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Depending on the growth condition, bacterial colonies can exhibit different morphologies. As argued by
Ben-Jacotlet al. there is biological and modeling evidence that a nonlinear diffusion coefficient of the type
D(b)=Dgb¥ is a basic mechanism that underlies almost all of the patterns and generates a long-wavelength
instability. We study a reaction-diffusion system with a nonlinear diffusion coefficient and find that a unique
planar traveling front solution exists whose velocity is uniquely determinddandD=D,/D,, whereD, is
the diffusion coefficient of the nutrient. Due to the fact that the bacterial diffusion coefficient vanishes when
b—0, in the front solutiorb vanishes in a singular way. As a result the standard linear stability analysis for
fronts cannot be used. We introduce an extension of the stability analysis that can be applied to singular fronts,
and use the method to perform a linear stability analysis of the planar bacteriological growth front. We show
that a nonlinear diffusion coefficient generates a long-wavelength instabilitg=f@r andD <D (k). We map
out the region of stability in th®-k-plane and determine the onset of stability that is giverDh{k). Both,
for D—0 andk—« the dynamics of the growth zone essentially reduces to that of a sharp interface problem
that is reminiscent of a so-called one-sided growth problem where the growth velocity is proportional to the
gradient of a diffusion field ahead of the interface. The moving boundary approximation that we derive in these
limits is quite accurate but surprisingly does not become a proper asymptotic theory in the strict mathematical
sense in the limiD— 0, due to lack of full separation of scales on all dynamically relevant length scales. Our
linear stability analysis and sharp interface formulation will also be applicable to other examples of interface
formation due to nonlinear diffusion, like in porous media or in the problem of vortex motion in supercon-
ductors.
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[. INTRODUCTION phisticated cooperation mechanisms and communication
skills, such as direct cell-cell interaction via extramembrane
polymers, collective production of extracellular “wetting”

Recently the growth of bacterial colonies under differentfluid for movement on hard surfaces, long-range chemical
growth conditions has been the focus of attention of severadignaling, such as quorum sensing and chemotactic signal-
groups in the physics community since it exhibits differenting, just to name a few. Different models have been proposed
elaborate branching patterns. For an extensive review anghat include one or several of these mechanisms, and are able
entrance to the literature, sgd—3]. Already in 1989, to reproduce the rich morphology diagram quite well. Instead
Fujikawa and Matsushitpd] stressed that bacterial colonies of exploring the richness and diversity of the behavior of
could grow patterns similar to the type known from the studybacterial colonies, we want to concentrate on the basic
of physical systems such as diffusion-limited aggregation. Anechanism that underlies all these patterns. Since they ap-
complete morphology diagram has been obtained for th@ear as an interface separating a region occupied by the bac-
colonies ofBacillus subtilis[1,5,6], where the important con- teria from a bacteria-free region, which propagates as the
trol parameters are agar concentration that influences the diéolony is expanding, we look for an interface model that
fusion of the bacteria as well as of the nutrient, and the initiaincludes a long-wavelength instability. Although these mod-
nutrient concentration. It includes some interesting regimegls have been developed and studied for pattern forming,
such as diffusion limited aggregation, dense branching momonliving systems such as crystal growffi—-9], where a
phologies, and Eden-like and ring patterns. Although the visharp-interface formulation is well justified, even at quite
sual appearance of the patterns is very similar to those a§mall length scales, here the existence of interface-type
physical systems, at the microscopic level their growthfronts is not obvious from the start, but is something that
mechanism has to be different—the question then becomeshould emerge from the continuum equations describing the
whether or not these microscopic differences affect the overdynamics. Reaction-diffusion-type models with a nonlinear
all large-scale pattern dynamics. For instance, the buildingliffusion coefficient for the bacteria density have been ar-
units are bacteria that are themselves micro-organisms arglied to be a good candidate for being the proper starting
thus living systems. To survive they have to cope with hostilepoint to analyze the instability mechanism since they were
environmental conditions that made them develop quite soable to reproduce many aspects of the above-mentioned mor-

phology diagrani2,10-13.
The biological motivation that has been proposed for non-
*Present address: DigitalDNA Laboratories, Motorola, Austin,linear diffusion coefficient is the way bacteria move. Al-

TX 78721. though there are different ways of moving we are interested

A. Background of the problem
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in bacteria that swim by propelling themselves with theirgularities: these make the standard stability calculations
flagella in straight lines and change their direction in a ran-break down, so new techniques have to be introduced to even
dom fashion by tumbling that can be described by a randonperform the linear stability analysis. We have been able to
walk. However, for the propelling mechanism to work a lig- resolve the problem and thus perform an explicit linear sta-
uid with low viscosity is required. Since bacteria by them- bility analysis of planar fronts, which allows us to determine
selves are able to secrete this liquid, their presence is rdbe regions of stability in parameter space. Our extension of
quired to generate the lubricant layer necessary for diffusionthe standa}rd stability calculation is not limited to the particu.—
This behavior can be captured qualitatively by a bacteriala’ bacterial growth problem we focus on here. Instead it
density-dependent diffusion coefficient as has been proposétiould be applicable to a large class of growth problems with
in particular by Ben-Jacob and co-workers in Rifl]. A s!ngu!ar flglds, e.g., other proble_ms that involve nonlinear
consequence of it is that the branches of bacterial coloniediffusion, like the vortex patterns in superconductdrs,2q

are confined by a sharp envelope that is supported by tH&St mentioned, should be amenable to the same type of
observation with optical microscop¢®,11]. analysis.

However, we would like to note that the arguments sup- In some limits, in particular in the limit that the bacterial
porting a nonlinear diffusion model are still not conclusive diffusion coefficient becomes much smaller than the one of

and more of a qualitative nature. In addition, it is clear that itth€ nutrient, the fronts in the models that have been studied

does not appear to be relevant for the growth patterns at largecome rather sharp. A second important question therefore

agar concentrations where the bacteria are nonnjéfjend 'S {0 what extent a moving boundary approximation, in
the relevance for the regions where bacteria are motile is stiNVh'Ch the front is viewed as a mathematically sharp interface

under discussion. In this paper we will not address the quen the scale of the patterns, becomes appropriate—such ap-
tion of the biological relevance of the model; instead we aimProximations are often very helpful for analyzing pattern
to contribute to the debate by working out the stability dia-forming problems(see, e.g.[21] for an application to den-
gram and uncovering its essential dynamics. An additionafi"'tic growth and an entry into the vast “phase field model
nonbiological contribution of our paper is that we introduce!it€rature. Some steps in this direction for the bacterial
new methods to mathematically deal with singular fronts. AgJroWth problem were taken by Kitsunez4ke]. We address

we discuss below, this is likely to have implications in othertiS question in more detail in this paper and, quite remark-
subfields of physics. ably, find that while in the limit of small bacterial diffusion a

In passing, we also note that it has been shown recenﬂgﬁoving boundary approximation is .qu.ite accurate, it doe_s not
[14] that if one extends the model by introducing an effective€Merge as the lowest-order description in a mathematically
cutoff in the reaction term modeling the bacterial gromh,well-(jeflned limit. Th'e reason for this is that even for small
while keeping the bacterial diffusion term linear, one alsodiffusion, the dynamically relevant length scalee., those
recovers the type of front instability necessary to understang0rresponding to unstable modes in the linear stability calcu-
bacterial patterns. The motivation for such a cutoff would be/@tion of planar frontsare not all large in comparison with
simply the fact that bacteria are discrete entities, so that 4f'€ front width. This result shows that bacterial growth prob-
some small density a continuum formulation breaks down!€Ms With nonlinear diffusion of the type encountered in the
The two mechanism&onlinear diffusion and discrete entity POrous media equatiofi6,1§ are mathematically in some
cutoff effects to continuum formulationsare not mutually crucial ways different from the standard type of growth prob-
exclusive and can be operative simultaneously, but the ddéms: Physically, their dynamics is closest to those of the
tailed studies of various models by a number of author$O-called one-sided growth probleri.

[2,10-13 suggests that the nonlinear diffusion mechanism is
the most important one of the twa5|. B. The model
We concentrate on the effect of a nonlinear diffusion co- gjnce we would like to concentrate on the basic mecha-

efficient here since in spite of the suggestion that a nonlineagism that generates a long-wavelength instability, we confine
diffusion coefficient is a possible mechanism to generate thgyr analysis to the most basic model of Ben-Jacob and co-
complex morphology diagram, a clear understanding of thigyorkers [10,11, namely, a two-dimensional reaction-
instability mechanism is still missing. This is surprising sincejfusion system for the bacteria denslyr,t) with a non-

also from a mathematical point of view it is an interesting jinear diffusion term, and the nutrient densityr,t) with a
problem as it defines a new class of fronts that do show up ifnear diffusion term:

other systems with density-dependent diffusivity, such as po-

rous medigd16-18, or magnetic flux vortices in supercon-

ductors[19,2Q. Clearly, understanding the similarities and E:VD(b)VbJrf(n,b), @
differences between instabilities in magnetic flux patterns

and the well-studied Mullins-Sekerka instability mechanism an

is clearly of importance. Considering the amount of work —=D,V2n—g(n,b), 2)
and the attention given in the recent years to understand the at

mechanisms behind bacterial colony growth, it might at first

sight seem surprising that not even a stability analysis ofvith D, describing the diffusion constant of the nutrient, and
planar fronts solutions has been performed. An important

reason for this is that as the problem involves sin- D(b)=Dgb¥ 3)
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implying a bacteria-density-dependent diffusion coefficientthe freedom to choose appropriate time and length scales,
as was motivated before. For simplicity we assume the foland to rescale the fieldsandb appropriately to set all other

lowing reaction term, prefactors equal to one. We will be interested in front solu-
tions of this equation where far ahead of the front the nutri-
f(n,b)=g(n,b)=nb, (4)  entfieldn—1; as we will discuss in more detail below, this

asymptotic value is also immaterial, as the problem with an-
other asymptotic value can be rescaled to our problem with a
renormalized value ob.

