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Continuum theory of partially fluidized granular flows
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A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination
of the equations for the flow velocity and shear stresses coupled with the order-parameter equation which
describes the transition between the flowing and static components of the granular system. We apply this theory
to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums,
and shear granular flows between two plates. We carry out quantitative comparisons between the theory and

experiment.
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[. INTRODUCTION Mohr-Coloumb vyield failure conditiod4] is equivalent to

the critical melting temperature of a solid. The OP can be

The dynamics of granular materials under shear stresseglated to the local entropfand possibly density{15] of the
plays a fundamental role in many natural phenomena an@ranular material. OP dynamics is then coupled to the hydro-
technological applicationsl—4]. When the shear stress ex- dynamic equation for the granular flow.
ceeds a certain threshold, granular material undergoes a tran- e apply this theory to several cases of granular flows of
sition from a solid state to a fluidized statgield). The considerable interest. First, we will focus on gravity driven
physical mechanism and properties of this transition are stilfrée-surface granular flows which typically occur in shallow
not completely understood. In many important situations th&hutes, sandpiles, and rotating drums. The most famous form
granular material remains in a multiphase state when part df such flows is an avalanche, and our theory yields a rather
it is fluidized while another part is solid. detailed description of the avalanche dynamics. Then we ap-

On the theoretical side, a significant progress has beeply our theory to granular Couette flows induced in the bulk
achieved by large-scale molecular dynamics simulation®y @& moving boundary. Our model captures important phe-
[5,6] and by continuum theory7—12. The current con- homenology observed in these systqib8—28.
tinuum theory of dense near-surface flows was pioneered by The structure of the paper is as follows. In Sec. Il we
Bouchaud, Cates, Ravi Prakash, and Edw4RIGRE) [9] describe a general formulation of the partially fluidized
and subsequently developed by de Gennes and co-workegganular flows. In Sec. Il we focus on the free-surface flow
[7,10,1. In their model, a granular system is spatially sepa-Problem on an incline plangchute flow. In this section we
rated into two phases, static and rolling. The interaction beconsider stability properties of stationary solutions, ava-
tween the phases is implemented through certain conversidanches in shallow chutes, transitions from triangular to up-
rates. This model describes certain features of thin neafill avalanches, and comparison with experimental results. In
surface granular flows including avalanches. However, duec. IV we study flows in deep layers. First, we consider
to its intrinsic assumptions, it only works when the granulardvalanches in deep chutes. Then, we apply our theory to
material is well separated into a thin surface flow and argranular flows in two-dimensional rotating drums. We show
immobile bulk. In many practically important situations, this that our model exhibits avalanche flow at low rotation rates

distinction between the “liquid” and “solid” phases is more and transition to steady flow at higher rotation rates. In Sec.

subtle and itself is controlled by the dynamics. V we extend our approach to shear granular flows and dis-
The purpose of this paper is to develop a unifying descripCuss its connection with dry friction phenomena in granular

tion of such partially fluidized granular flows and apply this Systems. In Sec. VI we discuss various implications of our

theory to several problems of granular dynaniit8]. The  results.

underlying idea of our approach is borrowed from the Lan-

dau theory of phase transitiod4]. We assume that the Il. GENERAL FORMULATION

shear stresses in a partially fluidized granular matter are . -

composed of two parts: the dynamic part proportional to the We base the continuum descnpgon of granular flows on

shear strain rate and the strain-independentstatic” ) part. the momentum conservation equation

The relative magnitude of the static shear stress is controlled

by the order parametgiOP), which varies from 0 in the

liquid phase to 1 in the solid phase. A possibility of describ-

ing a granular flow as a multiphase system undergoing a ) )

phase transition has been proposed by de Gejfjesthout ~ Wherev; are the components of velocityo=const is the

further elaboration. Unlike ordinary matter, the phase transidensity of materia(we setpo=1), gis acceleration of grav-

tion in granular matter is controlled not by the temperatureity: D/Dt=d;+v;dy denotes the material derivative, ang

but by the dynamics stresses themselves. In particular, thdenotes components of the stress tensor. We assume that the

b= 2Ty pog, =123 W
° Dt X odi e
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velocity obeys the incompressibility condition-v=0. In-  granular configurations is rather complex and not completely
deed, the relative changes of density for dense flows arénderstood4,30]. It appears that in many cases the consti-
typically very small (of the order of a few percentand tutive relations are determined by the construction history
therefore the compressibility is negligible in the momentum[31]. Recent studies elucidated the fundamental role of the
dynamics. Still, these changes in density in fact are Verjorce chain networks in the formation of the shear stress
important, since the very onset of flow in granular materialstensor[32]. We will assume that for any given problem, the
itself is related to dilatancy, i.e., small decrease in densitycorresponding static constitutive relation has been specified.
Furthermore, these small variations in density substantially Since in dense granular flows the energy is rapidly dissi-
influence transport coefficients and the constitutive relationspated due to inelastic collisions, we apply pure dissipative
In fact, our order-parameter equati¢see below is a phe- dynamics for the order parametpgr which can be derived
nomenological way to describe the small but importantfrom the free-energy-type function:
changes in local ordering, and, consequently, density.

The momentum conservation equatidn has to be aug- Dp oF (4)
mented by the appropriate boundary conditidBEs). As Dt op’
usual, on solid walls we require no-slip conditions=0,

and on free surfaces, the kinematic boundary condition i¥Ve adopt the standard Landau form @+ [dr[D|Vp|?
assumed, +f(p,¢)], which includes a “local potential energy” and

the diffusive spatial coupling. The potential energy density
D¢ f(p,®) should have extrema at=0 andp=1 correspond-
Dt Un 2) ing to uniform solid and liquid phases. According to the
Mohr-Coulomb yield criterion for noncohesive graif¥g or
where¢ is the displacement of the free surface ands the its generalizatiof32], the static equilibrium failure and tran-
component of velocity normal to the surface. sition to flow is controlled by the value of the nondimen-
The main difficulties in describing granular flows center sjonal rati0¢:ma)40'g1r{a'gnl' where the maximum is sought
around the constitutive relationships for stressgs These  over all possible orthogonal directionsandm in the bulk of
relationships differ drastically for flowing and static configu- the granular material. We simply use this ratio as a parameter

rations of granular matter. For static regimes, the sheajf the potential energy for the OF Without loss of gener-
stresses are determined by the applied forces, whereas in fagity, we write the equation fop:

and dilute granular flows the shear stresses are proportional

to shear strain rates. The transition from one regime to an- Dp ., ,

other is controlled by so-called yield criteria, among which otV PP(l=p)F(p ). 6)

the most popular is the Mohr-Coloumb criterion relating

shear and normal stresses. The goal of this paper is to unifjere = and| are the characteristic time and length, corre-
the description of these different regimes of granular dynamspondingly. One can expect that the lenbjigh of the order of

ics within a single theory. The central premise of our theorythe grain size and the time is the typical time between

is that in partially fluidized flows, some of the grains are collisions. For dense gravity driven flows, this scale can be
sliding past each other, while others maintain prolongedstimated asr,=\I/g. Further, according to observations,
static contacts with neighbors. Accordingly, we write thethere are two angles which characterize the fluidization tran-
stress tensor as a sum of the hydrodynamic part proportionajtion in the bulk granular material, an internal friction angle
to the flow strain rateg;;, and the strain-independent part, tan 1¢, such that if <, the static equilibrium is un-
o}, i.e., oy =€+ o7 . We assume that diagonal elements ofstaple, and the dynamic repose angle fafy, such that at
the tensoro$ coincide with the corresponding components d< ¢, the dynamic phasp=0 is unstable. Values o,

of the “true” static stress tensos} for the immobile grain  and ¢, depend on microscopic properties of the granular
configuration in the same geometry, and the shear stressesaterial, and in general they do not coincide. Typically there
are reduced by the value of the order parampteharacter- is a range in which both static and dynamics phases coexist
izing the phase state of granular maft2®]. Thus, we write  (this is related to the so-called Bagnold hyster¢$g). The

the stress tensor in the form simplest form off(p, ¢) which satisfies these constraints is

5 ; F(p,¢)=—p+ 5, where
| L s
7i = ’7( ax axi> T 5= (7~ b (47~ ¢5)- ()

Here 7 is the viscosity coefﬁcientqrisj =p(ri0j fori#j, and  Here we use a square ¢fto avoid nonanalytical behavior at
o =0y . In a static statep=1, o;j=07} , v;=0, whereas in  o},=0. Rescaling—t/7 andx;—x; /I leads to
a fully fluidized statep =0, and the shear stresses are simply
proportional to the strain rates as in ordinary fluids. [

To complete the set of governing equations, we need to DtV Ppte(d=p)p=9). @)
introduce constitutive relations for components of the static
shear stress tensof; , as well as an equation for the order This equation completes the general formulation of the con-
parameterp. The issue of constitutive relations in static tinuum theory for partially fluidized granular flows. In an

