Fig. 6~a!#, although some transient avalanches occur, wh
are related to the adjustment of the chute thickness.
smaller values of the flux~below the corresponding cutof
value in Fig. 3!, we find that the flow occurs in the form of

FIG. 6. Space-time surfaces showing the one-dimensional e
lution of heighth in a shallow chute for two values of the fixe
supplied fluxJ50.6 ~a! and J50.4 ~b!. Other parameters of the
model area50.025,b53.15,d51. The chute lengthL5500, num-
ber of grid pointsN51000. Initial condition isA50,h53.
3-7
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IGOR S. ARANSON AND LEV S. TSIMRING PHYSICAL REVIEW E65 061303
periodic sequence of avalanches, Fig. 6~b!. Our numerical
simulations indicate that the time between the avalancheT0
diverges asT0;J21 at J→0, in agreement with experimen
tal results of Ref.@28#. Moreover, we observed an abru
hysteretic transition from avalanching to steady flow with t
increase of supplied fluxJ, which also agrees with Ref.@28#.

In order to study the evolution of avalanches in two
mensions (x,y) we performed simulations in a fairly larg
system, Lx5400 dimensionless units in thex direction
~downhill! and Ly5200 units in they direction, with the
number of grid points being 12003600. As initial conditions
we used a uniform static layer:h5h0 ,A50. We triggered
avalanches by a localized perturbation introduced near
point (x,y)5(Lx/4,Ly/2). Close to the solid line in Fig. 4 we
indeed observed avalanches propagating only downhill, w
the shape very similar to the experimental one@21# ~see Fig.
7!. The avalanche leaves a triangular track with the open
angle c in which the layer thicknessh is decreased with
respect to the original valueh0. At the front of the avalanche
the layer depth is greater thanh0, as in experiment. The
opening angle as a function ofd is shown in the inset of
Fig. 4.

For larger values ofd or for thicker layers~close to the
dashed line in Fig. 4! we observed avalanches of the seco
type ~Fig. 8!. In this case the avalanche zone expands b
uphill and downhill. Unlike the previous case, the who
avalanche zone is in motion, as new rolling particles c
stantly arrive from the upper boundary of the avalanc
zone. Sometimes we observed small secondary avalanch
the wake of the large primary avalanche, see Fig. 8~c!.

C. Transition from triangular to uphill avalanches

Our model predicts the transition from triangular to uph
avalanches when the thickness of the layer or the inclina
angle are increased, similar to that observed in experim
@20#. In order to investigate the transition in detail, we aga
return to the one-dimensional version of Eqs.~24! and ~25!.
The results of the simulations are shown in Fig. 9.

As can be seen in Fig. 9~a!, a finite perturbation intro-
duced nearx5300 triggers a downhill avalanche for small

FIG. 7. Gray-coded images demonstrating the evolution o
triangular avalanche fort550 ~a!, t5200 ~b!, and 250~c!. White
color corresponds to maximum height of the layer, and black
minimum height. Parameters of Eqs.~24! and ~25! are a50.15,
b50.25, d51.2, andh053, pointA in Fig. 4.
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d. Due to mass conservation, the height of the avalan
increases as it propagates downhill.

For largerd, the region of fluidized grains expands n
only downhill, but also uphill@see Fig. 9~b!#. In contrast to
the downhill avalanche, the uphill front appears to be
steady-state solution,A5A(x1Vt),h5h(x1Vt). Our simu-
lations show that the velocity of the front remains finite
the transition point, see Fig. 10. Since the uphill front alwa
propagates with the finite velocityV.V0.0, we call this
phenomenon a ‘‘velocity gap.’’

It can be shown from the analysis of Eq.~25! that the
front solution indeed cannot exist for an arbitrarily sm
speed. In a comoving with velocityV frame, the front is a
stationary solution, and Eq.~25! reads

V~h2h0!52ah3A. ~26!

The nontrivial front solution must satisfy the boundary co
ditions h→h0 ,A→0 for x→2` andh→h` ,A5A`5” 0 for
x→`, where

a

o

FIG. 8. Snapshots of an uphill avalanche fort540 ~a!, 100 ~b!,
and 180 ~c!. Parameters of Eqs.~24! and ~25! are a50.05, b
50.25, d51.07, andh055.5, pointB in Fig. 4. A small secondary
avalanche is seen in the image~c!.

FIG. 9. One-dimensional evolution of a localized perturbation
a long shallow chute for two values ofd, ~a! d51.02; ~b! d
51.07. Shown are the height profiles at ten consecutive momen
time for h055.5,a50.05,b50.25. Secondary avalanches are se
in panel~a!.
3-8
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A`5
16~22d!

9p
1AS 16~22d!

9p D 2

1
4

3 S d212
p2

4h0
2D .

~27!

Since A` cannot be arbitrarily small for finiteh` by the
nature of the hysteretic transition from the solid to the flu
ized state,V also cannot be arbitrarily small. Thus, our mod
predicts the velocity gap for the uphill front, which is in fa
supported by the experimental data in Refs.@21,19#. This
result appears to be in contradiction with the conjecture
Bouchaud and Cates@36# that the transition from triangula
to uphill avalanches occurs atzero front velocity.

Tracking systematically the moving front existence lim
in (d,h) we obtained the line separating the triangular/up
avalanches in the (d,h) plane, see Fig. 4.

D. Uphill triangular avalanche transition and the velocity gap
in the large viscosity limit

The above argument justifying the finite velocity gap
not valid in the limit of very large viscosity (a→0). In this
case, the thickness of the layer does not change (h5h0
5const), and the order-parameter equation~14! becomes in-
dependent. The uphill front solutionr(x1Vt,z) satisfies the
equation

Vrx5¹2r2r~12r!~d2r!. ~28!