N+B—2B. (55 Anonlinear diffusion behavior like in Ed6) also arises

in the so-called porous media equatid6—1§. There is a

Biologically it models that the bacteria eat a nutrienfN to  vast literature on this equatidi6,18); for us, the essential
duplicate themselves. This involves a conservation law anfeature is that it gives rise to moving front solutions with
is clearly an oversimplification, since part of the energy iscompact support, i.e., for which the fieldis zero in some
also used for movement and other metabolic activities. Foregions of space. At the point whelevanishes, it does so in
the growth process we want to study here, this should no& singular way, and this invalidates the usual linear stability
matter. For the same reason, we also leave out in this papanalysis.
another biologically important feature, sporulation, a transi- _
tion of motile bacteria into a stationary state; this occurs if C. Overview of methods and results
there is a deficiency of nutrient, which seems to play an For the reader not interested in the mathematical details of
important role in the later stage of the branching processthe derivation, we now summarize the main results of the
During sporulation bacteria stop normal activity such asanalysis. The model6)-(7) has two homogeneous states: a
movement and use all their internal reserves to metamorstable solution ¢;,,0) in which only bacteria are present, and
phose from an active motile cell to a spore, a sedentary duan unstable solution (€,) with only nutrient. Thus, we can
rable “seed” that is immotile and hence cannot participate instudy the propagation of the stable statg,0) into the un-
the diffusion process. The sporulation process can be instable one (@,,), implying for our system the propagation of
cluded in the model by adding a termub on the right-hand  the bacteria field into the nutrient field. To study such a
side of Eq.(1). Although the simulation by Kitsunezak®2]  propagation we look for one-dimensional traveling front so-
indicates that this death term does affect the stability of platutions that appear for a system with initial conditions in
nar fronts, we will not take it into account here since thewhich the system is in the unstable state and a small pertur-
most crucial ingredient is the nonlinear diffusion coefficientpation atx— — o starts to invade it. Assuming that the front
of b as it assumes that without bacteria there is no diffusionpropagates with a steady velocity we can reformulate the
As we will see this ImpIIeS a front pl’ofile that goes abruptly model in a Comoving frame that reduces E®,(7) to a
to zero, with a divergent slope fé>1. This characteristic is  gne-dimensional system of ordinary differential equations
supported by experimental observations of some kinds ofODEg that is much easier to analyze. Its solution will be
bacteria, where one observes a clearly defined envelopgund numerically by a shooting method as will be explained
(such a comparison suggests a valu of about on¢ The  in Sec. II.
question we want to study now, is whether this kind of dif-  we find that there generally is a clearly defined unique
fusion is enough to generate a long-wavelength instability. Iteaction front, of whictb vanishes with a diverging slope for
should be noted here that fer=0 the system has been stud- k>1 (see Figs. 5 and 6 belowThe qualitative features of
ied by [23-25. They showed that bilinear autocatalysis these fronts are consistent with the earlier simulation results
alone is not sufficient to destabilize a planar front. Only inof Ben-Jacob and Co-Worke[ﬂ;O,lﬂ and can be traced back
the presence of an autocatalysis term proportionaltwith  to the nonlinear diffusion. The characteristic singular behav-
y>1 andD,>B.Dy, wheres. depends on the amount and jor of the front makes the study of the problem mathemati-
order of autocatalysis, a planar front is unstable toward longcally and numerically challenging and intriguing. The solu-
wavelength perturbationgl5,26,27. Thus, any instability tion provides us with a unique velocity, which dependsion
we observe fok>0 is due to the nonlinearity in the diffu- and k and is shown in Fig. 1. More detailed plots of the
sion term. By rescaling the diffusion constadt=D,/D,,  behavior of the velocity as a function & andk are pre-
and replacingf (n,b) andg(n,b) by Eq. (4), we obtain the sented later in Sec. Il of this paper.

which in chemical terms is like a bilinear autocatalytic reac-
tion,

following nonlinear reaction-diffusion system, In order to study the stability of the front that is the con-
tent of Sec. Ill, we have to perturb the planar front. Due to
@ _ D opket the singular behavior of the planar front a perturbation of the
VZb**t+nb, (6) . : L .
at  k+1 front is not only a simple perturbation in the fieldsandn
but also in the geometry of the front as sketched in Fig. 2.
é—n—Vzn—nb @ Our stability analysis implements the idea that a proper

ansatz consists of two contributions, a perturbation in the
line of the singular front, and the perturbation in the fields
which contains two parameterB, is the rescaled diffusion away from the singular line. Both of these contributions have
constant, and describing the nonlinearity and the stiffness to be determined self-consistently. Hor 0 we observe that

of the front—in writing the above equations, we have usedor D<D(k) the planar front is unstable and has a long-

at
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wavelength instability. Thus, a nonlinear diffusion coefficient
together with a bilinear autocatalysis-type reaction term are
sufficient to generate a long-wavelength instability. Eor
>D¢(k) the planar front is linearly stable. Hence, in the
D-k-parameter space there exist regions of stability and in-
stability of a planar front. We determine these regions in two
different ways, one by performing numerically a linear sta-
bility analysis as is done in Sec. Il A, the other by an ex-
pansion for small growth rate and wave numbeq around

the planar profile as is done in Sec. 1l C. Figure 3 shows the
stability diagram as a function @ andk.

Filled circles show the onset of the region of stability of ) ) .
planar fronts as determined by a numerical linear stability FIG. 2. Eerturbed _fron_t profiles of bact_erla d_ensmes. Th_e fr(_)nt
analysis, and filled diamonds show the same boundary é%ropagateg into the direction, and has a sinusoidal modulation in
obtained from the exact expression tiw/dq?|,_, derived they direction.

in Sec. Il C. Both methods give results that are in very good . L -
agreement with each other, as they should. The solid line isystem and longer times. In fact, this illustrates the difficulty

there to guide the eye, the dashed line hints to the fact th&l USiNg simulations alone to study systems, especially if
while we expect the line 0D (k) to approach the origin we ONIY @ few parameter values can be studied over a limited
do not know the precise analytic behavior Bf(k) for k time range and system size. On the other hand, our explicit
.0, since fork=0 the planar front is stable for ab stability analysis allows us to map out the phase diagram in

[23,24]. We will not analyze the precise behavior in the limit a r:ela;ivelyl\s/traightforW?]rd way. ith ina bound
k—0 in detail, both because it does not appear to be of n Sec. IV we map the system with a moving boundary

practical relevance, and because the model is very sensiti\?e[’prox'ma".“On to a sharp !nterface_problem guided by the
to slight changes in this limit: an effective cutoff that arises SUCCESS this approach had in analyzing and understanding the

for discrete particle effects turns the model weakly unstablé\/lullins-Sekerka instability mechanisii7], the long wave-

[14], but a continuum model with a different reaction term
has the same effect. In particular, if we change the reaction
termnb in Egs.(6),(7) to nb?, then for anyy>1 we expect :Ic;vsv;:!qz
for the limit k—0 D, to be finite; in other words, fofy>1
the stability boundary crosses tBeaxis at a nonzero value
of D. For y=2, it is in fact known thatD . (k=0)~0.34
[24]. unstable
The two crosses in Fig. 3 represent the simulation per- planar front
formed by Kitsunezakj22]. Whereas foiD =0.2 his planar kol
front was unstable, which is consistent with our analysis, his
planar front forD=1.0 appeared to be stable, in apparent
contradiction with our results. However, the simulations
were done for a system of widthy=40 and up to timet 11 x
=200. From our results for the dispersion relation ket 1
andD =1 that is very similar to the one shown in Fig. 10 in

4 T T T

stable
planar front b

Sec. lll, we find that the characteristic length scale of the | -7
fastest growing mode ik,,~31, while the associated char- 00 y > 3 !
acteristic time for this fastest growing mode is approximately D

t,=520. Hence, it is likely that the system width is too small o ) _
and the simulation time too short to observe the instability. It FIG- 3. Stability diagram for parametebsandk. Filled circles

would therefore be useful to redo the simulation for a biggerShOW where the region of stability of planar fronts starts as deter-
mined by a numerical linear stability analysis, filled diamonds show

the same boundary as obtained from the solvability formula for
d?w/do?|—o derived in Sec. IlIC. Fok=0.5 both methods give
the same value up to the size of the symbol. The solid line is there
to guide the eye, the dashed line hints at the fact that while we
expect the line oD (k) to approach the origin we do not know the
precise analytic behavior db (k) for k—0, since fork=0 the
planar front is stable for al [24,23. The two crosses represent the
simulation performed by Kitsunezak22]. For D=0.2 the front in
these simulations was unstable, which is consistent with our analy-
sis. ForD=1.0 the planar front was stable, which does not agree

