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Quasi-two-dimensional dipolar fluid at low densities: Monte Carlo simulations and theory
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We studied a quasi-two-dimensional dipolar fluid in the chaining regime using Monte Carlo canonical
simulations and theoretical analyses. The self-assembled clusters were characterized by measuring their inter-
nal energy, conformational properties, and equilibrium length distributions. We generalized and used equilib-
rium polymer theory to describe the structure of the chains and rings observed in the simulations. The scaling
forms of the length distribution functions predicted by theory were found to describe adequately the simulation
results. Finally, we discuss how this type of analysis may be used to establish the existence and mechanisms of
phase transitions in dilute dipolar fluids.
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[. INTRODUCTION densities and temperatures: the competition betweéava
density phase rich in chains and entropically favorable, and

Interest in the dipolar hard sphere fluid has grown in thea (higher density phase rich in defecté&he junction of three
last decade owing to its unusual chained structure, to thehain ends and thus called Y defefi$]) and energetically
absence of a standard liquid-vapor transition, and to the refavorable. From the structural point of view, this transition
lation between the structural and thermodynamic propertiediffers from the standard liquid-vapor transition and re-
of this system. sembles the structural or topological phase transition pro-

The self-assembly of chains, observed in Monte Carlgosed by the same authors to describe the emulsification fail-
simulations of the dipolar fluid at low temperatures and denure observed in microemulsioi$6]. A comparison of the
sities(e.g.,[1-5]), is driven by short-ranged anisotropic cor- structure observed in simulations of dipolar fluids with that
relations that constitute a challenge to the standard theoriggsponsible for the mechanism proposelif| has not been
used in calculations of the thermodynamics of simple fluidscarried out and thus the existence and mechanisms of the
In fact, the thermodynamic properties of the dipolar fluid phase transition in dilute dipolar fluids remain open prob-
under these conditions cannot be calculated using simplems. In fact, in simulations where the chain structure was
mean field approximations. On the other hand, integral equaanalyzed[1] defects(branching of chainswere rarely ob-
tion theories capture some features of the pair correlatioserved[17].
function but are not reliable as far as calculations of the The simulations and theoretical work referred to above
thermodynamic properties are concerned. By contrast, assetere carried out for the dipolar fluid in three dimensions
ciation theories have been applied successfully to this prob3D). In this paper we report simulation and theoretical re-
lem since, by construction, they include the contribution ofsults for a quasi-two-dimension&D) hard sphere dipolar
the chained structure to the thermodynamics. These theoridkid: a 3D dipolar fluid with the centers of mass and dipole
consider the dipolar fluid as a mixture of polydisperse chainsnoments constrained to a plafis8]. We chose to consider
and write the free energy as a functional of the set of chairthis model since in 2D defect formation is clearly observed.
densities. The equilibrium chain length distribution functionIn addition, ring formation(not present or only marginally
is obtained by minimizing the free energy functional, at fixedpresent in 3D also occurs in 2D and thus we develop and
temperature an@onomey density, with respect to the chain test a generalization of the theoretical analyses used previ-
densities[6—9]. This approach has proved very useful in ously [4,6,8,14. Finally, the reduced dimensionality allows
describing several aspects of the simulation results, namelipnger simulations of larger systems which are required to
the slow variation of the internal energy with dengifi}, the  obtain accurate equilibrium distributions for the various
absence of a liquid-vapor phase transitj@r6,8,10,1], and types of self-assembled clustefshains, rings, and defect
the dependence of the critical density on the ratio of isotropiclusters. In a different context, this model is useful in con-
to dipolar interactions in models that include attractive iso-nection with recent experimenf$9] that reported the obser-
tropic interactiong3,8,12. vation of rings, chains, and defects in monolayers of spheri-

Recently, a direct calculation of the free energy using cacal monodispersed colloidal magnetic particles.
nonical Monte CarldMC) simulations, at several tempera-  In this paper, we aim to describe accurately the structure
tures, suggested the existence of ¢metwo) isotropic fluid-  of the quasi-2D dipolar fluid at low densities, namely, the
fluid transitions at low densitiegl3]. The existence of at ring and chain length equilibrium distributions observed in
least one phase transition was corroborated by isobaric armbmputer simulations. This will be done by using equilib-
grand canonical MC simulations at a single temperdtl8  rium polymer theory(e.g.,[20,21)) and can be viewed as a
These results led Tlusty and Safrft¥] to propose a new generalization of the association theories used in earlier work
mechanism for the phase transition of dipolar fluids at low[4,6,8. We will discuss the extent to which these results may
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be used to clarify the existence of phase transitions in dilute erffdar)  2a exp—a?r?)

dipolar fluids and to establish the mechanisms driving them. B(r)=— — T T 3
The paper is organized as follows. In Sec. Il, we describe r \a r

the model, the details of the canonical Monte Carlo simula-

tions and the algorithms employed to identify the clusters. erfdar) 2a| 3 exp(— a?r?)