In this case, the transition between uphill and downh
front propagation is continuous, and it corresponds to thV
50 solution of Eq.~28!. This solution exists only for a spe
cific value ofd corresponding to the layer thicknessh. The
dependenced(h) is derived in Appendix A. At largeh0 it
results in

h;
ln~d21/2!

d21/2
, ~29!

i.e., at largeh the region of uphill avalanches shrinks,
agreement with experiments@20#.

FIG. 10. The velocity of uphill front vsd for h055.5,a
50.05,b50.25. The cutoff value of velocityV0'0.35.
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For smallh5O(1), thetransition line can be found from
the stationary solution of single-mode approximation E
~24!. In this case,

h5
p

2

1

Ad211
2

3
S 16

9p
~22d! D 2

~30!

~see Appendix A!.
For small but finitea ~large viscosityh), the velocity gap

is small @O(a1/2)#, and can also be found analytically from
Eqs.~24! and ~25!.

At small a!1, the uphill front speed satisfies the follow
ing equation~see Appendix B!:

V2 d̃d11
ad2

V
50, ~31!

whered̃5d2d* andd* is determined from theV50 con-
dition at a50, andd1,2 are specified in Appendix B. From
Eq. ~31! we find

V5
d1d̃

2
1A~d1d̃ !2/42ad2 ~32!

~the branch with ‘‘2 ’’ sign in front of the square root is
unstable!. Thus, the cutoff value of the velocityV05d1d̃/2
and corresponding value ofd at the threshold of uphill
propagation is

d5d* 12Aad2/d1 . ~33!

The above expansion, however, is valid only for very sm
a obeying the conditionah3!1.

E. Comparison with experiment

In order to establish a link between our theory and
experiments we need to specify the parametersf0 andf1, as
well as characteristic lengthl and timet, and the viscosityh.
Parameterf1 can be easily determined from the value of t
chute angle corresponding to the vertical asymptote of
stability curve on the experimental bifurcation diagram
Ref. @20#. The value off0 cannot be directly read from th
bifurcation diagram. However, the vertical asymptote to
line bounding the region of existence of avalanches in R
@20#, gives the value of the anglef̃0 at which the front
between the granular solid and fluid does not move, i.ed
51/2. Thus we can express our parameterd throughf̃0 ,f1.
For the experimental parameters of Ref.@20#, tan21f̃0

'25 ° and tan21f1'32 °. It givesb[1/2(f12f̃0)'3.15.
Based on the comparison with experimental results for
locity decay in stationary flow from Ref.@27#, as a charac-
teristic lengthl we can take the mean diameter of the graind,
which for the experiment of Ref.@20# was 0.24 mm. Solid
and dashed lines in Fig. 11 indicate theoretical stabi
boundaries, which correspond very nicely to the experim
tal findings.
3-9
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IGOR S. ARANSON AND LEV S. TSIMRING PHYSICAL REVIEW E65 061303
The position of the line separating the triangular and
hill avalanches depends on the value of parametera in Eq.
~25!. In fact, a;t/h is the only fitting parameter in the
theory. In principle, it could be determined independently
we knew the characteristic time and the viscosity, but t
data is not available to us. We find from the numerical so
tion of Eqs. ~24! and ~25! that the best fit to experimenta
data occurs fora'0.025~correspondinglym'0.2). For this
choice we find a good agreement between theory and ex
ment ~dotted line in Fig. 11!.

IV. FLOWS IN DEEP GRANULAR LAYERS

A. Avalanches in deep chutes

In deep granular layers our assumption that the convec
flux of the order parameter is small, is no longer valid, a
we have to return to Eq.~7!. As before, we choose the Ca
tesian coordinate system aligned with the unperturbed
surface with the origin at the surface, thez axis normal to the
surface, and thex axis running downwards along the surfac
For smooth horizontal variations of the flow, its local vertic
profile can be approximated by the following dependence
2`,z,0:

r512$tanh@~z1z0!/A8#2tanh@~z2z0!/A8#%/2 ~34!

with a slowly varying depth of the fluidized layerz0. This
expression is very close to the exact front solution

r5
1

2
~16tanh@z/A8# ! ~35!

if z0@1 andd→1/2 and differs from it only in the vicinity of
the free surfacez50, where it is augmented in order to sa

FIG. 11. Comparison of theoretical and experimental phase
grams. Lines obtained from theory, symbols depict experime
data from Ref.@20#. Solid line and circles limit the range of exis
tence of avalanches, long-dashed line and triangles correspon
the linear stability boundary of the static chute, and the dot-das
line and crosses denote the boundary between triangular and u
avalanches forb53.15,a50.025 ~or, correspondingly,m50.2).
Dotted line shows infinite viscosity limith→`.
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isfy the no-flux boundary condition]zr50. Moreover, for
z0→0 one hasr→1, thus one recovers the behavior of th
linearized Eq.~7!.

Let us introduce the new variable

z̄5E
2`

0

~12r!dz. ~36!

It is easy to check that for ansatz~34!, z̄5z0. We will show
below that the simplified description of the dynamics of E
~7! in the framework ofz̄ is rigorous in two important limits:
z̄@1 and z̄!1. For the intermediate values ofz̄ the above
approximation for the order-parameter equation~34! gives
smooth interpolation between these two limits. Our nume
cal simulations indicate that qualitative features are not s
sitive to the specific choice of interpolation since the solut
tends to ‘‘avoid’’ the intermediate area~we obtained qualita-
tively similar results using piece-linear approximations!.