FIG. 1. The front velocity as a function @ andk, as deter-  with our analysis. The probable cause of this apparent discrepancy
mined from the analysis in Sec. II. is discussed in the main text.
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length instability associated very generally with diffusion- As mentioned before, the system simplifies extremely in the
limited or Laplacian growth processes. We obtain by a mul+egion whereb(¢)=0. By choosing the origigd=0 in such
tiscale expansion equations fbrandn, which are valid in  a way that for positive b(£) =0, the systent8),(9) reduces
the outer bulk fields, and which are connected by boundarjn the positiveé region to

conditions. The boundary conditions are obtained by using

solvability-type arguments to integrate out the internal de- b(£)=0, (14)
grees of freedom of the inner reaction region. As was already

mentioned before, the moving boundary approximation is d’n dn

closest to the so-called one-sided growth models and is quite d_§2 +Uod_§ =0, (15

accurate for smalD, but it never becomes mathematically

correct in the limitD—0 for all dynamically relevant length \yhich is a linear ODE for an that can be solved analytically
scales. and is given by

Il. PLANAR FRONT N(§)=cp—CoXP —voé), (16)

There exist two trivial homogeneous solutions: The first iswherec,>0 is determined by the full problem. Hence, the
n(x,t)=cn,b(x,1)=0, which implies some constant food system can be divided into two regimes, the first being
level and no bacteria. This state is unstable since any amoust( given by Eqs(14),(15) and can be solved analytically,
of bacteria will be enough to let the bacteria density grow.and the second being< 0 that contains the full nonlinearity.
The other trivial homogeneous state fgx,t)=0b(x,t)  Both regimes are connected via their common boundary con-
=Cp, which assumes a constant bacteria density and ngitions até=0. Hence, it is sufficient to study Eqé),(9)
food. This state is stable in the present model without sporufor £< 0, for which we still have to determine the behavior at
lation. In addition there exist a steady-state solution in whichz_, 0 which we will obtain by studying the local behavior of
the stable statect,0) propagates with a constant velocity the bacteria densitp and the nutrient density as & ap-
into the unstable state (), implying the propagation of proaches zero from the left. Since the bacteria dersisya
the bacteria field into the nutrient field. Starting from an physica| quantity, we assume it to be continuous. Moreover,
initial condition in which the unstable nutrient state is per-gq. (9) then implies thah and its derivative at the boundary
turbed by a small amount of bacteria at the left, the bacterigzave to be continuous as well. Hence, we obtainrfahe
field invades the nutrient state in the form of a well-definedpoundary condition ag=0
reaction front propagating to the right. Since we are first

interested in a planar front, we can restrict ourselves to one n(0)=c,— ¢y, (17)
dimension. To obtain the uniformly translating front solution

it is convenient to express the reaction-diffusion system in a dn

comoving frame in which the new coordinagdravels with d_§|0:UOC0' (18)

the velocityv of the front,é=x—uv,t. The temporal deriva-
tive then transforms a&|,= | —vod,|;. For a front trans-  In the Introduction we have already discussed that the bac-
lating with uniform velocityv, the explicit time derivative teria densityb shows a singular behavior f@—0. This is

vanishes and Eqg6),(7) reduce to due to the fact that the prefactor of the highest derivative in
the b equation contains a factds®, which vanishes a®
D d2pkt? db —0. This allowsb to become singular ned@r=0. As is well
K+1 d—é:2+vod_g+nb:0’ (8) known (see, e.g9.[28]) at such a regular singular point one
expects a behavior fdv of the type[29]
d’n  dn b(£)=A(— &) 19
T uogg b0 © (H)=A(-¢) (19

Substituting this ansatz into E¢B) we obtain
This is a system of two ODEs of second order. The boundary N _ u—
conditions até— + are given by the two homogeneous Dafa(k+1)=1] A=V 2—pAa(-§)"?
states. By choosing a right-moving front we obtain as bound- —NoA(—£)9=0. (20)
ary conditions at— — the stable state,
To fulfill this equation the dominant terms & which are the

b(§——2)=cyp, deb(§——=)=0, (10 first and second terms, have to be canceled. This determines

A anda to be

n(§——=°)=0, dn({——2)=0, (12)
which invades the unstable state giver¢atoo, A= (%) l/k, (22
b({—%*)=0, db({—>)=0, (12) .
n(§—»)=c,, dn(§—=»)=0. (13) a=i (22)
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Hence the bacteria density profile vanishes as We shall now study the behavior of the front profiles and
of vo(D,K) in more detail by a combination of observations
from the numerical calculations and of simple analytical ar-
guments. Many of these arguments can easily be formalized
by asymptotic analysis or by reducing the equations in cer-
which implies that its derivativelb/d¢ diverges fork>1 as  tain limits to simpler ones, but we shall refrain from doing so
explicitly.
db(¢é) A ket Figure 1 gives an idea of the functional dependence of the
(— &) for &—0. (24 velocity v, on D andk. Figure 4 displays that for smdll the
velocity is linear inD,

kU() 1k
D¢

b(é)— for £—0, (23

dé  k
Hence, we are left to study EqE8),(9) for £<0 with the
boundary condition$10), (11), (17), (23), and(24). vo~a(k)D  (D<1), (28)
Due to the fact that we chodén,b)=g(n,b), a conser- ) ] ) )
vation law is underlying the systefi6),(7), expressing that yvherea_(k) is a proportionality constant that decreases with
all food is transformed into bacteria, i.e., thaj=c,. The increasingk.

conservation law allows us to reduce the order of our system This proportionality ofvo with D for smallD is simply a
of ODEs by one. Hence, by adding Ed8) and (9) and  consequence of the fact that the propagation of the profile for

integrating over space from o to ¢ we obtain smallb is governed by the balance of the nonlinear diffusion
with thev db/d¢ term.
D d2pkt? db Figure 5 shows the dependence of the profileDofor k
1 oz + Vogg +nb=0, (25 =2. With decreasind the interfacial thicknes#/ decreases,
dé 3 whereas the diffusion length of the nutrient density in-
creases since
dn D dbk*?
d—g-f—md—g—i—vob—vocl,:& (26) /n:]-/Uo, (29)

Note that Eq(26) immediately impliesc,=c, since the de- @as seen from Eq(16). Hence, with decreasinD there is a
rivatives all vanish at+c. This just expresses that food is Separation of scales between the diffusion lengthand the
converted into bacteria in this simplified model. interface width. .

The one-dimensional front profile governed by Egs. Figure 6 shows the dependence of the profilekofor
(8),(9) can be represented by a heteroclinic orbit in thefixeql D, her_eD=O_.3. It demonstrates that with increasikg
(b,d.b,n) phase space connecting the two steady states cofo€ interfacial region decreases and sharpens.
responding to the boundary conditiofi)—(13). Due to the At first sight, both Figs. 5 and 6 suggest that for sniall
possibility of solving the system of ODEs analytically in the Of Iarge.k a moving boundary approximation might become
positive  region, the front profile can be found by applying @PPropriate. However, the behavior is rather subtle, and to
a standard shooting method to the region0. By shooting ~ Prepare for a full discussion of this issue in Sec. IV, we
from £&— — along the unstable manifold and requiring it to @nalyze the scaling of the front profiles in some more detail.
connect to the trajectory flowing into the singular origin witn ~ T0 quantify the behavior of the interfacial thicknéssas
the boundary condition&l7), (23), and (24), a relationship & fgncnon ofk anq D let us first measure the thickness at
between the velocity, and the boundary condition(¢  Which the bacteria density reaches the leb¢W)=byy
=0) is uniquely selected. The existence of a unique front=0-5. Figure 7 shows how the interfacial thickness ap-
solution is also consistent with so-called counting argumentgroaches a finite thickness Bsapproaches zero, and Fig. 8
for the dimensions of the stable and unstable manifolds oBhows howW approaches zero with increasikgBoth de-
the fixed points of the flow. On the left, fgr— — o, there is ~ Peéndences can be understood by inverting &),
only one unstable mode leaving the homogeneous fixed
point, which then fixesn and d.n at §{—~0 completely. Wzibk (30)
Matching at¢é=0 to the positive¢ solution forn can only be vok W
done on a line in the—d;n plane, since the solution is an _ _ _ . _
exponential. Hence, changing so as to match both fixeg, ~ Sincevg is proportional toD for small D, the interfacial
completely. thickness approaches a constsvy:

As we already anticipated at the end of Sec. IB, we
henceforth choose,= 1, and hence,=1: By appropriately
rescalingé, vy, and then andb fields, any other choice for
C, can be transformed into the case with=1 with renor-
malized diffusion coefficenDRchﬁ. The uniquely deter- which depends only ok and the chosen interfacial value
mined front velocity is hence essentially a functionoind  byy. With increasingk, W, decreases, and vanishes for
k only, —o0; indeed, for not too large values bf,, we have

1
_ k
W—>Wo——a(k)kbw, (32)

vo=vo(D,K). (27 bk~ exp(—k|Inby/), (32
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FIG. 4. Dependence of the planar velocity on D for k=1.
The inset shows that fob —0 the velocity approaches zero lin- fixed D=0.3.

early.

indicates thaWW becomes large as—0; this indicates that
the behavior of the model fdk<1 is quite different from
that in the regimek of order 1 or larger, on which we will

concentrate.