The characterization of the clusters is carried out in Sec. llI, C(r):3r—5 +\/—; r_2+ o? 7 (4)

where we report results for their internal energy, conforma-
tional properties, and the equilibrium length distributions of

chains and rings. In Sec. IV, we describe briefly equilibriumWhIIe

polymer theory and use it to describe the structure of dipolar N
chains and rings observed in the simulations. We compare F(G)=2 (G- ) exdiG r]. (5)
the scaling predicted theoretically with that observed in the =1 ! '

simulated length distribution functions of chains and rings.
Finally, in Sec. V, we conclude by discussing how our analy-n Eq. (2) r;;=r;—r;, L=A is the box length, and erfc
sis may be used to establish the existence of a phase transienotes the complementary error function. The prime in the

tion in this system. sum overn=(ny,n,), with n,,n, integers, restricts it to
#]j for n=0. With «=6.5L, adopted in our calculations,
Il. MODEL AND MONTE CARLO SIMULATIONS only terms withn=0 need to be retained in E(R). The sum

. . in reciprocal space extends over all lattice vectdss
The dipolar hard sphere model is a system of hard spheres P D

. . o 22 n/L with |n|?<n?2 . =64 while the sum in real space is
of diametera with an embedded point dipole of strength /L with |n| max il umit P !

interacting through the pair potential truncated at about 18
9 9 pair p As will be apparent below, in the range of dipole moments

2.5< u* =<3 the dipolar spheres self-assemble into strongly
bonded structurelusters consisting of linear chains, rings,
M A a A A ~ A and more complicated structures where different chains
_ d licated struct h diff t ch
- 3[3(“1' F12) (K2 T12) = p1- pal, T2 0 and/or rings are connectédie shall call these defect clusters
12 (1) irrespective of their precise topologySampling of phase
space was achieved by performing both single-particle and
r12is the distance between the centers of the spheres 1 and@uster moves. The latter considerably enhance convergence
FlZE(FZ_Fl)/rlz the unit interparticle vector, and , i, the by bringing clusters more rapidly into contact, thereby cre-

unit vectors in the direction of the dipole moments of sphere&ting defects(contact of more than two particlgswhich

1 and 2, respectively. In the simulations reported in this pa¥eré found to be the major mechanism for breaking and
garranging clusters.

per, the centers of the spheres and their dipole moments afga'" : _ :
constrained to lie on the same plane, and thus the model is a Sindle-particle trial moves were performed in cycles, each

quasi-2D dipolar hard sphere fluid. We define the reduce§Ycle corresponding to the displacement of Mliparticles
density as* = o?N/A, whereN is the number of spheres in and the rotation of their dipole moments with amplitudes

the system with area, and the reduced dipole momefat adjusted to give an acceptance ratio of about 0.3. Every 6000
square root of the inverse reduced temperatuae u* cycles for the 5776 particle system or 20 000 cycles for the

= u/Jo3KaT, wherekg is Boltzmann’s constant an the smaller system, a cluster move was carried out by displacing
ab/;olute tZr‘F]peratureB the centers of mass of all clusters uniformly in a square with

The MC simulations were performed in the canonicaISide (10-12y. In order to satisfy detailed balance cluster

(N-V-T) ensemble using 1600 and in most cases 5776 papoves _resulting in a cluster Iarg_er than fch_e_ displaced one
ticles, in a square box with periodic boundary conditions. AnVere rejected. We use an operational definition of the clus-

Ewald sum was used to account for the long range of thders: @ par_ticle belopg; to a given c_Iuster if its nearest-
dipole-dipole interaction; for a 3D dipolar interaction with neighbor distance within that cluster is less than a cutoff

the centers of the spheres constrained to a 2D lattice, the Su%stancerc. Note th".it at this stage there IS 1o need to .d'S'
is absolutely convergent and is given 82,23 tinguish between different cluster topologies. Calculations

were started from an initial configuration with monomers
only. Equilibration was assumed to obtain when the variation

®, <o,

2
bpHs=

N N
U=— E Z 2 2 ! [B(|rij +n|) - i +C(|fij +nl) of the total energy of the system was less than 2—3%. Owing
2=1=1 0 to the very slow rate of convergence this led us to discard
. erfo G/2a) typically of the or_o_ler qf (4-5)%x10° cycles for the 577_6
X (i) (1) 1+ x z T|:(G)|:*(G) system. After equilibration, of the order of 50—100 configu-
G#0 rations separated by 150 000-200 000 cycles for the 5776-
3 N particle system and of the order of 100—200 configurations
_ ZL E ()2 ) separated by 300 000—-1 000 000 cycles for the 1600-particle
37 =1 s system were kept for later analysis of the structural proper-
ties of the clusters. For most thermodynamic states averages
where the function8(r) andC(r) are were taken
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a) b) called defects and the structures they belong to defect clus-
< s e TR G ters. The defects exhibit a different number of branches
o g" T R el 2 s (mostly 3 or 4, called Y and X defects, respectively, follow-
2 e%‘;o:_ ”%Wiéw 2 G%ZA s ing [14]) and the corresponding clusters exhibit different to-
e .;:}3 5’ e f ° e °% ’ pologies, depending on the number of “holes,” “ends,” and
2 G 8 T e ‘. e B the type of defects. The snapshots of Fig. 1 may be used to
. e e IS o 5}} P infer the evolution of the dipolar fluid structure with increas-
S @W; e /m: - ga “06 ; G{% ing dipole moment at fixed densifgequencéa),(c),(b)]: the
Ce 0 N k .0 Jé;sgz% size of all clusters increases, chains almost disappear, the

