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We study a general class of nonlinear macroscopic evolution equations with “transport” and “reaction”
terms which describe the dynamics of a species of moving individi@tsms, molecules, quasiparticles,
organisms, etg. We consider that two types of individuals exist, “not marked” and “marked,” respectively.

We assume that the concentrations of both types of individuals are measurable and that they obey a neutrality
condition, that is, the kinetic and transport properties of the “not marked” and “marked” individuals are
identical. We suggest a response experiment, which consists in varying the fraction of “marked” individuals
with the preservation of total fluxes, and show that the response of the system can be represented by a linear
superposition law even though the underlying dynamics of the system is in general highly nonlinear. The linear
response law is valid even for large perturbations and is not the result of a linearization procedure but rather a
necessary consequence of the neutrality condition. First, we apply the response theorem to chemical kinetics,
where the “marked species” is a molecule labeled with a radioactive isotope and there is no kinetic isotope
effect. The susceptibility function of the response law can be related to the reaction mechanism of the process.
Secondly we study the geographical distribution of the nonrecurrent, nonreversible neutral mutations of the
nonrecombining portion of the Y chromosome from human populations and show that the fraction of mutants
at a given point in space and time obeys a linear response law of the type introduced in this paper. The theory
may be used for evaluating the geographic position and the moment in time where and when a mutation
originated.
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I. INTRODUCTION neous system]. We have shown that for such systems it is
possible to design an experiment involving labeled com-
A great deal of attention has been given to the study opounds for which the response to an excitation can be de-
nonlinear evolution equations including “transport” as well scribed by a linear law, even if the kinetics of the process is
as “reaction” (that is, generation and disappearaneems.  honlinear. In this case the linearity of the response is gener-
These equationS, Wh|Ch are genera”y referred to agted by a “neutrallity condition” of the labeled and Unlabeled
“reaction-diffusion” equations describe a broad class of phe-cOmpounds, that is, we assumed that the rate coefficients are
nomena in physics, chemistry, and biology, including excit-identical for the I'ab'eled and unlapeled compounds. Thlsf ne-
ability, stable propagation fronts, solitary waves, solitons,gIECt of the kinetic isotope effect is a reasonable approxima-

stable nonuniform patterns and other nonlinear eff¢tts t|_on, Iffr_e%uentlly tysed In i_hemuf:al tkr:net'@]; |ttrets_ults |r} |
The investigation of these nonlinear effects is generallySlmpl ied evolution equations for the concentrations ot 1a-

based on the use of numerical methods as well as appro>JP-6|efd and unlabgled _specie§. Li”e?“ response laws are highly
desirable, especially in nonlinear kinetics, because they make

. <’f}'possible to carry out experiments for which the result can
tively scarce and thereforg valuable'z. Most exaf" results refe[ge easily interpreted. Secondly, the research of the other
to sp_eC|aI types o_f evolution equations for which analythalthree of us is concerned with the geographical distribution of
solutions are available, for example, the Burgrer equationne nonrecurrent, nonreversible neutral mutations of the non-
[2]. ) recombining portion of the Y chromosome from human
The purpose of the present paper is to suggest a responggpuylations]5,6]. There is experimental evidence that most
experiment for exploring the dynamical behavior of a gen-mytations of this type are neutral, which is consistent with
eral type of reaction-diffusion equation. We show that, undekimura’s theory of neutral evolutiofir]. Kimura’s theory is
suitable assumptions, it is possible to design an experimemased on a “neutrality condition,” that is, on the assumption
for which the response of the system can be described by that the natality and mortality functions as well as the trans-
linear superposition equation, even though the underlyingort coefficients are the same for the main population as well
dynamics of the process is highly nonlinear. Our research haas for the mutants. For neutral mutations the nonlinear
been motivated by two different problems. First, in a seriegeaction-diffusion equations for the spreading of a mutation
of papers three of us have studied the transit time distribuwithin a growing population which is expanding in space
tions for complex chemical reaction networks in homoge-have a special structure, which make it possible to transform

1063-651X/2002/6)/06111@17)/$20.00 65061110-1 ©2002 The American Physical Society



MARCEL OVIDIU VLAD et al. PHYSICAL REVIEW E 65061110

them into linear evolution equations for the fractions of mu-

tants (gene frequenci@sat a given position and time, even uJu"':f/['"Wu(P(f';t),f'—ﬂ)df'
though the global evolution equation for the total population '

density is nonlinear. The linearity of the evolution equations — " Wy(p(r;t),r—r")dr’]

for the gene frequencies is due to Kimura’s “neutrality con- o m
dition.” The comparative analysis of these two apparently - Z (_1)m2 E —‘9
unrelated problems has shown that, by introducing a general m=1 m om0

“neutrality condition” it is possible to derive a linear re- u(m) _

sponse theorem for a general class of reaction-diffusion sys- X{Dﬂl,,,#m(p(r,t),r)---}, @
tems, which include the case of homogeneous, space- Lo,

independent chemical systems discussed in Ralf.as a WhereWu(p(r’;t),r’'—ndr, u=12,..., ardransport rates
particular case. With minor adaptations this response thed?" the different species from a position betweenandr
rem can be used for the description of the space and timgdr to a position between andr+dr and

propagation of neutral mutations. We believe that such a gen- 1 m
eral response theorem may have implications in the study of DUM (p(r;t),r)= _f I, -r)
. K . . K . K1 Bm m! J,rg=p o M My
various problems in physics, chemistry, biology, and genetic
anthropology. XWy(p(r:t),r' —ndr’, (3

The structure of the paper is the following. In Sec. Il we

give a general formulation of the problem. In Sec. Ill we are generalized diffusion coefficients of different orders. In

derive the response theorem and present a physical interpraost physical, chemical and biological applications the

tation of the delay functions entering the response law. Irfransport ratedV,(p(r’;t),r’ —r)dr can be assumed to be

Sec. IV we discuss the implications of the response theorerindependent of the composition vectefr’;t); however, in

in chemical kinetics. In Sec. V we study a nonlinear modelsome cases such a dependence must be taken into account.

for the propagation of a neutral mutation in a growing popu-For example, a dependence of the transport rates on the com-

lation which is expanding in space and we derive a lineaposition vector must be considered in order to describe the

response law for this problem of population genetics. In Sec:anticrowding” effects in the diffusion of biological popula-

VI we illustrate our approach by studying a simple, one-tions[8]. A similar dependence must be considered in order

dimensional reaction-diffusion system. Finally in Sec. VII to describe bacterial chemotaxX@j.

we discuss the utility of our results as well as the limitations For simplicity, in this article we limit ourselves to re-

and the possibilities of generalizing our approach. sponse experiments, which involve a single species, say spe-
ciesv. The evolution equations of the process are the fol-
lowing:

II. FORMULATION OF THE PROBLEM Ipu(r, 013t =Ry p(r,H)]+ Lypy(r,t), U#v, ()
We consider a macroscopic system containing different

types of individuals(species which can be atoms, mol- ap,(r,0)/at=3,(r,t)=J3, [p(r,H)]+R,[p(r,1)]
ecules, quasiparticles, biological organisms, etc. We assume ‘L i 5)
that the different types of individuals interact with each other wPu(1,1),

and at the same time are involved in random walk mOt'OnSWhereJ;'(r,t) is the input flux of species, which is gen-

which can be described by transport operators local in time :
We denote by, (r:t), u=1.2, . .. theconcentrations of the erally space and time dependent and can be controlled by the

different species at positionand timet, expressed in num- eﬁgg'rigegéitn?zg” tE)p ((j:a’t)e]n'j ;hne tﬁztzggluésiﬁjr?izgr the
bers of individuals per unit volume and assume that the rat%vom osition de endencg of the output flug can be ex réssed
of change of the species,R,(t), can be expressed as a P P P P