So far, we analyzed the width between the point where
reaches some fixed vallsg,<1 and the point wherb van-
ishes. In the limitD—0 this width remains finite, while for

0.8

o
o

0.4

0.2

-10

PHYSICAL REVIEW E 65061111

FIG. 6. Bacteria and nutrient density profiles for differ&ratind

b~1, Eq.(9) for n reduces tal’n/dé’—n=0, showing that
so thatW, vanishes exponentially. Note finally that Fig. 8 n(£) decays to the left as 1€, In other wordsp decays into

the bacterial zone on a length scale of order unity. Through
the coupling term in Eq(8), this also means th&tdecays to
1 towards the left on a scale of order unity—this is actually

visible in Fig. 6. Thus, even though for lardeb rises to

k—oo the width measured this way vanishes. However, for

addressing the question whether a sharp interface formula-
tion can capture the essential behavior, it is also important td!l- LINEAR STABILITY ANALYSIS OF PLANAR FRONTS
analyze howb approaches the asymptotic value 1 for lakge
When k is large, we see that(£) becomes small in the

interfacial zone. In fact, it is easy to convince oneself that the
self-consistent scaling behavior of Ed8),(9) for £<0 is

values close to 1 on exponentially small length sc&leshe
scales over whiclb and n decay to their asymptotic values
are actually of order unity.

A. Dispersion relation

To study the linear stability of the planar front, we have to
perturb the front. Due to the singular behavior of the planar

n(€)~1k, vo~ 1k for largek, and this is born out by our front the dynamically relevant perturbations are not just sim-

numerical result$not shown. Furthermore, fov, small and

08 |

o
o
T

densities

-10

FIG. 5. Bacteria and nutrient density profiles for differ@nand

fixed k=2.

ply perturbations in the fields andn but also in the shape of

the singular line wheré— 0. Since we only study the linear

0.4

0.35

0.3

0.25
0

0.5 1 15
D

FIG. 7. Interfacial thickness as a function Dffor fixed k=2.

W is the distance from the origin to the point at whighk: 0.5.
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2 . . . T in terms of which the fields can be written as

: b(Z,y,t)=bo({) + eby(d)expiqy + wt), (36)

ey l (LY. =no(0)+eny(Oexpliqy+wt).  (37)

Upon linearization of the dynamical equatiof@®,(7) about

=z 10 ] the uniformly translating solutiotby(£),ng(€)), we then get
D b+ 220
b S s
05 | 1 g( 1): ©tirild £l
. nl 2 &no
0 + —
. w q n1+ aé’
0 L f 4 Y - Y (38)
0 2 4 6 8 10
k wheref=bg"* and where the prime refers to a differentia-

FIG. 8. Interfacial position as a function &fand for fixedp 10N With respect tab,. The terms proportional tab,/d¢
=0.3. W is the distance from the origin to the point at which @nddno/d¢ on the right result from the modulatidnof the

b=0.5. singular line about the liné=0 in the argument of b, and
no. Finally, the operatol is given by

stability, we allow the perturbations to be complex and we

can focus on a single mode with wave numbeand ampli- 2

d
(f’)+UO_+nO

tude € by writing L= K+ 1 a_gz ol
h(y,t)=eexpligy + wt). D ; P Do ) P
We take this functiorh to be the modulation of the position Ck+1 aL? k+1" ¢ vo 14

of the line where the bacterial front vanishes, as indicated in

Fig. 2. To be concrete, we now writeandn as b
+—f ? +nNg, (39

b(&,y,t)=bo(é+h(y,1))+eby(§+h(y,t))expliqy + wt),

(33
512: bo, (40)
n(&y,t)=no(E+h(y,t))+eny(§+h(y,1))expiqy + wt),
(34) £21: - no, (41)
where (g,ng) is the planar front solution determined in the P P
previous section. This ansatz is theucial ingredientthat 522:_2 an_g_bo_ (42)

makes our stability analysis possible. The standard perturba-
tion approach would amount to writing the perturbed field
asb=by(&)+ eb,(£)e'?*“t; such an ansatz works only if Note that the eigenvalue equati88) is an ODE problem in
bo(£) is smooth enough that its derivative remains finite—terms of the variablg, in the same way as it is in the stan-
here, because of the singular behaviorbgf this standard dard linear stability calculations30].

approach fails. We therefore shift both the position of the Let us pause for a moment to reflect on the difference
singularity line ofb, and of b;, whereb; andn; are the  With the usual stability approach a bit more. Since the trans-
corrections to the bacterial profile and nutrition field as alational mode ¢:by,d,no) is the right zero eigenmode df,
result of this modulation. In order that perturbations are ar-

bitrarily small ase— 0 so that we can linearize the equations, 5_bo

we clearly need to have al
L =0, (43

n; b @

n—o bounded, b_l bounded. (35 a

Moreover, of courseb; andn; should be continuous twice W€ Se€ that if we introduce
differentiable functions away from the singular line.

For the an_alysis, it will be convenient to introduce the Eﬁbﬁ ‘9_bO, Fﬁnﬁ ﬂ, (44)
locally comoving frame 4 74
{=X—vot+h(y,t)=E&+h(y,t) in Eq. (38), then these new variables obey simply
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b
_l) . (45

ny

| =

2 g o
| etieta

0 w+0q?

by B=. (53

ny

L

Hence, for{—0,

This is precisely the linear equation one gets if one starts WA o

with the usual linear stability ansatzb=bg(&) by({)=— k—(—g)l’k: - k—bo(g), (54)
+ by (&) explgy+ wt), n=ny( &) +n4 (&) explgy+wt) in terms vo vo

of ¢ rather thary as the variable. While at this level the two gg that

problems appear to be the same, their interpretation is not.

When we write the perturbed problem in terms of the shifted bi({) o

coordinate{ and requireb,/by to remain bounded, then bo(g)HE for  £-0,

clearly Eq.(44) shows that the variablk—:t_l is more singular

thanb,—in particular, the singular behavior of is that of ~ Verifying thatb, /b, remains finite. Hence a solutidn that

dbg/d¢. In other Wordsﬂl/bo is not a small perturbation, vanishes according to E¢51) does obey the requirement

instead it diverges. Of course it is simply due to the fact thafh"’_‘t perturbations are small everywhere. The boundary con-
filtlons at{— —o are given by

one cannot represent a shift of the singular line with a smal
perturbation in terms of fields that vanish&t 0. The ansatz
we make in terms of the variablg on the other hand, does
represent a proper shift of this line; it can be thought of as a
suitable resummation to capture this.

Let us return to the .problem of solvin'g fdr ({) and  gince all perturbation should vanish gat> — .
n1({). Again we can split up the problem into two separate  The |inear dispersion relation is obtained by solving Eq.

regions, since fot>0 the problem simplifies to (39) for different q with the shooting method. By shooting
from {— — o0 along the unstable manifold and matching it to

b;({)—0, d.0:(£)—0, (59

ni({)—0, dmn1(£)—0, (56)

b,=0, (46) the trajectory leaving the origin with the boundary conditions
(49), (50), and(54) we obtain a unique as a function oD,
9’y ang o 5. No k, andg. At the same timal, is determined. Counting argu-
9z +U0,9_g_(‘*’+q )ni=(e+q )Tg' 47 ments for the multiplicity again support the uniqueness of

A numerical dispersion relation was obtained fdr
which is a linear ODE im; that can be solved analytically, — 0-2:0-3,0.5,1,2,3, and 5 and differedt For a fixedk the
dependence of the dispersion relation Dns qualitatively
Ny=(Cy— Co)voXP — vol) + doeXP — A O), (48) the same fqr alk. Figure 9 shows the dispersion relation for
k=2 and differentD.

- . : - There is a long-wavelength instability for d&l<<D(k),
with A=[vg \/u02+4(w+q2)]/2 and withd, being some ¢
constant that is undetermined at this stédgg and c, are whereas all modes are staple F>D(k). As D decreases

parameters of the solutidii6) for ny]. This solution is con- _below D the growth rate of the unstable modes starts to
nected to the negativieregion via the boundary condition at increase as doc_es the range of wave numbers that are unstable.
=0 that determined,. To obtain the boundary condition at At the same time. botlgm, the wave number that corre-
=0, we analyze the local behavior b andn, as¢—0 sponds to the maximum growth rate, as welbas the wave

from the left. Sincen; and its derivative are continuous number for whichw =0, Sh!ﬁ with decreasind) to larger
across¢=0, n, andd,n, obey at/=0 wave numbers. By decreasibgeven further we observe that
— VY, 1 ARy Y

the growth rate starts to decrease again, which is due to the
(49) fact that the whole dynamics of the front is slowing down as
we decreas®. Note, however, that &3 becomes small, the
range of unstable wave numbers does not vary appreciably:
. is roughly constant.
The dependence of the dispersion relationkde shown
in Fig. 10. We know that fok=0 the planar front is stable.

