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We study a general class of nonlinear macroscopic evolution equations with ‘‘transport’’ and ‘‘reaction’’
terms which describe the dynamics of a species of moving individuals~atoms, molecules, quasiparticles,
organisms, etc.!. We consider that two types of individuals exist, ‘‘not marked’’ and ‘‘marked,’’ respectively.
We assume that the concentrations of both types of individuals are measurable and that they obey a neutrality
condition, that is, the kinetic and transport properties of the ‘‘not marked’’ and ‘‘marked’’ individuals are
identical. We suggest a response experiment, which consists in varying the fraction of ‘‘marked’’ individuals
with the preservation of total fluxes, and show that the response of the system can be represented by a linear
superposition law even though the underlying dynamics of the system is in general highly nonlinear. The linear
response law is valid even for large perturbations and is not the result of a linearization procedure but rather a
necessary consequence of the neutrality condition. First, we apply the response theorem to chemical kinetics,
where the ‘‘marked species’’ is a molecule labeled with a radioactive isotope and there is no kinetic isotope
effect. The susceptibility function of the response law can be related to the reaction mechanism of the process.
Secondly we study the geographical distribution of the nonrecurrent, nonreversible neutral mutations of the
nonrecombining portion of the Y chromosome from human populations and show that the fraction of mutants
at a given point in space and time obeys a linear response law of the type introduced in this paper. The theory
may be used for evaluating the geographic position and the moment in time where and when a mutation
originated.
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I. INTRODUCTION

A great deal of attention has been given to the study
nonlinear evolution equations including ‘‘transport’’ as we
as ‘‘reaction’’ ~that is, generation and disappearance! terms.
These equations, which are generally referred to
‘‘reaction-diffusion’’ equations describe a broad class of ph
nomena in physics, chemistry, and biology, including exc
ability, stable propagation fronts, solitary waves, solito
stable nonuniform patterns and other nonlinear effects@1#.
The investigation of these nonlinear effects is genera
based on the use of numerical methods as well as app
mate analytical approaches. Exact analytical results are
tively scarce and therefore valuable. Most exact results r
to special types of evolution equations for which analyti
solutions are available, for example, the Burgrer equa
@2#.

The purpose of the present paper is to suggest a resp
experiment for exploring the dynamical behavior of a ge
eral type of reaction-diffusion equation. We show that, un
suitable assumptions, it is possible to design an experim
for which the response of the system can be described
linear superposition equation, even though the underly
dynamics of the process is highly nonlinear. Our research
been motivated by two different problems. First, in a ser
of papers three of us have studied the transit time distr
tions for complex chemical reaction networks in homog
1063-651X/2002/65~6!/061110~17!/$20.00 65 0611
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neous systems@3#. We have shown that for such systems it
possible to design an experiment involving labeled co
pounds for which the response to an excitation can be
scribed by a linear law, even if the kinetics of the process
nonlinear. In this case the linearity of the response is ge
ated by a ‘‘neutrality condition’’ of the labeled and unlabele
compounds, that is, we assumed that the rate coefficients
identical for the labeled and unlabeled compounds. This
glect of the kinetic isotope effect is a reasonable approxim
tion, frequently used in chemical kinetics@4#; it results in
simplified evolution equations for the concentrations of
beled and unlabeled species. Linear response laws are h
desirable, especially in nonlinear kinetics, because they m
it possible to carry out experiments for which the result c
be easily interpreted. Secondly, the research of the o
three of us is concerned with the geographical distribution
the nonrecurrent, nonreversible neutral mutations of the n
recombining portion of the Y chromosome from hum
populations@5,6#. There is experimental evidence that mo
mutations of this type are neutral, which is consistent w
Kimura’s theory of neutral evolution@7#. Kimura’s theory is
based on a ‘‘neutrality condition,’’ that is, on the assumpti
that the natality and mortality functions as well as the tra
port coefficients are the same for the main population as w
as for the mutants. For neutral mutations the nonlin
reaction-diffusion equations for the spreading of a mutat
within a growing population which is expanding in spa
have a special structure, which make it possible to transfo
©2002 The American Physical Society10-1
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them into linear evolution equations for the fractions of m
tants ~gene frequencies! at a given position and time, eve
though the global evolution equation for the total populat
density is nonlinear. The linearity of the evolution equatio
for the gene frequencies is due to Kimura’s ‘‘neutrality co
dition.’’ The comparative analysis of these two apparen
unrelated problems has shown that, by introducing a gen
‘‘neutrality condition’’ it is possible to derive a linear re
sponse theorem for a general class of reaction-diffusion
tems, which include the case of homogeneous, sp
independent chemical systems discussed in Ref.@3# as a
particular case. With minor adaptations this response th
rem can be used for the description of the space and
propagation of neutral mutations. We believe that such a g
eral response theorem may have implications in the stud
various problems in physics, chemistry, biology, and gen
anthropology.

The structure of the paper is the following. In Sec. II w
give a general formulation of the problem. In Sec. III w
derive the response theorem and present a physical inte
tation of the delay functions entering the response law
Sec. IV we discuss the implications of the response theo
in chemical kinetics. In Sec. V we study a nonlinear mo
for the propagation of a neutral mutation in a growing pop
lation which is expanding in space and we derive a lin
response law for this problem of population genetics. In S
VI we illustrate our approach by studying a simple, on
dimensional reaction-diffusion system. Finally in Sec. V
we discuss the utility of our results as well as the limitatio
and the possibilities of generalizing our approach.

II. FORMULATION OF THE PROBLEM

We consider a macroscopic system containing differ
types of individuals~species! which can be atoms, mol
ecules, quasiparticles, biological organisms, etc. We ass
that the different types of individuals interact with each oth
and at the same time are involved in random walk motio
which can be described by transport operators local in ti
We denote byru(r ;t), u51,2, . . . , theconcentrations of the
different species at positionr and timet, expressed in num
bers of individuals per unit volume and assume that the
of change of the speciesu,Ru(t), can be expressed as
local, nonlinear, function of the composition vectorr(r ;t)
5@ru(r ;t)#u51,2,... and of timet

Ru~ t !5Ru„r~r ;t !…5Ru
1
„r~r ;t !…2Ru

2
„r~r ;t !…,

u51,2, . . . . ~1!

whereRu
1
„r(r ;t)…>0 andRu

2
„r(r ;t)…>0 are formation and

consumption rates, respectively. The transport of the dif
ent species can be described by transport operators, w
are local in time and generally nonlocal in space:
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Lu¯5E
r8

@¯Wu„r~r 8;t !,r 8→r …dr 8

2¯Wu„r~r ;t !,r→r 8…dr 8#

5 (
m51

`

~21!m(
m1

¯(
mm

]m

]r m1
¯]r mm

3$Dm1¯mm

u~m!
„r~r ;t !,r …¯%, ~2!

whereWu„r(r 8;t),r 8→r …dr , u51,2, . . . , aretransport rates
for the different species from a position betweenr 8 and r 8
1dr 8 to a position betweenr and r1dr and

Dm1¯mm

u~m!
„r~r ;t !,r …5

1

m! Er8
)
u51

m

~r mu
2r mu

8 !

3Wu„r~r ;t !,r 8→r …dr 8, ~3!

are generalized diffusion coefficients of different orders.
most physical, chemical and biological applications t
transport ratesWu„r(r 8;t),r 8→r …dr can be assumed to b
independent of the composition vectorr(r 8;t); however, in
some cases such a dependence must be taken into acc
For example, a dependence of the transport rates on the c
position vector must be considered in order to describe
‘‘anticrowding’’ effects in the diffusion of biological popula
tions @8#. A similar dependence must be considered in or
to describe bacterial chemotaxis@9#.

For simplicity, in this article we limit ourselves to re
sponse experiments, which involve a single species, say
cies v. The evolution equations of the process are the f
lowing:

]ru~r ,t !/]t5Ru@r~r ,t !#1Luru~r ,t !, uÞv, ~4!

]rv~r ,t !/]t5Jv
1~r ,t !2Jv

2@r~r ,t !#1Rv@r~r ,t !#

1Lvrv~r ,t !, ~5!

whereJv
1(r ,t) is the input flux of speciesv, which is gen-

erally space and time dependent and can be controlled by
experimenter, andJv

2@r(r ,t)# is the output flux of speciesv,
which is assumed to depend on the composition vector;
composition dependence of the output flux can be expres
by a kinetic law. Our approach takes into account explici
only the input and output fluxes of speciesv. The input and
output fluxes for other species are not taken explicitly in
consideration and can be embedded in the reaction rate

We assume that each speciesu51,2, . . . , mayexist in
two different forms, ‘‘marked’’ and ‘‘not marked’’ and tha
both forms fulfill a ‘‘neutrality condition,’’ that is, their ki-
netic and transport properties are identical. In chemical
netics a ‘‘marked species’’ can be a molecule containing
radioactive isotope and we neglect the kinetic isotope eff
In fluid mechanics a ‘‘marked species’’ can be a colored flu
for which the hydrodynamic properties~density, viscosity,
diffusion coefficients! are the same as the ones of the ma
fluid. In population genetics a ‘‘marked species’’ can be
individual carrying a neutral mutation, and for which th
0-2
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NEUTRALITY CONDITION AND RESPONSE LAW FOR . . . PHYSICAL REVIEW E 65 061110
main functions describing the vital statistics~natality and
mortality functions, diffusion coefficients! are the same as in
the case of a nonmutant individual. In the following we d
note byru(r ,t) andru* (r ,t), u51,2, . . . , theconcentrations
of the ‘‘not marked’’ and ‘‘marked’’ species, respectively, an
by ru

S(r ,t)5ru(r ,t)1ru* (r ,t),u51,2, . . . , thetotal concen-
trations of the species.