. : - ) by a kinetic law. Our approach takes into account explicitly
local, nonlinear, function of the composition vectofr;t) only the input and outout fluxes of speciesThe inout and
=[pu(rit)Ju=12,.and of timet y e n P P b

output fluxes for other species are not taken explicitly into
consideration and can be embedded in the reaction rates.
We assume that each species 1,2, ..., mayexist in
two different forms, “marked” and “not marked” and that
both forms fulfill a “neutrality condition,” that is, their ki-
netic and transport properties are identical. In chemical ki-
u=12,.... (1) netics a “marked species” can be a molecule containing a
radioactive isotope and we neglect the kinetic isotope effect.
In fluid mechanics a “marked species” can be a colored fluid
whereR] (p(r;t))=0 andR (p(r;t))=0 are formation and for which the hydrodynamic propertigslensity, viscosity,
consumption rates, respectively. The transport of the differdiffusion coefficients are the same as the ones of the main
ent species can be described by transport operators, whid¢huid. In population genetics a “marked species” can be an
are local in time and generally nonlocal in space: individual carrying a neutral mutation, and for which the

Ru(D)=Ry(p(r;1) =Ry (p(r;H)) =Ry (p(r;1)),
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main functions describing the vital statisti¢satality and Since we assume that the output fh1|§<2[p(r,t)] is ex-
mortality functions, diffusion coefficientsare the same as in pressed by a kinetic law, we introduce an additional scaling
the case of a nonmutant individual. In the following we de-condition

note byp,(r,t) andp (r,t), u=1,2, ..., theconcentrations .
of the “not marked” and “marked” species, respectively, and w wr e py (131) IS e
by pa(r,t)=pyu(r.t) +pX(r,t),u=1,2, ..., thetotal concen- 3, " (0. p(ri) = pX(rit)+p,(rit) Jy 7P (riy)
trations of the species.
We consider that at the beginning of the experiment the +p(r;1)). 9

system contains only “not marked” species. The syste

need not be in a stationary state. The experiment consists | e also introduce similar scaling conditions for the transport
varying the ratio ratesW,(p(r’;t),r'—r)dr, u=12,... .

WG (p* (r5t),p(r'5t),r" —r)dr
* !.
H +%x “ » pu(r ’t)
between the input flux o, * (r,t) the “marked” compound RS I
and the total input flux of speciesJ; >(r,t), with the pres- Pu (15D +pu(r'sn)

ervation of the total input qux]jz(r,t). We record the re- +p(r’;t),r’'—=ndr, u
sponse to this variation, the fraction

Bu(r,0)=3,*[p(r,t),p* (r,0)113, *[p(r,1),p*(r,0)],

a,(r,t)=J37*(r,0)/137>(r 1), (6)

WE (p* (r';1)

=12,.... (10

(7) Considering the response experiment suggested in the
preceding section, we introduce two sets of transport equa-
of the outflow flux of the marked species tions(a) for the total species, “marked” and “not marked”

v, I3 *[p(r,t),p*(r,t)], to the total output flux
3, *[p(r 1) p* (r,1)] of speciesy. The purpose of our theo- 2 ¥(r,t)=R,[p(r,t)]+ f [R5 HW, (™ (r"30).1"—1)
retical analysis is the derivation of a relation between the? r

excitation of the system, expressed by the fractQ(r,t), o (r OW (o2 (rt) . r—r)dr’. u# 11
and the response of the system, expressed by the fraction pu(r Wy (p™(rt), ldr’, uzv, (11

Bu(r,1). J s
Si P (MD=RIp* (01437 (1) =3, [p*(r,0)]
[ll. GENERAL RESPONSE LAW

In order to derive a response law we need a convenient +f [pf(r’,t)WU(pE(r’;t),r’—w)
mathematical representation of the “neutrality condition,” in r'
the form of a scaling law, which connects the kinetic and —pf(r,t)Wv(pE(r;t),r—>r’)]dr’ (12)

transport laws for the whole system to the corresponding
laws for the “marked” and “not marked” species, respec- gn (b) for the “marked” species
tively. This problem has been already dealt with in chemistry,

in the context of kinetic isotope methdd,10]. It has been P px (1)
shown that if the kinetic isotope effect is neglected, the for- —p(r,t)= . Ru[pz(l’,t)]
mation and disappearance rates of the “marked” species It pf rt
R,*, to the total rates of formation and disappearance
Ry (p* (r;t)+p(r;t)) are +J,[pfj(r’,t)Wu(pE(r’;t),r’—w)
r
+ Pﬁ(r;t) 4 —p*(r,H)Wy( 2(ret ")]dr’ +
R* (0¥ (110),p (1) = = R (p* (131) Py (MW (pH(r3t). r=rJdr’, uzv,
pu () +py(r;t) (13
+p(r;t)), u=12,.... (8)
J * p:(l’,t) s *+
Equations(8) express the fact that the “marked” and “not P (rt)=— R,[p=(r,)]+3; "(r,t)
marked” species contribute equally to the transport process. py (.t
In Appendix A we present a simple derivation of E¢R). for "
rate processes obeying the mass-action law. The main point Py (r,t) I [p3(r0)]
of our approach is the assumption that these scaling condi- pf(r,t) o LPAT
tions hold not only in chemistry, but for any other type of
generation-consumption process of discrete particles obeying .o s
a neutrality condition. Equation8) do not hold for variables + fr,[pv (r 't)Wv(pz(r .’ —=r)
which are not related directly to the formation or disappear- . s
ance of particles, such as the temperature of the system. —p, (YW, (p=(r;t),r—r")]dr’. (14
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Together with suitable initial and boundary conditions,
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It is mathematically convenient to embed the initial con-

Egs.(11)—(14) determine the time and space dependence oflition of the response functiorﬁg(r) into the excitation
the total concentrations of the different species, as well as thiinction. If we define the modified excitation function

concentrations of the marked species. Equatidris—(14)

are nonlinear; however, despite their nonlinearity, they lead

G, (r,0)=B2r) 8(t—to) + a,(r,1), (22)

to a linear response law, which relates the excitation function

a,(r,t) to the response functio@,(r,t). From Egs(7) and
(9) it follows that

P (r,t)=B,(r,0p> " (r,t).

We insert Eq.(15) into Eq. (14) and make use of Eq12).

(19

After some algebraic manipulations we come to a linear in-

tegrodifferential equation for the response funct@y{r,t)

d
S Bo(r 0 =(a,(r,) = B,(r,0)Q, (1,1)
+f,ﬁv<r',t>\7vv<r'~r;t>dr'

g0 | W rdr, ag

where
Q7 (rH=33(r,0lp;(1r,0), (17
is a specific input rate and
_ S,
W,(r'—rit)=— W, (p>(r';t),r'—r), (18
p, (r,t)

is an adjoint transport rate. Since EG6) is linear, its solu-
tion corresponding to the initial condition

Bu(r t=t)=B(1) (19
can be expressed as
Bv(r,t)=f ,BS(r’)Q:(r’,to)G(r’,tOHr,t)dr’

r/
t

+f j a,(r' tHQ (r't")
tgJr’

XG,(r',t'—r,t)dr'dt’, (20

whereG,(r’,t"—r,t) is the Green function attached to Eq.