)
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yield direction is parallel to the inclined plane, so we can
simply write ¢, =|0%,/0%,=tane. In the following, we
will consider spatially and temporally inhomogeneous granu-
lar flows. In such flows the layer thickness varies, and the
X parameter¢p becomes a variable determined by the local
slope of the free surface. We will limit ourselves with the
0 case of small deviations of the local slope from the unper-
turbed valueg, , i.e.,|dh|<tane.
FIG. 1. Schematic representation of a chute geometry. Let us now discuss the boundary conditions for the order
parameter and velocity. At the botton¥ —h we setp=1,
infinite system with fixed stress parametex8<1 (¢,  since the granular medium should be in a solid phase near
<¢<¢,), both static p=1) and dynamic §=0) phases the no-slip surface. The boundary condition at the free sur-
are linearly stable, and E¢7) possesses a moving front so- face is less clear. Bearing in mind that the order parameter is
lution which connects these phases. The speed of the front irelated to the local entropy of grain configurations, and as-
the direction ofp=0 is given byV=(1—25)/\/§. At & suming zero entropy flux at the free surface, we choose the
=1/2 both phases coexist. Féx0, only the solid phase no-flux boundary condition for the order paramegter-0.
survives, and aB>1, only the liquid phase survives. The  All components of velocity should be zero at the bottom
dynamics of partially fluidized granular flows becomes muchz=—h. The kinematic boundary conditiof2) on the free
more interesting in confined systems with fixed or freesurface for an incompressible medium can be expressed in
boundaries. the form of the mass conservation law

gl y

lll. SHALLOW GRANULAR FLOW dth=—(9,Ix+dydy), (10

ON AN INCLINED PLANE 0 .
whereJ, = [~ vy,dz are in-plane components of the flux

Let us now specialize our theory to the description ofof the granular material. In a typical situation of the chute
free-surface chute flows. We consider an initially flat layer offlows, the downhill velocityv, is much larger than the or-
dry cohesionless grains of thicknelson a sticky surface thogonaly componentv,, so the mass conservation con-
tilted by anglee to the horizon. We introduce a Cartesian straint can be simply expressed as
coordinate frame aligned with the unperturd@dt) surface
of the tilted layer with thez axis normal to the surface and dth=—29,J. (1)
the x axis oriented downhil(see Fig. 1L Coordinatez=0
corresponds to the position of tltenperturbegifree surface  The velocityv, is determined from the order parameter via
where the stress is absent, amg —h corresponds to the Eq. (3) with the no-slip boundary condition,=0 at z=
bottom of the layer. In case of the stationary shear flow in a—h.
flat layer, the force balance of E¢l) yields the following The mass conservation law E@.1) can be rewritten in
conditions: terms of the variabl®, which is related to the gradient of the

) local thicknessoyh=¢— ¢, . If we assume that the differ-
Tz22% Oxzx=~9COSP,  Tyzzt 0xx=9SiN@, (8)  ence between the critical valueso, is small, (¢

where the subscripts after commas mean patrtial derivative%f‘glgﬁéﬁﬂ't’ |\',sv rlzll(z)hsés ::iggg:lﬁf gmst f%i;arzullzzr f(lg)wviéand
~ 0,1, .

The solution to Eqs(8) in the absence of lateral stressesobtain (see also Fig. 1
oyy=0y=0y,=0 is given by 9-

1

Thus, in a stationary flow there is a simple relation be- p
tween shear and normal stresseg,= —tango,, indepen-  where 8=1/(¢;— o) >0 andd,= const corresponds to the
dent of the flow profile. In a static equilibrium, the force flow with constant thicknesss. Substituting Eq(12) into Eq.
balance also givesr),= —tango?,. Since by assumption (11) one derives
0,,= 00, we obtaina,,= o, . In a flowing regime, the total
stresses are composed of the static contribution in the vis- 9y 0= ,B&fJ. (13
cous strain-related terms. According to our conjecture, the
same relation holds between the static parts of the stress iFhis equation should be used instead of the conservation law
the flowing regime. In this section, we will consider the non-(11) for infinitely deep layergsandpiles or heapswhere the
stationary process of avalanche flow, but we will assume thahicknessh is not defined.
this simple constitutive relation between shear and normal Because of the no-slip boundary condition at the bottom
stresses is maintained in this regime as well, and deviationsf the chute, for shallow layers the flow velocity is small, so
from the stationary stress distribution are small. For the flathe convective flux of the order parameter can be neglected
layer of constant thickness, the value of parameétén Eq.  (see Sec. Il B for detai)sand the material derivativie p/Dt
(6) can be easily specified. In this case, the most unstablie Eq. (7) can be replaced by,p,

0,7~ —0C0SpZ, 0y,=0SiNgz, 04,x=0. (9 b=d.h~ (65— 5y), (12)
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dp=V>2p+p(1—p)(p—9). (14 f (a)

However, for fast flows this term may become important, see

discussion below in Sec. IV B. /\/
(D

A. Stationary solutions and their stability M 1 p

Let us first consider the granular flow in a uniform layer
of constant thicknes$. In this cased= §, is a constant,
compare Eq(12). There always exists a stationary solution
to Eq. (14), p=1, corresponding to a flat layer of constant x 0.5<8<1
thicknessh at the static equilibrium, which obviously satis-

fies boundary conditions(—h)=1,d,p(0)=0. For 6>1 it
is stable at smalh, but loses stability at a certain critical m

thicknessh,>1. The most “dangerous” mode of instability g// p
satisfying the above boundary conditions is of the fgsm \
=1- A€ cos@z/2h), A<1. The eigenvalue of this mode is
A(h)=6—1— 7?/4h2. (15 |
P o>1 (©

Hence the neutral curve=0 for the linear stability of the

solutionp=1 is given by /ﬁ—’\\/

he= . (16)

Forh>h.(8) grains spontaneously start to roll, and a granu-

lar flow ensues. . :
. - . FIG. 2. Phase plane of stationary Ed4) for three typical val-
In addition to the trivial statep=1, for large enough ues of&: (a) 5<0.5, (b) 0.5<5<1, and(c) &>1.

there exist nontrivial stationary solutions satisfying the above
BC. These so_lut|ons correspon_d to the bqld Ilnes_ in the phasIgroﬁleSp(z) corresponding to the different branches at the
plane plots, Fig. 2. These solutions describe stationary granai-

lar fi ted b tant v of | teri ame value of the flux are shown in Figb8 The selection
ar flows supported by a constant supply of granuiar materiay , e stability of these solutions depend strongly on the
upstream. For 1R §<1 there exists a separatrix of the

caddlen—1 0. which corresponds to the localized near particular problem at hand. Since for fixbdEq. (14) has a
P = L.Pz=Y, - - i —1r,2 4 2
surface flow in an infinitely deep layer. free-energy functionalsee Eq.(4)], 7=z[p;*p"/2+ op

_ 3 i
The velocity profile corresponding to a stationary profile 2/3(5+1)p”], stable solutions should correspond to the

of p(z) can be easily found from E@3) taking into account minimum of 7. It is easy to check that the lower branch
that o= 6° corresponds to the minimum of the free enefgyand there-
xz— Yxz»

fore it is stable, whereas the upper branch is unstauee-

sponds to the maximum of). If the flux J is fixed by the
(1-p)oy=—u(l-p)z, (17)  boundary condition atx=0, the corresponding unstable
mode, which at largé is close to the translation modgp,
is prohibited because it would violate the mass conservation
constraint. However, even in this case the solutions corre-
sponding to the upper branch can be unstable with respect to
0 0 (2 spatially nonuniform perturbations. Actually, it can be easily
J:J Ux(Z)dZZ—MJ J [1—p(z')]z'dZ'dz shown that this type of instability occurs for parts of the

—h —hJ-h upper branch solutions correspondingdi@d5<0. Indeed,

assuming small deviations of the local slope, we can linear-

=,uJO Z’(1-p)dz (19 ize Eq.(13),
~h

&vx_
Jz

where u=gsing/7n. The flux of grains in the stationary flow
Jis given by

The flux of supplied granular material controls the al
thickness of the layer and the velocity profile. Figure 3 &t51=/8(9—5&)(51,
shows the thickness of the layer as a function of fluat
several values 0b. For a fixedJ, there are two values df  where §;= 46— &§,. For #J/96<0 it is a diffusion equation
which correspond to two different regimes of granular flowwith a negative diffusion coefficient, which is subject to a
on an inclined plane. The lower branch corresponds to théong-wavelength instability. On the other hand, if the slope
flow which involves the whole layer, while the upper branchof the free surface is fixed everywhere, this instability is also
corresponds to a flow which is localized near the surfacesuppressed.

(19
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FIG. 3. Bifurcation diagram of the stationary flow regimes with a fixed granular @)xThickness of the layeh as a function of)/ u
at severabs (the value ofé is shown near each lineThe parts of the curves corresponding to unstable solutions are shown by dashed lines.
The thick line, given by the envelope conditiéd(h, §)/96=0, separates stable and unstable parts of the upper branches. Thick dashed line
shows the stability exchange li@d(h, §)/dh=0. Inset: Normalized slopé vs flux J/ u for infinitely deep chutelf— o), the OPp is given
by Eg.(21). The branch below the dashed liitbe conditiond J(8)/d 5= 0] is unstable(b) Vertical profilesp(z) corresponding to the lower
(solid) and upper(dashed branches at the same value of flu¥ & =23.0) for §=0.65.