number of rings decreases, and at the lowest temperature the

__ hC) ; structure consists of very few large defect clusters with
p; YRR an rather complex topology. The evolution of the structure with
gi q{ wﬁ?’i’fj@&ggosw increasing density at a fixed dipole moment exhibits the
Buge e e A same qualitative featur_es, as seen in thg sequence of shap-
e LY > §hots(d),(c), and(e) of Fig. 1. Cha_lnmg or linear aggregation
SRR R Oa: is to be expected due to the anisotropy of the dipolar inter-
§ e < i - - action (see[9]). Defect formation was observed in 2D ex-
¢ LD A perimentd19], and was proposed on general grounds for 2D
S [ - o and 3D dipolar systemd 4]. Simulations of 3D dipolar flu-
d) e) ids, however, suggest little if any defect formation within the
TP T = T 0p 0D G oo, chaining regime.
Pty ST £5? ;f‘ 2‘2@ A qualitative analysis of the “dynamics” of the equilib-
’ g S v . . GQQ, rium dipolar fluid was carried out by inspection of sequences
05, T e "’;1& ? 6 R of equilibrium snapshots. This revealed the existence of fre-
ff R R 1 2&;} /A bm 9 quent events that drive the equilibrium “dynamics:” chain
I ‘20 o? 1o ’ o e 2 ends join to form a ring; a chain bends and attaches one of its
I ﬁgﬁf& 2Tty R \/yﬂ o ends to an interior particle, thereby forming a ring and a
i Fo oo a0 e B ﬁj“i% chain that subsequently detaches; two rings fuse into a larger

o . ] . ring; two chains come into contact and exchange branches; a
FIG. 1. Snapshots of equilibrium configurations obtained fromring is absorbed into a chain; two rings form from a larger
canonical Monte Carlo simulations of the quasi-2D dipolar quid.ring. etc. This analysis also showed that small rings and
For (@), (b), and (c) the reduced density ig*=0.03125 and the  .p5ing are very stable and do not break spontaneously.
reduced dipole moments are* =2.5, 3, and 2.75, respectively. For -ty qalitative picture of the structure in terms of clusters
(d) and (e) the dipole moment isu* =2.75 and the densities are may be quantified by generalizing a method used 1]
. . .
p™=0.025 and 0.0375, respectively. The classification of clusters is carried out by calculating the

over three independent runs, consisting of heating a configlfirst: second, and third nearest-neighbor distaricespec-
ration to a state with monomers only and then cooling itiVely: F1j.r2j, andrg;) of each particlg: if ry;>rc, jis a
down to the desired temperature. free particle; ifrq;<r. a_n(_jrzj>_rc, Jis an_end partlc_:le; if

In order to check the time evolution of the clusters within 2j<fc andrs;>rc, thenj is an interior particle; and, finally,
a simulation run we recorded the lifetime of pairs of bondedf r3j<fc. j is a defect particle. A ring is a cluster with
particles. Atu* =2.5, 50% of the bonds are brokdand interior particles only, a chain a cluster with _tv(/and only
reassemblein 1x 10° cycles while almost 90% of them do two) ends,_ and a defect cluster a cluster with at Igast one
not survive 5< 10° cycles. At dipole moment 2.75, however, defect particle. For strongly bonded.clust@s occurs in th_e
the lifetime of bonds increases by almost an order of magniPresent systema range of cutoff distances yields qualita-
tude. As a result, for the simulation with 5776 particles onlytively similar results. Throughout this work we used
65% of the bonds were broken and reassembled during thg 1-150. We will show later that our results are independent
rather long simulation run. These numbers are almost inde?f this particular choice.
pendent of density. The bond lifetimes increase dramatically

if cluster moves are not used. [ll. RESULTS FROM MC SIMULATIONS: LENGTH
In Fig. 1 we plot snapshots of characteristic equilibrium DISTRIBUTIONS, INTERNAL ENERGY, AND
configurations for different densities and dipole moments. CONFORMATIONAL PROPERTIES

They clearly show that, for these thermodynamic states, the
dipolar spheres self-assemble to form aggregates of different
sizes. A more careful look distinguishes various types of ag- In Table | we summarize our results for the total energy
gregates. Some exhibit linear aggregation ofdyery par- and for some of the quantities characterizing the clusters.
ticle is bonded at most to two other partidlesd are closed These results were obtained from simulations with
(rings) or open(chaing. All the other aggregates are more =1600 and N=5776 particles at reduced densitigs
complex and exhibit branching, even if most of their par-=0.025, 0.031 25, and 0.0375 and reduced dipole moments
ticles are still linearly aggregated. These branching points arg* =2.5, 2.75, and 3.0.

A. General results
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TABLE I. Structure and energy of the quasi-2D dipolar fluid obtained from simulatMisthe total number of particlel* is the total
reduced energy per particld,* = BU/N. Wx is the mean length of the distribution for clusters of typep, is the fraction of particles in
clusters of type, andE} is the reduced internal energy per particle in those clustersandcd refer to chains, rings, and defect clusters,
respectivelyU}, is the average reduced internal energy per particle in clusters.

n* p* N cycles/16  U*/u*? Ukl u*? ﬁc d.  EFlu*? ﬁr b, Ef/u*2 ch deg  EXgup*?
2.5 0.025 1600 78 —1.992 -—-1981 21 044 -—-1941 22 0.39 —-2.023 41  0.17 —1.990
2.5 0.025 5776 18 —-1986 —-1976 21 047 —-1.938 22 0.33 —2.023 46 0.19 -—1.987
2.5 0.03125 1600 50 —1992 —-198 23 046 —1949 24 0.34 -—-2.029 47 0.20 —1.997
2.5 0.03125 5776 11 —1988 —-1972 22 050 —-1.938 21 0.27 —2.022 50 0.22 -—-1.988
2.5 0.0375 1600 84 —2.000 —-1.985 24 047 —-1952 24 030 —2028 53 0.23 —1.997
2.5 0.0375 5776 14 —1.993 —-1.977 24 050 —-1.946 22 026 —2025 54 024 —-1.991
2.75 0.025 1600 100 -2.097 —-2.095 39 0.19 -2.070 32 063 —-2100 78 0.18 —2.101
2.75 0.025 5776 20 —-2.092 —-2.081 38 029 —-2.051 27 045 —-2095 91 0.26 —2.089
2.75 0.03125 5776 13 —2.091 —2.082 42 0.29 —2.058 28 0.42 -2.096 91 0.29 -—2.087
2.75 0.0375 1600 220 —2.097 —2.093 46 0.24 —-2.072 34 050 —2102 104 0.26 —2.097
2.75 0.0375 5776 13 —2.089 —2082 44 029 —2.058 28 0.34 —2.097 109 0.37 —2.088
3.0 0.025 5776 28 —2.151 —2149 55 0.09 —-2125 34 053 —-2151 117 0.38 —2.153
3.0 0.03125 5776 8 —2.150 —2.147 68 0.12 —-2125 33 033 —-2150 174 055 —2.149
3.0 0.0375 5776 36 —-2152 —-2.151 67 0.09 —-2130 38 038 —2153 180 053 —2.153