N1=(Ch—Co)vot+do,
9Ny =—(Cq—Co)v5—doh. (50)

In view of our requiremeng35) thatb, /b, remains bounded,

it is natural to assume that, vanishes as For small k the front starts to be unstable for long-
5 wavelength perturbations. With increasikghe range of un-
b;=B(-{)". (51)  stable modes is increasing as is the growth rate. However, at

_ o _ k>1 the growth rate starts to decrease again which is again,
Indeed, by inserting it into Eq(38) we straightforwardly  gue to the fact that the whole dynamics of the front slows

obtain from the asymptotic behavi@t9) for b, down ask is increasing.g,, shows qualitatively the same
» behavior agy; . It starts to shift with increasingto a shorter
B:_w_A:_i @) (52 Wave length, stays constant fear=0.5 to k=3, and then
kvg kvg\ D ' decreases again to a longer wave length. Figure 3 shows how
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0.025 . . . .
e " enhanced gradient:
o _Dp-o01 increase in
——D=03 s
_ _p-os “___ Dutrient supply
:g:% enhanced gradient: ~ "~
0.015 7 increase in = -----
bacterial supply e
o . b=0, n#0
0.005 |- ]
b#£0, n=0 reduced gradient:
«+«——— decrease in
nutrient supply
reduced gradient: _
3 decrease in A
~0-005 0 1 bacterial supply
FIG. 9. Dispersion relation fok=2 and differentD. For D FIG. 11. Sketch of a perturbed front propagating from the left to
<D, the planar front is unstable for<q. whereas foD>Dcitis  the right. The arrows drawn with a full line indicate the diffusion
linearly stable for alilg. flow of nutrient, on the front side of the interface, those drawn with

o . . a dashed line the diffusion current of bacteria. At a protrusion into
D, depends ork. With increasingk, the transition valu®. e nutrient region, the nutrient diffusion is enhanced while the

increases, thus implying that with increasikghe region of  pacterial diffusion current is suppressed. There are hence two com-
instability is larger. For larg& the value ofD (k) appears to peting effects, whose relative strength depend®on
be linear ink.

One general noteworthy feature of our results is that thaliffusion length(the analog of our nutrient diffusion length
growth rate of the most unstable mode as well as the corre4,)), andd, is a microscopic surface-tension-like length that
sponding wave numbey,, are generally rather small. As we measures the strength of the curvature corrections to the in-
have discussed already in Sec. I, this may the reason th&trface. We shall see later in Sec. IV why this analogy is
Kitsunezaki[22] appears to observe a planar stable interfacgustified, but it already shows us here something interesting:
in the region of the phase diagram where planar interfaceAs D—0, vy vanishes proportional t®. In this limit /%,

are unstable according to our calculation. diverges just like,, does. Hence, from the observation that
the range of unstable modes remains finite in this limit, and
B. Comparison with the Mullins-Sekerka instability hence that the term analogous dg/;;, remains finite, we

The dispersion relation of the planar bacterial fronts is, forcan immediately conclude that the “effective surface ten-

D<D,(k) and away from the instability lin®(k), similar  S1on" Of our bacterial fronts, the analog ak in Eq. (57),

to the so-called Mullins-Sekerka dispersion relation should scale ab fo_r small D. . e
That a propagating, planar reaction-diffusion front shows

wms=v0|a|(1—do/1ha?) (57) @ long-wavelength instability for smalD but is Iinearly
stable for allg for D>D_, has been observed and explained

such that one derives for perturbations of a planar crystallipefore(see, e.g.[24]), and can be understood in the follow-
zation interfacg7]. In this case/1,= D, /v is the thermal  ing way. Let us consider a perturbed front moving to the
right as sketched in Fig. 11. At a protrusion into the nutrient
side of the interface, the nutrient gradients are compressed
and hence the nutrient diffusion is enhanced. The “feeding”
of the interface from the nutrient side is hence enhanced
there, and this tends to make such protrusions grow larger in
. time. On the other hand, as the dashed arrows indicate, the
bacterial diffusion flow from the back side towards the inter-
face is reduced at such a protrusion—this tends to reduce the
growth of such protrusions, and hence to stabilize the inter-
facial perturbation. The relative strength of the two effects is
determined byD, the effective diffusion constant of the bac-
teria behind the interface. Whdd>D(k), the stabilizing
effect from the backside wins, f@ <D.(k) the destabiliz-
ing effect on the front side dominates. Even the effeckon
can be understood in this context. The effective diffusion
coefficient is given byD=Db¥, which lowers the effective
diffusion coefficient in the interfacial region whefe<1.
FIG. 10. Dispersion relation fdd = 0.3 and differenk. Hence, the bigger th& the smaller the effective diffusion

0.02 T T T T

0.01

-0.01
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constant in the interfacial region, the longer the destabilizingHere ¥, andW¥, are the components of the left zero mode,
effect of the nutrient can prevail. Whéndecreases towards i.e., of the right zero eigenvector of the adjoint matrix opera-
zero, the stabilizing bacterial diffusion extends more andor £*,
more towards the front regior81].
As we have pointed out above, in the linlbt<D (k) the D 52
instability is very much like the classical Mullins-Sekerka mf’—z—uoa—ngno —Ng
instability of a crystal-melt interface. A3 increases towards . ¢
D, this connection breaks down because the stabilizing dif- B 92 9
fusion from the backside becomes importaiithin the inter- bo
facial zone: There is then no clear separation anymore be-
tween an interface and the regions before and behind the (60)
front [see also Sec. IV C for further discussion of the behav-
ior for D nearD(K)]. Upon rewriting Eq.(59) as
Of course, the competition between the stabilizing effect
of the diffusion gradient on the backside and the destabiliz- wfw d((‘lfl bo q}zﬁno)
ing effect of the gradient on the front of the interface shows 4 4
up in crystal growth during transient regimes and can be
understood along the lines of the Mullins-Sekerka stability -——q f dz
analysig 7]. A most amusing and dramatic illustration of this
was observed recently in experiments on the melting of po-
larized *He [32]; there the instability sets in only after a very
long transient because the diffusion coefficient on the back

k+1‘1’ f ag L ag)

gnd taking the limitg?>— 0, this leads to the required exact
relation for the onset of the lateral instability,
f

f del g Val' 57 TVe;

As we have found above that the instability that occurs ~ d(a%)[_, fx dg(\lf 0o T 5”0)
when D decreases belo® (k) is a long-wavelengtty=0 Yo T T2 ag
instability, the critical lineD=D.(k) is the line where (62
dw/d(q)?|4-o=0: to the right of this line in Fig. 3 this de-

rivative is negative and to the left of it it is positive, so that Planar fronts change stability when the integral in the nu-
>0 for smallg. Since the translational mode=0 is the  merator of Eq(62) changes sign.

eigenmode ofL with eigenvaluew=0, we can investigate Since/ is non-Hermitian, there is no obvious relationship
the behavior of the»-g curve in the vicinity of the origin by  between the zero right eigenmode®and its adjointC* . To

the following expansiori25]. Because the=0 mode is a find the zero right eigenvector of the adjoint operatdrwe
translation mode with zero eigenvalue, is small and of have to impose appropriate boundary conditions on the left
orderg? whenq is small. Moreoverp;=0 andn,=0 for  eigenmodes too. Generally, the boundary conditions of the
q=0, and so for smalfj, b;, andn; are both of ordeg? too. ~ functions in the left adjoint space are obtained from the defi-
In Eq. (38) this implies that forq small, the terms on the nition of the adjoint operator, in that for all functiods we
right-hand side involvingy, andn, are of orderg®. To order ~ consider we need to have

q?, we therefore get

long as there is a transient gradient on the back5|de the
melting interface remains stable.

D by ano)

C. Onset of instability do

5 obg f_ dg\lf(ﬁfl>)=f_ de(L* W) D, 63
b, w+——1'q? 0 a_g
= k+1
E(nl) 5 ang |’ (58) In general, when the partial integrations are done so as to
0 ®+q (9_5 obtain £* from £, we obtain boundary terms; the require-

ment that these vanish give the boundary conditions on the

which is exact to ordeg?. SinceL has a zero eigenvalue, we adjoint functions¥. In the present case, since the functions
can apply the solvability condition by requiring that the inneron which our operators are working are defined on the infi-

product with the left zero mode af vanishes, nite interval (—,») for n; and its related left component
V,, and on the semi-infinite intervaH(>,0] for b, and ¥ 4,
dbo we find that the appropriate boundary condition for the ad-
" W\ T a)-i-—f q? 0 a_g joint functions ¥ is thatV¥, should stay bounded as«;
f d§( ) k+1 =0. likewise ¥, should stay bounded both gds» —«~ and as{
DR 0 w+q? Mo —0. : iy :
74 We are now in a position to analyze the behavior of the

(59 adjoint eigenmodes; we will report the analysis in some de-
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tail, as the various elements form important ingredients of 1.5 - - , . - . - -

the derivation of a moving boundary approximation in the n-like component ——-
b-like component — —

following section.£* simplifies again considerably in the
positive ¢ region due to the fact thdt, vanishes identically
there, so it is again of advantage to split the region of inte-
gration into two,{<<0 with £* given by Eq.(60), and ¢

>0 for which

J
_an—g'f‘no —Ng
*=
c o PR (64)
7

For (>0 W, has to solve the homogeneous ODE

9w, oV,
Vo -, — 0
Lz 24

(65

' . , , FIG. 12. Zero right eigenvectoF ®) of the adjoint operator*
This equation has two independent solutions, a constant ang k=2 andD=0.3. Theb-like component¥; approaches a finite

an exponential that diverges for increasigig Hence the value at=0 with a finite slope; it generally has a higher-order
boundary condition that#, remains bounded immediately singular term~ (- ¢)*P/0.

gives the solution

V,=yy=const, {>0. (66) ‘P(l)N(i)’ P (2) _ guotlD. Y@ el (70)
Moreover, the differential equations far, implied by the
zero-eigenvalue equation Here) . = (vo* \va+4)/2, so that the mode-e*+¢ indeed
converges towards the left; the other mode allowed by the
E*(qfl) ~0 67) linear equationsg*-¢, on the other hand, diverges towards
v, the left, and hence is forbidden by the boundary conditions.