The two branches merge at the minimum valugs), (h,¢) which has a shape very similar to our stability diagram
wheredJ/dh=0. At h<hg, there is no stationary granular in Fig. 4 (see below Sec. Ill E
flow solution and only nonstationary regimes are possible As we mentioned above, the upper branches ofith
(see below The value ofhg can be found as a minimum of curves in Fig. 3 correspond to the case of a near-surface flow.
the following integral as a function qf,, the value ofp at ~ For large enougth this regime can become unstable with
the surfacez=0, respect to a spontaneous change of the skbhpes was out-
lined above, the change of stability occurs at a tangent point
between a curvl(J) and an envelopkg(J) to the family of

hs=minfl dp . (20 curvesh(J) for various 8, where d5J=0. The instability
Po \/p4 2(5+1)p°
> 3 +6p°—c(po) o [ \‘\ . i e
solid & |
where c(po):p3/2—2(5+ 1)pg/3+ 5p§. This integral can 20 | flow : > h=4
be calculated analytically fof—c and d— 1/2. It is easy to \ } 20 h=3 1
show that for larges, the critical solution of Eq(14) has a \ [
form p=1+Acoskz with A<l and k=(5-1)"? and 15 | ‘\ | S T i
therefore,hg(6) —h¢(8). For 6— 1/2, the critical phase tra- < ‘\P { 8
jectory comes close to two saddle poipts 0 andp=1, and | 1
an asymptotic evaluation of Eq20) gives hs=— 2 In(8 10 b& ‘\ B flow only
—1/2)+const. This expression agrees qualitatively with the ‘\,/ quasi-linear limit
empirical formula ¢— ¢o~exd —hs/hy] proposed in Refs. 5t ‘/
[20,22. solid only ==
The neutral stability curveh.(8) and the critical line 0 . . .
hs(8) limiting the region of existence of nontrivial stationary 0.25 0.75 1.25 1.75

granular flow solutions are shown in Fig. 4. They divide the
parameter plane&h) in three regions. Ath<<hg(é), the

trivial static equilibriump=1 is the only stationary solution , s "= (16), and solid line shows the existence limit of fluidized
of E_q. (14) for t_he chosen B_C' Fd"?(‘s)_<h<hc(5)’ the_re IS stcatehs(g), Eq. (20). Dot-dashed curve depicts the transition line
a bistable regime, the static equilibrium state coexists Withyoy, triangular to uphill avalanches obtained from solution of Egs.
the stationary flow. Foh>h¢(o), the static regime Is lin- " (14) and(12) for x=0.4 and@=0.25. The line with circles shows
early unstable, and the only stable regime corresponds to thfe results obtained in quasilinear limit, Eq84) and (25) (Sec.
granular flow. This qualitative picture completely agrees with|| B) for g=0.25 and the value ofc which corresponds tax
the recent experimental finding20,22. Moreover, for no-  =0.05. Inset: opening angle of a downhill avalanghén degrees
slip bottom BCs(corresponding to oup=1), authors of vséfor 3=0.25 andx=0.015 and two different values of the layer
Ref.[20] found a region of bistability in the parameter plane thickness.

FIG. 4. Stability diagram. Dashed line shows neutral curve
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would exhibit itself as accumulation of granular material
near the top of the inclined plane leading to the change of 10° EZ:HZZ'S
slope. This process will result in an unlimited growth of local ~. ggjgﬁg-"
depthh, and att— oo the new stationary solution correspond- \i\ Ad=2 J=100
ing to h— < will be achieved. This regime can be described  _ u Fagus
by an analytical formula which corresponds to the separatrix & 10 A 8=0.51
in Fig. 2(b) (cf. Ref.[33]): X = 3=0.50001
N
N
Y
B V(6+1)(6—1/2)cosiizy1—-6)+26—1 (21) 10*
P J(6+1)(8—1/2)coshzy1—8)+2—6
In this deep-layer solution, the parametgmwhich corre- i\
sponds to the slope of the free surface, is not related to the 10° 0 - 2'0 !‘30
slope of the inclined plané&he free surface can be more or z/d

less steep than the underlying plane, as in sandpiRegher,

6 is determined by the value af The dependence of the FIG. 5. Stationary velocity profiles(z) vs the distance from
slope § vs flux J for solution(21) is shown in Fig. 3, inset. free surfacez/d for different grain sizesl (mm) and supplied flux
The condition)=const gives rise to two stationary values of valuesJ(g/sec) from Ref[27]. The solid lines show theoretical
6. The upper branch approaches=1 as J—» as J results for two different values af.

~1/{y1- 6. For the lower branch, the width of the fluidized

zonez,, defined byp(z=2z,)=1/2 is growing aszy~In(4 Referencg 28] also reports an increase of the width of the
—1/2) for 6—1/2. Correspondingly, in this case one has thefiyidized layerz, with increase of the applied flu which is
relation between the flud and 6, consistent with Eq(21). Also in agreement with the theory,

o the heap angle in Ref28] increased withl, which corre-
- 201 _ 3. _ 3 sponds to the uppédstable branch of the dependendJ)
J ffocz (1=p)dz~2zp~[In(o=1/2)|" 22 shown in Fig. 3, inset.
A similar transition is known for partially filled rotating
Both branches merge at some minimui=J.. In the drums when the rotation speed is varied. For low rotation
vicinity of J, the flux and the angle are related &sJ.  speeds the flow in the drum occurs in the form of a periodic
+constx (6— 8,)%+ - - -. According to the conditiowJ/95  Sequence of avalanches, whereas for larger rotation speeds a
>0, only the upper one corresponds to a stable near-surfagéeady surface flow ensug35]. We discuss this case below
flow, and the lower one corresponds to an unstable regime. lim Sec. IV C.
the stable regime, the slope of the sandpile increases with the We compared the velocity profiles measured in Refs.
flow, and for very largeJ the slope of the free surfacé  [27,28 with our theory. The velocity can be determined from
approaches 1. This behavior agrees qualitatively with the obEQ. (17) using the expression for the order paramé2dy. A
servations of Ref[28]. typical velocity profilev(z) vs z is shown in Fig. 5. For
However, if the change of is limited, the instability of ~convenience we scaledz) by the value at the open surface
the lower branch can be suppressed. We believe that in Ref(0). In agreement with the experimental data the stationary
[27], placing the mouth of the hopper supplying the sandprofile has an exponential tail, i.e.(z) ~exp(-z/d,), where
directly on the surface of the sandpile limits the variation ofds=1/y/1— §. For the lower branch o&(J), which appar-
& and can possibly stabilize the lower branch. Moreoverently describes the flow in the experiment by Komagsal.
since the instability is of a convective type, the length of the[27], the parameteb at high flow rate approaches 1(g8ee
system may not be sufficient for it to develop. inset of Fig. 3, i.e., the decay lengtt,=12~1/0.707. Here
At J<J. the stationary flow does not exist. In this regime | is the characteristic length in E¢5). The experimental
the granular material accumulates and discharges in the formalue is d;~d/0.72, which fixes the characteristic length
of avalanches periodically in timésee below Sec. IlIB  equal to the grain size, i.el=d. Moreover, experimental
This phenomenology is also consistent with recent experielata of Ref[27] strongly indicate the independence of the
ments in Refs[28,34], where the transition from intermedi- decay lengttd, on the value of flux in the wide range of flux
ate avalanches to a steady flow is reported. Moreover, as on@lues and grain diameter. This behavior again corresponds
expects from mass conservation, if the flow is represented by the lower branch oB(J) dependence. The value of the
a periodic sequence of well-separated avalanches each cargharacteristic length agrees with other independent experi-
ing an amount of grain, the time between consequent avanental observationéee, for example, Ref§20,22).
lanches should b&,~J"1, in agreement with experiment Lemieux and Duriah28] also found exponential decay of
[28]. Our theory predicts that at the onset of steady flow thevelocity under surfacen ~exg —2z(0.15 cm)| for the grain
angle of the sandpile should show critical behavisr 6,  diameterd=0.33+ 0.03 mm. In their experiment, unlike Ref.
~+J—J.. However, in experimeri28] the critical transition  [27], the particles were allowed to fall on the top of the
has not been detected, possibly because the slope changesdpile, thereby relaxing the constraint on the slope of the
within a narrow range. sandpile. In this case, an upper branch of the functith)
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should be selected, and for that branch the slép®.72, so
the characteristic decay length indeed should be larger tha
particle sized. In fact, it should be directly proportional to
the flux J. It would be interesting to test this prediction in a
future experiments.
Pouliquen[22] proposed a scaling for the mean velocity

v=J/h vs thickness of the layeh in the stationary flow

regime, vch®%hg, which works for various angleg as

well as for different grain sizes, which is consistent with the
so-called Bagnold scalin@ee also results of large-scale mo-
lecular dynamics simulations in Ref5]). Equation (18)

yieldsv = (h—hg) Y for smallh—hg andv<h? for largeh. It ¢
is plausible that the experimentally found scaling exponent
3/2 is the result of the crossover between the two different

regimes. However, renormalizatiarf \/gh, h/hg as in Ref.
[22] does not collapse our results onto a single curve, per-
haps due to the assumption of a simple Newtonian relatior
between the strain, and the hydrodynamic part of the shear
stresso, with a fixed viscosityr [see Eq.(3)]. In fact, the
viscosity itself may depend om andz in some fashion.