(16), that is, it is the solution of

+ i I
Q, (r,t)+ pn G,(r',t'—r,t)

—J G,(r' t'—=r" W, (r"—r;t)dr”
r”

+Gv(r’,t’—>r,t)j W, (r"—r:t)dr”
r//

=58(r—r")s(t—t"). (21

then we can embed the first integral term in E2f) into the
second integral term in the same equation and extend the
time integration limit to minus infinity. We come to

,BU(r,t)zﬁxﬁ,’&v(r’,t’)x,,(r’,t’—>r,t)dr’dt’,
(23

where

Xo (' V=1, )=0.(r' t")G,(r',t'—rt), (24
is a space and time dependent susceptibility function. Equa-
tion (23) is the main result of this section; E(Q3) is the
space-dependent generalization of the linear response theo-
rem derived for tracer experiments in space-independent, ho-
mogeneous chemical systefr3.

In order to obtain a physical interpretation of the suscep-
tibility function y,(r’,t’—r,t) we introduce the transit time
7 of an individual from the species, that is, the time nec-
essary for that individual to cross the system, from its en-
trance in the input fluxi, (r,t) to its departure in the output
flux J, [p(r,t)]. We introduce the notation

n,(7,r',r,t)ydrdr’'dr with

fwf n, (7,0 r,t)ydrdr’ =p,(r,t), (25)
o Jr’

for the number of individuals from the specieswhich at
time t are placed position betweerandr +dr, have a resi-
dence time in the system betweeand r+dr, and entered
the system at a position betweehandr’+dr’. Since our
evolution equations in the absence of the “marked” species,
Egs.(4) and(5), depend only on total concentrations, it fol-
lows that the individuals with different transit times and en-
try positions obey a “neutrality condition,” in the sense that
they are characterized by the same kinetic and transport co-
efficients. The scaling condition®)—(10) can be easily ex-
tended for a continuous distribution of residence times and
entry positions, resulting in

R, (n,(7,r",r,t),p(r;t))drdr’

3 7, (7,r',r,t)ydrdr’

py(1;t) Ry (p(r:t), (26)
Z, (np,(7,x',r,t),p(r;t))drdr’
VI . @

py(rit)
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W, (g, (7,1 r"0),p(r";t),r"—r)drdr’

7, (7,0’ 1" t)drdr’
pu(r";t)

W, (p(r”;t),r"—r),
(28)

where Ry ((7,(7.r'.1.t),p(r;t)), Z, (7,(7.r',1,t),p(r;t)),

and W,(n,(7,r',r",t),p(r';t),r"—r)drdr’ are rate and

flux densities which obey the integral conditions

JowJ'r'R"t(n”(T’r"r’t)’P(Ut))der’:Rf(P(r;t)),
(29)

f;ﬁ,I;(m(ﬂr’,r,t),p(r:t))dfdr’=J;(p(r;t>),
(30
JwJ W, (g, (7,r" 1" 1), p(r";t),r"—r)drdr’
o Jr’
=W, (p(r";t),r"—r). (31

By using the rate and flux densiti€27)—(29) we can

derive the following balance equations for the population

density:

d

d
— 4 — /
7 077) (7,1 ,1r,t)

B 7, (7,11, t)
C p(rit)

(7,r',r,t)

S R )

+ Jr”[nv(r,r’,r”,t)WU(pz(r”;t),r”ﬂr)
= 7y(71 LW, (o™ (r;0),r —1")]dr”, (32
and

N(7=0y",1,)=3"(r;t)8(r—r"). (33
We introduce the probability density of the initial positioh

and transit timer for an individual from species which at
timet is at the positiorr:

ch(T,r’|r,t)=nu(r,r’,r,t)/fJnv(r,r’,r,t)drdr’
o Jr’

=n,(7,r",r,t)/p,(r,t) (34
which obeys the normalization condition
f f o, (7,r'|r,t)drdr’=1. (35
0o Jr’

PHYSICAL REVIEW E 65 061110
Egs. (32) and (33) and make use of EqJ5) for the total

population density of species After some calculations we
obtain

J J ,
E—I—E o, (7,r'|r,t)
:_(,DU(T,r,||’,t)Q:(r,t)

+j o, (7,1 [r, )W, (r"—r;t)dr”
r”

—¢U(T,r'|r,t)f W, (r'—r;t)dr’, (36)
r!

with the boundary condition

=0, (r;t)sr—r’). (37)

By comparing Eq(36) with the evolution equatiofi21) for

the Green functiorG,(r’,t"—r,t) we notice that these two
equations have a similar structure and thus the probability
density ¢, (7,r’|r,t) can be expressed in terms &f(r’,t’
—r,t). By integrating Eq(36) along the characteristics we
come to

o, (7=0r'

@, (.r'|r,)=h(t—7-1tx) Q) (r' ,t=7)G,(r' ,t—7—>r1,1)

+ h(T—H—tO)J’ o, (7,1 1" 10)
r”

XG,(r" to—r,t)dr”, (39)

whereh(x) is the Heaviside step function. If in E¢38) we
push the initial time tay— —o°, we notice that the condi-
tional probability densityp,(7,r’|r,t) is related to the delay
function y,(r’,t’—r,t), defined by Eq(24) We have

o, (7,1 |r,t)=x,(r' ,t—7—r,t) and
X, (r' ' —=r =@, (t—t'r'|r,t). (39

The susceptibility functiony,(r’,t’—r,t) can be viewed as
a conditional probability density of the initial timé=t— =
and of the initial positiorr’, which fulfills the normalization
condition

t
j J X (r' t'—r,t)ydr'dt’ =1. (40
— r'

The linear response lay23) can be rewritten as

t
Bv(r,t)=f f"o‘zv(r’,t’)xv(r’,t’—>r,t)dr’dt’
—Jr!

:f f"o},,(r’,t—T)cpv(f,r’|r,t)dr’d7-. (41
o Jr’

Now the physical significance of the linear response law is
straightforward: it expresses the contribution to the output

In order to derive an evolution equation for the condi-fraction of marked particles entering the system at different

tional probability densityp,(7,r’|r,t) we insert Eq(34) into

initial positionsr’ and different initial timest’ =t— 7. The
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weight function(susceptibility function attached to various this transformation can be described by a linear kinetic law
initial positions and times is the conditional probability den- of first order. This approach is limited to the particular case
sity of these two random variables. of relatively low concentrations for which the nonlinearity of
In conclusion, in this section we have shown that for neuthe transport among different compartments can be neglected
tral systems obeying the scaling laW®—(10) the response and the nonlinear kinetic laws can be linearized. Once again,
to the excitation experiment suggested in Sec. Il can deeur approach makes it possible to extend the response laws
scribed by a linear superposition law where the susceptibilittand response experiments to the nonlinear regime, provided
function is the conditional probability of the initial position that a set of neutrality conditions for labeled compounds is a
and time of a marked individual entering the system. reasonable approximation. However, in this paper we do not
discuss pharamakokinetic systems because they do not in-
volve reaction-diffusion models.

IV. IMPLICATIONS OF THE THEORY IN CHEMISTRY, For the abovementioned systems from chemistry, bio-
BIOCHEMISTRY, CHEMICAL ENGINEERING, chemistry, chemical engineering, and hydrodynamics we can
AND HYDRODYNAMICS imagine two different types of response experimer(ts.