We consider that at the beginning of the experiment
system contains only ‘‘not marked’’ species. The syst
need not be in a stationary state. The experiment consis
varying the ratio

av~r ,t !5Jv
1* ~r ,t !/Jv

1S~r ,t !, ~6!

between the input flux ofJv
1* (r ,t) the ‘‘marked’’ compound

and the total input flux of speciesv,Jv
1S(r ,t), with the pres-

ervation of the total input fluxJv
1S(r ,t). We record the re-

sponse to this variation, the fraction

bv~r ,t !5Jv
2* @r~r ,t !,r* ~r ,t !#/Jv

2S@r~r ,t !,r* ~r ,t !#,
~7!

of the outflow flux of the marked specie
v, Jv

2* @r(r ,t),r* (r ,t)#, to the total output flux
Jv

2S@r(r ,t),r* (r ,t)# of speciesv. The purpose of our theo
retical analysis is the derivation of a relation between
excitation of the system, expressed by the fractionav(r ,t),
and the response of the system, expressed by the fra
bv(r ,t).

III. GENERAL RESPONSE LAW

In order to derive a response law we need a conven
mathematical representation of the ‘‘neutrality condition,’’
the form of a scaling law, which connects the kinetic a
transport laws for the whole system to the correspond
laws for the ‘‘marked’’ and ‘‘not marked’’ species, respe
tively. This problem has been already dealt with in chemis
in the context of kinetic isotope method@4,10#. It has been
shown that if the kinetic isotope effect is neglected, the f
mation and disappearance rates of the ‘‘marked’’ spec
Ru

6* , to the total rates of formation and disappearan
Ru

6
„r* (r ;t)1r(r ;t)… are

Ru
6* „r* ~r ;t !,r~r ;t !…5

ru* ~r ;t !

ru* ~r ;t !1ru~r ;t !
Ru

6
„r* ~r ;t !

1r~r ;t !…, u51,2, . . . . ~8!

Equations~8! express the fact that the ‘‘marked’’ and ‘‘no
marked’’ species contribute equally to the transport proce
In Appendix A we present a simple derivation of Eqs.~8! for
rate processes obeying the mass-action law. The main p
of our approach is the assumption that these scaling co
tions hold not only in chemistry, but for any other type
generation-consumption process of discrete particles obe
a neutrality condition. Equations~8! do not hold for variables
which are not related directly to the formation or disappe
ance of particles, such as the temperature of the system
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Since we assume that the output fluxJv
2S@r(r ,t)# is ex-

pressed by a kinetic law, we introduce an additional scal
condition

Jv
2* „r* ~r ;t !,r~r ;t !…5

rv* ~r ;t !

rv* ~r ;t !1rv~r ;t !
Ju

2S
„r* ~r ;t !

1r~r ;t !…. ~9!

We also introduce similar scaling conditions for the transp
ratesWu„r(r 8;t),r 8→r …dr , u51,2, . . . .

Wu* „r* ~r ;t !,r~r 8;t !,r 8→r …dr

5
ru* ~r 8;t !

ru* ~r 8;t !1ru~r 8;t !
Wu* „r* ~r 8;t !

1r~r 8;t !,r 8→r …dr , u

51,2, . . . . ~10!

Considering the response experiment suggested in
preceding section, we introduce two sets of transport eq
tions ~a! for the total species, ‘‘marked’’ and ‘‘not marked’’

]

]t
ru

S~r ,t !5Ru@rS~r ,t !#1E
r8

@ru
S~r 8,t !Wu„r

S~r 8;t !,r 8→r …

2ru
S~r ,t !Wu„r

S~r ;t !,r→r 8…#dr 8, uÞv, ~11!

]

]t
rv

S~r ,t !5Rv@rS~r ,t !#1Jv
1~r ,t !2Jv

2@rS~r ,t !#

1E
r8

@rv
S~r 8,t !Wv„r

S~r 8;t !,r 8→r …

2rv
S~r ,t !Wv„r

S~r ;t !,r→r 8…#dr 8 ~12!

and ~b! for the ‘‘marked’’ species

]

]t
ru* ~r ,t !5

ru* ~r ,t !

ru
S~r ,t !

Ru@rS~r ,t !#

1E
r8

@ru* ~r 8,t !Wu„r
S~r 8;t !,r 8→r …

2ru* ~r ,t !Wu„r
S~r ;t !,r→r 8…#dr 8, uÞv,

~13!

]

]t
rv* ~r ,t !5

rv* ~r ,t !

rv
S~r ,t !

Rv@rS~r ,t !#1Jv*
1~r ,t !

2
rv* ~r ,t !

rv
S~r ,t !

Jv
2@rS~r ,t !#

1E
r8

@rv* ~r 8,t !Wv„r
S~r 8;t !,r 8→r …

2rv* ~r ,t !Wv„r
S~r ;t !,r→r 8…#dr 8. ~14!
0-3
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Together with suitable initial and boundary condition
Eqs.~11!–~14! determine the time and space dependence
the total concentrations of the different species, as well as
concentrations of the marked species. Equations~11!–~14!
are nonlinear; however, despite their nonlinearity, they le
to a linear response law, which relates the excitation func
av(r ,t) to the response functionbv(r ,t). From Eqs.~7! and
~9! it follows that

rv* ~r ,t !5bv~r ,t !rv
S2~r ,t !. ~15!

We insert Eq.~15! into Eq. ~14! and make use of Eq.~12!.
After some algebraic manipulations we come to a linear
tegrodifferential equation for the response functionbv(r ,t)

]

]t
bv~r ,t !5„av~r ,t !2bv~r ,t !…Vv

1~r ,t !

1E
r8

bv~r 8,t !W̃v~r 8→r ;t !dr 8

2bv~r ,t !E
r8

W̃v~r 8→r ;t !dr 8, ~16!

where

Vv
1~r ,t !5Jv

1S~r ,t !/rv
S~r ,t !, ~17!

is a specific input rate and

W̃v~r 8→r ;t !5
rv

S~r 8,t !

rv
S~r ,t !

Wv„r
S~r 8;t !,r 8→r …, ~18!

is an adjoint transport rate. Since Eq.~16! is linear, its solu-
tion corresponding to the initial condition

bv~r ,t5t0!5bv
0~r ! ~19!

can be expressed as

bv~r ,t !5E
r8

bv
0~r 8!Vv

1~r 8,t0!G~r 8,t0→r ,t !dr 8

1E
t0

t E
r8

an~r 8,t8!Vv
1~r 8,t8!

3Gv~r 8,t8→r ,t !dr 8dt8, ~20!

whereGv(r 8,t8→r ,t) is the Green function attached to E
~16!, that is, it is the solution of

FVv
1~r ,t !1

]

]t GGv~r 8,t8→r ,t !

2E
r9

Gv~r 8,t8→r 9,t !W̃v~r 9→r ;t !dr 9

1Gv~r 8,t8→r ,t !E
r9

W̃v~r 9→r ;t !dr 9

5d~r2r 8!d~ t2t8!. ~21!
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It is mathematically convenient to embed the initial co
dition of the response function,bv

0(r ) into the excitation
function. If we define the modified excitation function

ãv~r ,t !5bv
0~r !d~ t2t0!1av~r ,t !, ~22!

then we can embed the first integral term in Eq.~20! into the
second integral term in the same equation and extend
time integration limit to minus infinity. We come to

bv~r ,t !5E
2`

t E
r8

ãv~r 8,t8!xv~r 8,t8→r ,t !dr 8dt8,

~23!

where

xv~r 8,t8→r ,t !5Vv
1~r 8,t8!Gv~r 8,t8→r ,t !, ~24!

is a space and time dependent susceptibility function. Eq
tion ~23! is the main result of this section; Eq.~23! is the
space-dependent generalization of the linear response t
rem derived for tracer experiments in space-independent,
mogeneous chemical systems@3#.

In order to obtain a physical interpretation of the susc
tibility function xv(r 8,t8→r ,t) we introduce the transit time
t of an individual from the speciesv, that is, the time nec-
essary for that individual to cross the system, from its e
trance in the input fluxJv

1(r ,t) to its departure in the outpu
flux Jv

2@r(r ,t)#. We introduce the notation

hv~t,r 8,r ,t !dtdr 8dr with

E
0

`E
r8

hv~t,r 8,r ,t !dtdr 85rv~r ,t !, ~25!

for the number of individuals from the speciesv which at
time t are placed position betweenr andr1dr , have a resi-
dence time in the system betweent andt1dt, and entered
the system at a position betweenr 8 and r 81dr 8. Since our
evolution equations in the absence of the ‘‘marked’’ speci
Eqs.~4! and ~5!, depend only on total concentrations, it fo
lows that the individuals with different transit times and e
try positions obey a ‘‘neutrality condition,’’ in the sense th
they are characterized by the same kinetic and transport
efficients. The scaling conditions~8!–~10! can be easily ex-
tended for a continuous distribution of residence times a
entry positions, resulting in

Rv
6
„hv~t,r 8,r ,t !,r~r ;t !…dtdr 8

5
hv~t,r 8,r ,t !dtdr 8

rv~r ;t !
Rv

6
„r~r ;t !…, ~26!