The reduced total internal energy per particle, divided bynounced atu* =2.75: the longer simulations of smaller
w*2, decreases slightly with increasing dipole moment and isystems, when compared to the shorter simulations of larger
essentially independent of density, indicating that interclustepnes, exhibit larger rings corresponding to a much larger
interactions are negligible. This is corroborated by a direcfraction of particles and a smaller fraction of particles in
calculation of the average internal energy per particle in cluschains and defect clusters that exhibit relatively slow size
ters (U% in Table ), which was found to be nearly the same Variations. This is due to the fact that the small difference in
as the total internal energy per particle. We have also calcihe internal energy of the long and short runs, referred to
lated the internal energy per particle for each type of cluster@bove, has a dramatic effect on some of the structural prop-
A comparison of these quantities shows that the internal erfrties. The lower internal energy of the longer runs is respon-
ergy of chains is the highest and that of rings the lowestSible for the self-assembly of larger rings and fewer chains
Defect clusters have an intermediate internal energy per pafnd defect clusters. Note that the density dependence of the
ticle that approaches that of chains and rings, for large clusstructural properties is unz_iffected by this systematic error at
ters. Note that for a given thermodynamic state, the energy of* =2.5 and 2.75, but this may be the cause of the non-
the longer runs is always slightly lower. These differences, ofmonotonic behavior oN. andN, with density, atu* =3.0.
the order of 1%, are systematic and result from the fact that
the internal energy has not fully converged after the very B. Length distributions

large number of c'ycles ofgur'smulanon ru'ns. . In Figs. 2, 3, and 4 we plot the equilibrium length distri-
The_mea_n chal_n length\;) increases Whl|e thg frac.tlon butions of chains, rings, and defect clusters obtained from
of particles in qhams bc) decrease_s_ W|th.|ncreas!ng dipole gimulations withN=5776 at p* =0.025u* =2.5 (a) and
moment. Variations of these quantities with density are har%* =0.0375u* = 3.0 (b). Also plotted are simple histograms
to detect bulN. appears to increase with increasing density.of these quantities. The distributions obtained for the other
The mean ring lengthN,) also increases with increasing thermodynamic states are similar. From the figures we iden-
dipole moment but more slowly thaN.. The fraction of tify the difficulty in obtaining good statistics at large densi-
particles in ringsp, decreases with increasing density and itst'€S and/or dipole moments as the distributions broaden con-
dependence on the dipole moment appears to be nonmongiderably. It is clear, however, that by smearing out the
tonic. The properties calculated from the distribution of de-Staistical noise by using simple histograms one obtains simi-

fect clusters exhibit stronger variations with density and di-"'ﬁr dihstribut(ijons with well deflfih”_ed peaks and de(I:_aysbforr] all
pole moment: both the mean sizd ;) and the fraction of the thermodynamic states. This suggests a scaling behavior

particles .q) in such clusters increase with increasing den—that will be described in Sec. V.

sity and dipole moment.

A comparison of these properties, at a given thermody-
namic state, for simulations with different numbers of par- We computed the internal energy per particle of chains
ticles reveals systematic differences that are more proand rings as a function of their sizg(N) ande, (N), respec-

C. Internal energy of chains and rings
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FIG. 2. Average number of chains of sieobtained from simu-  FIG. 4. Average number of defect clusters of shteobtained

lations at(a) p* =0.025, u* = 2.5 (system with 5776 particlesnd ~ from simulations at(@ p* =0.025, u*=2.5 (system with 5776
(b) p* =0.0375, u* =3.0. The bars represent histograms obtainedparticles and (b) p* =0.0375, u* =3.0. The bars represent histo-

by simple averages in steps of sixe/2. grams obtained by simple averages in steps of Nizg4.

tively. For all the states considereg(N) is lower than differs by about 25%14]. In Fig. 5, we plote,(N) and
€.(N) if N=4 and the difference,(N)—e.(N) exhibits a ¢ (N) obtained from the simulations at =0.025u* =2.5
minimum forN~8-10. In line with zero temperature results (N=5776) andp* =0.0375u* =3, and the functiong6)
[24,29, €(N) and e (N) are well approximatedexcept for  and(7) calculated using the parameters of Table Il. Similar
the smallest values dfl) by the functions results are obtained for the other simulations and thus we
conclude that the internal energy of chains and rings is well
Be(N) €1 approximated by the sum of a bond energy and a finite-size
R “fTN ®  correction.
Also shown in Fig. 5 is the reduced energy per particle of
and defect clusters. The function for the internal energy of defect
clusters is not known. However, a comparison of their energy
with the energy of chains and rings reveals that the energy
=— , 7) per particle is the same for all clusters, in the limNit- .
)i N? The internal energy of defect clusters is always larger than
that of rings and it appears to be larger than that of chains for
where the coefficienteg, €y, €;, ande; depend onu*  smallN only. This behavior, however, is within the statistical
only andB=1/kgT. We obtained these coefficients by fitting fluctuations of the energy and longer simulations are required
the simulation data to Eq$6) and (7). We found that for a to establish it.
given simulation the values af; and € differ by less than
1% and that their dependence on density is negligible. Thus,
at a given temperature, the system has a well defined bond
energy eo(u*) = e5(u*) = ex(x*). In addition, we verified For large N, the radius of gyratiorRy of the clusters
that € and €] depend on temperature only. The values ofScales with the number of monome\sas
these parameters are collected in Table Il. Note thats