B. Nonstationary dynamics in a single mode approximation

In the vicinity of the neutral curvél6) Egs.(1) and(14)
can be significantly simplified. We may look for a solution in
the form (compare Sec. Il A

™

p=l—A(X,y,t)COE(%Z +w, (23

FIG. 6. Space-time surfaces showing the one-dimensional evo-
] ) ) lution of heighth in a shallow chute for two values of the fixed
whereA<1 is now a slowly varying function of, X, andy,  supplied fluxJ=0.6 (a) and J=0.4 (b). Other parameters of the
andw<A is a small correction to the solution. At the neutral model arex=0.0255=3.155=1. The chute length =500, num-

curve defined by the condition(8,h)=8—1—m2/4h*=0  ber of grid pointsN=1000. Initial condition isA=0h=3.
the expressiori23) with A= const,h=const is an exact so-
lution to the linearized Eq14). In the vicinity of the neutral
curve defined by the condition\|<1, the ansatZ23) with
the slowly-varying function®,h gives an approximate so-
lution to the full Eq.(14). The functionA itself is determined
as a result of the orthogonalitgr solvability) condition with
respect to the function cf(s/2h)z].

whereJ was calculated from Eq18) using ansat£23) and
a=2u(m?—8)/73=0.12u. Taking into account that varia-
tions inh also change the local surface slope, we replase
Eq. (24) by §,— Bh,, see Eq(12).

In deriving these equations we assumed that (2A2
Substituting ansatz23) into Eq. (7), one obtains in the a_md A? are _Of the same o_rder, |:e5,~2, how_ever _quallta-
) . . ~ A5 tively a similar equation with a different nonlinearity can be
first order inw the expressiohw=H, whereLA:aZJr o—1 obtained for anys andh.
is the linearized operator, and inhomogenditydoes not The last term in Eq(24) originates from the convective
contain terms linear irw and depends only oA and its  termuVp in Eq. (7). For not very large thickness of the layer
derivatives. ~ Applying  the  solvability — conditions h and in the large viscosity limiu<1 this term can be

f(lhl:| cos(@rz/2h)dz=0, one obtains in the first order, neglected with respect to other terms in E24). However,
for thick layers the convective term cannot be neglected be-
8(2—19) 3 cause the magnitude of this term growshds

A=NA+VIAT 37 A?— ZA3—;h2AaXA, (24 We studied Eqgs(24) and (25) numerically and analyti-
cally in one and two dimensions. First, we considered the
flow with the fixed supplied flux in one dimension In this

2 _ 42 2 L 2__ 3_
where Vi =g, +d, and a=u(37°~16)/3m"=0.146u.  gjyation the fluxJ=const is introduced via the boundary
Equation (24) must be coupled to the mass conservation

. 4 Ve condition in Eq.(25) atx=0. For large values of the flux we
equation which reads ahere we neglect the contribution jnjeeqd observed the transition to the steady flux regisee
from the flux along they axis J,~ d,h<J):

Fig. 6(a)], although some transient avalanches occur, which

are related to the adjustment of the chute thickness. For

oh4J dh°A (25 smaller values of the fluxbelow the corresponding cutoff
value in Fig. 3, we find that the flow occurs in the form of a

X Cax
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FIG. 7. Gray-coded images demonstrating the evolution of a FIG. 8. Snapshots of an uphill avalanche fer40 (a), 100 (b),
triangular avalanche far=50 (a), t=200 (b), and 250(c). White and 180(c). Parameters of Eq924) and (25 are «=0.05, 8
color corresponds to maximum height of the layer, and black to=0.25, §=1.07, andhy=5.5, pointB in Fig. 4. A small secondary
minimum height. Parameters of Eq®4) and (25 are «=0.15, avalanche is seen in the ima@s.

B=0.25, 6=1.2, andhy=3, pointA in Fig. 4.

6. Due to mass conservation, the height of the avalanche
increases as it propagates downhill.
For larger 8, the region of fluidized grains expands not

periodic sequence of avalanches, Figh)6 Our numerical
simulations indicate that the time between the avalan@hes

diverges ag,~J ! atJ—0, in agreement with experimen- : ) .
tal results of Ref[28]. Moreover, we observed an abrupt only downhnl, but also uphil[see '.:'g' ®)]. In contrast to
the downhill avalanche, the uphill front appears to be a

hysteretic transition from avalanching to steady flow with the . .
. ) . ; steady-state solutiod\= A(x+ Vt),h=h(x+Vt). Our simu-
increase of supplied flui, which also agrees with Refl28). lations show that the velocity of the front remains finite at

In order to study the evolution of avalanches in two di- " ! ) . .
) ; : . . the transition point, see Fig. 10. Since the uphill front always
mensions X,y) we performed simulations in a fairly large : o ) ;
v : . o S propagates with the finite velocity>Vy,>0, we call this
system, L,=400 dimensionless units in the direction « . »
phenomenon a “velocity gap.

(downhill) and Ly,=200 units in they direction, with the .
. . . - o It can be shown from the analysis of E@®5) that the
number of grid points being 1260600. As initial conditions front solution indeed cannot exist for an arbitrarily small

we used a uniform static layeh= ho,'A=.0. We triggered speed. In a comoving with velocity frame, the front is a
avalanches by a localized perturbation introduced near thgtationary solution, and Eq25) reads

point (x,y) = (L./4,L,/2). Close to the solid line in Fig. 4 we
indeed observed avalanches propagating only downhill, with V(h—hg)=—ah®A. (26)

the shape very similar to the experimental ¢8&| (see Fig.

7). The avalanche leaves a triangular track with the opening-ne nontrivial front solution must satisfy the boundary con-

angle ¢ in which the layer thicknes$ is decreased with ditionsh—hg,A—0 for x— —» andh—h..,, A=A, #0 for
respect to the original value,. At the front of the avalanche o, \yhere

the layer depth is greater tham, as in experiment. The
opening angle as a function @& is shown in the inset of

Fig. 4. a
For larger values ob or for thicker layers(close to the 20 r T
dashed line in Fig. Ywe observed avalanches of the second £
type (Fig. 8). In this case the avalanche zone expands both 10}
uphill and downhill. Unlike the previous case, the whole
avalanche zone is in motion, as new rolling particles con- 0 : ,
stantly arrive from the upper boundary of the avalanche b
zone. Sometimes we observed small secondary avalanches in 20 |
the wake of the large primary avalanche, see Fig).8 &
C. Transition from triangular to uphill avalanches 10 A A A
Our model predicts the transition from triangular to uphill 0 \ \
avalanches when the thickness of the layer or the inclination 0 200 400 600

angle are increased, similar to that observed in experiment X

[20]. In order to investigate the transition in detail, we again  FiG. 9. One-dimensional evolution of a localized perturbation in

return to the one-dimensional version of E¢&4) and(25).  a long shallow chute for two values of, (a) 6=1.02; (b) &

The results of the simulations are shown in Fig. 9. =1.07. Shown are the height profiles at ten consecutive moments of
As can be seen in Fig.(8), a finite perturbation intro- time for hy=5.52=0.058=0.25. Secondary avalanches are seen

duced neax= 300 triggers a downhill avalanche for smaller in panel(a).
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For smallh=0(1), thetransition line can be found from
06 | the stationary solution of single-mode approximation Eg.
(24). In this case,
0.5 |
0.4 h T !
4l ] —— 30
> | 2 2( 16 2 %0
031 1 S—1+—-| —(2-9)
: 3\97
0.2 | |
l (see Appendix A
orr For small but finitex (large viscosityy), the velocity gap
0.0 5 is small[O(a*?)], and can also be found analytically from

105 106 107 108 109 1.10 Egs. (24) and (25).
8 At small <1, the uphill front speed satisfies the follow-

FIG. 10. The velocity of uphill front vss for hy=55q  INJ equationsee Appendix &
=0.058=0.25. The cutoff value of velocity/y~0.35.

~ adz
V_5d1+7=0, (32)
16(2-9) \/ 16(2—6)\2 4 >
A= — 97 3 6_1_4_h§ ' where’d=6— 6 and 6* is determined from th& =0 con-

27 dition at =0, andd, , are specified in Appendix B. From
Eqg. (31) we find

Since A,, cannot be arbitrarily small for finitdn,, by the d.3
nature of the hysteretic transition from the solid to the fluid- Ve 2 4 V(d;3)%4— ad, (32)
ized stateV also cannot be arbitrarily small. Thus, our model 2
predicts the velocity gap for the uphill front, which is in fact e wm .
supported by the experimental data in Re1,19. This (the branch with =" sign in front of the sq.uare ro~ot is
result appears to be in contradiction with the conjecture ofinstable. Thus, the cutoff value of the velocityo=d, 6/2
Bouchaud and Catd86] that the transition from triangular @nd corresponding value of at the threshold of uphill
to uphill avalanches occurs aerofront velocity. propagation is

Tracking systematically the moving front existence limit
in (6,h) we obtained the line separating the triangular/uphill
avalanches in thedh) plane, see Fig. 4.