The mode¥ () is very special—it is immediately verified
shows that¥, has to be continuous and has to have a confrom Eq. (60) that
tinuous derivative at=0. Hence, when we construct the
eigenmodes on the left half spa¢ec0, theW, component *( W )
L

0
has to obey the boundary conditions " =0 forall { (o consy, (71
0

Y, (¢=0)=1y, IV, 13| —0=0. 68 .
20=0=4o 2/98le-0 (68 not just for{— — . In other words, the constant modi&®)

Sinceb, vanishes identically fot>0, we need to know IS an exact adjoint zero mode for @H<0.
W, only in the regiong<0. As we stated above, because the If we intggrate\l_f(2) or ¥ forward towards increasing
functionsh, that we consider all vanish ag 0, the defini- £, each trajectory in the phase space of the ODE is uniquely
tion of the adjoint operator does not imply a boundary con-determined(apart from an overall amplitude, as the equa-
dition on'w;(£=0) as long as it does not diverge. A straight- tions are linear Hence, if we follow either¥® or w(®)
forward analytical investigation of the equation ngar0  towards ¢=0, the derivatives?, ¥®|,_, and 9,%®)],_,
shows that in general ; will, with a finite slope, approach a Will in general benonzeroAs we have, however, seen above,
finite value asZ10, and that in general it has a higher-ordern order that the full eigenmodes on the whole real axis re-

singular term~ (— )2 +P/k), main bounded also fof— -, the ¥, component needs to
We now turn to the behavior a&— —c. In this limit, ~have a zero derivative dt=0 [see Eq(68)]. Each separate
ne—0 andby,—1, soL* reduced from Eq(60) to eigenmode does not obey this requirement, but by the linear-
ity of the equation it will always be possible to construct one
52 P unique linear combinatio®(?) of ¥(2) and ¥(® that does
D&—gz—voﬂ—g have zero derivative. This solution constitutes the second
[* = _ (69) adjoint zero eigenmode of the problem. Like the trivial
92 9 eigenmodeP (M) it can be extended smoothly to the required
! a_gz_voa_g_l W{?)=const. behavior for>0.

Figure 12 shows the adjoint zero eigenmo#€) of £*
It is easy to verify that ag— — o, there are three possible for k=2 andD =0.3, obtained numerically from the ODEs
types of nondivergent zero mode solutions, with a shooting method. The qualitative behavior of the com-
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ponents is in agreement with the above discussion, and s this sense, even in this limit the front widiV remains
independent of the values of the parameters. Note that thinite. Of course, we can alwayhooseto investigate fronts
b-like component@f) approaches a finite value gt=0  Whose curvaturec is small in the sense thatW<1. For
with a finite slope; this behavior is also found for arbitrary these, a moving boundary approximation should be accurate;
parameters, while as is easily verified there generally is &€ do find, indeed, below that the sharp interface formula-
parameter-dependent subdominant singular term proportiondPn We derive for the present problem is consistent with the
to |¢|(1+D/K). result of the dispersion relation of Sec. lll fq_lsmall enough

To obtain the onset of lateral instability the adjoint zerothatqW<1. However, whether such a moving boundary ap-
eigenmode has to be convoluted with the translational moderoximation appliesat all dynamically relevant length
(9:bo,3,n0) according to Eq(62). Which of the two zero scales is another matter. We already know from the analysis
modes should we use? The trivial adjoint zero mad)  of the dlsper_smn relation in Sec. Ill that in the left part of the
expresses change of velocity under reparametrization, and |-k-phase diagram modes upde-q. are unstable, and that
related to conservation law in our systésee the discussion dc i generally finite, except close to the critical liri2
after Eq.(26)]; this will become more clear in the following =Dc(k). Hence,q.W remains finite as well, and so there is
section. It does not play a role for the onset of instability; wen0 obvious limit where a moving boundary approximation

will therefore ignore it her§33] and usel @ to evaluate Eq. becomes asymptotically correct on all dynamically relevant

(62). A change of sign of the numerator, which marks theIength scales. Nevertheless, we find that in practice the sharp
onset of instability, is obtained fdt=0.5 1 2 and 3 and [nterface formulation that we develop is rather accurate in a

shown in Fig. 3 as diamonds. In the figure, these values ar%igniﬁcant portion of the phase diagram. Since the present
also compared to thB . determined by the numerical disper- problem has some ey aqd new aspects, we focus again
sion relation shown in Fig. 3 as filled dots. The agreement ion the essential structure and intuitive arguments, rather than

very good, as it should; we have also checked that awaywathemancal rgor.

from this line, a fit of the smalé behavior of the dispersion

relation leads to values of the second derivativewoét g A. Sharp interface formulation of the problem

=0, which are consistent with the solvability formula. These . _ i o
results thus confirm the consistency of our full stability cal-  1N€ Simplest case to consider to guide our intuition is the
culation and the solvability expression for the critical line in limit D<1. As we discussed in connection with Fig. 5, in

the phase diagram and the smalbehavior of the growth this regime the bacterial density field approaches its
rate w. asymptotic value on the finite scalé while then-diffusion

field in front of the bacterial front decays on a length scales
I,=1/vy, which diverges a®—0 sincevy~D. A sharp in-
terface formulation is then based on the idea that we view the
A moving boundary approximation or sharp interface for-bacterial front on the “outer” scale’,,; on which the pat-
mulation is appropriate when the width of the front or inter-terns and diffusion fields vary in the presence of the moving
face is much smaller than the typical length scale of théboudary, which is treated as a sharp line of zero thickness.
pattern and when the dynamics of the pattern occurs througfhe dynamics of the fields on the “inner” scal86,37 of
the motion of these interfaces. The moving-boundary apthe front W), and the way in which this dynamics responds
proximation amounts then to treating these fronts as mathto changes in the fields on both sides of this inner zone, is
ematically sharp interfaces or boundaries by taking theitranslated into boundary conditions for the outer fields in the
width to zero and integrating out their internal degrees ofinterfacial formulation. Formally, the moving boundary con-
freedom. There are three important assumptions underlyingists of taking the limits=W//,,—0.
such an approximation, namely) that there is a separation Normally, a sharp interface formulation or moving bound-
of length scales(b) that there is a separation of time scalesary approximation is based on applying the theory of
between the motion of the front as a whole and its internamatched asymptotic expansiof28,37]. Here, the situation
dynamics, andc) that the internal dynamics of the front is is somewhat unusual: on the right side of the inner region
determined by the nonlinear front region itself, so that the(the interfacial transition zone where essentially the nutrient
solvability-type integrals are dominated by the contributionsis consumed by the bacteyiwe already have a sharply de-
from the finite region, and hence do not diverge. The lattefined boundary, the singular line whebevanishes. At this
condition is violated in practice only for special types of side, we therefore do not have a matching problem, instead
fronts propagating into a linearly unstable state, so-calledve already have two boundary conditions for thefield,
“pulled” fronts [34,35]; our fronts are not of this typghey  namely, the requirements that the valuenafnd the gradient
are of the “pushed” type, in this terminologyso we focus of n are continuous at the singular line whdreyanishes—
our analysis on the length and time scale requiremémts this follows directly from the dynamical equatidi), since
and (b). the “reaction term” —nb is continuous. On the left side of
As we saw in Sec. lll, the planar front width is finite, even the interfacial zone, on the other hand, thdield varies
for D—0 at fixedk. Moreover, even though fdt— theb  continuously and we do have a true matching problem.
field rises over an exponentially small distance behind the In our present case, the “outer field” on the front side of
singularity line, both théo andn fields even then, only ap- the interface is simply the field in the whole region to the
proach their asymptotic values over a distance of order unityight of the singular line wheré vanishes; hence there the

IV. SHARP INTERFACE FORMULATION
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nutrient fieldn obeys a simple linear diffusion equation, second condition that the gradient vanishes, is also consistent
with the matching prescription: if we assume that the outer
b=0, field Ab varies on the outer scalé= r with §=W// o,
- ” then the outer gradient dfb rewritten in terms of the inner
front side “outer” Egs.y gn (72 : . ) -
-V variable vanishes in the limif—0.