I v
2
„hv~t,r 8,r ,t !,r~r ;t !…dtdr 8

5
hv~t,r 8,r ,t !dtdr 8

rv~r ;t !
Jv

2
„r~r ;t !…, ~27!
0-4
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Wv„hv~t,r 8,r 9,t !,r~r 8;t !,r 9→r …dtdr 8

5
hv~t,r 8,r 9,t !dtdr 8

rv~r 9;t !
Wv„r~r 9;t !,r 9→r …,

~28!

whereRv
6
„(hv(t,r 8,r ,t),r(r ;t)…, I v

2
„hv(t,r 8,r ,t),r(r ;t)…,

and Wv„hv(t,r 8,r 9,t),r(r 8;t),r 9→r …dtdr 8 are rate and
flux densities which obey the integral conditions

E
0

`E
r8

Rv
6
„hv~t,r 8,r ,t !,r~r ;t !…dtdr 85Rv

6
„r~r ;t !…,

~29!

E
0

`E
r8

I v
2
„hv~t,r 8,r ,t !,r~r ;t !…dtdr 85Jv

2
„r~r ;t !…,

~30!

E
0

`E
r8

Wv„hv~t,r 8,r 9,t !,r~r 8;t !,r 9→r …dtdr 8

5Wv„r~r 9;t !,r 9→r …. ~31!

By using the rate and flux densities~27!–~29! we can
derive the following balance equations for the populat
density:

S ]

]t
1

]

]t Dhv~t,r 8,r ,t !

5
hv~t,r 8,r ,t !

rv~r ;t !
Rv„r~r ;t !…2

hv~t,r 8,r ,t !

rv~r ;t !
Jv

2
„r~r ;t !…

1E
r9

@hv~t,r 8,r 9,t !Wv„r
S~r 9;t !,r 9→r …

2hv~t,r 8,r ,t !Wv„r
S~r ;t !,r→r 9…#dr 9, ~32!

and

hv~t50,r 8,r ,t !5Jv
1~r ;t !d~r2r 8!. ~33!

We introduce the probability density of the initial positionr 8
and transit timet for an individual from speciesv which at
time t is at the positionr :

wv~t,r 8ur ,t !5hv~t,r 8,r ,t !Y E
0

`E
r8

hv~t,r 8,r ,t !dtdr 8

5hv~t,r 8,r ,t !/rv~r ,t ! ~34!

which obeys the normalization condition

E
0

`E
r8

wv~t,r 8ur ,t !dtdr 851. ~35!

In order to derive an evolution equation for the con
tional probability densitywv(t,r 8ur ,t) we insert Eq.~34! into
06111
Eqs. ~32! and ~33! and make use of Eq.~5! for the total
population density of speciesv. After some calculations we
obtain

S ]

]t
1

]

]t Dwv~t,r 8ur ,t !

52wv~t,r 8ur ,t !Vv
1~r ,t !

1E
r9

wv~t,r 9ur ,t !W̃v~r 9→r ;t !dr 9

2wv~t,r 8ur ,t !E
r8

W̃v~r 8→r ;t !dr 8, ~36!

with the boundary condition

wv~t50,r 8ur ,t !5Vv
1~r ;t !d~r2r 8!. ~37!

By comparing Eq.~36! with the evolution equation~21! for
the Green functionGv(r 8,t8→r ,t) we notice that these two
equations have a similar structure and thus the probab
densitywv(t,r 8ur ,t) can be expressed in terms ofGv(r 8,t8
→r ,t). By integrating Eq.~36! along the characteristics w
come to

wv~t,r 8ur ,t !5h~ t2t2t0!Vv
1~r 8,t2t!Gv~r 8,t2t→r ,t !

1h~t2t1t0!E
r9

wv~t,r 8ur 9,t0!

3Gv~r 9,t0→r ,t !dr 9, ~38!

whereh(x) is the Heaviside step function. If in Eq.~38! we
push the initial time tot0→2`, we notice that the condi-
tional probability densitywv(t,r 8ur ,t) is related to the delay
function xv(r 8,t8→r ,t), defined by Eq.~24! We have

wv~t,r 8ur ,t !5xv~r 8,t2t→r ,t ! and

xv~r 8,t8→r ,t !5wv~ t2t8,r 8ur ,t !. ~39!

The susceptibility functionxv(r 8,t8→r ,t) can be viewed as
a conditional probability density of the initial timet85t2t
and of the initial positionr 8, which fulfills the normalization
condition

E
2`

t E
r8

xv~r 8,t8→r ,t !dr 8dt851. ~40!

The linear response law~23! can be rewritten as

bv~r ,t !5E
2`

t E
r8

ãv~r 8,t8!xv~r 8,t8→r ,t !dr 8dt8

5E
0

`E
r8

ãv~r 8,t2t!wv~t,r 8ur ,t !dr 8dt. ~41!

Now the physical significance of the linear response law
straightforward: it expresses the contribution to the out
fraction of marked particles entering the system at differ
initial positionsr 8 and different initial times,t85t2t. The
0-5
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weight function~susceptibility function! attached to various
initial positions and times is the conditional probability de
sity of these two random variables.

In conclusion, in this section we have shown that for ne
tral systems obeying the scaling laws~8!–~10! the response
to the excitation experiment suggested in Sec. II can
scribed by a linear superposition law where the susceptib
function is the conditional probability of the initial positio
and time of a marked individual entering the system.

IV. IMPLICATIONS OF THE THEORY IN CHEMISTRY,
BIOCHEMISTRY, CHEMICAL ENGINEERING,

AND HYDRODYNAMICS

The implications of our theory in chemical and biochem
cal kinetics, chemical engineering and hydrodynamics can
discussed by using the same approach. In these fields
easy to design response experiments which make it pos
to evaluate the susceptibility function, which enters the
sponse law~23!. The problem of population genetics, whic
motivated the present research in the first place, is m
complicated and necessitates a special approach. This sp
approach is presented in Sec. V.

In the particular case of reaction-diffusion systems
chemistry or biochemistry the response law~23! is a direct
generalization of the response theorem introduced by th
of us for homogeneous chemical systems, without a conc
tration gradient@3#.

Similar response laws have been derived in chemical
gineering and physicochemical hydrodynamics@11#. Based
on these response laws, tracer experiments have been
signed which can be used for measuring various hydro
namic properties of flowing mixtures in open vessels,
example, in chemical reactors or separation columns. Th
tracer experiments are somewhat similar, although not id
tical, with the tracer experiments based on our response
~23!. Unlike our suggested experiments, the input and ou
variables are concentrations, not fractions of fluxes. Mo
over, no neutrality condition is used in the derivation of t
response laws, and thus the response laws and the t
experiments only hold for systems obeying linear conser
tion laws, such as the continuity equation of hydrodynam
in absence of chemical reaction. Our approach allows
introduction of a new type of response experiment, wh
also holds for systems with underlying nonlinear dynami
provided that a set neutrality conditions holds for the tra
port and reaction processes occurring in the system.

In pharmacokinetics similar response experiments
used, based on the assumption of a linear response
which connects the input concentration of a drug introdu
in the human body and the output concentrations in ur
liver, perspiration, etc.@12#. The main assumptions on whic
such an approach is based are the following.~1! The human
body can be described as a set of interconnecting comp
ments, which correspond to different biological organs.~2!
The drug is assumed to be uniformly distributed in ea
compartment.~3! The transport of the drug among the d
ferent compartments is described by linear transport laws~4!
If the drug is transformed~metabolized! in the organism then
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this transformation can be described by a linear kinetic l
of first order. This approach is limited to the particular ca
of relatively low concentrations for which the nonlinearity
the transport among different compartments can be negle
and the nonlinear kinetic laws can be linearized. Once ag
our approach makes it possible to extend the response
and response experiments to the nonlinear regime, prov
that a set of neutrality conditions for labeled compounds
reasonable approximation. However, in this paper we do
discuss pharamakokinetic systems because they do no
volve reaction-diffusion models.

For the abovementioned systems from chemistry, b
chemistry, chemical engineering, and hydrodynamics we
imagine two different types of response experiments.~1!
Transient experiments, which consist in varying the fract
of a labeled compound at different times and positions
space and in recording the fraction of the labeled compo
at different times and positions.~2! Frequency response ex
periments, for which we assume that the fraction of labe
compound in the input flux can be varied as a wave in sp
and time.

The simplest type of transient experiment is based on
assumption that the input fractionãv(r 8,t8) has the form of
a delta function

ãv~r 8,t8!5Av
0d~r 82r0!d~ t82t0!. ~42!