After integration of Eq.~7! we obtain

] tz̄5]x
2z̄1E

2`

0

r~12r!~d2r!dz1E
2`

0

~vx]xr1vz]zr!dz.

~37!

The horizontal velocity profilevx(z) is found from Eq.~17!,

vx52mE
2`

z

~12r!z8dz8 ~38!

and

vz52E
2`

z

dz8]xvx5]xz0mE
2`

z

dz8E
2`

z8
dz z]z~12r!.

~39!

Now, substituting Eqs.~34!, ~38!, and ~39! into Eq. ~37!,
after some algebra we get

] tz05]x
2z01F~z0!2mG~z0!]xz0 . ~40!

FunctionF(z0) can be found in the closed form

F5
6

A2~s21!
1

2d21

A2
2

2z0

s21 S 3

s21
1d11D ~41!

with s5exp(A2z0). Function F(z0) has the following
asymptotic behaviors:

F~z0!5H ~d21!z0 for z0!1,

A2S d2
1

2D for z0@1.
~42!

Thus, at smallz0 Eq. ~37! complies with the behavior of Eq
~7!, linearized nearr51 and for largez0 Eq. ~37! gives the
asymptotically correct result for the velocity of the front b
tween the fluidized and solid state atd→1/2.

Function G(z0) can only be found in an integral form
However, asymptotic values ofG(z0) can be found for large
and smallz0,

a-
al

to
d
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3-10



f

tio
tio

f
es
hi
n
c

m

ph
lu

o
ick

es
l
r

e

a

oll-

-

-
of

.
e
is
a-

loc-

the

he

f the
ches

al
ri-

CONTINUUM THEORY OF PARTIALLY FLUIDIZED . . . PHYSICAL REVIEW E65 061303
G~z0!55
122p2

3A2
z0'0.5021z0 for z0!1,

p2

3
'3.29 for z0@1.

~43!

The expression forG, valid also for intermediate values o
z0, can be approximated as

G~z0!5
p2

3
tanhS 122p2

p2A2
z0D . ~44!

This equation has to be solved together with the equa
for d. The latter can be derived from the mass conserva
equation~11! with the expression for flux given by Eq.~18!.
Substitutingr(z) from Eq. ~34!, we obtain

]h

]t
52

m

3
]x f ~z0!, ~45!

where

f ~z0!5H 2p2z0 for z0!1,

z0
3 for z0@1.

~46!

We used the simplest interpolation for this function:f (z0)
5z0(z0

212p2). Differentiating Eq.~45! with respect tox, we
arrive at the equation ford @compare Eq.~13!#,

] td5
mb

3
]x

2f ~z0!. ~47!

Equations~40! and ~47! give a simplified description o
two-dimensional flows in deep inclined layers or sandpil
We performed numerical simulations of avalanches wit
this model. We have found that small localized perturbatio
decay, and large enough perturbations trigger an avalan
Figure 12 shows the development of the avalanche fro
localized perturbation imposed at the pointx5480. As it is
seen from the figure, the avalanche propagates both u
and downhill. This observation is consistent with our conc
sion from previous sections that the domain of existence
triangular avalanches shrinks with the increase of layer th
ness and is in agreement with experiment@19–21#.

B. Connection with BCRE theory

It is interesting to point out the similarities and differenc
between our Eqs.~40! and~45! the set of phenomenologica
equations for avalanches in deep layers proposed earlie
Refs.@7–10#.

The BCRE theory@9# operates with two variables, th
thickness of immobile fractionH and the thickness of rolling
~flowing! fraction R. These quantities obey the set of equ
tions ~see, e.g., Ref.@7#!

]R

]t
52g~f r2f!R2 v̄

]R

]x
1D

]2R

]x2
, ~48!
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]H

]t
5g~f r2f!R, ~49!

wheref r is the critical slope,f52]H/]x is the local slope,
termg(f r2f)R describes the mass exchange between r
ing ~R! and static~H! layers,v̄ is the flow velocity~assumed
to be constant! within the rolling layer, andD is the diffusion
constant. The first BCRE equation~48! describes the dynam
ics of the rolling fraction, and Eq.~49! is analogous to our
mass conservation law Eq.~45!, although in our description
h indicates the total thickness of the layer, i.e.,h5H1R.

These equations were later modified in Refs.@10–12# for
flows involving large values ofR by replacing the instability
term g(f2f r)R by the saturation term (f2f r)vup for R
.R0 ,R0@1, yielding

]R

]t
5~f2f r !vup1 v̄

]R

]x
1D

]2R

]x2
, ~50!

wherevup is a constant of the order ofv̄. This modification
provides layer thickness saturation at largeR.

One may notice that Eq.~40! with Eqs. ~41! and ~44!
coincide with the first BCRE equation~48! for z0!1, and
with Eq. ~50! for large z0, however with one important ca
veat. From our derivation it directly follows that the value
the critical anglef r must be different for small and largeR,
whereas in Eqs.~48! and ~50! that value is kept the same
This important distinction of our model gives rise to th
hysteretic behavior of the fluidization transition, which
missing in the original BCRE model and its later modific
tion @12#.