at Now that we know how to connect the inner fields to the
_ _ _ - _ outer ones—on the left side of the inner region through the
It is useful to introduce a suitable curvilinear coordinate SySmatching condition§75), on the right side through boundary
tem in which£=0 coincides with the singular line whete  conditions(73—we are ready to derive the effective bound-
vanishes. In the sharp interface limit, the liie O then also  ary conditions in a sharp-interface formulation. One easily
coincides with the position of the moving interface. We fur- gets convinced that in order to get a We||-p05ed moving
thermore identify the region ahead of the front as theide  phoundary problem with the above outer dynamical equations
of the interface wheré>0, and use a superscript to in-  and matching conditions, one needs effectiviige bound-
dicate values of the outer field extrapolated from the outegry conditions relatingsb~, n*, andVn™ and the interface
region towards the line§=0: n"=lim  n(¢§), Vn"  velocity and curvature. To derive them, we imagine that the
=lim, Vn(£). As we have already mentioned,and its front i§ Weakly_ cur\{gd with curvature such _thatKWocﬁ
&l < 1. Since we identified the liné=0 with the line whereb
EVanishes,g is a local comoving coordinate with speedn

fore write the boundary conditions as the direction perpendicular to the front. In this weakly

limn(&)=n", limvVn(&)=vn*, (73 ~ curved system, we then have on the inner scale
£10 £10
ob D §%b*tt b
We now turn to the behavior on the backside of the front, ToKEL a2 +(v+Dkb )(9_§+ nb, (76)

the — side. We have seen that in the bacterial front, the 2
nutrition field decays exponentially fast to zero towards the
left on a length scale of order unity; hence, in theouter an  é°n an
region behind this interfacial zone, we hawe-0 for the E:a_.fg+(”+K)(9_§_nb' (77)

nutrition field. The bacterial field is close to 1 there. There-
fore, we take the dynamics of thefield into account there, Following standard practice, we now ignore the time deriva-

by writing b=1+Ab and linearizing in the outer fieldb, tives on the lef(taken in the comoving frameThis amounts
IAD to an adiabaticity assumption, that the change in the pattern
——=DV? Ab, and hence in the front speed and profile, taking place on time
back side “outer” Egs. at (74)  scales much longer than the relaxation time of the ffast
sumption(b) discussed in Sec. IV A aboyeTechnically, it
n=0. means that the solution stays always close to a uniformly

: . translating solution in the curved coordinate system, and our
Note that the outer equatiofig2) and(74) have been written goal now is to calculate the changes in the velocity pertur-

in the laboratory frame, not in a comoving frame, since intheoatively Indeed. let Us write = v-+v- Whereo. is the
. ’ —vo 1 0

icnags?rg;r;ontnwal paiterns, there is no single relevant Comov\'/elocity of the planer solution ang, the change in velocity

. . due to the curvature and the fact that the outer fielis
What are the boundary conditions on the side of the ; e eimi ;
front? According to the matching prescriptidhe inner field changed slightly from the planar solution; similarly, we write

expanded in the outer variables on the back side shoul io:ngoi: ?ﬁeiineollc?s:]‘rr:)o; tnhlesolatr?:rtk;t) Iigg&eal:zeﬂ:ﬁedi\i/rﬁé
equal the outer field expanded in the inner variabl8g]. P P

Extrapolating the inner field in the outer variables towardsto emphasize the difference from the perturbations used in

the — side means that we investigate therofile to the left thngr:??;nftsst% nanﬁéyf:;gp%? tlr']r;e:”i::;gﬂ about the

towards—ce. As Figs. 5 and 6 illustrate, on the inner scéle P ' 9 q

the b field rapidly approaches a constant value. Although

these figures are made for planar fronts, the analysis below K —
: : b; —v,—Dkb 0 o€

shows that this continues to hold for weakly curved fronts r 1 _ 1 0

bg

and that the appropriate matching conditions are n; 0 —v1—K ang |’ (78)
lim b(¢&)=1+Ab", 4
matching condition e (75) where L is the same operator introduced before in EB3),
lim Vb(&)=0. written now in terms of the variablé. This equation again
s —oo calls for applying the solvability condition. We have already

seen in Sec. Il C that the operat6rhas a number of adjoint
Here Ab™ is the value of the outer fieldb extrapolated zero eigenmodes. There is a subtle difference between the
from the outer— region towards the interface. Note that the present analysis and the one of Sec. Ill C, however, which is
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crucial for obtaining the proper boundary conditions. In theshown for a2 for a particular choice of parameters in Fig.
stability analysis of Sec. Il C we worked with functions de- 12 except that the derivative of tmelike component does
fined on the whole interval { «,%); this implied that the not vanish att=0. These zero eigenmodes 6f can only
mode constructed for negativeneeded to have zero deriva- pe evaluated numerically, but the form of the boundary con-

tive of theW, component at =0 [38], and this reduced the dition is simply the same for both: with=2,3 we get
number of proper adjoint zero eigenmodes to two. Here,

however, we are doing perturbation analysis only in the inner _ oo

region, which in the inner variable is the semi-infinite inter- W (0)(V;n* —Vund )+ | voW§ — —= 0)(n+—n§)
val (—,0]. We, therefore, do not require now the adjoint 9%

zero mode to haveV,/dé|,_,=0, and hence we now have 0 , dbg

three rather than two admissible adjoint zero modes. These = —f dé¢ v | [v,+ DKbg]ﬁ—é)

lead to the three necessary equations that become the bound-
ary conditions sought for in the sharp interface formulation.

Moreover, because we now work on a semi-infinite interval, - f
we get boundary terms &t=0 from the partial integrations

necessary to have the operator work on the adjoint functions

0 db . an
[39], :_Ulj d¢ (\I’(l')—o—l—‘If(z')—o)

9é 9€
0 b1
| ae (\Ifl,%)c( n,)

° 0 Mo
_xdf Vylvat K](?_f

0 . abo . (9”0
1 —Kf_xdg (w&”obg&—gmrg)a—g). (81)
0 [P T/ b}
- fﬁmdg £ v, n; In the sharp interface interpretation, E¢80) and (81) are

interpreted as the boundary conditions that relate the change
in the local fieldn; and its gradient at the interfa¢eelative
to those for a planar moving fronto the local change in
velocity of the interface and the local curvature. For a gen-
+Wo(0)[Ven"—Veng +uo(n"—ng)]. (79 eral pattern, the derivative of, with respect tc¢ on the left
) . of these equations has to be interpreted as derivative in the
Here we have used the boundary and matching conditiongjrection normal to the interfacg40]. As we discussed
(75) and (73) for the deviationsb; andn; from the planar  apove, these equations are precisely the three boundary con-
valuesb, andng. Note that there are no boundary terms inditions necessary to get, together with the outer equation
the fieldb; at ¢=0, since these are all proportional i, (72), a well-posed moving boundary problem.
and bg(§—>0) vanishes according to E(RJ).
The three boundary conditions now straightforwardly fol-
low by taking the left inner product of the three zero modes

av
~Wa(=#) vodb” == eoo(n —ng)

B. Interpretation of the sharp interface formulation

with Eq. (78) together with Eq.(79). The behavior of the It is useful to pause for a moment to reflect on the struc-
three adjoint zero modes d@f on the left forggo has been ture of the boundary conditions. First of a”, note that they all
discussed already in Sec. IIl C. The first one is simpiy involve terms proportional to the gradient of the nutrient

diffusion field, and not to the bacterial density field. The

=¥ {M=const. In this case we immediately obtain , ! den
2 4 presence of these gradients of the nutrient field on the front

— oAb+ (V,n* = Ving ) +vo(n* —ng) side of the interface could have been expected from the nu-
merical observations that the bacterial growth fronts are un-
0 . 9bo ang stable for small enoug. It is well known [7] that such
=— fﬁxdg [v,+ DKbo]a—§ o+ K]a_g interfacial instability arise for diffusion-limited growth prob-
lems where the growth velocity of the interface is propor-
=v3[1-ng ]+ «[D/(k+1)—ng]. (80)  tional to the gradient of the driving field that “feeds” the

interface. The fact that the gradient of the bacterial field

We note that this equation is essentially a type of conservadoes not appear, makes these bacterial growth fronts most
tion equation in a weakly curved frame—indeed, it can alsdike the so-called “one-sided crystal growth models,” de-
be obtained by an analysis similar to the derivation of thescribing situations where the diffusion on the backside is
conservation equatiof26) by adding the two equatior(36) absent(e.g., in “directional solidification,” the diffusion of
and(77) and integrating, ignoring the temporal derivates forimpurities in the solid on the backside of the interface is
a quasistationary front solution in the comoving frame. Thisusually negligible in comparison with the diffusion in the
is the reason for our earlier remark in Sec. Il C that theliquid on the front sidg7]).
constant left zero mod® () is related to conservation. We can make this observation more precise as follows.