5:5*"‘2\ adz/dl (33)

The above expansion, however, is valid only for very small
« obeying the conditionrth3<1.
D. Uphill triangular avalanche transition and the velocity gap

in the large viscosity limit E. Comparison with experiment

The above argument justifying the finite velocity gap is In order to establish a link between our theory and the
not valid in the limit of very large viscosityq—0). In this  experiments we need to specify the paramefgrand ¢,, as
case, the thickness of the layer does not charfge,  well as characteristic lengtrand timer, and the viscosity.
=const), and the order-parameter equatibf) becomes in-  Parameterp, can be easily determined from the value of the
dependent. The uphill front solutign(x+ Vt,z) satisfies the chute angle corresponding to the vertical asymptote of the
equation stability curve on the experimental bifurcation diagram of

5 Ref.[20]. The value of¢, cannot be directly read from the
Vpx=Vp=p(l=p)(6—p). (28 pifurcation diagram. However, the vertical asymptote to the
line bounding the region of existence of avalanches in Ref.

In this case, the transition between uphill and downhill[2q] gives the value of the anglé, at which the front
front propagation is continuous, and it corresponds toMthe petween the granular solid and fluid does not move, &e.,
=0 solution of Eq.(28). This solution exists only for a spe- _ 1/2. Thus we can express our paramemhrough?ﬁo,cﬁl.

cific value of § corresponding to the layer thicknessThe i i~
dependences(h) is derived in Appendix A. At large, it ~ FO" the experimental parameters of R¢£0], tan "¢,

results in ~25° and tant¢,~32°. It givesB=1/2(¢,— ) ~3.15.
Based on the comparison with experimental results for ve-
In(5—1/2) locity decay in stationary flow from Ref27], as a charac-
~—— (29) teristic lengthl we can take the mean diameter of the gidin
6-1/2 which for the experiment of Ref20] was 0.24 mm. Solid

and dashed lines in Fig. 11 indicate theoretical stability
i.e., at largeh the region of uphill avalanches shrinks, in boundaries, which correspond very nicely to the experimen-
agreement with experimenfg0]. tal findings.
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isfy the no-flux boundary conditiod,p=0. Moreover, for
z,—0 one hap—1, thus one recovers the behavior of the
linearized Eq.(7).

Let us introduce the new variable

15 |

10} 7= fo (1-p)dz (36)

h/d

It is easy to check that for ansa@4), z=z,. We will show
below that the simplified description of the dynamics of Eq.

(7) in the framework ok is rigorous in two important limits:

0 . . : z>1 andz<1. For the intermediate values afthe above
0.25 0.75 125 1.75 approximation for the order-parameter equati@4) gives
5 smooth interpolation between these two limits. Our numeri-
FIG. 11. Comparison of theoretical and experimental phase dia¢@l simulations indicate that qualitative features are not sen-
grams. Lines obtained from theory’ Symb0|s dep|ct experimentaﬁitive to the SpeCiﬁC Choice Of intel’polation Since the SolutiOI’l
data from Ref[20]. Solid line and circles limit the range of exis- tends to “avoid” the intermediate argae obtained qualita-
tence of avalanches, long-dashed line and triangles correspond ttyely similar results using piece-linear approximatipns
the linear stability boundary of the static chute, and the dot-dashed After integration of Eq.(7) we obtain
line and crosses denote the boundary between triangular and uphill
avalanches forB=3.15¢=0.025 (or, correspondingly,u=0.2). 97— a2;+f
Dotted line shows infinite viscosity limiy— oco. t X

ooi

0

0
p(1—p)(o—p)dz+ f_ (VxdxpTv,0,p)dZ.

(37)
The position of the line separating the triangular and up- . . . .

hill avalgnches depends on tﬁe valuge of paran%etm Eq. pThe horizontal velocity profile,(z) is found from Eq.(17),
(25). In fact, a~17/7 is the only fitting parameter in the 2
theory. In principle, it could be determined independently if Uy= —,uf (1-p)z'dZ (38
we knew the characteristic time and the viscosity, but this -
data is not available to us. We find from the numerical ssolu-and
tion of Egs.(24) and (25) that the best fit to experimental
data occurs for~0.025(correspondinglyu~0.2). For this z
choice we find a good agreement between theory and experi- v,= — f

z ’
dz'axvx:axsz dz'fz dZ Za,(1-p).
ment (dotted line in Fig. 1L * _“ _°°

(39
IV. FLOWS IN DEEP GRANULAR LAYERS Now, substituting Eqs(34), (38), and (39) into Eq. (37),
A. Avalanches in deep chutes after some algebra we get
In deep granular layers our assumption that the convective 0iZp= 0)2(20+ F(z0) — nG(zp) dyzg.- (40
flux of the order parameter is small, is no longer valid, and _ _
we have to return to Eq7). As before, we choose the Car- FunctionF(z,) can be found in the closed form
tesian coordinate system aligned with the unperturbed free
surface with the origin at the surface, thaxis normal to the 6 26—1 2zy [ 3
: ; = - - +8+1] (4D
surface, and the axis running downwards along the surface. \/E(s— 1) 2 s—1ls—1

For smooth horizontal variations of the flow, its local vertical
profile can be approximated by the following dependence ajith s=exp(y/2z,). Function F(z,) has the following

—0<z<0: asymptotic behaviors:
p=1—{tanH (z+z,)/\/8]—tanH (z— z,)/\/81}/2 (34) (6—-1)zy for zo<1,
F(zo)= 1 (42
with a slowly varying depth of the fluidized layey. This V2| 5- 5| for zp>1.

expression is very close to the exact front solution

Thus, at smalk, Eq. (37) complies with the behavior of Eq.
1 (7), linearized neap=1 and for largezy Eq. (37) gives the
p= E(litanr[z/ V8] (350  asymptotically correct result for the velocity of the front be-
tween the fluidized and solid state &t 1/2.
Function G(z,) can only be found in an integral form.
if zo>1 andé— 1/2 and differs from it only in the vicinity of However, asymptotic values &(z,) can be found for large
the free surface=0, where it is augmented in order to sat- and smallz,,
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I 05021, for zg<1 >
Zo~0. or zp<1,
3\/5 0 0 0
G(z)=1 (43
T 329 for zo>1. 200 ¢ 1
3 initial perturbation

*

%

The expression foB, valid also for intermediate values of

Zo, can be approximated as 100 |
Glzg= Tt r(lz_ m ) (44)
Z9)=—5tanh ——z,|.
0 3 772\/§ 0 0 ‘ ‘ ,
0 200 400 600 800
This equation has to be solved together with the equation X

for 6. The latter can be derived from the mass conservation
equation(11) with the expression for flux given by E@L8).
Substitutingp(z) from Eqg. (34), we obtain

FIG. 12. Evolution of a free-surface profile during an avalanche
within a simplified model(40),(47) for §,=0.75u4=0.2,3=3.15,
i.e., the parameters are the same as for Fig. 11. In the wake of the
avalanche the slope of the free surface is reduced and approaches

@: _ ﬁa f(z) (45) the equilibrium value 1/2. Note the “true” horizontal and vertical
ot 3 Tx ook variables k&, ,z, ), which are related to our original Cartesian vari-
ables &,y) via a simple rotation by angle.
where
oH
27%zy for zo<1, . —#)R 49
F(29) = (46) -V é— DR, (49)

zd for zo>1.

whered, is the critical slopeg= — dH/ox is the local slope,

We used the simplest interpolation for this functidiiz )
s P tzo) term y( ¢, — ¢)R describes the mass exchange between roll-

=2z0(z3+ 27?). Differentiating Eq.(45) with respect tox, we

arrive at the equation fof [compare Eq(13)], ing (R) and statiqH) layers,v is the flow velocity(assumed
to be constantwithin the rolling layer, and is the diffusion

wB constant. The first BCRE equatio#8) describes the dynam-

o= 73~ 31(z0). (47)  ics of the rolling fraction, and Eq49) is analogous to our

mass conservation law E#5), although in our description

Equations(40) and (47) give a simplified description of h indicates the f[otal thickness of thQ_Iay_er, iksH+R.
two-dimensional flows in deep inclined layers or sandpiles, |N€Se equations were later modified in R¢f—-12 for
We performed numerical simulations of avalanches withinOWs involving large values oR by replacing the instability
this model. We have found that small localized perturbationd®™™ ¥(¢— ¢:)R by the saturation termét— ¢;)v, for R
decay, and large enough perturbations trigger an avalanche,Ro,Ro>1, yielding
Figure 12 shows the development of the avalanche from a
localized perturbation imposed at the poxit 480. As it is IR I°R
seen from the figure, the avalanche propagates both uphill ot (@ dvupt U&WLDE, (50)
and downhill. This observation is consistent with our conclu-
sion from previous sections that the domain of existence of o
triangular avalanches shrinks with the increase of layer thickwherev, is a constant of the order of. This modification

ness and is in agreement with experimgi@—21]. provides layer thickness saturation at laRje
One may notice that Eq40) with Egs. (41) and (44)
B. Connection with BCRE theory coincide with the first BCRE equatiof#8) for z;<1, and

with Eq. (50) for large z5, however with one important ca-
veat. From our derivation it directly follows that the value of
the critical angles, must be different for small and larde
Whereas in Eqs(48) and (50) that value is kept the same.
This important distinction of our model gives rise to the
hysteretic behavior of the fluidization transition, which is
missing in the original BCRE model and its later modifica-

It is interesting to point out the similarities and differences
between our Eq940) and (45) the set of phenomenological
equations for avalanches in deep layers proposed earlier
Refs.[7-10].