By inserting Eq.~42! into Eq. ~41! we obtain

bv~r ,t !5Av
0xv~r0 ,t0→r ,t !5Av

0wv~ t2t0 ,r0ur ,t !, ~43!

from which we can evaluate the susceptibility functio
xv(r 8,t8→r ,t) and the probability densitywv(t,r 8ur ,t) of
the transit time and initial position. In order to evaluate the
functions, we need to repeat the transport experiment m
times, for different initial positions and initial times, whic
can be very difficult task. The problem simplifies consid
ably for time and space invariant systems, for which we ha

wv~t,r 8ur ,t !dtdr 85wv~t,r 82r u0,0!dtdr 8

5cv~t,Dr !dtdDr , ~44!

wherecv(t,Dr )dtdDr is the probability that the transition
time is betweent and t1dt and the displacement vecto
Dr5r2r 8 is betweenDr andDr1dDr . If Eq. ~44! is valid
then the response law~41! reduces to a convolution equatio
in space and time

bv~r ,t !5E
0

`E
Dr

ãv~r2Dr ,t2t!cv~t,Dr !dtdDr ,

~45!

The convolution equation~45! can be solved for an arbitrar
excitation ãv(r 8,t8) by performing an inverse numerica
Fourier and Laplace transformation. In this case, in orde
0-6
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evaluate the probabilitycv(t,Dr )dtdDr and the susceptibil-
ity function xv(r 8,t8→r ,t) it is enough to carry out a singl
response experiment.

In the case of a frequency response experiment we
sume that the input fractionãv(r 8,t8) has the form of a wave

ãv~r 8,t8!5Av
01DAv exp~ ivt82 ik"r 8!, ~46!

wherev andk are the frequency and the wave vector of t
wave, andAv

0 and DAv are the temporal average and t
amplitude of the excitation function, respectively. By com
bining Eqs.~41! and ~46! we come to

bv~r ,t !5Av
01DAv exp~ ivt2 ik•r !Jv~v,kur ,t !, ~47!

where

Jv~v,kur ,t !5E
0

`E
Dr52`

1`

exp~2 ivt81 ik•Dr !

3cv~t,Dr ur ,t !dDrdt, ~48!

is a complex susceptibility function and
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cv~t,Dr ur ,t !5wv~t,r2Dr ur ,t !, where

E
0

`E
Dr52`

1`

cv~t,Dr ur ,t !dDrdt51 ~49!

is the probability density of the transit timet and of the
displacement vectorDr5r2r 8. By repeating the respons
experiment for different values of the frequencyv and the
wave vectork it is possible to evaluate the complex susce
tibility Jv(v,kur ,t), from which, by means of an invers
Fourier transformation, we can evaluate the conditio
probability densitycv(t,Dr ur ,t) of the transit timet and of
the displacement vectorDr5r2r 8. If the numerical data are
not very accurate the numerical evaluation of the inve
Fourier transforms may be impossible. In this case, howe
we can evaluate the moments and the cumulants oft and
Dr5r2r 8. We notice that, according to the definition~48!,
the complex susceptibility functionJv(v,kur ,t) is the char-
acteristic function of the probability densitycv(t,Dr ur ,t). It
follows that the momentŝtm(Dr u1

)nu1¯(Dr ur
)nur& and the

cumulants ^^tm(Dr u1
)nu1¯(Dr ur

)nur&& can be evaluated
from the derivatives of the complex susceptibili
Jv(v,kur ,t)
^tm~Dr u1
!nu1¯~Dr ur

!nur&5 j m2Snua

]m1Snua

]vm]~ku1
!nu1¯]~ku1

!nu1
Jv~v,kur ,t !U

v50,k50

, ~50!

^^tm~Dr u1
!nu1¯~Dr ur

!nur&&5 j m2Snua

]m1Snua

]vm]~ku1
!nu1¯]~ku1

!nu1
ln Jv~v,kur ,t !U

v50,k50

, ~51!
iple
nig
ibil-

lity.
We notice a formal analogy between the description of
tracer experiments suggested in this article and the lin
response theory of Kubo for nonequilibrium systems w
memory@13#. From this point of view Eq.~41! and its par-
ticular case~47! corresponding to a frequency response
periment, are the analogs of the force-flux relationships
systems with memory. This analogy is only superficial b
cause Kubo’s theory is limited to linear systems whereas
underlying dynamics of the chemical processes studied
this article are nonlinear. The linear structure of Eqs.~41!
and~47! is generated by the particular experiment sugges
in this article. For our problem the underlying nonlinear d
namics of the process generates some features which
missing from the linear systems described by the Kub
theory. The complex susceptibility functionJv(v,kur ,t) is
given by a Fourier transform with respect to the transit ti
and the displacement vector and not with respect to the t
variable and the absolute position. For this reason, unlik
the case of Kubo’s theory, in our approach the complex s
ceptibility functionJv(v,kur ,t) depends both on frequenc
wave vector, time, and absolute position.

Despite these differences some general features of Ku
theory are preserved in the case of our approach. An im
e
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tant consequence is generated by the causality princ
which leads to a general relationship of the Kramers-Kro
type between the real and imaginary parts of the suscept
ity function. We expressJv(v,kur ,t) in the form

Jv~v,kur ,t !5E
Dr52`

1`

exp~ ik•Dr !Qv~v,Dr ur ,t !dDr ,

~52!

where

Qv~v,Dr ur ,t !5E
0

`

exp~2 ivt8!cv~t,Dr ur ,t !dt, ~53!

is a displacement-dependent complex susceptibi
Qv(v,Dr ur ,t) is generally complex and thus we have

Qv~v,Dr ur ,t !5«v8~v,Dr ur ,t !2 i«v9~v,Dr ur ,t !, ~54!

where
0-7
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«v8~v,Dr ur ,t !5ReQv~v,Dr ur ,t !,

«v9~v,Dr ur ,t !52Im Qv~v,Dr ur ,t !, ~55!

are the real and imaginary contributions toQv(v,Dr ur ,t),
respectively. The relationships between«v8(v,Dr ur ,t) and
«v9(v,Dr ur ,t) have the form

«v8~v,Dr ur ,t !52
1

p E
2`

1`

dv8
P

v82v
«v9~v8,Dr ur ,t !,

~56!

«v9~v,Dr ur ,t !5
1

p E
2`

1`

dv8
P

v82v
«v8~v8,Dr ur ,t !,

~57!

where the notation P indicates the Cauchy principal va
These relationships can be derived in the same way as
classical Kramers-Kronig relationships for time-independ
complex susceptibility functions. To save space the deta
derivation is not given here. The main idea is to introduce
complex function

Sv~z,Dr ur ,t !5E
0

`

exp~ izt!cv~t,Dr ur ,t !dt, ~58!

wherez is a complex frequency variable and to investiga
the influence of the causality on the analytic properties
this function. The function is related to the susceptibility
means of the relation

Qv~v,Dr ur ,t !

5 lim
v→10

Sv~z52v1 iv,Dr ur ,t !

5 lim
v→10

E
0

`

exp@2~ iv1v !t#cv~t,Dr ur ,t !dt. ~59!

Since in Eq.~56! the integral is taken from zero to infinit
the functionSv(z,Dr ur ,t) is analytic in the upperz plane.
This analyticity property is a consequence of the causa
principle which requires that the transit time is never ne
tive. The analytic behavior of the functionSv(z,Dr ur ,t) in
the upperz plane makes it possible to express it by a clos
path integral of the Cauchy type. By separating the real
imaginary parts in this Cauchy integral and using Eqs.~54!
and~58! we obtain the generalized Kramers-Kronig relatio
ships~56! and ~57!.

In conclusion, in this section we have suggested that
linear response law and the response experiments can b
plied to various reaction-diffusion systems from chemist
biochemistry, chemical engineering, and physicochem
thermodynamics, provided that they obey a neutrality con
tion. We have shown that the response experiments ma
possible to evaluate the susceptibility functions from tra
sient as well as frequency response experiments. Further
complex susceptibility functions which result from fre
06111
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quency response experiments obey a system of integral e
tions of the Kramers-Kronig type, which express the con
tion of causality.

V. EVOLUTION EQUATIONS FOR THE PROPAGATION
OF A NEUTRAL MUTATION IN EXPANDING

POPULATIONS

In this section we derive a simple model for the space a
time propagation of neutral mutations in an expanding po
lation. The model is motivated by the study of the geograp
cal distribution of the nonrecurrent, nonreversible, neu
mutations of the nonrecombining portion of the Y chrom
some from human populations@5,6#. The ultimate goal of the
model is to evaluate the geographic position and the mom
in time where and when a mutation observed in a curr
population originated. Simulation studies have shown t
the saturation effects in the total population play an imp
tant role in the dynamics of the process and thus a lin
population model is not satisfactory. For the description
the saturation effects we use a nonlinear generalization@14#
of Lotka’s theory of stable population@15#. We consider that
the maternity~natality! function of the populationl depends
only on the agea, l5l(a), and that the mortality function
m is made up of two components, an age-dependent com
nentm0(a) and a density-dependent componentdm~r! which
is a function of the population densityr(r ,t). Under these
circumstances, after a transient regime of a few centuries
population reaches a stable regime for which the fraction
individuals with a given agec(a)da becomes stationary
@14#:

c~a!da5cst~a!da5 l ~a!e2r adaY E
0

`

l ~a!e2r ada,

~60!

wherer, the intrinsic rate of growth, is the unique real root
the transcendental equation

E
0

`

l~a!l ~a!e2r ada51, ~61!

and where

l ~a!5expS 2E
0

a

m0~a8!da8D ~62!

is the survival function~the life table! evaluated from the
density-independent component of the mortality functi
m0(a).