The second and third boundary conditions are obtainedNote that the boundary conditidB0), the one that expresses
from the two other adjoint zero modds® and¥(® of £*,  conservation, is the only one that involva® . Hence we
discussed in Sec. Il C; the general form is similar to the onecan solve the full dynamical problem by workimgly with
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8 y T y T - T T J - full problem (symbolg. This is as it should be, since for
. . small g clearly gW<1, so that condition for the moving
T boundary approximation to be accurate is fulfilled. The over-
all shape of the dispersion relation of the moving boundary
approximation is actually quite close to the exact one, but for
largerq there clearly are some quantitative differences, even
for this small value oD. This discrepancy is in our view due
to what we discussed before, the fact that the range of un-
stable wave numbers for this case is finitg£0.8), while
the interface widthw is finite too, so thatg,W does not
approach zero aB—0.
Even though the moving boundary approximation there-
4 . L . 1 . L . L . fore does not become formally correct in this linfih the
0 02 04 0.6 08 ! sense that the correction terms cannot be made arbitrarily
4 small by takingD sufficiently small, it clearly does quite
FIG. 13. Comparison between dispersion relation obtainedVell in practice for t.hesr-.z parameter values. Probably this is
through a sharp interface approafall line) and through direct due to the fact thatVis still relatively small compared to the
numerical linear stability analysigdots, for the casek=2, D ~ WavelengthA = 2m/q. corresponding to the marginal wave
=0.001. Note that fog<1 the results from the moving boundary Numberq,: If we take W~2 we getW/A ~1/4, so even
approximation agree very well with those of the full linear stability though we cannot make this ratio arbitrarily small by sending
calculation, as it should. The reason for the difference between th® — 0, it appears to be small enough in practice to make the
two curves forq values of order unity is discussed in the text. sharp interface formulation work well. What may also play a
role is that for problems with nonlinear diffusion such as this

the outern-field and the.two boundary .conditioni81)—in one, the response of the interfacial zone to perturbations is
other words, the outen-field together with these boundary mostly determined by the rather thin zone whbris small;

conditions constitute a closed problem that is sufficient t ; Lo
describe the dynamics of the moving interface. Once this iq?']voewzxf not attempted to substantiate this intuitive idea,

gg:gnggg'b?n;nga;?o:ijstehg:g gﬁ;@ig’?ﬁg%gﬁ;ﬁ@;&e ' A similar observqtion holds for the time scales. As Fig. 9
field on the back with the outer equatiéid): in the sharp  llustrates, the maximum growth raiey, of the most un-
interface limit the bfield becomes completely slaved to the Stable mode is proportional @ and hence te, for smallD;
interface motion the proportionality w,=v g, iS also consistent with the
We already anticipated in Sec. 1l1B that the curvatureMullins-Sekerka dispersion relatiofs7) discussed in Sec.
correction term (the effective surface-tension-like term Il A. The internal relaxation timer¢.n; Of the front itself is
should be of ordeb for smallD. This is fully confirmed by expected to be of ordew/v, hencew,T=q,W remains
our analysis: all the curvature terms in the boundary condifinite in the limit D—0: there is no full separation of time
tions (80) and (81) either explicitly involve a ternD, or a  scales either.
term proportional tany which, as we saw in Sec. ll, is pro- Also for k=1 andD of order unity, the present approxi-

portional toD too for smallD. mation works generally very well, since on the one hand the
diffusion length in the nutrient zone ahead of the front is
C. Applicability to the various regimes large (asvy~1/k for k large, while on the other hand, the

The simplest way to test the accuracy of a moving boundinterfaci.al zone tends to becomes relatively §ma||, even
ary formulation is by comparing the dispersion relation fromthough it does not appear to go to zero—see Fig. 6 and the
the moving boundary problem with the dispersion relationdiscussion at the end of Sec. Il. We have also investigated the
obtained from the full model as discussed in Sec. Ill A. ThePossibility whether in the limik>1 another approximation
two outer equations are linear diffusion equations of the stanMight be possible, one in which there are three zones, an
dard form, while the boundary conditions &gy construc- outer region in front of the interface whebe=0 as we had
tion) also linear. Consequently, the stability of the planarabove, a very thin zonéof exponentially small width, see
solution of the sharp interface problem follows the standardsec. 1) whereb quickly rises to a value close to 1 whife
stability problem as discussed [ii] in which the growth or hardly changes, and a region behind this zone wiiebe
decay of small single-mode perturbations about the planarb—1 is already small and wheredecays to zero. We have
interface solution is determined. We will therefore not reportnot been able to make this approximation work to our satis-
it here. In Fig. 13 we illustrate such a comparison for afaction, basically because we have not been able to match the
typical case in the smald regime, where the moving bound- thin zone properly to the region behind it.
ary approximation is expected to work best since the diffu- For valuesD andk of order unity, but not too close to the
sion length is in the large nutrient region. The figure, stability boundaryD (k), the discrepancy between disper-
which is for the cas&=2 andD=0.001 confirms that for sion relation of the moving boundary approximation that we
small g the dispersion relation of the moving boundary ap-have derived above and the exact dispersion relation is big-
proximation (full curve) essentially lies on top of the one ger than in Fig. 13 for smal. This is to be expected, since
derived from the in this limit diffusion length in the outen region is of the
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same order as the interface width, and, moreover, the diffu- Of course, our results are far from the final answer on
sion in the bacterial region is more important. Neverthelessthese types of bacterial growth models: the knowledge that
the order of magnitude of the growth rate and the range othe planar front is unstable is only the fifshough crucial
unstable wave numbers are right. step towards understanding the actual evolving patterns,
Finally, we note that since a long-wavelength instabilitywhich are determined by nonlinear effects. In addition,
occurs upon decreasirg below D.(k), we expect that just within the context of understanding the bacterial growth
to the left of this line, the dynamics can be described by thgroblem, the question remains to what extent models with
so-called Kuramoto-Sivashinsky equatiphl,42. In fact, nonlinear diffusion suffice to capture the important growth
since the lineD (k) is very straight fork larger than 1, the dynamics.
problem may well simplify in the limitD —oo, k—oo, D/k Clearly, we have studied only the simplest variant of such
fixed. We have not attempted to study this limit or to give anmodels, by leaving out the death term, that appears to be
explicit derivation of the Kuramoto-Sivashinksky equationimportant for the morphology2,22], as well as lots of ef-

near the boundary. fects that are important for a more realistic model for bacte-
rial colony growth, like the sporulation of bacteria already
V. SUMMARY AND OUTLOOK mentioned in the Introduction: Computer simulations have

) o o shown that in order that branches can form, the sporulation
We have shown that a nonlinear diffusion coefficient andierm — b has to be present in E¢p).

a simple bilinear autocatalysis is sufficient to generate a \\e have not tried to study how the critical liri2 (k)
long-wavelength instability as long as the dlﬁu§|on constanpproaches the origin &g 0 this is an interesting technical
obeysD<D,, whereD. depends on the nonlinearity. We question, but one that probably is of limited relevance for
hope that these results will be of help in sorting out to whatngerstanding the bacterial growth problem. In fact, the be-
extent the present class of models does describe the real bagsyior near the origin in th®-k-phase diagram is very sin-
terial growth problems. To do so, one would of course havgyylar and hence sensitive to changes in the model: the non-

to be able to map the bacterial growth properties onto th§inear diffusion as well as finite cutoff effects as well as
effective diffusion coefficient in this model. If this can be changing the bilinear reaction terbn to b”n change the

done, the clearest test with the aid of the present resultg,athematical behavior dramatically.
would be to see whether the interfacial instability becomes  Fijna|ly, we want to draw attention to an open mathemati-

suppressed once the effective bacterial density becomes teg question—at least for us. In a solvability-type analysis,

large. . i ) the boundary conditions one normally imposes on the adjoint
It would also be of interest to extend numerical simula-fie|ds follow from the requirement that(W (LD))
tions like those of Goldinget al. [10] and those of Kitsun-  _ /¢ o« W) ®) for all dynamically relevant functiond [see

gzaki [22], Whose'paramete.r values are indicated by CroSs€8q . (63)]. However, in the derivation of our moving bound-
in Fig. 3. As we discussed |n_the Introducpon, these numerixry approximation, we have operated differently: instead of
cal results appegr_to c_ontrad|ct our analytlgal_ resu_lts, but th'ﬁnposing boundary conditions on the adjoint functions, we
may be due to finite size effects and the limited time of thenaye written out the terms from the partial differential equa-
simulation. . _ _ _ tions explicitly, and used the left zero modes on the half
In addition to providing a starting point for further studies space (,0] that we already knew to obtain the sought for
of these models for bacterial growth, we have been able g, ngary conditions for the physical fields. Clearly, the
develop a new type of linear stab|I|'Fy cal_culat|0n that a_pp“esequations obtained this way follow necessarily from the
to the general class of fronts with singular behavior of origing) differential equations in the weakly curved frame,
the fields as a result of nonlinear diffusion. Our methods, ¢ this |ine of reasoning is mathematically different in spirit
therefore opens up the possibility to study other systemg,m the usual Fredholm alternativeolvability theory. We
as well, like the vortex front§19,20 we mentioned in the 45 ot know—nor could we find—the mathematical theory

Introduction. In addition we were able to reformulate theyahind this approach that appears to be new and very pow-
reaction diffusion problem with nonlinear diffusion away o1 for problems with a singular line.

from the stability boundaryD (k) in the form of a free

boundary-type proble_m; our analysis shows that in the ACKNOWLEDGMENT
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