The BCRE theory[9] operates with two variables, the
thickness of immobile fractiofl and the thickness of rolling
(flowing) fraction R. These quantities obey the set of equa-

! tion [12].

tions (see, e.g., Ref.7]) In their recent work Aradian, Raphaeand de Gennes
JR R P _[12] added phenomer_10logically t'he dependence of 'the veloc-
—=—y(¢,— p)R—v—+D—, (4g) ity profile on the flowing layer thicknesR. Note that in our
ot 28 ax? approach this dependence appears naturally, however the
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FIG. 13. Sketch of a flow in a rotating drum. .38t geet!
(&3
(]
particular form of the coefficier® in the convective term in %0 0.03 0.05 0.07
Eq. (40) differs from a simple linear form proposed in Ref. [9)

[12].
FIG. 14. Bifurcation diagram for the granular flow in a rotating
] ) drum obtained from the solution of Eg&l) and (52) for ©=0.2,
C. Flow in rotating drum B=3.15, —s,<s<S,, So=100. Symbols show, at the center of

The dynamics of granular material placed in a rotatingthe drum §=0) at the moments whetz,/dt=0; @ corresponds
drum is another example of partially fluidized granular flow t© increase of2, [ to decrease of). The arrows illustrate the
in a deep granular layer, see for review H&#]. Depending hysteretic transition between stationary and avalanche flows.
on the rotation ratev, see Fig. 13, the flow occurs in the
form of a sequence of avalanches for smajlor a steady at5=Q+(9§J, (52
flow for larger rotation speeds. At relatively smail, the

flow is confined to a narrow near-surface region, and th‘?/vhereJ:(MBIS)f(zo) compare Eq(46), andQ) is propor-

bulk ?xgibits rit?id bedy trlotf’:\ttiond Tr:jese tpbservatic:jnsltional to rotation speed. The increase of the angle due to
p7r01r8p3t7% gqum herr?tr:ecf?n ym rod uce'bcgnbmij#mdmo ®¥otation is compensated by the flux of particles downhill de-
[7,10,37-3Din which the flow was described by the €PN scribed by the last term in E¢52).

dence of its total flux on the local free-surface slapeJ We studied Eqs(51) and (52 numerically. The deep-

Nﬁ; &3 r:/vhere |5.° 1S thef_ICrItICfa|hS|(;pe. Th'fs de_SCI’IrF])tIOH layer approximation is not valid near the edges of the free
yields rather realistic profiles of the free suriace in the Sta'surface, i.e., fols=~ *+s;. It results in anomalous growth of

tionary ﬂOW. regime_, and also can e_xplain t.he mai_n feature§he angleé for s— *=sy. In order to prevent this spurious
of segregation of binary granular mixtures in rotating drumsbehavior we add the regularization teraf1— ¢(s)]6 to Eq.

[37—41]. However, it fails to describe the transition from (52. The function ¢(s) was chosen as follows:

periodic avalanching to the stationary regime. Evidently, this_ _ : - )
can only be done within a model which incorporates the tantio(S—[s)], i.e., {0 near the edges anf-1 other

d C wise. This term enforces the decay of the variableear the
hysteretic character of granular fluidization.

. : . edges of the drum. In our numerical simulations we used
In this section we focus on the nonstationary granular, > . .

: : ) . h {,=0.2. We checked that the bulk behavior was not sensitive
flows in two-dimensional2D) rotating drums, see Fig. 13.

D - to the specific choice of the functiaf(s).
To simplify the description, we assume that the free surface Some of the results are presented in Figs. 14—16. As seen

profile is not very different from a straight line and the radiusin Fig. 14 for low rotation rates aranular flow has a form of
of the drum is much larger than the grain size. It allows us toa seg.uen,ce of avalanches segarated by almost quiescent
use the formalism developed in Sec. IVA and reduce the q P y d

description of the flow to the evolution of only two quanti- States £o—0). Surprisingly, the time behavior, especially in

ties: the position of the solid/liquid interfaca and param- large drums, at low rotation rate$ is not strictly periodic,
' posit . d ® P see Fig. 15, although one can distinguish a well-defined char-
eter 8, which is proportional to tag.

The equation for, is the same as in Sec. IV A: acterisjic time bgtween the avalar_u:_hes, as in Res42.

0 ' ' We think that this weak stochasticity in the form and the
duration of individual avalanches in most cases is related to
the noise amplification. Since the avalanches are separated
by long quiescent periods whegy is extremely small %
where we introduced the coordinat@long the free surface could be as small as 16° for Q<1), the slope of free
and the convective termdsz,, see discussion above. This surfaces may “overshoot” the instability limit6=1, and the
equation is subject to boundary conditiangs=0 at the drum  system becomes susceptible to small fluctuations. These fluc-
walls (say ats= —s;,5p). Since the fluxJ~z,, this condi-  tuations trigger avalanches at random positions of the drum.
tion guarantees zero flux at the drum wall. The equation for For higher rotation speed we observed the hysteretic tran-
é is similar to Eq.(47), but has an extra term due to rotation sition to steady flow. In the steady flow regimé.4,= 3,6
(compar€[7,38)): =0) one finds from Eq(52),

(9t202(9520+ F(Zo,ﬁ)_U_&SZO, (51)
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t FIG. 17. Schematic representation of a 2D granular flow experi-

ment. Granular material is driven by a heavy top plate which is
FIG. 15. The width of the fluidized layer, vs time at the center pulled via a spring with constant velocity,. The deflection of the
of the drum in the regime of an avalanche flow for three differentspring is proportional to the difference between positions of “pull-
values of(}, other parameters are the same as for Fig. 14. ing point” P and plate displacemeR.

» which is moving with the velocityV, (Couette flow. This

J=75(sp=s%). (53)  flow (or rather Taylor-Couette flow between cylindetes
been studied in a number of recent experim¢@&-2§. It

Using thatJ~zg [see Eq.(46)], one immediately finds the Wwas found that at small pulling speeds, granular flows exhibit
dependence of the depth of fluidized laygron the position ~nonstationary stick-slip motior{25]. At higher pulling
along the drum surface zo~QY3(s2—s?2)13 (this expres- SPeeds, the flow becomes stationary. The velocity profiles are
sion is valid far from the edges, i.ds|<sp). The depen- typically exponentia[23,26—-28 in 2D experiments, but be-
dence ofz, vs s is shown in Fig. 16 for several values of COMe Gaussian in 3D Taylor-Couette geom¢ag]. We will
angular rotation speed. The dependence af, vs sis prac- show that these observations can be readily explained within

tically symmetric with respect to the center of the drum, and®Ur theoretical description.
Z, increases with the rotation rafe in agreement with ex-

periments(see, e.g.[43]). The form ofz, vs sis consistent A. 2D problem
with recent experimental observations of flows in rotating | this section we neglect the effect of tkieotton) im-
drums from Ref[44]. mobile boundary and restrict our analysis to the case of a
planar shear flow in a semi-infinite layer of granular matter
V. SHEAR GRANULAR FLOWS driven by a moving platésee Fig. 17. We introduce a fixed
AND GRANULAR FRICTION Cartesian coordinate frame with horizontal axisvertical

In this section we consider one-dimensional shear flow of*'> % and the origin at the top of the granular layer. The

granular matter placed between two parallel plates, one Oqgne.ral modgl is reduced to Hd4) combined with the con-
stitutive relation

20

dv
Oxz— ﬂEJFP(ng, (54)

wherev (z) is the horizontal velocity of the granular flow.
The relation for the control parametérreads as

N°10 F _ (szlagz)2_¢(%

BT~ b

where ¢ ; are tangents of the static and dynamic repose
angles[compare with Eq.(6)]. Unlike the chute flow, the
normal stressr,, is constan{=1), and the static component
of the shear stress?, is independent of the depthHere we
neglect the weight of the sand itself since the weight of the
top plate provides a much larger normal stress. The indepen-
FIG. 16. Width of the fluidized layez, vs s in the stationary ~dence of the static stress), on zis in fact approximation.
flow regime for three values d. We assume that the “stress propagation time,” which is of

: (55

O L : L
-100 -50 0 50 100
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the order of collision timery,~ \/d/g is much smaller than 1 - - - - -
any time scale in our problem, which is true for moderate o8} a J
shearing rates. 06 L ]
The balance of forces requires,= agz, which together = oal 1
with the constitutive relatiorf{54) yields the expression for ’
the shear velocityone needs to set,= o, in order to sat- 0z ]
isfy the boundary condition a— ): 00 5 0 15 20 25 30
z 6 . T
v(z)zai’zf (1-p)dz'. (56) b 1 10
4 110
These equations have to be augmented by the boundar > . 1 &
conditions az— andz=0. At z—o we requirep—1, i.e., 2 IR ] 10
the granular material is static, and &t 0, we require the \‘\\ 410
no-flux conditionp,(0)=0. We would like to note that in 0 = = 20

contrast to the analysis in Secs. Il and IV, contact with the
pulling plate is not equivalent to a free-surface condition,
and therefore we cannot argue no-flux boundary conditions FIG. 18. Vertical profiles of the order paramepe) (a) and the
from the absence of an entropy flux. However, it seems to bghear flow velocity/(z) (b) for S=0.1'=0.01W=5. The solid

the simplestnontrivial boundary condition possible. The I!ne dep_lcts _th_e velocity _profllg in Fhe linear scale and the dashed
other simple conditiop=const1 would force permanent line depicts itin the semilogarithmic scale.
fluidization near the surface, which is clearly nonphysical,

and the more general boundary conditipfr constx p,=1 doy, E _~dez
yields qualitatively similar dynamics but introduces one dt
more adjustable parameter.