In their recent work Aradian, Raphae¨l, and de Gennes
@12# added phenomenologically the dependence of the ve
ity profile on the flowing layer thicknessR. Note that in our
approach this dependence appears naturally, however

FIG. 12. Evolution of a free-surface profile during an avalanc
within a simplified model~40!,~47! for d050.75,m50.2,b53.15,
i.e., the parameters are the same as for Fig. 11. In the wake o
avalanche the slope of the free surface is reduced and approa
the equilibrium value 1/2. Note the ‘‘true’’ horizontal and vertic
variables (x* ,z* ), which are related to our original Cartesian va
ables (x,y) via a simple rotation by anglew.
3-11
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particular form of the coefficientG in the convective term in
Eq. ~40! differs from a simple linear form proposed in Re
@12#.

C. Flow in rotating drum

The dynamics of granular material placed in a rotat
drum is another example of partially fluidized granular flo
in a deep granular layer, see for review Ref.@34#. Depending
on the rotation ratev, see Fig. 13, the flow occurs in th
form of a sequence of avalanches for smallv, or a steady
flow for larger rotation speeds. At relatively smallv, the
flow is confined to a narrow near-surface region, and
bulk exhibits rigid body rotation. These observatio
prompted a number of recently introduced continuum mod
@7,10,37–39# in which the flow was described by the depe
dence of its total flux on the local free-surface sloped, J
;d2dc , where dc is the critical slope. This descriptio
yields rather realistic profiles of the free surface in the s
tionary flow regime, and also can explain the main featu
of segregation of binary granular mixtures in rotating dru
@37–41#. However, it fails to describe the transition fro
periodic avalanching to the stationary regime. Evidently, t
can only be done within a model which incorporates
hysteretic character of granular fluidization.

In this section we focus on the nonstationary granu
flows in two-dimensional~2D! rotating drums, see Fig. 13
To simplify the description, we assume that the free surf
profile is not very different from a straight line and the radi
of the drum is much larger than the grain size. It allows us
use the formalism developed in Sec. IV A and reduce
description of the flow to the evolution of only two quan
ties: the position of the solid/liquid interfacez0 and param-
eterd, which is proportional to tanf.

The equation forz0 is the same as in Sec. IV A:

] tz05]s
2z01F~z0 ,d!2 v̄]sz0 , ~51!

where we introduced the coordinates along the free surface
and the convective termv̄]sz0, see discussion above. Th
equation is subject to boundary conditionsz050 at the drum
walls ~say ats52s0 ,s0). Since the fluxJ;z0, this condi-
tion guarantees zero flux at the drum wall. The equation
d is similar to Eq.~47!, but has an extra term due to rotatio
~compare@7,38#!:

FIG. 13. Sketch of a flow in a rotating drum.
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] td5V1]s
2J, ~52!

whereJ5(mb/3) f (z0), compare Eq.~46!, andV is propor-
tional to rotation speedv. The increase of the angle due
rotation is compensated by the flux of particles downhill d
scribed by the last term in Eq.~52!.

We studied Eqs.~51! and ~52! numerically. The deep-
layer approximation is not valid near the edges of the f
surface, i.e., fors'6s0. It results in anomalous growth o
the angled for s→6s0. In order to prevent this spuriou
behavior we add the regularization term2@12z(s)#d to Eq.
~52!. The function z(s) was chosen as follows:z
5tanh@z0(s02usu)#, i.e., z→0 near the edges andz51 other-
wise. This term enforces the decay of the variabled near the
edges of the drum. In our numerical simulations we us
z050.2. We checked that the bulk behavior was not sensi
to the specific choice of the functionz(s).

Some of the results are presented in Figs. 14–16. As s
in Fig. 14, for low rotation rates granular flow has a form
a sequence of avalanches separated by almost quie
states (z0→0). Surprisingly, the time behavior, especially
large drums, at low rotation ratesV is not strictly periodic,
see Fig. 15, although one can distinguish a well-defined c
acteristic time between the avalanches, as in Refs.@35,42#.
We think that this weak stochasticity in the form and t
duration of individual avalanches in most cases is related
the noise amplification. Since the avalanches are separ
by long quiescent periods whenz0 is extremely small (z0
could be as small as 10220 for V!1), the slope of free
surfaced may ‘‘overshoot’’ the instability limitd51, and the
system becomes susceptible to small fluctuations. These
tuations trigger avalanches at random positions of the dr

For higher rotation speed we observed the hysteretic t
sition to steady flow. In the steady flow regime (] tz05] td
50) one finds from Eq.~52!,

FIG. 14. Bifurcation diagram for the granular flow in a rotatin
drum obtained from the solution of Eqs.~51! and ~52! for m50.2,
b53.15,2s0,s,s0 , s05100. Symbols showz0 at the center of
the drum (s50) at the moments whendz0 /dt50; d corresponds
to increase ofV, h to decrease ofV. The arrows illustrate the
hysteretic transition between stationary and avalanche flows.
3-12
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J5
V

2
~s0

22s2!. ~53!

Using thatJ;z0
3 @see Eq.~46!#, one immediately finds the

dependence of the depth of fluidized layerz0 on the position
along the drum surfaces: z0;V1/3(s0

22s2)1/3 ~this expres-
sion is valid far from the edges, i.e.,usu,s0). The depen-
dence ofz0 vs s is shown in Fig. 16 for several values o
angular rotation speedV. The dependence ofz0 vs s is prac-
tically symmetric with respect to the center of the drum, a
z0 increases with the rotation rateV in agreement with ex-
periments~see, e.g.,@43#!. The form ofz0 vs s is consistent
with recent experimental observations of flows in rotati
drums from Ref.@44#.

V. SHEAR GRANULAR FLOWS
AND GRANULAR FRICTION

In this section we consider one-dimensional shear flow
granular matter placed between two parallel plates, one

FIG. 15. The width of the fluidized layerz0 vs time at the center
of the drum in the regime of an avalanche flow for three differ
values ofV, other parameters are the same as for Fig. 14.