D. Conformational properties of clusters

. . Lo Ry(N)=DbN", 8
close to the nearest-neighbor dipolar approximation wfjle o(N) ®
a) b) whereb is a characteristic length anda universal exponent
5_ ' ‘ ' ] S ‘ ] that depends on the dimension of space and on the type of
%4l 30 1 goast - interactions and lies between(figid objech and 0.5(ran-
g | 8 ] dom walk. Clusters with the conformation of a self-avoiding
B4l 1% random walk(SARW) in 2D haver=0.75[26]. During the
é - é . 1 simulation runs, we calculate(d?é(N)), the mean value of
22‘ 1 E ] the radius of gyration squared for chains, rings, and defect
[ =
L (3]
=hin 1 &
b TABLE Il. Parameters of the internal energy of rings and chains.
% 20 20 60 g0 % 30 6 . 90 120 1%
N N u* €0 € €;
FIG. 3. Average number of rings of sidéobtained from simu- 2.5 2.05 2.56 161
lations at(a) p* =0.025, u* = 2.5 (system with 5776 particlesand 2.75 212 2.65 11
(b) p*=0.0375, u* =3.0. The bars represent histograms obtained 3 217 2.66 121

by simple averages in steps of siEe/4.
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FIG. 5. Energy per particl&livided byu*?) of chains(circles,

rings (squarel and defect clustergtriangles of length N from FIG. 7. Square root of the mean squared radius of gyration as a

simulations ata) p* =0.025, u* = 2.5 (system with 5776 particlgs function of the number of monomers in rings: stahké+=5776;

and(b) p* =0.0375,1* = 3. In the main figures lines are fits to the circles, N=1600; the full line has slope 0.75 and the dashed line

simulation data obtained using Ed$) and (7) and the values of ~slope 1.(8) p* =0.025, u* =2.5;(b) p* =0.0375, u* =3.0.

Table Il. The inset shows the tails in more detail: full line corre- ) ) ) ) ]

sponds to chains, dashed line to rings, and dotted line to defe&iingth of chains may be calculated in a simulation run using

clusters.

. N-1
clustgrs of_IengtH\I. In Figs. 6, 7, and 8 we plot the results 7«(N) - i E él'éi'l'éNfl'éNfi , 9)
for simulations atp* =0.025u* =2.5 andp* =0.0375u* o 202\ i=2
=3.0.

It is clear from Fig. 6 thatv=0.75 for long chains N where(- - -) is an average over chains of lengthe; is the
greater than~10) and thus dipolar chains have the confor-yector between consecutive dipoles#r;,,;—r;) and 1,
mation of a 2D SARW. Similar results were obtained for all and N label the (free) chain ends. Clearly, Eq9) yields
the other simulations and we conclude that the exponent ig' (N)~N for rigid chains while/,(N)<N for long flexible
universal, in the range of densities and dipole moments corchains.
sidered in this work. . . o A similar expression, measuring the deviation from the

The radius of gyration of rings was calculated in a similarrigid ring structure, may be used to calculate the persistence
fashion and the results are shown in Fig. 7. It is clear fromength of rings. The positions of the dipoles in the ring are

the figure that the scaling regime of SARWSs with return ©japeled consecutively and the vectérsbetween consecutive

the origin(characterized by the same exponem0.75) is dipoles are defined as for chains but with periodic boundary

observed for large ringd\ greater thar=40). Smaller rings diti 5 —&) The ri ist lenath.(N) i

scale withv close to 1, indicating that they behave as rigid conaitions ei*’\‘_.ei)' € ring persistence lengii(N) is
then obtained using

objects. The crossover from the rigid to the fluctuating

(SARW) regime is broader at higher temperatures and lower N N-1+i
- /Ny 1 - -
densities. . . . : =— > 2 e-Alay)e), (10
A measure of the different stiffnesses of dipolar chains o No“ \i=1 j=i+1

and rings is obtained through the persistence length of these . . o o ]
clusters, /(N) and /;(N), respectively. The persistence WhereA is the rotation matrix in 2D ane;; =2 (i —j)/N is
the angle betweee; ande; in the ring configuration. For
rigid rings Eq.(10) yields 7, (N)=~N while for long flexible
rings 7/ (N)<N.

The persistence length of dipolar chains and rings is plot-
ted in Fig. 8. Histograms, with the step size indicated in the
caption, are calculated to smear out the statistical noise for
large N. The results indicate that,(N) is constant within
the statistical error while”,(N) displays two regimes: it in-
creases linearly witiN at smallN reaching a constant value
at largeN. The crossover between the rigid and SARW re-
gimes occurs at larger values bf at lower temperatures.

2 35 4 3 4 5 6 This clarifies the origin of the crossover for the radius of

InN InN gyration of rings observed in Figs(&f and 7b).