The implications of our theory in chemical and biochemi- Transient experiments, Which_ consist _in varying the_f_ractio_n
cal kinetics, chemical engineering and hydrodynamics can b@f @ labeled compound at different times and positions in
discussed by using the same approach. In these fields it RPaC€ and in recording the fraction of the labeled compound
easy to design response experiments which make it possibfét different times and position&2) Frequency response ex-
to evaluate the susceptibility function, which enters the reP€riments, for which we assume that the fraction of labeled
sponse law(23). The problem of population genetics, which compound in the input flux can be varied as a wave in space
motivated the present research in the first place, is mor@"d time. _ _ _
complicated and necessitates a special approach. This special T Simplest type of transient experiment is based on the
approach is presented in Sec. V. assumption t_hat the input fractiah,(r’,t") has the form of

In the particular case of reaction-diffusion systems in@ délta function
chemistry or biochemistry the response I&8) is a direct
generalization of the response theorem introduced by three Ty (r/ 1) =A28(r" —rg) (1" —to). (42
of us for homogeneous chemical systems, without a concen-
tration gradien{3]. . . . .

Similar response laws have been derived in chemical en'—3y inserting Eq.(42) into Eq.(41) we obtain
gineering and physicochemical hydrodynamjt4]. Based
on these response laws, tracer experiments have been de- B,(I,t)=Alx,(ro,to—r,)=AJp,(t—to,ro|r 1), (43)
signed which can be used for measuring various hydrody-

namic properties of flowing mixtures in open vessels, forgom which we can evaluate the susceptibility function
example, in chemical reactors or separation columns. The (r',t'—r,t) and the probability density,(r,r'|r,t) of
U 1 1 v 1 ’

tracer experiments are somewhat similar, although not ide he transit time and initial position. In order to evaluate these

lik d . he i q Hinctions, we need to repeat the transport experiment many
(23). Unlike our suggested experiments, the input and outpUfyes for different initial positions and initial times, which
variables are concentrations, not fractions of fluxes. More¢,, pe very difficult task. The problem simplifies consider-

over, no neutrality condition is used in the derivation of theably for time and space invariant systems, for which we have
response laws, and thus the response laws and the tracer

experiments only hold for systems obeying linear conserva-

tion laws, such as the continuity equation of hydrodynamics @u(7r'[r,)drdr’ =@, (7,r' —r|0,0/d7dr’

@n absen_ce of chemical reaction. Our approa(_:h allows .the = (7. Ar)d7dAr, (44)

introduction of a new type of response experiment, which v

also holds for systems with underlying nonlinear dynamics,

provided that a set neutrality conditions holds for the transwhere ¢, (7,Ar)d7dAr is the probability that the transition

port and reaction processes occurring in the system. time is betweenr and 7+ dr and the displacement vector
In pharmacokinetics similar response experiments arér=r—r’ is betweenAr andAr+dAr. If Eq. (44) is valid

used, based on the assumption of a linear response laifjen the response la@1) reduces to a convolution equation

which connects the input concentration of a drug introducedn space and time

in the human body and the output concentrations in urine,

liver, perspiration, etd.12]. The main assumptions on which i

such an approach is based are the followifdy.The human ,Bv(r,t)=J f a,(r—Art—71)¢,(7,Ar)drdAr,

body can be described as a set of interconnecting compart- 0 Jar

ments, which correspond to different biological orgaf%.

The drug is assumed to be uniformly distributed in each

compartment(3) The transport of the drug among the dif- The convolution equatiof45) can be solved for an arbitrary

ferent compartments is described by linear transport lédys. excitation @,(r’,t") by performing an inverse numerical

If the drug is transformeémetabolizedin the organism then Fourier and Laplace transformation. In this case, in order to

(45)
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evaluate the probability,,(7,Ar)drdAr and the susceptibil- W, (1,Ar|r,t)=¢,(7,r —Ar|r,t), where
ity function yx,(r’,t’—r,t) it is enough to carry out a single
response experiment. e _
In the case of a frequency response experiment we as- fo Lr:_w%(T,AfU,t)dAde—1 (49

sume that the input fractioa, (r’,t") has the form of a wave
is the probability density of the transit time and of the
T, (r' =A%+ AA, expiwt’ —iker'), (46)  displacement vectoAr=r—r’. By repeating the response
experiment for different values of the frequeneyand the
wherew andk are the frequency and the wave vector of thewave vectork it is possible to evaluate the complex suscep-
wave, andA® and AA, are the temporal average and the tibility =, (w.k|r,t), from which, by means of an inverse
amplitude of the excitation function, respectively. By com- Fourier transformation, we can evaluate the conditional

bining Egs.(41) and (46) we come to probability densityy, (7,Ar|r,t) of the transit timer and of
the displacement vectdrr=r—r’. If the numerical data are

B,(r,)=A%+AA, expliwt—ik-1)E,(w,kK|rt), (47) Not very accurate the numerical evaluation of the inverse
’ v ’ 0 Fourier transforms may be impossible. In this case, however,
we can evaluate the moments and the cumulants afd

where
Ar=r—r’. We notice that, according to the definiti¢48),
w [ 4o the complex susceptibility functiof ,(w,k|r,t) is the char-
Ev(w,k|r,t)=f f exp—iwt’+ik-Ar) acteristic function of the probability density, (7,Ar|r,t). It
0 JAr=-« follows that the momentér™(Ar,, )" --(Ar )™,) and the
X i, (7,Ar|r,t)dArdr, (48)  cumulants <<Tm(Arul)“ul---(Arup)”u») can be evaluated
from the derivatives of the complex susceptibility
is a complex susceptibility function and E,(w,K|r,t)
am+2nu
m ng... Ny \— im—3ny ¢ =1
<T (Arul) 1 (Arup) P> J “awma(k%)nul._,a(ku1)nul'—‘v(w1k|r1t) ’ (50)
w=0k=0
&m+2nu
m Ny, .. Nu V)= jm=3ny ¢ =
((7M(Ary ) (Ary ))) =] awma(kul)nuy”a(kUl)nulln o(@Kr,t) o (51)

We notice a formal analogy between the description of thegant consequence is generated by the causality principle
tracer experiments suggested in this article and the lineawhich leads to a general relationship of the Kramers-Kronig
response theory of Kubo for nonequilibrium systems withtype between the real and imaginary parts of the susceptibil-
memory[13]. From this point of view Eq(41) and its par- ity function. We expres& ,(w,k|r,t) in the form
ticular case(47) corresponding to a frequency response ex-
periment, are the analogs of the force-flux relationships for
systems with memory. This analogy is only superficial be- Eu(w,klr,t)=f
cause Kubo’s theory is limited to linear systems whereas the
underlying dynamics of the chemical processes studied in
this article are nonlinear. The linear structure of E@kL)
and(47) is generated by the particular experiment suggestewhere
in this article. For our problem the underlying nonlinear dy-
namics of the process generates some features which are o
missing from the linear systems described by the Kubo’s U(w,Ar|r,t)=f exp —iwt") g, (7,Ar|r,t)dr, (53
theory. The complex susceptibility functidd, (w,K|r,t) is 0
given by a Fourier transform with respect to the transit time
and the displacement vector and not with respect to the timg a  displacement-dependent complex susceptibility.
variable and the absolute position. For this reason, unlike ir@v(w,Ar“,t) is generally complex and thus we have
the case of Kubo’s theory, in our approach the complex sus-
ceptibility functionZ,(w,k|r,t) depends both on frequency,
wave vector, time, and absolute position.