In addition to that, we need a relation between the sheawhereE=const is the “effective shear modulus” ang, is
flow and the shear stress near the surface. We argue that #he& strain tensor, angis some characteristic relaxation time.
the plate moves, the shear stress at the boundary is propdt-can be expected thatis a function of the order parameter
tional to the difference between the displacement of the pulland diverges in solid statp— 1, so if we take
ing point P(xg=V,t) and the displacement of the plate
(point Q) =I'1(1-p) (63

(62)

02 = y(Xo—X1— Xo), (57)  andintegrate E¢(62) overzfrom —c to 0, we get Eq(61).

X We integrated Eq¥59)—(61) numerically using the finite
wherey= const is proportional to the spring stiffness agg  difference method. The main control parameter of this model
is a distance betwedmandQ corresponding to the unloaded IS the normalized velocityV. At large W we obtained a sta-
Spring (effective “Hooke’s |aw")_ Diﬁerentiating this equa- t|0nary near-surface shear flow with a prOflle shown in Flg

tion with respect to timé yields the boundary condition 18. In accordance with E¢60), the velocityV and the shear
V, are maximal near the surface, wherds minimal. For
%=y Vo—v(0)], (58 large z, the asymptotic velocity profile exhibits a well-

defined exponential decay, Fig. (b8 In fact, this stationary

where we took into account that the plate velocity coincideglistribution of the order parametgrcoincides with the exzact
with the velocity of grains immediately below the surface. solution Eq.(21), in which & should be replaced b§*— S5.

Introducing scaled variable$= U(x) Z/(d,i_d)g 1/2032, S At small velocitiesW—0 the model exhibits relaxation
=gol(d2— DY T=vyn, W=Vynl(di—p3)"%2,, oscnlatl_ons, reminiscent of the normall dry fr|Ct|_on between
V(2)=0(2) 77/(¢§— ¢C2) 1/2022’ we obtain the following set two s_ollds. The stress,, grows almost linearly Wlt_h no flow
of equations: until it reaches a certain threshold vaIL_Je after which the near-
surface layer fluidizes, and the ensuing shear flow relieves
: the accumulated stress. After that the layer “freezes” again,
p=V2p+p(1-p)(p—S*+S), (59 y 9

and the process repedtee Fig. 19
, Figure 20 depicts the bifurcation diagram illustrating the
V(Z)ZSJ (1-p)dz, (60)  transition from the stationary shear flow at largéto the
—o regime of relaxation oscillations at small. As can be seen,
the transition is subcritical with hysteresisimilar to the
S=T(W-V(0)). (61)  case of rotating drumsas the oscillations always occur with
finite amplitude. A similar abrupt transition from oscillations
It is interesting to trace the connection of our boundaryto steady sliding was found in experiment RiZ5)].
condition(61) to the Maxwell stress relaxation condition for ~ Furthermore, we explored the dependence of the shear
viscoelastic fluid 45], stressS on the pulling speedV. For the stationary flow re-
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FIG. 19. Relaxation oscillations of the shear stregs (a) and
the near-surface velocity(0) (b) for S;=0.11'=0.01W=2.
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FIG. 21. Dependence of the normalized shear st&es the
pulling speedW for S;=0.11"=0.01 (circles. Nonuniqueness of
this function is a result of the hysteretic transition from stick-slip
motion to continuous sliding. The solid line corresponds to solution
(64) for stationary shear flow regime.

The numerically obtained dependenceSofs W for arbi-

gime it can be found analytically using the exact solution Eqtrary values ofW is shown in Fig. 21. As seen from the
(21) for the order parametegs. A simple expression can be figure, indeed there is only a weak dependencs af W for
obtained at the large velocity limiéy>1) corresponding to W>0.5.

6—1/2. In this case one derives from Edg1), (60), and

(61),

0 S
Wzsf (1-p)dz ~— —

ﬁ'”(

As one sees from Ed64), with increase of the pulling ve-

VS —S5—1/2

6

) . (69

In the recent papdgr6], a model for the granular friction
has been proposed, which is based on similar ideas of a
phase transition in the granular medium underneath a mov-
ing surface. Within this model, oscillations in the form of
stick-slip motion can be described, however the model does
not describe the observed transition from stick-slip motion to
the steady motion with the increasing of the pulling velocity.
The significant difference between the mode[ 48] and our

locity W the shear stresS monotonically decreases and ap- model is that the former does not address the spatial inho-
proaches the valus= \/1/2+ S, in agreement with the ex- mogeneity of the fluidized layer, and thus the order-

perimental results of Ref26], where it was also found that Parameter dynamics is described by an ordinary differential
the shear stress slightly decreases with the increase of tiggluation. Second, the control parameter in the order-

shear rate and approaches some equilibrium value.

30

20

10 |

parameter equatioft6] (see alsd47]) is a function of the
sliding velocity and not the applied stress, which in our opin-
ion is not physical. Indeed, the transition to a fluidized state
should be determined by a yield condition that is naturally
defined via components of the stress tensor. Although in the
dynamic friction problem the sliding velocity and the shear
stress are related, we believe that the motion of the granular
material is the consequence of the fluidization transition
rather than the reason for it.

An alternative approach leading to the exponential decay
of velocity in shear flows was developed in REf6]. Using
traditional hydrodynamic equations coupled to the equation
for the granular temperature, the authors reproduced experi-
mentally observed behavior. However, in order to explain the
exponentially small velocity tail far away from the moving
plate, a highly nonlinear viscosity with singular dependence
on the density was introduceatl hoc That model success-

FIG. 20. Bifurcation diagram for the transition from stationary fully describes the shear flow driven by a moving plate, how-
shear flow to relaxation oscillations. The dots in this plot depict the€Ver it fails to describe the transition between solid and flu-

extrema ofV(t) as a function of the pulling speed/ for S,

idized states, which is the hallmark of the granular dynamics.

=0.1'=0.01. Periodic oscillations coexist with steady sliding for Our model, on the contrary, is applicable to the description of

2.6<W<3.6.

both flowing and static regime.
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FIG. 23. Mohr’s circle for the three-dimensional shear stress
y tensor[4].

FIG. 22. Schematic representation of a 3D shear experiment. %imensions It is well knowii4] that the tangential and nor-
slab of granular material is sandwiched between two vertical platesrln | st ’ do li ithin the shaded limited b
one is moving with the speed, at y=0 and one is immobile at tha S r?quc’es-.f andon, .Ie within the s ‘f" e. area |m| ed by
y=—2L. e Mohr’s circles built upon the major, intermediate, and

minor principal stress values;_5 (see Fig. 2R As it is
B. 3D problem clear from Fig. 23, the maximum value of the ratip

. . _ =o,lo, occurs at the tangential poiAt at which
In this section we consider the 3D shear flow structure

between two vertical plates one of which is moving with o103
respect to the othdisee Fig. 22 This geometry is inspired b=—F7—. (66)
2\o03

by the recent experiment by Mueé al. [24] in which the

strupture of the granular shear flow was_studled_ na IongI'he major and minor principal stresses are determined as
vertical Taylor-Couette cell. In the experiment with rough cioenvalues of the shear stress tensor. The control pa-
particles they found a significant deviation in the shear flow 9 Qe P

profile from the simple exponential profile observed in ear_rametera is related tog via Eq.(6), so in this case

lier 2D experimentg23,25-28,48 and successfully repro- (01— 03)2

duced by our theorysee the preceding section o=|—— ¢>§}(¢§— @2). (67)
Reference[24] gives strong evidence for the Gaussian | Aouos _

[v~exp(—consiX (r —r,)?] behavior of the velocity profile For simplicity we assume that all diagonal components of

near the outer wall. As we show below, this feature can bdhe stress tensor are equéike in fluid): oy=0y,=07,

attributed to the three-dimensional geometry of the experi==P=const. This assumption makes the calculation much

ment in contrast to that of Ref§23,25-28. It follows di- ~ Simpler, although qualitatively similar behavior is expected

rectly from the fact that the normal stregwessurgin suf-  in the general case. HeRehas the meaning of pressure at the

ficiently long vertical cylinders filled with dry granular bottom of the cell and from the dlmens_lonal consideration

materials saturates and does not depend on the height of tR&€ concludes tha&®~cogL, wherec,>1 is a constant that

cylinder (as in the celebrated Jansen picture of silo,[83e  depends on surface wall roughness, £831]. One obtains
Indeed, consider the distribution of stresses in an infinitdhe eigenvalues

layer of grains in contact with two vertical wallgravity is 3 >

directed along the axis) at the pointsy=0 andy=—2L, 01 =PHVGHY+L)"+ 0%y

see Fig. 22. From the projection of force on thaxis we

obtain the condition o2=P,

Oxzxt OyzyT 022,=—0. (65) o3=P— gz(y"‘l—)z"'a'xy- (68)
Since we assume that the diagonal compomentdoes not 1 hUS, one derives
depend on depth, i.e., the coordinate, and there is no ) 5, 2
dependence of stresses, we obtain that the weight is sup- S(y)= 97 (y+L) "+ oy
ported by the tangential stress,,=—g(y+L). Due to di— 5| PP—gi(y+L)>—o
shearing we will also have tangential stresg= const, as in
the two-dimensional casgvith notational difference thay  Here, as beforeg,, characterizes shear rate and is propor-
now indicates the direction normal to the walls tional to V. Therefore, the control parametérin three di-

Now, we need to relate the tangential stresses to the comaensions has an explicit dependence. In contrast, in 2D

trol parametets using the Mohr-Coulomb condition in three geometry we had simply=const.