FIG. 6. Square root of the mean squared radius of gyration as a Finally, we calculated the radius of gyration of defect
function of the number of monomers in chains: std\ss5776; clusters to check if they follow the conformational scaling of
circles, N=1600; the full line has slope 0.75 and the dashed linea RW (¥=0.5) as they are rather convoluted objects. The
slope 1. The radius of gyration is in units of (a) p*=0.025, results are plotted in Fig. 9. Care must be taken in analyzing
u*=2.5;(b) p*=0.0375,u* =3.0. these results since defect clusters have a variety of topologies
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a) b) These features suggest that the quasi-2D dipolar fluid may
0 ' L ‘ O T ' ‘ be described as an ideal mixture of various types of clusters
in chemical equilibriun{9]. The Helmholtz free energy den-
sity F/A of this system is written as

X[Inpf (N)=1~InTq(N)], (1)

where k labels the type of clustefchains, rings, and the
several types of defect clustgrsy is the minimal length of

FIG. 8. Persistence length of chains and rings as a function o g~ . . . i
the number of monomers. Rings: open circles and trassogran). I:Iusters of typek, while q(N) is the partition functior(mul

. . 2 * .
Chains: squareghistogram. The step size of both histograms is 10. tiplied by U,/A) andp; (N) the reduced density of clusters
(8 p* =0.025, u* =2.5; (b) p* =0.0375, u* =3.0. of type k, with lengthN. ,
Minimization of the free energy with respect to the den-

sitiesp; (N) yields the set of equations
that were not distinguished in this calculation. In addition, Pic(N) y g

their length distribution functions are broader than the distri- . =
butions of chains and rings and thus larger statisical errors P (N)=a(N)exp(NBw), (12
are to be expected. Nevertheless, the results of Fig. 9 show

no evidence of a RW regime. We conclude that, for the finiteWhere’“ 's the chemical potential of the system. The cluster

systems studied in this work, defect clusters have the conforqenSItIeS satisfy the condition

mational properties of a SARW.

p* =20 2 Npi(N), (13)
Sk
IV. SCALING LAWS FOR THE LENGTH DISTRIBUTIONS
OF CHAINS AND RINGS: EQUILIBRIUM POLYMER and may be viewed as length distributions for the various
THEORY types of clusters. These equations determine the structure

and thermodynamics of the system, given the cluster parti-

tion functionsq(N): at fixed temperature and density, Eqgs.
The results of the previous section show that the structure12) and (13) define the distribution functiong; (N) and
of the dipolar fluid at low temperatures and densities may bgnys the structure of the system; substitution of these distri-
described by equi”bl’ium distributions of clusters of Variousbutions into Eq(ll) y|e|ds the equi”brium free energy as a
types. Each type of cluster exhibits a well defined lengthyynction of p* and w*. The theory can be applied to dilute
distribution although clusters break and recombine during jipolar fluids if the partition functions of dipolar chains,
simulation run. Their internal energy is consistent with arings, and defect clusters are known.
characteristic bond energy identical for all types of clusters. The results for the conformational properties of dipolar
Finally, the total bond energy is very close to the total inter-chains and rings suggest that these aggregates behave as di-
nal energy indicating that interactions between clusters argjte polymers. In addition, the existence of chemical equilib-
negligible. rium among clusters suggests an analogy with equilibrium
polymers[20,21]. In recent MC simulations, a 3Dattice
and off-lattice model was proposed that, by construction,
allows the self-assembly of linear clustéchains and rings
The cluster internal energy is proportional to the number of
bonds and there is no attraction between clusteesrest-
neighbor bonding interactionsThe model was specifically
built to study the equilibrium properties of polydisperse lin-
ear aggregates and very accurate results for their conforma-
tional properties, length distributions, etc., were obtained. It
was found that the conformational properties of these model
‘ . . ‘ ka . ‘ . equilbrium polymers are identical to those of monodisperse
3 3 5 quenched polymers. Additionally, the length distribution
InN InN functions of the simulated equilibrium polymers scale as pre-
FIG. 9. Square root of the mean squared radius of gyration as dicted theoreticallyf26] and the presence of rings does not
function of the number of monomers in defect clusters: stars, affect the distribution of chains.
=5776; circles,N=1600; the full line has slope 0.75 and the In the following we analyze the 2D dipolar fluid by adopt-
dashed line slope 1(a) p*=0.025, u*=2.5; (b) p*=0.0375, ing the hypothesis that dipolar chains and rings behave as
u*=3.0. dilute equilibrium polymers. This will be tested by compar-

A. General results
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ing the theoretical and simulated results for the dipolar chain
and ring length distribution functions. Before we proceed,

we note an important difference between the dipolar fluid

and the model equilibrium polymers described in the previ-

ous paragraph. In the latter there are two bonding sites per
monomer and thus the internal energy of the clusters is al-
ways proportional to the number of bonds. By contrast,

cross-linked dipolar chains and rings have internal energies
that differ from those of chains and rings and thus we call

them defect clusters.