FIG. 16. Width of the fluidized layerz0 vs s in the stationary
flow regime for three values ofV.
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which is moving with the velocityV0 ~Couette flow!. This
flow ~or rather Taylor-Couette flow between cylinders! has
been studied in a number of recent experiments@23–26#. It
was found that at small pulling speeds, granular flows exh
nonstationary stick-slip motion@25#. At higher pulling
speeds, the flow becomes stationary. The velocity profiles
typically exponential@23,26–28# in 2D experiments, but be
come Gaussian in 3D Taylor-Couette geometry@24#. We will
show that these observations can be readily explained wi
our theoretical description.

A. 2D problem

In this section we neglect the effect of the~bottom! im-
mobile boundary and restrict our analysis to the case o
planar shear flow in a semi-infinite layer of granular mat
driven by a moving plate~see Fig. 17!. We introduce a fixed
Cartesian coordinate frame with horizontal axisx, vertical
axis z, and the origin at the top of the granular layer. T
general model is reduced to Eq.~14! combined with the con-
stitutive relation

sxz5h
dv
dz

1rsxz
0 , ~54!

wherev(z) is the horizontal velocity of the granular flow.
The relation for the control parameterd reads as

d5
~sxz /szz

0 !22f0
2

f1
22f0

2
, ~55!

where f0,1 are tangents of the static and dynamic repo
angles@compare with Eq.~6!#. Unlike the chute flow, the
normal stressszz is constant~51!, and the static componen
of the shear stresssxz

0 is independent of the depthz. Here we
neglect the weight of the sand itself since the weight of
top plate provides a much larger normal stress. The indep
dence of the static stresssxz

0 on z is in fact approximation.
We assume that the ‘‘stress propagation time,’’ which is

t

FIG. 17. Schematic representation of a 2D granular flow exp
ment. Granular material is driven by a heavy top plate which
pulled via a spring with constant velocityV0. The deflection of the
spring is proportional to the difference between positions of ‘‘pu
ing point’’ P and plate displacementQ.
3-13
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the order of collision timet0;Ad/g is much smaller than
any time scale in our problem, which is true for modera
shearing rates.

The balance of forces requiressxz5sxz
0 , which together

with the constitutive relation~54! yields the expression fo
the shear velocity~one needs to sets05sxz

0 in order to sat-
isfy the boundary condition atz→`):

v~z!5sxz
0 E

2`

z

~12r!dz8. ~56!

These equations have to be augmented by the boun
conditions atz→` andz50. At z→` we requirer→1, i.e.,
the granular material is static, and atz50, we require the
no-flux conditionrz(0)50. We would like to note that in
contrast to the analysis in Secs. III and IV, contact with
pulling plate is not equivalent to a free-surface conditio
and therefore we cannot argue no-flux boundary conditi
from the absence of an entropy flux. However, it seems to
the simplestnontrivial boundary condition possible. Th
other simple conditionr5const,1 would force permanen
fluidization near the surface, which is clearly nonphysic
and the more general boundary conditionr1const3rz51
yields qualitatively similar dynamics but introduces o
more adjustable parameter.

In addition to that, we need a relation between the sh
flow and the shear stress near the surface. We argue th
the plate moves, the shear stress at the boundary is pro
tional to the difference between the displacement of the p
ing point P(x05V0t) and the displacement of the platex1
~point Q)

sxz
0 5g~x02x12X0!, ~57!

whereg5const is proportional to the spring stiffness andX0
is a distance betweenP andQ corresponding to the unloade
spring ~effective ‘‘Hooke’s law’’!. Differentiating this equa-
tion with respect to timet yields the boundary condition

ṡxz
0 5g@V02v~0!#, ~58!

where we took into account that the plate velocity coincid
with the velocity of grains immediately below the surfac
Introducing scaled variablesS5sxz

0 /(f1
22f0

2)1/2szz
0 , S0

5f0 /(f1
22f0

2)1/2, G5gh, W5V0h/(f1
22f0

2)1/2szz
0 ,

V(z)5v(z)h/(f1
22f0

2)1/2szz
0 , we obtain the following set

of equations:

ṙ5¹2r1r~12r!~r2S21S0
2!, ~59!

V~z!5SE
2`

z

~12r!dz8, ~60!

Ṡ5G„W2V~0!…. ~61!

It is interesting to trace the connection of our bounda
condition~61! to the Maxwell stress relaxation condition fo
viscoelastic fluid@45#,
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dsxz

dt
1

1

t
sxz5Ẽ

duxz

dt
, ~62!

whereẼ5const is the ‘‘effective shear modulus’’ anduxz is
the strain tensor, andt is some characteristic relaxation tim
It can be expected thatt is a function of the order paramete
and diverges in solid state,r→1, so if we take

t5G/~12r! ~63!

and integrate Eq.~62! overz from 2` to 0, we get Eq.~61!.
We integrated Eqs.~59!–~61! numerically using the finite

difference method. The main control parameter of this mo
is the normalized velocityW. At largeW we obtained a sta-
tionary near-surface shear flow with a profile shown in F
18. In accordance with Eq.~60!, the velocityV and the shear
Vz are maximal near the surface, wherer is minimal. For
large z, the asymptotic velocity profile exhibits a wel
defined exponential decay, Fig. 18~b!. In fact, this stationary
distribution of the order parameterr coincides with the exac
solution Eq.~21!, in which d should be replaced byS22S0

2.
At small velocitiesW→0 the model exhibits relaxation

oscillations, reminiscent of the normal dry friction betwe
two solids. The stresssxz grows almost linearly with no flow
until it reaches a certain threshold value after which the ne
surface layer fluidizes, and the ensuing shear flow relie
the accumulated stress. After that the layer ‘‘freezes’’ aga
and the process repeats~see Fig. 19!.