Despite these differences some general features of Kubo'’s
theory are preserved in the case of our approach. An impowhere

+ o

expik-Ar)0,(w,Ar|r,t)dAr,
(52)

0,(w,Ar|r,t)=g/(w,Ar|r,t)—ie)(w,Ar|r,t), (54
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el (w,Ar|r,t)=Re0,(w,Ar|r 1), guency response experiments obey a system of integral equa-
tions of the Kramers-Kronig type, which express the condi-
&"(w,Ar|r, ) =—1m®,(w,Ar|r1), (55  tion of causality.
are the real and imaginary contributions @g,(w,Ar|r,t), V. EVOLUTION EQUATIONS FOR THE PROPAGATION
respectively. The relationships betweef((w,Ar|r,t) and OF A NEUTRAL MUTATION IN EXPANDING

en(w,Ar|r,t) have the form POPULATIONS

In this section we derive a simple model for the space and
time propagation of neutral mutations in an expanding popu-
lation. The model is motivated by the study of the geographi-

(56) cal distribution of the nonrecurrent, nonreversible, neutral
mutations of the nonrecombining portion of the Y chromo-
some from human populatiofs,6]. The ultimate goal of the

g,(w'Ar[r 1), model is to evaluate the geographic position and the moment
(57) in time where and when a mutation observed in a current

population originated. Simulation studies have shown that
where the notation P indicates the Cauchy principal valuel

he saturation effects in the total population play an impor-
These relationships can be derived in the same way as tﬁ@

nt role in the dynamics of the process and thus a linear
classical Kramers-Kronig relationships for time—independenﬁ_‘or’ulat'on model is not satisfactory. For the description of
complex susceptibility functions. To save space the detaile

e saturation effects we use a nonlinear generalizfidh
derivation is not given here. The main idea is to introduce th f Lotka's theory of stable populatidil5]. We consider that
complex function

w’—wSZ(w,’Ar“’t)’

1 [+
sl'}(w,Ar|r,t)=—;f do’

0 —w

1 [+
sg(a),Ar|r,t)=;J' do’

he maternity(natality) function of the population. depends
only on the agea, A=A\ (a), and that the mortality function
o M is made up of two components, an age-dependent compo-
E,,(z,Ar|r,t)=f expliz7) (7, Ar|r,t)ydr, (58 nentuq(a) and a density-dependent componéafp) which
0 is a function of the population densip/(r,t). Under these
) ) . ] circumstances, after a transient regime of a few centuries, the
wherez is a complex frequency variable and to investigatepopulation reaches a stable regime for which the fraction of

the influence of the causality on the analytic properties ofygividuals with a given agec(a)da becomes stationary
this function. The function is related to the susceptibility by14];

means of the relation

0,(w,Ar|r,t) C(a)da:Cst(a)da=|(a)e_"ada/ f:l(a)e"'ada,
= lim 3,(z=—o+iv,Ar]r,t) (60)

v—+0
where, the intrinsic rate of growth, is the unique real root of

_ im J exq — (iw+0) 710, (7, Ar|r t)d7. (59 the transcendental equation
0

v—+0 o
J’ Ma)l(a)e ™ 3da=1, (61)

Since in Eq.(56) the integral is taken from zero to infinity 0
the function¥ ,(z,Ar|r,t) is analytic in the uppee plane.
This analyticity property is a consequence of the causaliypnd where
principle which requires that the transit time is never nega- a
tive. The analytic behav[or of the functloﬁv(z,4r|r,t) in I(a)=eXp< _f po(a’)da’
the upperz plane makes it possible to express it by a closed 0
path integral of the Cauchy type. By separating the real and
imaginary parts in this Cauchy integral and using E§4)  is the survival function(the life table evaluated from the
and(58) we obtain the generalized Kramers-Kronig relation- density-independent component of the mortality function

(62

ships(56) and (57). mo(a).
In conclusion, in this section we have suggested that the We consider a neutral gene with different alleles
linear response law and the response experiments can be apd,2, . . ., andlenote by, the probability per generation

plied to various reaction-diffusion systems from chemistry,that the alleleu mutates into the allela’. In the final appli-
biochemistry, chemical engineering, and physicochemicatation the mutations are irreversible and nonrecurrent and
thermodynamics, provided that they obey a neutrality condithus it is enough to consider a single mutation, say 2,

tion. We have shown that the response experiments make diccurring with the probability ,=¢. In the development of
possible to evaluate the susceptibility functions from tranthe general theory, however, in order to preserve the symme-
sient as well as frequency response experiments. Further, they of the equations, we consider an arbitrary mutation ma-
complex susceptibility functions which result from fre- trix e=[g,]. We use the notatiog,(a;r;t)dadr for the
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number of individuals with a genewhich at timet are at a %

position betweem andr + dr and have an age betweamnd Z(r)= f l(a)e™"?da (69
a+da. In terms of this function we can compute the partial 0

population densities (r,t) of the carriers of different genes

as well as the total population density is the partition function attached to the Lotka age profile

given by Eq.(60)
o o Due to the neutrality condition we can derive from Egs.
ﬁu(f,t)Zf &(ar,da, p(rit)=2, f &u(a,r,t)da. (67) a closed evolution equation for the total population den-
0 u s sity. By summing Eqs(67) over the label we come to

(63)
We assume that the population migration can be described ¢ =~ _
by a transport operatdr - - of the type(2): PO =p(rOL = Sulp(riH)]]
IL---=fr,[---W(p(r’;t),r’—>r)—~--W(p(r;t),r—>r’))]dr’- +f,p(r’:t)W[p(r;t);r—r’]dr’—p(r;t)
r
(64)
By taking into account that the mutations are neutral, so that % fr’W[p(r;t);r’—r]dr’. (70

all individuals are characterized by the same natality and

mortality functions and transport rate coefficients we can de- \yg introduce the frequencies of the different alleles at a
rive the following evolution equations for the density func- position betweem andr +dr and timet

tions &,(a;r;t), u=1.2,...:

|t et = pu@rn %@+l ) PrD=0ur0/p(r0 with 2 7,(rH=1. (73
a
+J [£,(ar :OW(p(r':t),r —r) By combining Egs.(67), (70), and (71) we can derive a
r system of evolution equations for the allele frequencies
g (@rOW(rit),r—r)]dr’ vu(r,t). After some algebraic manipulations we come to
(65 9
ﬁ')’u(r:t):E Uu'u'yu'(rat)_E Ty Yulr,t)
and o o
” +f r’t)M r':t);r—r’]dr’
fu(a=0;r;t)=§ euru O)\(a’)gu,(a’,r;t)da’. (66) r,yu( " op(rit) Wlp(r';t); 1
r';t
Since the process of gene propagation takes place in a —yu(r,t)f, p(r't)) W[p(r";t);r—r’]dr’.
time scale of~10° yr whereas the stable age profile is o p(n
reached in a few centuries, we may eliminate the age struc- (72

ture from Eqgs.(65) and (66). In Appendix B we derive a
system of evolution equations for the partial population den- |n particular, if the population diffusion can be described
sities by Fick’s law from physics, then the evolution equatig6g)

for partial population densities turn into a simple form

J
Eﬁu(r,t)=ﬁu(r,t)[/—éﬂ[p(r;t)]]—i—z oy (1,1) ;
) S IUND=3 0y (1) = S Gy O(r,0+ 0y(1,0)

— 2 Tuwdy(r)+ f By(r',b)
o v X[—Su[p(r;t)]]+DV29,(r 1), (73

XWLp(r';t),r' —rldr’ = dy(r,t) . o .
whereD is a population diffusion coefficient and the evolu-