We consider a neutral gene with different allelesu
51,2, . . . , anddenote by«uu8 the probability per generation
that the alleleu mutates into the alleleu8. In the final appli-
cation the mutations are irreversible and nonrecurrent
thus it is enough to consider a single mutation, say 1→2,
occurring with the probability«125«. In the development of
the general theory, however, in order to preserve the sym
try of the equations, we consider an arbitrary mutation m
trix «5@«uu8#. We use the notationju(a;r ;t)dadr for the
0-8
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number of individuals with a geneu which at timet are at a
position betweenr andr1dr and have an age betweena and
a1da. In terms of this function we can compute the part
population densitiesqu(r ,t) of the carriers of different gene
as well as the total population density

qu~r ,t !5E
0

`

ju~a,r ,t !da, r~r ;t !5(
u
E

0

`

ju~a,r ,t !da.

~63!

We assume that the population migration can be descr
by a transport operatorL¯ of the type~2!:

L¯5E
r8

@¯W„r~r 8;t !,r 8→r …2¯W„r~r ;t !,r→r 8…!]dr 8.

~64!

By taking into account that the mutations are neutral, so
all individuals are characterized by the same natality a
mortality functions and transport rate coefficients we can
rive the following evolution equations for the density fun
tions ju(a;r ;t), u51,2, . . . :

S ]

]t
1

]

]aD ju~a;r ;t !52ru~a;r ;t !$m0~a!1dm@r~r ;t !#%

1E
r8

@ju~a;r 8;t !W„r~r 8;t !,r 8→r …

2ju~a;r ;t !W„r~r ;t !,r→r 8…#dr 8

~65!

and

ju~a50;r ;t !5(
u8

«u8uE
0

`

l~a8!ju8~a8,r ;t !da8. ~66!

Since the process of gene propagation takes place
time scale of;105 yr whereas the stable age profile
reached in a few centuries, we may eliminate the age st
ture from Eqs.~65! and ~66!. In Appendix B we derive a
system of evolution equations for the partial population d
sities

]

]t
qu~r ,t !5qu~r ,t !@r 2dm@r~r ;t !##1(

u8
su8uqu8~r ,t !

2(
u8

suu8qu~r ,t !1E
r8

qu~r 8,t !

3W@r~r 8;t !,r 8→r #dr 82qu~r ,t !

3E
r 8

W@r~r ;t !,r→r 8#dr 8. ~67!

Here

suu85«nuu8 /Z~ r! ~68!

are mutation rates,r is the intrinsic rate of growth, and
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Z~ r!5E
0

`

l ~a!e2r ada ~69!

is the partition function attached to the Lotka age profi
given by Eq.~60!

Due to the neutrality condition we can derive from Eq
~67! a closed evolution equation for the total population de
sity. By summing Eqs.~67! over the labelu we come to

]

]t
r~r ;t !5r~r ;t !†r 2dm@r~r ;t !#‡

1E
r8

r~r 8;t !W@r~r ;t !;r2r 8#dr 82r~r ;t !

3E
r8

W@r~r ;t !;r 82r #dr 8. ~70!

We introduce the frequencies of the different alleles a
position betweenr and r1dr and timet

gu~r ,t !5qu~r ,t !/r~r ,t ! with (
u

gu~r ,t !51. ~71!

By combining Eqs.~67!, ~70!, and ~71! we can derive a
system of evolution equations for the allele frequenc
gu(r ,t). After some algebraic manipulations we come to

]

]t
gu~r ,t !5(

u8
su8ugu8~r ,t !2(

u8
suu8gu~r ,t !

1E
r8

gu~r 8,t !
r~r 8;t !

r~r ;t !
W@r~r 8;t !;r2r 8#dr 8

2gu~r ,t !E
r8

r~r 8;t !

r~r ;t !
W@r~r 8;t !;r2r 8#dr 8.

~72!

In particular, if the population diffusion can be describ
by Fick’s law from physics, then the evolution equations~67!
for partial population densities turn into a simple form

]

]t
qu~r ,t !5(

u8
su8uqu8~r ,t !2(

u8
suu8qu~r ,t !1qu~r ,t !

3@r 2dm@r~r ;t !##1D¹2qu~r ,t !, ~73!

whereD is a population diffusion coefficient and the evol
tion equations~70! and ~72! for the total population density
and allele frequencies, become

]

]t
r~r ;t !5r~r ;t !†r 2dm@r;~r ;t !#‡1D¹2r~r ;t ! ~74!

and
0-9



c’
en
y

-
th

o-
u
u
n

it-

y o
a

-

up
ar

s
th
he
ga

en
p

m

e

t

ca-

read
tal

tion
ick
s

ary
nt
is
ad

ent
The
nse
ion
an

neti-
lu-

, it
hich
-

MARCEL OVIDIU VLAD et al. PHYSICAL REVIEW E 65 061110
]

]t
gu~r ,t !5(

u8
su8ugu8~r ,t !2(

u8
suu8gu~r ,t !

1D¹2gu~r ,t !1„gradgu~r ,t !…•w~r ,t !, ~75!

where

w~r ,t !52Dgrad ln@r~r ,t !#52D
¹r~r ,t !

r~r ,t !
~76!

is a velocity vector which expresses the ‘‘hydrodynami
flow of different allele frequencies generated by the gradi
of the total population density. We notice that the hydrod
namic velocity vectorw(r ,t) is proportional to the ratio be
tween the gradient of the total population density and
total population density.

Equations~74! and~75! describe the time and space ev
lution of the total population density as well as of the vario
allele frequencies in the case of Fickian diffusion. In pop
lation genetics Eq.~74! is referred to as a Fisher equatio
@16#. Equation~74! has been extensively studied in the l
erature@16# and it has been shown that forr.0 its solutions
are solitary waves which correspond to a constant velocit
propagation of the population front. In the large time limit
constant population densityrst emerges, which is the solu
tion of the equationr5dm@rst#. The constant population
densityrst expresses the capacity of the environment to s
port the survival of the population and is referred to as ‘‘c
rying capacity.’’ We notice that, unlike Eq.~74!, Eqs.~75! for
the different gene frequencies are linear; this is a con
quence of the neutrality hypothesis, according to which
natality and mortality functions of different mutants are t
same. We distinguish two different regimes for the propa
tion of the different mutations.

~a! If the total population density is space and time dep
dent then the space propagation of a mutation is made u
two different components:~1! A slow, diffusive motion, ex-
pressed by the Fick termsD¹2gu(r ,t) in Eqs. ~75!, corre-
sponding to different types of individuals and~2! a fast, hy-
drodynamic motion expressed by the convective ter
„gradgu(r ,t)…•w(r ,t) in Eqs. ~75!. The convective terms in
Eqs.~75! can be expressed as

Ju5„gradgu~r ,t !…•w~r ,t !5ugradgu~r ,t !uuw~r ,t !ucosQu ,
~77!

whereQu is the angle between the vectorgu and the hydro-
dynamic velocity vectorw. It follows that the contribution of
the hydrodynamic motion is large if the angleQu is small
and the absolute valuesu gradgu u and uwu of the gradient of
the gene frequencies and of the hydrodynamic velocity v
tor are large. Typically the convective fluxesJu are large for
a population far away from saturation, which corresponds
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a mutation generated at an initial position (r0 ,t0) for which
the population density is much smaller than the carrying
pacity of the environment, that is,r(r0 ,t0)!rst . Under
these circumstances a mutation has the opportunity to sp
fast; the mutation is carried by the solitary wave of the to
population.

~b! If the total population density is constant,r(r ,t)
5rst then, according to Eq.~76! the hydrodynamic velocity
is equal to zero,w(r ,t)50 and the hydrodynamic motion
does not exist anymore. The space propagation of a muta
is given by a slow, diffusive motion, expressed by the F
termsD¹2gu(r ,t). A typical situation corresponding to thi
case is a mutation generated late in time at a position (r0 ,t0)
for which the population density has reached the station
value given by the carrying capacity of the environme
r(r0 ,t0)5rst . Under these circumstances a mutation
moving slowly and does not have the opportunity to spre
away from its point of origin quickly.

The genetic problem presented in this section is differ
from the examples discussed in the previous section.
difference is due to the fact that the design of a respo
experiment is generally not possible in human populat
genetics, due to the fact that the evolution of the hum
species has taken place over many millennia and the ge
cists can only observe the present effects of different evo
tionary events which tool place a long time ago. However
is possible that our theory leads to a response theorem, w
is similar to the general law~23!. We express the initial con
ditions of Eqs.~67! and ~70! in the following form:

qu~r5r0 ,t5t0!5uu~r0 ,t0!, r~r5r0 ,t5t0!5g~r0 ,t0!.
~78!