Figure 20 depicts the bifurcation diagram illustrating t
transition from the stationary shear flow at largeW to the
regime of relaxation oscillations at smallW. As can be seen
the transition is subcritical with hysteresis~similar to the
case of rotating drums!, as the oscillations always occur wit
finite amplitude. A similar abrupt transition from oscillation
to steady sliding was found in experiment Ref.@25#.

Furthermore, we explored the dependence of the sh
stressS on the pulling speedW. For the stationary flow re-

FIG. 18. Vertical profiles of the order parameterr(z) ~a! and the
shear flow velocityV(z) ~b! for S050.1,G50.01,W55. The solid
line depicts the velocity profile in the linear scale and the das
line depicts it in the semilogarithmic scale.
3-14
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gime it can be found analytically using the exact solution E
~21! for the order parameterr. A simple expression can b
obtained at the large velocity limit (W@1) corresponding to
d→1/2. In this case one derives from Eqs.~21!, ~60!, and
~61!,

W5SE
2`

0

~12r!dz8'2
S

A2
lnSAS22S0

221/2

6
D . ~64!

As one sees from Eq.~64!, with increase of the pulling ve
locity W the shear stressS monotonically decreases and a
proaches the valueS5A1/21S0

2, in agreement with the ex
perimental results of Ref.@26#, where it was also found tha
the shear stress slightly decreases with the increase o
shear rate and approaches some equilibrium value.

FIG. 19. Relaxation oscillations of the shear stresssxz ~a! and
the near-surface velocityV(0) ~b! for S050.1,G50.01,W52.

FIG. 20. Bifurcation diagram for the transition from stationa
shear flow to relaxation oscillations. The dots in this plot depict
extrema of V(t) as a function of the pulling speedW for S0

50.1,G50.01. Periodic oscillations coexist with steady sliding f
2.6,W,3.6.
06130
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The numerically obtained dependence ofS vs W for arbi-
trary values ofW is shown in Fig. 21. As seen from th
figure, indeed there is only a weak dependence ofSon W for
W.0.5.

In the recent paper@46#, a model for the granular friction
has been proposed, which is based on similar ideas o
phase transition in the granular medium underneath a m
ing surface. Within this model, oscillations in the form
stick-slip motion can be described, however the model d
not describe the observed transition from stick-slip motion
the steady motion with the increasing of the pulling veloci
The significant difference between the model of@46# and our
model is that the former does not address the spatial in
mogeneity of the fluidized layer, and thus the ord
parameter dynamics is described by an ordinary differen
equation. Second, the control parameter in the ord
parameter equation@46# ~see also@47#! is a function of the
sliding velocity and not the applied stress, which in our op
ion is not physical. Indeed, the transition to a fluidized st
should be determined by a yield condition that is natura
defined via components of the stress tensor. Although in
dynamic friction problem the sliding velocity and the she
stress are related, we believe that the motion of the gran
material is the consequence of the fluidization transit
rather than the reason for it.

An alternative approach leading to the exponential de
of velocity in shear flows was developed in Ref.@26#. Using
traditional hydrodynamic equations coupled to the equat
for the granular temperature, the authors reproduced exp
mentally observed behavior. However, in order to explain
exponentially small velocity tail far away from the movin
plate, a highly nonlinear viscosity with singular dependen
on the density was introducedad hoc. That model success
fully describes the shear flow driven by a moving plate, ho
ever it fails to describe the transition between solid and
idized states, which is the hallmark of the granular dynam
Our model, on the contrary, is applicable to the description
both flowing and static regime.

e

FIG. 21. Dependence of the normalized shear stressS on the
pulling speedW for S050.1,G50.01 ~circles!. Nonuniqueness of
this function is a result of the hysteretic transition from stick-s
motion to continuous sliding. The solid line corresponds to solut
~64! for stationary shear flow regime.
3-15
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B. 3D problem

In this section we consider the 3D shear flow struct
between two vertical plates one of which is moving w
respect to the other~see Fig. 22!. This geometry is inspired
by the recent experiment by Muethet al. @24# in which the
structure of the granular shear flow was studied in a lo
vertical Taylor-Couette cell. In the experiment with roug
particles they found a significant deviation in the shear fl
profile from the simple exponential profile observed in e
lier 2D experiments@23,25–28,48# and successfully repro
duced by our theory~see the preceding section!.

Reference@24# gives strong evidence for the Gaussi
@v;exp(2const3(r 2r 0)2# behavior of the velocity profile
near the outer wall. As we show below, this feature can
attributed to the three-dimensional geometry of the exp
ment in contrast to that of Refs.@23,25–28#. It follows di-
rectly from the fact that the normal stress~pressure! in suf-
ficiently long vertical cylinders filled with dry granula
materials saturates and does not depend on the height o
cylinder ~as in the celebrated Jansen picture of silo, see@3#!.

Indeed, consider the distribution of stresses in an infin
layer of grains in contact with two vertical walls~gravity is
directed along thez axis! at the pointsy50 andy522L,
see Fig. 22. From the projection of force on thez axis we
obtain the condition

sxz,x1syz,y1szz,z52g. ~65!