>~ 5| (69
Xy
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Let us now evaluate the decay rate of the order parameter. A challenging project would be to derive the evolution

Linearizing Eq.(14) nearp=1 we obtain equation for the order parameter from some sort of “micro-
scopic” theory of granular flow, in analogy to the theory of
pyy—p[1—46(y)]=0. (70 superconductivity, where the order-parameter equation was

first proposed phenomenologically by Ginzburg and Landau
We focus on the solution near the wgik=0. If |y/L|<1, we [52], and later derived from the microscopic theory of super-
can apply the WKB approximation and seek the solution inconductivity by Gorkov and Eliashberfs3]. Since our
the form p~exgd®(y)]. Then we derived®?=1—45(y).  model exhibits a critical slowdown fof—1, i.e., the decay
Therefore, for 6<|y|<L and also foro,,/P<1 we derive  lengthds=d/\/1— & (or, pursuing the analogy with equilib-
rium critical phenomena, the coherence lengltverges at
the critical point, an asymptotical derivation of the order-
parameter equation can be anticipated in the vicinity of the
point of spontaneous fluidizatiofi= 1.

0
p=exr{ - L V1-4(y")dy’

6'(0) ,
~exp[ V1—68(0)y— rwszr O(y3)]dy : ACKNOWLEDGMENTS
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APPENDIX A: THE TRANSITION LINE BETWEEN
TRIANGULAR AND UPHILL AVALANCHES—INFINITE
We developed a continuum theory of partially fluidized VISCOSITY LIMIT
granular flows. This theory is based on a combination of the
mass and momentum conservation laws with an equation for i . I
nches can be found analytically in the limit of infinite vis-

the order parameter describing the transition from the stati
P g gosity. In this case Eq(11) yields a trivial solutionh=h

to flowing regime. In this sense, our theory goes beyond the” . o .
traditional hydrodynamical description of dense granular— const and Eq(14) becomes independent. Within a single

flows, see, e.g[25,49-51. The order parameter, which is a order-parameter equation, the velocity gap disappears, and

crucial variable in our theory, can be interpreted as a portio'€ transition line corresponds %=0. _
of the static contacts among particles in a small volume We represent the solution for the order parameter in the
within the granular system. This quantity is difficult to mea- ™M
sure in physical experiments, but can be extracted from mo-
lecular dynamics simulations. Phenomenological parameters
in our model can be obtained from comparison with molecu- . _ .
lar dynamics simulations and experiments. In a certain limiouPstituting the ansatal1) in Eq. (14) one obtains
our model can be reduced to two coupled equations for the I
depth of the fluidized layer and local angle, which resemble Vox=Vip=p(1=p)(5=p).
the BCRE model; however these differ from it when consid- )
ered in detail. In particular, our model has intrinsic hystereticF " V="0 Ed.(A2) is reduced to
behavior absent in the BCRE model. 5

Our order-parameter model captures many important as- Vepo—po(1=po)(6—po)=0. (A3)
pects of the phenomenology of chute flows observed in re- ) _ .
cent experiment§20—22,27,2% including the structure of The solution to Eq(A3) exists only for some spemﬁc value
the stability diagram, the triangular shape of downhill ava-°f 6= o for eachh,. This value can be obtained from the
lanches at small inclination angles, and the balloon shape giolvability condition. Sincé,p is the solution of the linear-
uphill avalanches for larger angles. It provides an adequat¥€d problem, the solvability condition is obtained with re-
description of granular flows in a 2D rotating drum and in aSPect to this solution. Multiplying EqA3) by dxpo and per-
Couette geometry. In particular, we found the experimentallyforming integration ovex andz, one obtains
observed features such as periodic oscillations of the shear o
stress and the flow velocity at low rotation rates and the ” 2 —
transition to a steady flowyat higher rates. For sidewall- fﬁwdxﬁhdzaxpo[v Po~Po(1=po)(0=po)]=0.
driven shear granular flows our model gives rise to the ex- (A4)
ponential velocity profile in two dimensions and the Gauss-
ian correction to the profile in three dimensions. Using integration by parts, we derive

VI. CONCLUSIONS

The transition line between triangular and uphill ava-

p(X,z,t)=p(x+Vt,2z). (A1)

(A2)
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1

o
2 2[1
(AS) \/5—1+—
3

6 2
E(Z—@}

:0, h_

(A11)

fw cle0 olzi (9,p0)%+ lp“—z(a +1)p3+68p?
. CnCox zPo 2P0 3% 0 0

which leads to

The dependenck(5) agrees with the corresponding depen-
dence obtained from the analysis of the full Etd) [see Eq.

X=0o (A8)] with a line thickness up té~0.6. Also, along this line
there is an exact expression for the front solution

0 2,14 2 3 2
7hdz (9zp0) +§Po_§(50+1)P0+5P0

ho(25—1)
- 2=~ o (A6)
6
Ap=A.[1+tani(/3/8A.x)], (A12)

For x—o the solution py converges to a pure one-

dimensional solution with the first integral whereA,, is given by Eq.(27).

1 2

_ 2, - 4_ 7 3 2_~_

(92p0)"+ 5 po= 53 (So+1)po+ dpp=C=const, APPENDIX B: UPHILL FRONT VELOCITY IN THE

(A7) LARGE VISCOSITY LIMIT
where C=1p4—2(5,+1)p3+ 8p2 at z=0. Therefore, the For finite « we look for the solution in the form
expressionA6) can be brought to the form
A:Ao(x)+ GA]_,

ho(26—1
_Ch- O(T)
X=0 h:h0+€h1(x),

=0. (A8)

0 (1, 2 3, o2
zf dz| 5po— 3(80+1)pg+ dpy
“h \2 3

V=¢€V,,
Settingh=hg and solving Eq(A8) for eachh, one finds the '
dependencé, vs h,. This dependence is shown in Fig. 11,
dotted line. The infinite viscosity limit gives the lower bound 0= 0" + €0, — Bedshy, (B1)
of uphill avalanches; however, as one sees in the figure, this

limit is rather close to the experimental data. wheree= ya andAq(x) is given by Eq.(A12). Substituting

For h>1 one can derive an estimate forvs §. In this . _— .
limit, the solution is given by the front solution E¢34). E)hr((aiéarniifiBl) into Eqs.(24) and(25), we obtain in the first

Since for §>1/2 the fluidized state invades the solid state,
the front travels toward the bottom and stops at the distance

Az~In(6—1/2)~0(1) from the bottom. Thus, fdr>1 one R 38 72A,
obtains from Eq(A8) (taking into accounC—0), LA1=V1A1—Bh1(EA§—AO) — ?hl
0
In(6—1/2) 8
=T (A9) - 51( Ao~ gAé) . (B2)

Let us now consider the cabe-O(1). In this case the tran-

sition lineh(8) can be obtained analytically from the single- Vih;=—h3A,, (B3)
mode approximation Eq24). To demonstrate that, we first

find the position of the line/=0 in the (5,h) plane for«

— 0. Equation(24) has a stationary front solution connecting .

two outer fixed point#\; andA; of Eq. (24) if its free energy ~ Where L linearizes Eq.(24) in the vicinity of A, at h

IS symmetric, i.e., the root4, , ; of equation\ (h)A+[8(2 :ho,5:§*- o )
—8)I137]A?—2A3=0 satisfy the symmetry conditior, Equation(B2) has a bounded solution if the right-hand
=0, A;=2A,. It gives rise to the expression side of Eq.(B2) with h; expressed from EdB3) is orthogo-

nal to the zero eigenmod¥, = 3,A,. This solvability condi-

=2 2/16 2 tion yields
5—1—H+§<%(2—5)) =0. (A10)
Via + 22— 512,20 (B4)
a;+ o —61a3=0,

From Eq.(A10) we obtain iy, T8
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where

al:f (9xA0)%dx=2/3A3 ,

w 8
a,= f [ﬁhg(&on)z(EAﬁ—Ao + 212A50,A0 | dx

—0o0

3 157 3

o0

a3 ( am? 168/6hA2 _B@hSAx>

PHYSICAL REVIEW E65 061303

9 (BS)

% 8 , 64 .

ag=| Ap— EAO IAg=2A%— —A7.
Returning to the original notation, we obtain from EB4)
Vv2—5d,V+ ad,=0, (B6)

with d;=az/a,, d,=a,/a;, andd= 56— 5*.
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