In p N/, (N, In @ (N)

B. Length distributions of dipolar chains

For nearest-neighbor bonding interactions the chain en-
ergy is independent of the chain conformation and thus the
partition function of an isolated, longy-monomer chain is
approximated by the product of two ternts: the number of FIG. 10. Scaling form for the length distribution of dipolar
conformations of a SARW withN steps, in the limitN— chains and dipolar rings. Symbols are simulation results. Circles:

[20,21], symbols:u* =2.5. Open symbolse* =2.75. The results for chains

straddle the straight line. The results for rings follow the curve and
Z.(N)=A.N"" 1ex;{—BEC(N)]. (14 are obtained using Ed22). Full lines are the theoretical predic-
tions: the straight line is the result for chains obtained from Egs.
v is a universal exponent that depends on the dimension dfL.6) and (17) with y=1.33 and the curve the result for rings ob-
space and on the type of interactions akdis a nonuniver- tained from the right-hand side of ER3) with y=1.33 anda
sal constant. Assuming that the partition function of a dipolar=0.5.
chain with N-monomers of diametes, in areaA, is sepa-
rable and that the reduced energy per monomer is given by=1.33[26] is also shown. The results suggest that scaling

Eq. (6), we obtain applies to systems at* =2.5. For systems au* =2.75,
A scaling obtains at small values Bf N, only, owing to the
Zgip:_ZACN 7 lexp(Neou* 2— e u*2). (15) large statisti_cal errors which increase_ with i_ncreas_mggind

o the decreasing fraction of monomers in chains. It is also clear

from Fig. 10 that the scaling form does not apply to short
Substituting this result into Eq12) we find for the reduced chains N<W) This is as expected since both Eg5) for
o).

density of noninteractingh-dipolar chains, the partition function and Eq6) for the chain internal en-
* _ -1 o %2~ ergy are valid for largeN only.
pe (N)=ANT"exp(— e "= uN), (16) In Fig. 11 we plot the scaling form in a slightly different

fashion that includes the logarithmic corrections arising from

~ _ 2 . . . .
whereu= —Bu— €om*“ is the shlfte'd. chemlcr;ll potential. e power law in Eq(16). We consider the normalized dis-
Comparison of the chain densities obtained from the

simulations with those calculated using Efj6) requires an

approximation for théshifted chemical potentiaf. This is
achieved by approximating the chain dengity) by a con-
tinuous function, namely, a non-normalized gamma distribu-
tion. The first moment of this distribution yields,

> NpE(N) fJNp’é(N)dN
N=2 0

ﬁc = ~ =

> pE(N) fpé(N)dN
N=2

0

17

TYR

i.e., u is inversely proportional to the mean chain |enﬁm S T S 2
The decay of the chain length distributi¢see Fig. 2 is N/N ) -in N/N

dominated by the exponential term, which dependsNon ( c) - c

through the scaled variabl§/N. This scaling form was FIG. 11. Scaling form for the length distribution of chains using

u_sed to plpt the_chain length distributions ok_Jtained from Sixhistograms and including logarithmic correctidiiy. (18)]. Sym-
different simulations. The results are shown in Fig. 10 whergygis are as in Fig. 10 and the full line is the theoretical prediction

the theoretical prediction [p* (N)/p% (No)J~y—N/N; with  with y=1.33.
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tribution of chains®.(N) corresponding to Eq(16), and
find,

—
=] (=2
T L g

In ® (N) -In(p (N)/p (N ))

IN[N® (N K + (l _N _N ) (18)
n = n—— Pe—
[N®(N)]=K(y)+y = N

Cc Cc

[\

whereK(vy)=vyIn y—InT'(vy). The left-hand side is obtained
from the average fraction of chains with length in a given
interval centered al in the simulation run while the right-
hand side is calculated using the theoretical valueyof
=1.33. The normalized distribution function is obtained
from a histogram with step si2é./2 (see Fig. 2, i.e.,®(x) 6
atx=(2k+ 1)N./4, with integerk, is the average fraction of
chains with length in the intervéik— N./4;x+ N./4]. Figure
11 shows that the scaling form applies to intermediate values FIG. 12. Scaling form for the length distribution of dipolar rings
of N/N.. The scaling region is wider at low dipole moments using Eq.(24). Symbols are as in Fig. 10 and the full line is the
and densities, in line with the fact that deviations from scal-theoretical prediction withy=1.33 anda=0.5.
ing for largeN are due to statistical noise. As mentioned in
the previous section, the number of chains in the simulations . W3 1 ~
at u*=3 is rather small, rendering the present analysis pr (N)=AN“""exp — —g——uN|. (21
meaningless for that thermodynamic state.

We note that, in addition to smearing out statistical errors, Comparison of the simulation and theoretical results is
histograms have the advantage over the bare distributions ehrried out using théauxiliary) distribution®,(N),
being unaffected by changes in the cutoff distange We

(=2

g
[\

r x2

have repeated the histogram analysis for a systemp*at pr (N) Y A |
=0.025u* =2.5, and two different cutoff distances, 1.1 f(N)=— N XQ € pu* NN (22
and 1.2r. As expected, the scaled distributions are not af- pr (N ¢
fected by the choice of cutoff. By combining this equation with Eq&1) and(17) one finds
R _ ) that ®,(N) is a universal function oN/N., namely,
C. Length distributions of dipolar rings

As for chains the partition function of isolated, long, _ N N

N-monomer rings may be approximated by the produdt)of In®(N)=y+ (“_3)|nﬁ_ BRI (23

the number of conformations of a SARW bf steps with ¢ ¢

return to the origin, in the limiN—c [26] and(ii) the Bolt-  We have calculatedP,(N) using the average number of

zmann factor of the energl,(N) [20]. In addition, as re-  rings of a given length and the average number of rings with

marked in[20], equilibrium between chains and rings has to— N_ obtained in a simulation run as well as the valuepf

be taken into account by including the possibility that gee Taple ). In Fig. 10 we plotd, (N) from six different

N-rings may break imN different places, yielding aN-chain. iy jations[Eq. (22)] and the right hand side of E423)

The partition function of amN-ring is then calculated witha=0.5 andy=1.33. The data collapse is
Z (N)=A.N* 3exd — BE.(N)1. 19 remarkable. We may use the equilibrium chain length distri-

(N)=A H-AE(N)] (19 bution to eliminate the exponential dependence of the ring
qistribution function, obtaining a slowly varying scaling