Since we assume that the diagonal componentszz does not
depend on depth, i.e., thez coordinate, and there is nox
dependence of stresses, we obtain that the weight is
ported by the tangential stresssyz52g(y1L). Due to
shearing we will also have tangential stresssxy5const, as in
the two-dimensional case~with notational difference thaty
now indicates the direction normal to the walls!.

Now, we need to relate the tangential stresses to the
trol parameterd using the Mohr-Coulomb condition in thre

FIG. 22. Schematic representation of a 3D shear experimen
slab of granular material is sandwiched between two vertical pla
one is moving with the speedV0 at y50 and one is immobile a
y522L.
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dimensions. It is well known@4# that the tangential and nor
mal stressesst andsn lie within the shaded area limited b
the Mohr’s circles built upon the major, intermediate, a
minor principal stress valuess123 ~see Fig. 23!. As it is
clear from Fig. 23, the maximum value of the ratiof
5st /sn occurs at the tangential pointA at which

f5
s12s3

2As1s3

. ~66!

The major and minor principal stresses are determined
eigenvalues of the shear stress tensors i j . The control pa-
rameterd is related tof via Eq. ~6!, so in this case

d5F ~s12s3!2

4s1s3
2f0

2G~f1
22f0

2!. ~67!

For simplicity we assume that all diagonal components
the stress tensor are equal~like in fluid!: sxx5syy5szz
5P5const. This assumption makes the calculation mu
simpler, although qualitatively similar behavior is expect
in the general case. HereP has the meaning of pressure at t
bottom of the cell and from the dimensional considerat
one concludes thatP'c0gL, wherec0.1 is a constant tha
depends on surface wall roughness, etc.@3,31#. One obtains
the eigenvalues

s15P1Ag2~y1L !21sxy
2 ,

s25P,

s35P2Ag2~y1L !21sxy
2 . ~68!

Thus, one derives

d~y!5
1

f1
22f0

2 F g2~y1L !21sxy
2

P22g2~y1L !22sxy
2

2f0
2G . ~69!

Here, as before,sxy characterizes shear rate and is prop
tional to V0. Therefore, the control parameterd in three di-
mensions has an explicity dependence. In contrast, in 2
geometry we had simplyd5const.

A
s,

FIG. 23. Mohr’s circle for the three-dimensional shear stre
tensor@4#.
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Let us now evaluate the decay rate of the order param
Linearizing Eq.~14! nearr51 we obtain

ryy2r@12d~y!#50. ~70!

We focus on the solution near the wally50. If uy/Lu!1, we
can apply the WKB approximation and seek the solution
the form r;exp@F(y)#. Then we deriveF2512d(y).
Therefore, for 0,uyu!L and also forsxy /P!1 we derive

r5expF2E
y

0
A12d~y8!dy8G

'expFA12d~0!y2
d8~0!

4A12d~0!
y21O~y3!Gdy8.

~71!

Thus, in three dimensionsr(y) possesses a Gaussian co
rection term, which is absent in two dimensions becaused8
50 in the 2D shear flow. Let us point out that, to the fi
order, the coefficient ofy2 does not depend on the shear ra
in agreement with experiment@24#.

VI. CONCLUSIONS

We developed a continuum theory of partially fluidize
granular flows. This theory is based on a combination of
mass and momentum conservation laws with an equation
the order parameter describing the transition from the st
to flowing regime. In this sense, our theory goes beyond
traditional hydrodynamical description of dense granu
flows, see, e.g.,@25,49–51#. The order parameter, which is
crucial variable in our theory, can be interpreted as a por
of the static contacts among particles in a small volu
within the granular system. This quantity is difficult to me
sure in physical experiments, but can be extracted from
lecular dynamics simulations. Phenomenological parame
in our model can be obtained from comparison with mole
lar dynamics simulations and experiments. In a certain li
our model can be reduced to two coupled equations for
depth of the fluidized layer and local angle, which resem
the BCRE model; however these differ from it when cons
ered in detail. In particular, our model has intrinsic hystere
behavior absent in the BCRE model.

Our order-parameter model captures many important
pects of the phenomenology of chute flows observed in
cent experiments@20–22,27,28#, including the structure of
the stability diagram, the triangular shape of downhill av
lanches at small inclination angles, and the balloon shap
uphill avalanches for larger angles. It provides an adequ
description of granular flows in a 2D rotating drum and in
Couette geometry. In particular, we found the experiment
observed features such as periodic oscillations of the s
stress and the flow velocity at low rotation rates and
transition to a steady flow at higher rates. For sidew
driven shear granular flows our model gives rise to the
ponential velocity profile in two dimensions and the Gau
ian correction to the profile in three dimensions.
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A challenging project would be to derive the evolutio
equation for the order parameter from some sort of ‘‘mic
scopic’’ theory of granular flow, in analogy to the theory
superconductivity, where the order-parameter equation
first proposed phenomenologically by Ginzburg and Land
@52#, and later derived from the microscopic theory of sup
conductivity by Gorkov and Eliashberg@53#. Since our
model exhibits a critical slowdown ford→1, i.e., the decay
lengthds5d/A12d ~or, pursuing the analogy with equilib
rium critical phenomena, the coherence length! diverges at
the critical point, an asymptotical derivation of the orde
parameter equation can be anticipated in the vicinity of
point of spontaneous fluidizationd51.
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APPENDIX A: THE TRANSITION LINE BETWEEN
TRIANGULAR AND UPHILL AVALANCHES—INFINITE

VISCOSITY LIMIT

The transition line between triangular and uphill av
lanches can be found analytically in the limit of infinite vi
cosity. In this case Eq.~11! yields a trivial solutionh5h0
5const and Eq.~14! becomes independent. Within a sing
order-parameter equation, the velocity gap disappears,
the transition line corresponds toV50.