) S, tion equationg70) and (72) for the total population density
XJr,W[p(I’,t),r—H’ Jdr”. 67 and allele frequencies, become
Here d
St P =p(r0L = Sulpi(r;)]]+DV2p(rit) (74)
Oyu = &Ny /Z(/) (68)
are mutation rates; is the intrinsic rate of growth, and and
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d a mutation generated at an initial position, {ty) for which
ﬁ?’u(r*t)zg ‘Tu’u7u’(rvt)_2 ouu Yu(rt) the population density is much smaller than the carrying ca-
u ! pacity of the environment, that isy(rq,to)<ps;. Under
+DV2y,(r,t)+(grady,(r,t))- ¢(r,t), (75)  these circumstances a mutation has the opportunity to spread
fast; the mutation is carried by the solitary wave of the total
where population.
(b) If the total population density is constang(r,t)
o(r,t)=2Dgrad If p(r,t)]=2D Vp(r.t) (76) =Pst then, according to E(.76) the hydrodynamic_ veloc?ty
p(r,t) is equal to zerog(r,t)=0 and the hydrodynamic motion
does not exist anymore. The space propagation of a mutation

is a velocity vector which expresses the *hydrodynamic” is given by a slow, diffusive motion, expressed by the Fick
flow of different allele frequencies generated by the grad'e”{ermstzyu(r,t). A typical situation corresponding to this

of the total population density. We notice that the hydrody—case is a mutation generated late in time at a positigrt)

namic velocity vectokp(r,t) is proportional to the ratio be- ¢, \yhich the population density has reached the stationary
tween the gradient of the total population density and thg ;| e given by the carrying capacity of the environment

total population dendsity. describe the i g p(ro.t)) =pst. Under these circumstances a mutation is
| .Equa;tlﬁns(74)| an (75). ezcn e the t'mﬁ an fs;r)]ace evo- moving slowly and does not have the opportunity to spread
ution of the total population density as well as of the various, oy from its point of origin quickly.

allele frequencies in the case of Fickian diffusion. In popu- The genetic problem presented in this section is different
lation genetics Eq(74) is referred to as a Fisher equation from the examples discussed in the previous section. The
[16]. Equation(74) has been extensively studied in the lit- yitterence is due to the fact that the design of a response
erature{16] and it has been shown that for0 its solutions oy heriment is generally not possible in human population
are solitary waves which correspond to a constant velocity Ogenetics, due to the fact that the evolution of the human
propagation of the population front. In the large time limit & e jes has taken place over many millennia and the geneti-
qonstant populathn densify; emerges, which is the sqlu- cists can only observe the present effects of different evolu-
tion of the equation=du[ps]. The constant population snary events which tool place a long time ago. However, it
densityps; expresses the capacity of the environment to SUpjg nssible that our theory leads to a response theorem, which
port the survival of the population and is referred to as “car-ig similar to the general la®23). We express the initial con-
rying capacity.” We notice that, unlike E474), Eqs.(75 for  yitions of Eqs.(67) and(70) in the following form:
the different gene frequencies are linear; this is a conse-
quence of the neutrality hypothesis, according to which the 9, (r=rq,t=tg)=0,(rq,tg), p(r=ro,t=tg)=4x(rg,tp).
natality and mortality functions of different mutants are the (78
?ame.f \t/r\:e ((Jlji_?ftinguish t\tN?- different regimes for the PrOPAYAY 6\ we embed the initial condition@8) into the evolution
ion of the different mutations. . . . X

(@) If the total population density is space and time depen_equatlons(67) and(70) by introducing the input fluxes
dent then the space propagation of a mutation is made up ofy*>(r t)=(r,to) S(t—ty), I *(r,t)=0,(r,to) S(t—to)
two different componentg1) A slow, diffusive motion, ex- ‘ (79
pressed by the Fick term3V?2y,(r,t) in Egs.(75), corre-
sponding to different types of individuals af2) a fast, hy- and the specific input rate
drodynamic motion expressed by the convective terms + _aas
(grady,(r,t))- o(r,t) in Egs.(75). The convective terms in Q7 (rH=3"2(r.u/p(r.). (80)
Egs.(75) can be expressed as Equations(67) and (70) become

Ju=(grady,(r,1))- ¢(r,t)= |9radyu(f,t)||¢(r,t)|005(117,7)

P
a—tp(r;t)=p(r:t)[9+(r,t)+/f— oulp(r;t)]]

where® , is the angle between the vectgf, and the hydro-

dynamic velocity vectorp. It follows that the contribution of + f p(r';OO)W[ p(r;t);r—r']dr’

the hydrodynamic motion is large if the anghg, is small r’

and the absolute valuggrady, | and|¢| of the gradient of

the gene frequencies and of the hydrodynamic velocity vec- —p(f:t)J WIp(r;t);r’ —rldr’ (81)
tor are large. Typically the convective fluxdg are large for '

a population far away from saturation, which corresponds tand
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J . The solution of the integrodifferential equatio(&7) can
= du(r =3y *(r )+ y(r,OL— ulp(r;H)]] be expressed in a form similar to the integral response law
(23

+ o\ 19 ’ r,t - o 719 r,t t
? wrudu (1) uz wr D(r.1) yu(r,t)zzf fau,,(r”,t”)Xu/,u(r",t"—>r,t)dr”dt",
o t=—co Jr"

+f,19u(r’,t)W[p(r’;t),r’—>r]dr’ ®9

where the susceptibility function
—ﬂu(rﬁf Wlp(r;t)r—r']dr’ (82) Xuru(r" =1, =Q7(r" ") Sy (r",t"—r,t) - (90)
r/

is proportional to a Green function which is the solution of

with the initial conditions the equation

p(r=r0,t=to)=0, ’l?u(r:ro,t:to)zo. (83) 9
. . . i i _®urru(rﬂ,t,,—>r,t)

The interesting variables, which are experimentally acces- ot

sible, are the gene frequencies, that is, the fractions of dif-

ferent mutations in the gene pool at positioand timet = By (1" " =r.oy,
u!

Yu(r ) =3y(r,t)/p(r,t). (84)

_ "ogn +

Sequence analysis makes it possible to measure the geo- Guru(r,t —>r,t)(Q (r,t)+§ U“”')

graphical distribution of different mutations at the current
(present time t and at different positions on Earth, from o )
which it is possible to evaluate the gene frequengigs, t). + fr,éu"u(r A= HW(r’ —r;t)dr
The functionsy,(r,t) can be considered to be the response
to an excitation vector

a,(r,t)=[a,(r,H)], (85)

where the different excitation functions

—qunu(r”,t”—w,t)J W(r'—r;t)dr’
r!

+ 8, 8(r—r") 8(t—t"). (92)

We notice that for the genetic problem the evolution equa-

It 6,(rt) tions are more complicated than the evolution equations of
a,(r,t)= Z = (86)  the general theory developed in Sec. lll. Despite this differ-
J*3 () At ence it is still possible to show that the susceptibility func-

tion has a simple probabilistic interpretation. By analogy
are the ratios between the initial population densities of th&yith the general theory we introduce the agef the first
different types of individual®,(r,to) of the newly generated mutation event in the system. The agés the time interval
mutations of typev at an initial timet=t, and the total that elapsed from the initial appearance of a first mutation
population concentratiof(r,to) at that initial timet=t, [see  many generations ago, in an ancestor of the current popula-

Eqg. (79)]. By combining Eqs(80)—(86) we can derive a set tion and the current time. We have
of integrodifferential equations, which relate the response

functions y,(r,t) to the excitation functionw,(r,t): T=t—to, (92

9 wheret is the current time anty, is the time when the first
ﬁ?’u(ht):(av(f,t)— Vu(f,t))9+(r7t)+2 oY (1,1) mutation event initially occurred in the population. The age
u of a mutation should not be confounded with the agd an
_ individual. These two quantities have different orders of
=2 Tuvu(r )+ f yu(r OW(r —r;tydr’ - magnitude(a~0— 10 yr and 7~10°—10° yr). We also in-
u’ ' troduce the displacement vector of the mutation