Now we embed the initial conditions~78! into the evolution
equations~67! and ~70! by introducing the input fluxes

J1S~r ,t !5g~r ,t0!d~ t2t0!, Ju
1* ~r ,t !5uu~r ,t0!d~ t2t0!

~79!

and the specific input rate

V1~r ,t !5J1S~r ,t !/r~r ,t !. ~80!

Equations~67! and ~70! become

]

]t
r~r ;t !5r~r ;t !@V1~r ,t !1r 2dm@r~r ;t !##

1E
r8

r~r 8;t !W@r~r ;t !;r2r 8#dr 8

2r~r ;t !E
r8

W@r~r ;t !;r 82r #dr 8 ~81!

and
0-10
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]

]t
qu~r ,t !5Ju

1* ~r ,t !1qu~r ,t !†r 2dm@r~r ;t !#‡

1(
u8

su8uqu8~r ,t !2(
u8

suu8qu~r ,t !

1E
r8

qu~r 8,t !W@r~r 8;t !,r 8→r #dr 8

2qu~r ,t !E
r8

W@r~r ;t !r→r 8#dr 8 ~82!

with the initial conditions

r~r5r0 ,t5t0!50, qu~r5r0 ,t5t0!50. ~83!

The interesting variables, which are experimentally acc
sible, are the gene frequencies, that is, the fractions of
ferent mutations in the gene pool at positionr and timet

gu~r ,t !5qu~r ,t !/r~r ,t !. ~84!

Sequence analysis makes it possible to measure the
graphical distribution of different mutations at the curre
~present! time t and at different positions on Earth, from
which it is possible to evaluate the gene frequenciesgu(r ,t).
The functionsgu(r ,t) can be considered to be the respon
to an excitation vector

av~r ,t !5@av~r ,t !#, ~85!

where the different excitation functions

av~r ,t !5
Jv

1* ~r ,t !

J1S~r ,t !
5

uv~r ,t0!

g~r ,t0!
~86!

are the ratios between the initial population densities of
different types of individualsuv(r ,t0) of the newly generated
mutations of typev at an initial time t5t0 and the total
population concentrationg(r ,t0) at that initial timet5t0 @see
Eq. ~79!#. By combining Eqs.~80!–~86! we can derive a se
of integrodifferential equations, which relate the respon
functionsgu(r ,t) to the excitation functionav(r ,t):

]

]t
gu~r ,t !5„av~r ,t !2gu~r ,t !…V1~r ,t !1(

u8
su8ugu8~r ,t !

2(
u8

suu8gu~r ,t !1E
r8

gu~r 8,t !W̃~r 8→r ;t !dr 8

2gu~r ,t !E
r8

W̃~r 8→r ;t !dr 8, ~87!

where

W̃~r 8→r ;t !5
r~r 8,t !

r~r ,t !
W„r~r 8;t !,r 8→r …, ~88!

is an adjoint transport rate similar to the ones defined by E
~18!.
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The solution of the integrodifferential equations~87! can
be expressed in a form similar to the integral response
~23!

gu~r ,t !5(
u9

E
t952`

t E
r9

au9~r 9,t9!xu9u~r 9,t9→r ,t !dr 9dt9,

~89!

where the susceptibility function

xu9u~r 9,t9→r ,t !5V1~r 9,t9!Gu9u~r 9,t9→r ,t ! ~90!

is proportional to a Green function which is the solution
the equation

]

]t
Gu9u~r 9,t9→r ,t !

5(
u8

Gu9u8~r 9,t9→r ,t !su8u

2Gu9u~r 9,t9→r ,t !S V1~r ,t !1(
u8

suu8D
1E

r8
Gu9u~r 9,t9→r 8,t !W̃~r 8→r ;t !dr 8

2Gu9u~r 9,t9→r ,t !E
r8

W̃~r 8→r ;t !dr 8

1duu9d~r2r 9!d~ t2t9!. ~91!

We notice that for the genetic problem the evolution eq
tions are more complicated than the evolution equations
the general theory developed in Sec. III. Despite this diff
ence it is still possible to show that the susceptibility fun
tion has a simple probabilistic interpretation. By analo
with the general theory we introduce the aget of the first
mutation event in the system. The aget is the time interval
that elapsed from the initial appearance of a first mutat
many generations ago, in an ancestor of the current pop
tion and the current time. We have

t5t2t0 , ~92!

wheret is the current time andt0 is the time when the first
mutation event initially occurred in the population. The a
of a mutation should not be confounded with the agea of an
individual. These two quantities have different orders
magnitude~a;02102 yr andt;1022105 yr!. We also in-
troduce the displacement vector of the mutation

Dr5r2r0 , ~93!

which is the difference between the current position vector
and the position vectorr0 attached to the place where th
first mutation event occurred.

We denote by

hvu~t,Dr ,r ,t !dtdDrdr , ~94!

with
0-11



r

l-

e

e

r

n

w

of
ons
es
ted

u-
ari-

ple
of

he
tral
as-

arac-
ch

MARCEL OVIDIU VLAD et al. PHYSICAL REVIEW E 65 061110
(
v
E

0

`E
Dr

hvu~t,Dr ,r ,t !dtdDr

5qu~r ,t !,(
u

(
v
E

0

`E
Dr

hvn~t,Dr ,r ,t !dtdDr

5r~r ,t ! ~95!

the number of individuals which at timet carry the geneu,
are placed at a position betweenr and r1dr , have a muta-
tion age betweent and t1dt, and a displacement vecto
betweenDr andDr1dDr provided that the initial mutation
event generated a gene of typev.

By using the neutrality condition we can derive the fo
lowing system of evolution equation forhvu(t,Dr ,r ,t)

S ]

]t
1

]

]t Dhvu~t,Dr ,r ,t !

5hvu~t,Dr ,r ,t !†r 2dm@r~r ;t !#‡

1(
u8

hvu8~t,Dr ,r ,t !su8u2hvu~t,Dr ,r ,t !(
u8

svu8

1E
r 9

@huv~t,r2r 9,r ,t !W„r~r 9;t !,r 9→r …

2huv~t,r2r 9,r ,t !W„r~r ;t !,r→r 9…#dr 9, ~96!

with the boundary conditions

hvu~t50,Dr ,r ,t !5J1~r ;t !duvd~Dr !. ~97!

We introduce the fraction of individuals which at timet
carry the geneu, are placed at a position betweenr and r
1dr , have a mutation age betweent andt1dt, and a dis-
placement vector betweenDr and Dr1dDr , provided that
the initial mutation event generated a gene of typev:

wv~t,Dr ur ,t,u!5
hvu~t,Dr ,r ,t !

(
v
E

0

`E
Dr

hvu~t,Dr ,r ,t !dtdDr

5
hvu~t,Dr ,r ,t !

qu~r ,t !
, ~98!

which obeys the normalization condition

(
v
E

0

`E
Dr

wv~t,Dr ur ,t,u!51. ~99!

The functionwv(t,Dr ur ,t,u)dtdDr can be interpreted as th
probability that at timet and positionr , an individual which
carries a gene of typeu is characterized by a mutation ag
betweent andt1dt, and a displacement vector betweenDr
andDr1dDr , and the first mutation present in its ancesto
was of typev.

By combining Eqs.~101!–~103! we can derive a system
of evolution equations for the fractionw(t,Dr ur ,t). We
come to
06111
s

S ]

]t
1

]

]t Dwv~t,Dr ur ,t,u!

52wv~t,Dr ur ,t,u!V1~r ,t !

1(
u8

wv~t,Dr ur ,t,u8!su8u2wv~t,Dr ur ,t,u!(
u8

suu8

1E
r9

wv~t,Dr ur 9,t,u!W̃v~r 9→r ;t !dr 9

2wv~t,Dr ur ,t !E
r9

W̃v~r 9→r ;t !dr 9, ~100!

with the boundary condition

wv~t50,Dr ur ,t,u!5V1~r ;t !duvd~Dr !. ~101!

By integrating Eq.~100! along the characteristics we ca
express the probability densitywv(t,Dr ur ,t,u) in terms of
the Green functionGu9u(r 9,t9→r ,t). We have

wv~t,Dr ur ,t,u!1h~ t2t2t0!V1~r2Dr ,t2t!Gvu~r2Dr ,t

2t→r ,t !1h~t2t1t0!(
u9

E
r9

wv~t,Dr ur 9,t0 ,u9!

3Gu9u~r 9,t0→r ,t !dr 9, ~102!

If in Eq. ~102! we push the initial time tot0→2`, we notice
that the conditional probability densitywv(t,Dr ur ,t,u) is re-
lated to the susceptibility functionxu9u(r 9,t9→r ,t), defined
by Eq. ~24!. We have

wv~t,Dr ur ,t,u!5xvu~r2Dr ,t2t→r ,t ! and

xvu~r 8,t8→r ,t !5wv~ t2t8,r2r 8ur ,t,u!. ~103!