« is a universal exponent that depends on the dimension P inction

space and on the type of interactions @yds a nonuniversal
constant.a obeys the hyperscaling relatian=2—vD, and @, (N) *(W)
thusa=0.5 for a SARW inD=2. In analogy with the treat- n $)
ment of dipolar chains we assume that the partition function pe(N)

of dipolar rings is separable and use EP) to approximate

the partition function of amN-dipolar ring, with internal en- Wwhich is plotted in Fig. 12. The points in this figure are
ergy given by Eq(7), by obtained by dividing the results corresponding to rings by

those corresponding to chains in Fig. 10. The data collapse
_ A ¢ for the six simulation runs is again remarkable.
Z9P(N) = —ArN“3exp< Negu*2— _1,“*2), (20) Figures 10 and 12 show that the simulation results scale
o according to the theoretical prediction, especially for inter-
mediate values oN. In line with the results for the confor-
Substitution of this equation into E¢L2) yields for the den- mational properties scaling is not observed at siyalSta-
sities of noninteractindN-dipolar rings tistical errors inherent in the simulations of the largest

=(a— —2|ﬂ (24)
_(a y )nﬁy

c
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clusters prevent scaling in the largelimit. Indeed, Fig. 10  monotonic function ofw. Thus, at fixed temperature, an in-
and Fig. 12 show that the simulation results collapse on thgiapjlity signaled by ¢u/dp);<0 may occur ifN, and N,
theoretical curves for values df between~N; and~3N;.  decrease in the same range of increasing densities. In other
The slope of the straight line in Fig. 12 is consistent withwords, within simulation results as reported in this paper, the
a=0.5, thus confirming the analogy between dipolar ringsimean field loops that signal first-order phase transitions
and equilibrium ring polymers. Again, departures from thecorrespond to loops in the mean chain and ring lengths. This
straight line at smalN can be traced to the crossover from tyne of analysis has an advantage over the direct calculation
rigid to flexible rings that occurs at relatively large values of 5 the free energy by making a connection between the struc-

N. ture and the thermodynamics of the system, thus revealing

The generalization of this analysis to defect clusters iShe mechanism that drives the phase transition. In fact, a
difficult for several reasons. The first concerns a limitation of - — —
; oo . . s necessary condition for the decreaseNgfand N, with in-
the simulations: it is not feasible to obtain good statistics forCreasin density is the self-assembly of defect clusters. This
all types of defect clustdirecall that the distributions of Fig. 9 y y '

e conclusion is supported by the resultq 80] for linear equi-
4 lump together all types of defect cluste®@ther difficulties | : .
arise in the calculation of the partition function of defect Prium polymers(chains and ringswhere both these quan-

clusters, since the forms of both the internal energy and th'gtles are shown to increase with density at all simulated tem-

X . - : peratures. Thus, the appearance of such loops indicates the
configurational partition function are not well known. . ! " .
existence of a topological phase transitifi¥] resulting

from the competition between structures with high energy
V. CONCLUSIONS AND DISCUSSION and high entropychaing and structures with low energy and
Monte Carlo simulations of the quasi-2D dipolar fluid at low entropy (defect clusters This method of determining
low densities and temperatures reveal that the structure md§e existence and nature of the phase transition has, however,
be described in terms of equi”brium ChainS, ringS, and defe(}?evere limitations already eV|de£t n thiresults of Table I. In
clusters of more complex topology. The dipolar defect clus-order to obtain reliable results fot, andN, very long simu-
ters have been characterized in detail. lations are required. The number of chains, however, de-
The quantitative analysis of these structures shows thatreases rapidly with increasing density, and thus statistical
they exhibit length distribution functions that depend on theerrors may become unacceptable too soon. The mean ring
type of cluster and that vary with density and temperaturelength is less affected by statistical errors since the decrease
The calculation of the dipolar cluster internal energy revealsn the number of rings with increasing density is rather slow.
the existence of a bond energy that depends on temperatugg | however, varies more slowly with density, rendering the
only. The analysis of the cluster conformational propertiesjetection of nonmonotonic behavior more difficult. Despite
suggests that dipolar cluster conform as 2D standard polythese limitations we are currently simulating higher densities
mers. at reduced dipole moment* =2.75 and will analyze the
A detailed comparison of the length distributions of theresults along these lines.
simulated dipolar chains and rings with those predicted by |n closing, we note that the topological phase transition is
equilibrium polymer theory shows that the structure of thegnly one of the phase transitions that has been predicted to
quasi-2D dipolar fluid is the same as that of 2D equilibriumoccur in dipolar fluids at low densities. According to recent
polymers. theoretical proposals, these systems may also exhibit a per-
As mentioned in the Introduction, the major question con-colation transition with increasing densi7]. The method
cerning dilute strongly dipolar fluids is the existen@d  developed in this paper could also be used to test this hy-
nature of a fluid-fluid phase transition in this regime. The pothesis. It is straightforward to establish the scaling form of
type of analysis developed in this paper, if extended to simuthe |argest dipolar cluster and to compare it with the form of
lations at higher densities, may shed light on these questiongyitical percolating clusterg28].
In fact, the mean chain length is a monotonically increasing Qther phase diagrams that include nematic-isotrp
function of the chemical potentigsee Eq(17) and the defi-  or nematic-nemati¢30] transitions have been proposed for
nition of w] and depends on the total densjiythrough u models of semiflexible equilibrium polymers. It is, however,
only. Likewise, the mean ring lengtfsee Eq.(21)] is a unlikely that ordered phases occur in dilute dipolar fluids.
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