—n(r,t)f W(r'—r;tydr’, (87) Ar=r—ro, (93)
r!

which is the difference between the current position vector
where and the position vector, attached to the place where the

p(r' 1) first mutation event occurred.
W(r'—rit)="T Wep(r5t,r'—n), (88 We denote by
nyu( T Ar,rt)drdArdr, (94)

is an adjoint transport rate similar to the ones defined by Eqs.
(18). with
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Zf f Nou( AT, F 1) dTdAT
v 0 JAr

=9(r,0, > X J:L Non( T, AT, T 1) d7dAT

=p(r,1) (99

the number of individuals which at timecarry the geney,
are placed at a position betweerandr +dr, have a muta-
tion age betweerr and 7+dr, and a displacement vector
betweenAr andAr+dAr provided that the initial mutation
event generated a gene of type
By using the neutrality condition we can derive the fol-

lowing system of evolution equation foy, (7,Ar,r,t)

J J A ‘

J— + JE—

gt ar Npu( T, AT,T,1)

= ou(T,A1,1, D[ = Sulp(r;t)]]

+2 Npu (AL D) oy — 77uu(7'=Ar,f,t)2 Oyu’
u/ u/

+f [7u, (7, r =17, 1, 0O)W(p(r";t),r"—r)
rV/

= (7, r =", 1, H)W(p(r;t),r—r")]dr", (96)
with the boundary conditions
Dou( T=0A1,1,t)=37(r;t) 8, 6(AT). (97

We introduce the fraction of individuals which at tinhe
carry the genay, are placed at a position betweerandr
+dr, have a mutation age betweerand r+dr, and a dis-
placement vector betweekr and Ar+dAr, provided that
the initial mutation event generated a gene of type

Myu( T, AL,TLT)
Ef f Nou( T AT, T ) dTdAT
v 0 Ar

_ (T, AT

e, (T, Ar|rt,u)=

EXC 99
which obeys the normalization condition
Ef f o, (7, Ar|r,t,u)=1. (99
v 0 JAr

The functiong, (7,Ar|r,t,u)drdAr can be interpreted as the
probability that at time and positionr, an individual which
carries a gene of typa is characterized by a mutation age
betweenrandr+dr, and a displacement vector betwekn

PHYSICAL REVIEW E 65061110

J

J
_+_
pn w) @, (7,Ar|r,t,u)

U

o, (T, Ar|r,t,u) Q" (r,t)

+Z ¢U(T,Ar|r,t,u’)au,u—@U(T,Ar|r,t,u)2 oL
u’ u’

+f o, (7, Ar|r" U)W, (r"—r;t)dr”
rH

—gov(r,Ar|r,t)j W, (r"—r;t)dr”, (100
rH
with the boundary condition

o, (T=0Ar|r,t,u)=Q7(r;t)5,,5(Ar). (101

By integrating Eq.(100 along the characteristics we can
express the probability density,(7,Ar|r,t,u) in terms of
the Green functior® . ,(r",t"—r,t). We have

o, (T Ar|rt,u)+h(t—7—te) QT (r—Ar,t—7)&,,(r—Ar,t

— ) Fh(r—t+t) >, f o, (7,Ar|r" to,u")
u// r//

X@unu(r”,toﬁr,t)dr”, (102)
If in Eq. (102 we push the initial time téy— — o, we notice
that the conditional probability density,(7,Ar|r,t,u) is re-
lated to the susceptibility functiog,,(r”,t"—r,t), defined
by Eqg.(24). We have

o, (T, Ar|rt,u)=x, (r—Ar,t—r—r,t) and

Xou(r' ' =1, t)=¢,(t—t",r—r'|r,t,u). (103

By using Eq.(103) we can rewrite the linear response law
(89) in an alternative form

yu(r,t)=; f: fmav(r—m,t—r)

X @, (7,Ar|r,t,u)dArdr. (104

The biological meaning of the linear response &4 is
clear: it expresses the contribution to the current values of
the gene frequencies of the various possible initial mutations
which may have occurred in the past, at different initial times
and different initial positions and which may have generated
various initial mutations. The weight functidsusceptibility
function) attached to various initial positions, times and mu-
tations is the probability density of these three random vari-
ables.

In conclusion, in this section we have developed a simple
mathematical model for the space and time propagation of

andAr+dAr, and the first mutation present in its ancestorsneutral mutations in expanding human populations. The

was of typev.

By combining Eqs(101)—(103) we can derive a system
of evolution equations for the fractiow(7,Ar|r,t). We
come to

model considers a single haploid locus with different neutral
alleles and the evolution equations of the population are as-
sumed to be age dependent and nonlinear. Since the charac-
teristic time scale describing the mutation events is much
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larger than the time scale describing the variations in the ageonsidered is generally growing. For example, we can con-
profiles, we have performed an adiabatic elimination of thesider an autocatalytic chemical reaction or the logistic
age variable. The resulting overall evolution equations forgrowth of a single biological species in population dynamics
the populations are a generalization of the classical Fisheh stationary concentration profile is the solution of the equa-
model for the wave of advance of an advantageous gene. Wen

have discussed some qualitative features of the solutions of

these equations. We have shown that solitary waves in total 72 P

population density may exist. Concerning the time and space —5 p(X)+R(p(x))=0 with J"=—D — p(0).
propagation of the mutations, we have shown that two dif- IX IxX

ferent propagation regimes exist, for low and large popula- (108
tion densities, respectively. We have shown that the geog ina the identit

graphic distribution of the current values of the gene y using he identity

frequencies can be expressed by a linear superposition law.

We have shown that the susceptibility function from the re- ala 2 d 92

sponse law has a probabilistic interpretation which is similar X glﬂ(x) =2 &P(X) WP(X) , (109

to the interpretation of the response law derived in Sec. Ill.

from Eq. (108 we can evaluate the output flux in terms
VI. APPLICATION TO ONE-DIMENSIONAL of the input fluxJ*. We have
REACTION-DIFFUSION SYSTEMS

2

In this section we illustrate our theory by considering a d d B d
one species, one-dimensional reaction diffusion system of % D(g—xp(X) __ZDR(P)&P(X)’ (110
lengthL. We assume that in the absence of a tracer the dy-
namics of the system is described by the reaction diffusiomnd then
equation
p(L)

g J = \/(J+)2—2Df R(p)dp. (111

51P=D5zptR(p), (109 p(0)
with the boundary condition We notice that a stationary regime is generally possible only

if the input fluxJ™ is larger than a minimum threshold value
9 ‘]r;in
J*=—D—p| =const, (1006

x=0
- o] p(L)
wheret is the time x is the positionp is the number density 37> Jin, Wth Iy = ZDJP(O) R(p)dp. (112

of the speciesD is its diffusion coefficientR(p) is its rate

of transformation, which is a local function assumed to dE'The physica] interpretation of Eq_’]_j_Z) is straightforward_ A

pend only on the population density. At positior 0 system  stationary density profile is the result of balancing between

receives a constant flux of individuals™. The system re- the population growth, which tends to increase the popula-

leases individuals at position=L; the corresponding output tion concentration and the diffusion process, which reduces

flux can be evaluated by using a relation similar to @96):  the concentration by dispersion, this balancing is only pos-
sible if the diffusion process is efficient enough. The inequal-

- 9 ity (112 can be rewritten as
J =—D&pX:L. (107
p\? p(L)
Models of this type are commonly used in various branches Dl 5x >2f o R(p)dp. (113
of physics, chemistry and biology. For example they can de- x=0 P

scribe the population dynamics in a linear habitat, or a catal-E
lytic process in chemical engineering occurring in a linear
pore.