By using Eq.~103! we can rewrite the linear response la
~89! in an alternative form

gu~r ,t !5(
v
E

0

`E
Dr

av~r2Dr ,t2t!

3wv~t,Dr ur ,t,u!dDrdt. ~104!

The biological meaning of the linear response law~104! is
clear: it expresses the contribution to the current values
the gene frequencies of the various possible initial mutati
which may have occurred in the past, at different initial tim
and different initial positions and which may have genera
various initial mutations. The weight function~susceptibility
function! attached to various initial positions, times and m
tations is the probability density of these three random v
ables.

In conclusion, in this section we have developed a sim
mathematical model for the space and time propagation
neutral mutations in expanding human populations. T
model considers a single haploid locus with different neu
alleles and the evolution equations of the population are
sumed to be age dependent and nonlinear. Since the ch
teristic time scale describing the mutation events is mu
0-12
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larger than the time scale describing the variations in the
profiles, we have performed an adiabatic elimination of
age variable. The resulting overall evolution equations
the populations are a generalization of the classical Fis
model for the wave of advance of an advantageous gene
have discussed some qualitative features of the solution
these equations. We have shown that solitary waves in t
population density may exist. Concerning the time and sp
propagation of the mutations, we have shown that two
ferent propagation regimes exist, for low and large popu
tion densities, respectively. We have shown that the g
graphic distribution of the current values of the ge
frequencies can be expressed by a linear superposition
We have shown that the susceptibility function from the
sponse law has a probabilistic interpretation which is sim
to the interpretation of the response law derived in Sec.

VI. APPLICATION TO ONE-DIMENSIONAL
REACTION-DIFFUSION SYSTEMS

In this section we illustrate our theory by considering
one species, one-dimensional reaction diffusion system
lengthL. We assume that in the absence of a tracer the
namics of the system is described by the reaction diffus
equation

]

]t
r5D

]2

]x2 r1R~r!, ~105!

with the boundary condition

J152D
]

]x
rU

x50

5const, ~106!

wheret is the time,x is the position,r is the number density
of the species,D is its diffusion coefficient,R(r) is its rate
of transformation, which is a local function assumed to d
pend only on the population density. At positionx50 system
receives a constant flux of individualsJ1. The system re-
leases individuals at positionx5L; the corresponding outpu
flux can be evaluated by using a relation similar to Eq.~106!:

J252D
]

]x
rU

x5L

. ~107!

Models of this type are commonly used in various branc
of physics, chemistry and biology. For example they can
scribe the population dynamics in a linear habitat, or a ca
lytic process in chemical engineering occurring in a line
pore.

Usually for large times the models described by E
~105! and ~106! lead to a unique stationary concentrati
profile and to a constant output flux. Although for spec
forms of the reaction rateR(r), more complicated types o
large time behavior may emerge, in this paper we limit o
selves to the case of stationary concentration profiles. M
over, we assume that the reaction rateR(r) is non-negative,
R(r)>0 and thus the number of individuals of the spec
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considered is generally growing. For example, we can c
sider an autocatalytic chemical reaction or the logis
growth of a single biological species in population dynam
A stationary concentration profile is the solution of the equ
tion

D
]2

]x2 r~x!1R„r~x!…50 with J152D
]

]x
r~0!.

~108!

By using the identity

]

]x F ]

]x
r~x!G2

52F ]

]x
r~x!GF ]2

]x2 r~x!G , ~109!

from Eq. ~108! we can evaluate the output fluxJ2 in terms
of the input fluxJ1. We have

]

]x FD
]

]x
r~x!G2

522DR~r!
]

]x
r~x!, ~110!

and then

J25A~J1!222DE
r~0!

r~L !

R~r!dr. ~111!

We notice that a stationary regime is generally possible o
if the input fluxJ1 is larger than a minimum threshold valu
Jmin

1

J1.Jmin
1 , with Jmin

1 5A2DE
r~0!

r~L !

R~r!dr. ~112!

The physical interpretation of Eq.~112! is straightforward. A
stationary density profile is the result of balancing betwe
the population growth, which tends to increase the popu
tion concentration and the diffusion process, which redu
the concentration by dispersion, this balancing is only p
sible if the diffusion process is efficient enough. The inequ
ity ~112! can be rewritten as

DS ]r

]xD 2U
x50

.2E
r~0!

r~L !

R~r!dr. ~113!

Equation~113! clearly shows that a stationary profile ma
exist only if the contribution of the diffusion process, e
pressed by the factorD(]r/]x)2ux50 outweighs the contri-
bution of the population growth, expressed by the fac
2*R(r)dr.

Now we can suggest a tracer experiment. We assume
the species can exist in two forms, unlabeled and labeled
denote their concentrations byr andr* , respectively, and by

rS5r1r* , ~114!
0-13
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the total concentration of the species. We assume the e
tence of a neutrality condition, that is, the diffusion coef
cientD is the same for the unlabeled and labeled species
the rate of transformation of the labeled species is given

R* 5
r*

rS~x!
R@rS~x!#. ~115!

We assume the existence of a constant input fluxJ1S for
which there is a stationary concentration profilerS(x) and a
constant output fluxJ2S which obey the equations

D
]2

]x2 rS~x!1R@rS~x!#50, with J1S52D
]

]x
rS~0!

~116!

and

J2S5A~J1S!222DE
rS~0!

rS~L !
R~r!dr. ~117!

The total input and output fluxes,J1S, J2S are made up
of additive contributions corresponding to the labeled a
unlabeled species, respectively,

J1S5J11J1* , J2S5J21J2* , ~118!

Although the total fluxesJ1S,J2S are maintained constan
their componentsJ1,J1* ,J2,J2* , can be arbitrary func-
tions of time. We suggest a tracer experiment, which cons
in the variation of the labeled input fraction

a~ t !5J1* ~ t !/J1S, ~119!

in a controlled way and in the recording of the labeled out
fraction

b~ t !5J2* ~ t !/J2S. ~120!

The concentration of labeled individualsr* (x,t) obeys
the evolution equation

]

]t
r* ~x,t !5D

]2

]x2 r* ~x,t !1w~x!r* ~x,t ! ~121!

with the initial and boundary conditions

r* ~x.0,t5t0!50, 2D
]

]x
r* ~x50,t !5J1* ~ t !,

~122!

where

w~x!5
1

rS~x!
R@rS~x!# ~123!
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is a position-dependent effective rate coefficient. Equat
~121! is a reaction-diffusion balance equation which can
derived from the rate equation~113!. Since the evolution
equation~121! is linear and space inhomogeneous its so
tion can be expressed in terms of an inhomogeneous G
function G(x8→x;t2t8), which obeys the equation

]

]t
G~x8→x;t2t8!5D

]2

]x2 G~x8→x;t2t8!1w~x!

3G~x8→x;t2t8!1d~x2x8!d~ t2t8!.

~124!

We have

r* ~x,t !5
1

D E
t0

t

G~0→x;t2t8!J1* ~ t8!dt8. ~125!

In Eq. ~125! we take the derivative with respect tox and put
x5L. After some calculations we get a linear response th
rem of the type considered in the general theory develope
the preceding sections

b~ t !5E
t0

t

x~ t2t8!a~ t8!dt85E
0

t2t0
w~t!a~ t2t!dt,

~126!

where the susceptibility functionsx(t2t8) and w~t! are
given by

x~ t2t8!52
J1S

J2S

]

]L
G~0→L;t2t8!, ~127!

w~t!52
J1S

J2S

]

]L
G~0→L;t!, ~128!

andt5t2t8 is the transit time of the labeled species.
By following the general balance approach developed

Sec. III we can show that the susceptibility functionw~t!
expressed in terms of the transit timet5t2t8 can be inter-
preted as the probability density of the transit timet5t
2t8. We are not going to repeat here the formal derivat
presented in Sec. III. However, we show that the respo
law ~126! derived in this section is compatible with th
probabilistic interpretation ofw~t!. We notice that the Green
function G(0→x;t2t8) can be interpreted as a concentr
tion field of the labeled species corresponding to a unit
excitation and thus it can never be negative,G(0→x;t
2t8)>0. Since at the exit of the system,x5L, there must a
non-negative output of individuals, we must ha
2D@]G(0→x;t2t8)/]L#>0. Because by definition the
fluxes J1S,J2S are non-negative,J1S,J2S>0, from Eq.
~128! it follows that

w~t!>0 . ~129!
0-14
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Moreover, in the limit,t0→2`, the susceptibility function
w~t! obeys the normalization condition

E
0

`

w~t!dt51. ~130!

In order to obtain Eq.~130! we consider an excitation havin
the shape of a displaced step function

a~ t !5h~ t2t0!, ~131!

whereh(x) is the Heaviside function. For the input~131! the
total input flux J1S contains only labeled individuals, an
thus for large time,t0→2`, we must have

b~ t !→1 as t0→2`. ~132!

By combining Eqs.~126! and Eqs.~131! and~132! we come
to the normalization condition~130!