We represent the solution for the order parameter in
form

r~x,z,t !5r~x1Vt,z!. ~A1!

Substituting the ansatz~A1! in Eq. ~14! one obtains

Vrx5¹2r2r~12r!~d2r!. ~A2!

For V50 Eq. ~A2! is reduced to

¹2r02r0~12r0!~d2r0!50. ~A3!

The solution to Eq.~A3! exists only for some specific valu
of d5d0 for eachh0. This value can be obtained from th
solvability condition. Since]xr0 is the solution of the linear-
ized problem, the solvability condition is obtained with r
spect to this solution. Multiplying Eq.~A3! by ]xr0 and per-
forming integration overx andz, one obtains

E
2`

`

dxE
2h

0

dz]xr0@¹2r02r0~12r0!~d02r0!#50.

~A4!

Using integration by parts, we derive
3-17
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E
2`

`

dxE
2h

0

dz
]

]x S ~]zr0!21
1

2
r0

42
2

3
~d011!r0

31dr0
2D50,

~A5!

which leads to

E
2h

0

dzS ~]zr0!21
1

2
r0

42
2

3
~d011!r0

31dr0
2D U

x5`

2
h0~2d21!

6
50. ~A6!

For x→` the solution r0 converges to a pure one
dimensional solution with the first integral

2~]zr0!21
1

2
r0

42
2

3
~d011!r0

31dr0
25C5const,

~A7!

where C5 1
2 r0

42 2
3 (d011)r0

31dr0
2 at z50. Therefore, the

expression~A6! can be brought to the form

2E
2h

0

dzS 1

2
r0

42
2

3
~d011!r0

31dr0
2D U

x5`

2Ch2
h0~2d21!

6

50. ~A8!

Settingh5h0 and solving Eq.~A8! for eachh, one finds the
dependenced0 vs h0. This dependence is shown in Fig. 1
dotted line. The infinite viscosity limit gives the lower boun
of uphill avalanches; however, as one sees in the figure,
limit is rather close to the experimental data.

For h@1 one can derive an estimate forh vs d. In this
limit, the solution is given by the front solution Eq.~34!.
Since ford.1/2 the fluidized state invades the solid sta
the front travels toward the bottom and stops at the dista
Dz; ln(d21/2);O(1) from the bottom. Thus, forh@1 one
obtains from Eq.~A8! ~taking into accountC→0),

h;
ln~d21/2!

d21/2
. ~A9!

Let us now consider the caseh;O(1). In this case the tran
sition lineh(d) can be obtained analytically from the singl
mode approximation Eq.~24!. To demonstrate that, we firs
find the position of the lineV50 in the (d,h) plane fora
→0. Equation~24! has a stationary front solution connectin
two outer fixed pointsA1 andA3 of Eq. ~24! if its free energy
is symmetric, i.e., the rootsA1,2,3 of equationl(h)A1@8(2
2d)/3p#A22 3

4 A350 satisfy the symmetry conditionA1
50, A352A2. It gives rise to the expression

d212
p2

4h2
1

2

3 S 16

9p
~22d! D 2

50. ~A10!

From Eq.~A10! we obtain
06130
is

,
ce

h5
p

2

1

Ad211
2

3
F 16

9p
~22d!G2

. ~A11!

The dependenceh(d) agrees with the corresponding depe
dence obtained from the analysis of the full Eq.~14! @see Eq.
~A8!# with a line thickness up tod'0.6. Also, along this line
there is an exact expression for the front solution

A05A`@11tanh~A3/8A`x!#, ~A12!

whereA` is given by Eq.~27!.

APPENDIX B: UPHILL FRONT VELOCITY IN THE
LARGE VISCOSITY LIMIT

For finite a we look for the solution in the form

A5A0~x!1eA1 ,

h5h01eh1~x!,

V5eV1 ,

d5d* 1ed12be]xh1 , ~B1!

wheree5Aa andA0(x) is given by Eq.~A12!. Substituting
the ansatz~B1! into Eqs.~24! and~25!, we obtain in the first
order ine,

L̂A15V1A182bh18S 8

3p
A0

22A0D2
p2A0

2h0
3

h1

2d1S A02
8

3p
A0

2D , ~B2!

V1h152h0
3A0 , ~B3!

where L̂ linearizes Eq.~24! in the vicinity of A0 at h
5h0 ,d5d* .

Equation ~B2! has a bounded solution if the right-han
side of Eq.~B2! with h1 expressed from Eq.~B3! is orthogo-
nal to the zero eigenmodeA15]xA0. This solvability condi-
tion yields

V1a11
a2

V1
2d1a350, ~B4!
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where

a15E
2`

`

~]xA0!2dx5A2/3A`
3 ,

a25E
2`

` Fbh0
3~]xA0!2S 8

3p
A0

22A0D1p2/2A0
2]xA0Gdx

5A`
3 S 4p2

3
1

16bA6h0
3A`

2

15p
2

bA6h0
3A`

3 D ,
y

-
d

rt

e

l.

t

E

tt

06130
a35E
2`

` S A02
8

3p
A0

2D ]xA052A`
2 2

64

9p
A`

3 . ~B5!

Returning to the original notation, we obtain from Eq.~B4!

V22 d̃d1V1ad250, ~B6!

with d15a3 /a1 , d25a2 /a1, and d̃5d2d* .
. R.

E

ys.
,

no,

ave
y
n a
-

s,

din,

v.

ns,

tt.
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