In conclusion in this section we have illustrated our
sponse theory by considering the particular case of a o
variable, one-dimensional nonlinear reaction diffusion s
tem, which describes a growth process. We have shown
a stationary concentration profile may exist if the contrib
tion of the diffusion process, which tends to reduce the c
centration of individuals, outweighs the contribution of t
growth process. We have shown that for such a system
possible to design a linear response experiment of the
introduced in this paper.

VII. CONCLUSIONS

In this article we have studied space and time-depend
nonlinear systems from physics, chemistry, and biolo
which share a common feature: some of the types of in
viduals ~atoms, molecules, quasiparticles, organisms, e!
present in the system can exist in a ‘‘marked’’ and ‘‘n
marked’’ state and obey a neutrality condition, that is,
kinetic and transport properties of the ‘‘marked’’ and ‘‘n
marked’’ individuals are identical. We have shown that t
neutrality condition has an important consequence: it op
the possibility of designing a response experiment charac
ized by a linear response law, even though the underly
dynamics of the system may be highly nonlinear. The lin
response law is not the result of a linearization procedu
but a necessary consequence of the neutrality condit
Even though the response law is linear, the underlying n
linearity of the process may influence its structure: in gene
nonlinear evolution equations lead to response laws, wh
are time and space variant.

We have shown that our theory can be applied to at le
two different classes of systems. For certain problems
chemistry, biochemistry, and physicochemical hydrodyna
ics, for which the scientists have control on the proces
studied, it is possible to use transient or frequency respo
experiments for the evaluation of the susceptibility functio
from the linear response law. We have derived the ba
equations necessary for the interpretation of these two ty
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of experiments. We have shown that the causality princi
leads to a set of generalized Kramers-Kronig relations. Th
Kramers-Kronig relations differ from the similar relation
from quantum optics, nonequilibrium thermodynamics,
particle physics: this difference is due to the fact that
nonlinear dynamics lead to space- and time-dependent
ceptibility functions.

In human population genetics, scientists study a uniq
phenomenon, the evolution of human species during the
105 yr and this phenomenon cannot be reproduced in a la
ratory. Because of this, designing a direct response exp
ment is not possible in this case. However, we have sho
that the current geographical distribution of mutations can
expressed by a linear response law similar to the ones
rived for the other chemical and biological problems f
which a response experiment can be carried out. This lin
law makes it possible to estimate the original time and po
tion of the occurrence of a mutation from the current ge
graphical distribution of gene frequencies in human popu
tions.

Further research will focus on the application of the a
proach developed here to various problems of physics, ch
istry, and biology. In chemical kinetics preliminary studi
have shown that the susceptibility functions contain imp
tant information about the reaction kinetics and mechanis
In this field it is possible to evaluate the rate and transp
coefficients from linear response experiments. In hum
population genetics the approach presented here can be
for evaluating the initial time and position at which a give
mutation appeared for the first time in the human genom
Work on these two problems is in progress.
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APPENDIX A

We consider a simple chemical process involving t
chemical speciesA as well as other speciesB,C, . . . . We
consider that the speciesA is involved in an elementary re
action of the type

nA1¯�products, ~A1!

wheren is the molecularity of the process with respect to t
speciesA. We assume that the rate of the process~A1! obeys
the mass-action law, that is,

R5k@rA~r !#n
¯ , ~A2!

whererA(r ) is the concentration of speciesA and the ellipsis
in Eq. ~A2! represent multiplicative terms depending on t
concentrations of the other speciesB,C, . . . , present in the
system. We assume that the speciesA exists in two forms,
unlabeled~A! and labeled (A* ) and that the kinetic isotope
effect is missing, that is, the rate coefficient in Eq.~A2! is the
same for both species,A andA* . Since Eq.~A2! is generally
0-15
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nonlinear, involving thenth power of the concentration
rA(r ), a naive approach would suggest that if both specieA
and A* are present, then the rate of transformation cor
sponding to the labeled species is

R* 5@xA* ~r !#nR@rA* ~r !1rA~r !#

5H rA* ~r !

rA* ~r !1rA~r !J n

R@rA* ~r !1rA~r !#, ~A3!

where xA* (r )5rA* (r )/@rA* (r )1rA(r )# is the fraction of
labeled compound at positionr . However, a careful analysi
of the problem shows that Eq.~A3! is incorrect and that the
rate of transformationR* corresponding to the labeled sp
cies is a linear function of the fractionxA* (r ) of the labeled
compound at positionr , that is,

R* 5xA* ~r !R@rA* ~r !1rA~r !#

5
rA* ~r !

rA* ~r !1rA~r !
R@rA* ~r !1rA~r !#. ~A4!

In order to prove Eq.~A4! we note that, if, bothA andA* ,
are present then there are actuallyn reactions~A1! involving
m labeled species,mA* , and (n2m) unlabeled species, (n
2m)A with m51, . . . ,n. These reactions can be repr
sented as

mA* 1~n2m!A¯�products, m51, . . . ,n, ~A5!

Since we have assumed that the kinetic isotope effec
missing, all reactions~A5! are characterized by the same ra
coefficientk. It follows that the rate of transformation of th
labeled speciesR* is given by

R* 5 (
m51

n

m
~n21!!

m! ~n2m!!
k@rA* ~r !#m@rA~r !#n2m3¯

5krA* ~r !@rA* ~r !1rA~r !#n213¯

5
rA* ~r !

rA* ~r !1rA~r !
A@rA* ~r !1rA~r !#

5xA* ~r !R@rA* ~r !1rA~r !#. ~A6!

APPENDIX B

In order to eliminate the age structure from the evolut
equations~65! and ~66! we introduce the conditional ag
profile

c~auu;r ,t !5
ju~a,r ,t !

E daju~a,r ,t !

5
ju~a,r ,t !

qu~r ,t !
. ~B1!

We insert Eq.~B1! into Eqs.~65! and ~66!, resulting in
06111
-

is

c~auu;r ,t !
]

]t
qu~r ,t !1ru~a;r ;t !S ]

]t
1

]

]aD c~auu;r ,t !

52qu~r ,t !c~auu;r ,t !$m0~a!1dm@r~r ;t !#%

1E
r8

@qu~r 8,t !c~auu;r 8,t !W@r~r 8;t !;r 8→r #

2qu~r ,t !c~auu;r ,t !W@r~r ;t !;r→r 8##dr 8 ~B2!

and

qu~r ,t !c~a50uu;r ,t !

5(
u8

«u8uE
0

`

l~a8!qu~r ,t !c~a8uu8;r ,t !da8. ~B3!

By integrating Eqs.~B2! over age froma50 to a5` and
using Eqs.~B3! we get the following evolution equations fo
the partial population densities:

]

]t
qu~r ,t !5(

u8
«u8uqu8~r ,t !E

0

`

l~a8!c~a8uu8;r ,t !da8

2qu~r ,t !H E
0

`

c~auu;r ,t !@m0~a!

1dm†z~r ;t !#‡daJ 1E
r8

@qu~r 8,t !

3W@r~r 8;t !;r 8→r #

2qu~r ,t !W@r~r ;t !;r→r 8##dr 8. ~B4!

Now we take into account that, after a transient regime
a few centuries, the age profile tends towards the sta
Lotka form ~60! and thus

ru~a;r ;t !;cst~a!qu~r ;t !, c~auu;r ,t !;cst~a!. ~B5!

We insert Eqs.~B5! into Eq. ~B4! and we evaluate the aver
age vital functions which enter these equations. We get
following expression for the average natality function:

^l~a8!&5E
0

`

l~a8!c~a8uu8;r ,t !da8

;E
0

`

l~a8!cst~a8!da8

51/Z~ r!. ~B6!
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The evaluation of the average mortality function is a
more complicated. We obtain

^m~a!&5E
0

`

c~auu;r ,t !@m0~a!1dm@r~r ;t !##da

;E
0

`

cst~a!@m0~a!1dm@r~r ;t !##da

5E
0

`

cst~a!m0~a!da1dm@r~r ;t !#. ~B7!

The last integral in Eq.~B7! can be evaluated in a number
steps. We get
l
-

s

o,
a,

H.
a

T.
L

06111
t E
0

`

cst~a!m0~a!da5
1

Z~ r!
E

0

`

exp@2r a#
]

]a

3H 2expF2E
0

a

m0~a8!da8G J da

5
1

Z~ r! F12E
0

` H ]

]a
exp@2r a#J

3@2 l ~a!#daG
5

1

Z~ r!
2r. ~B8!

By collecting these results and inserting them into Eqs.~B4!
we come to Eqs.~67! and ~68!.
nd
@1# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!; A. J. Koch and H. Meinhardt,ibid. 66, 1481~1994!.

@2# R. S. Johnson,A Modern Introduction to the Mathematica
Theory of Water Waves~Cambridge University Press, Cam
bridge, 1997!.

@3# F. Moran, M. O. Vlad, and J. Ross, J. Phys. Chem.101, 9410
~1997!; M. O. Vlad, F. Moran, and J. Ross,ibid. 102, 4598
~1998!; J. Phys. Chem. B103, 3965 ~1999!; Physica A278,
504 ~2000!; J. Phys. Chem. B105, 11 710~2001!.

@4# M. B. Neiman and D Ga´l, The Kinetic Isotope Method and It
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