Usually for large times the models described by Eqgs
(105 and (106) lead to a unique stationary concentration

profile and to a constant output flux. Although for special NOW We can suadest a tracer experiment. We assume that
forms of the reaction rat&(p), more complicated types of the species can exgi]g[ in two forms Snlabeled and labeled and
large time behavior may emerge, in this paper we limit our- ? thei trati d’ - tivel db
selves to the case of stationary concentration profiles. More2enOte (eI concentrations pyandp™, respectively, and by
over, we assume that the reaction rR{g) is non-negative,

R(p)=0 and thus the number of individuals of the species p>=p+p*, (114

quation (113 clearly shows that a stationary profile may
exist only if the contribution of the diffusion process, ex-
pressed by the factdd (dp/dx)?|,_, outweighs the contri-

bution of the population growth, expressed by the factor

2[R(p)dp.
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the total concentration of the species. We assume the exiss a position-dependent effective rate coefficient. Equation
tence of a neutrality condition, that is, the diffusion coeffi- (121) is a reaction-diffusion balance equation which can be
cientD is the same for the unlabeled and labeled species anderived from the rate equatiofl13). Since the evolution
the rate of transformation of the labeled species is given byquation(121) is linear and space inhomogeneous its solu-
tion can be expressed in terms of an inhomogeneous Green
* function G(x’ —x;t—t"), which obeys the equation

p

RY=— RLp*(X)]. (115

p=(X) ] 92
—G(X'—=Xxt—t")=D =5 G(X' —=x;t—t") + w(x)

We assume the existence of a constant input fltix for at X

which there is a stationary concentration profitgx) and a XG(X —x:t—t" )+ S(x—x")6(t—t').

constant output flud ™~ which obey the equations

(124)

5? . d We h
D~ 20" (X)+R[p*(x)]=0, with J"*=—D—p*(0) € have

(116 1 [

p*(X,t)=D G(0—x;t—t")IT*(t")dt’. (129

and to

0 In Eq. (125 we take the derivative with respectxand put
J 2= \/(J+2)2—2Dfp ( R(p)dp. (1170  x=L. After some calculations we get a linear response theo-
p>(0) rem of the type considered in the general theory developed in

. PSR the preceding sections
The total input and output fluxes,”=, J~= are made up

of additive contributions corresponding to the labeled and

. . t t—t
unlabeled species, respectively, B(t):J )((t—t’)a(t’)dt'=f Ogo(T)a(t—T)dT,
NARES RSN RN R I (118 (126
where the susceptibility functiong(t—t’) and ¢(7) are

Although the total fluxes) *>,J~* are maintained constant,
their components]*,J**,J7,J°*, can be arbitrary func-
tions of time. We suggest a tracer experiment, which consists

given by

in the variation of the labeled input fraction I 9
x(t—t')=———=—G(0—L;t—t"), (127
J-2dL
a(t)=3"*(1)137F, (119
in a controlled way and in the recording of the labeled output JtE g
fraction o(1)=————G(0—L;7), (128
J 2L
1 -3
B(t)=3""(1)[I"~. (120 andr=t—t’ is the transit time of the labeled species.

By following the general balance approach developed in
Sec. Il we can show that the susceptibility functigfr)
expressed in terms of the transit timet—t’ can be inter-
preted as the probability density of the transit timet
—t’. We are not going to repeat here the formal derivation
presented in Sec. Ill. However, we show that the response
law (126) derived in this section is compatible with the
with the initial and boundary conditions probabilistic interpretation of(7). We notice that the Green
function G(0—x;t—t’) can be interpreted as a concentra-

The concentration of labeled individuajs (x,t) obeys
the evolution equation

d 32
E”* (x,t)=D W”* (X, D) +w(x)p*(x,t) (121

J tion field of the labeled species corresponding to a unitary
p*(x>0t=14)=0, —Dﬁp*(x=0,t)=\]**(t), excitation and thus it can never be negativ&(0— x;t
—1')=0. Since at the exit of the systemsL, there must a
(122 . o
non-negative output of individuals, we must have
where —D[dG(0—x;t—1t")/dL]=0. Because by definition the

fluxes J**,J7 are non-negative])™*,J"*=0, from Eq.
(128) it follows that

R[p*(x)] (123

W(X)=
p*(X) o(7)=0. (129
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Moreover, in the limit,t;— —<0, the susceptibility function of experiments. We have shown that the causality principle
¢(7) obeys the normalization condition leads to a set of generalized Kramers-Kronig relations. These
Kramers-Kronig relations differ from the similar relations,

w from quantum optics, nonequilibrium thermodynamics, or

f e(r)dr=1. (130  particle physics: this difference is due to the fact that the
0 nonlinear dynamics lead to space- and time-dependent sus-

) . o ) ceptibility functions.
In order to obtain Eq(130) we consider an excitation having In human population genetics, scientists study a unique

the shape of a displaced step function phenomenon, the evolution of human species during the last
10° yr and this phenomenon cannot be reproduced in a labo-
a(t)=h(t—ty), (131 ratory. Because of this, designing a direct response experi-

ment is not possible in this case. However, we have shown
whereh(x) is the Heaviside function. For the inp(it31) the  that the current geographical distribution of mutations can be
total input flux J*> contains only labeled individuals, and expressed by a linear response law similar to the ones de-
thus for large timety— — o, we must have rived for the other chemical and biological problems for
which a response experiment can be carried out. This linear
law makes it possible to estimate the original time and posi-
tion of the occurrence of a mutation from the current geo-
graphical distribution of gene frequencies in human popula-

B(t)—1 asty— —. (132

By combining Egs(126) and Eqs(131) and(132 we come

o o tions.
to the normalization conditiof130) . L
In conclusion in this section we have illustrated our re- Further research will focus on the application of the ap-

sponse theory by considering the particular case of a cmeoroach developed here to various problems of physics, chem-

variable, one-dimensional nonlinear reaction diffusion sys—'étry' and biology. In chemicgl 'k.inetics preliminary' st_udies
! ve shown that the susceptibility functions contain impor-

tem, which describes a growth process. We have shown th inf i bout th tion Kineti d hani

a stationary concentration profile may exist if the c;ontribu-l"]mth'.n (f)_rrrda_lto_n a Ou'bl etreac Klm tln?hlcs a;n mgct amsmst.

tion of the diffusion process, which tends to reduce the con:" HIs TIEIA 1L 1S possibie 1o evaluate the rate and transpor
coefficients from linear response experiments. In human

centration of individuals, outweighs the contribution of the ; .
growth process. We have shown that for such a system it i opulatlon'genet|c's _the approach pre;gnted her_e can t_)e used
or evaluating the initial time and position at which a given

ossible to design a linear response experiment of the t . i ; .
ipntroduced in thig paper P P ypmutatlon appeared for the first time in the human genome.

Work on these two problems is in progress.
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which share a common feature: some of the types of indiGM28428.

viduals (atoms, molecules, quasiparticles, organisms,) etc.
present in the system can exist in a “marked” and “not
marked” state and obey a neutrality condition, that is, the
kinetic and transport properties of the “marked” and “not ~ We consider a simple chemical process involving the
marked” individuals are identical. We have shown that thechemical specieé\ as well as other specieB,C, ... . We
neutrality condition has an important consequence: it opensonsider that the specigsis involved in an elementary re-
the possibility of designing a response experiment characteection of the type
ized by a linear response law, even though the underlying
dynamics of the system may be highly nonlinear. The linear vA+---=products, (A1)
response law is not the result of a linearization procedure,
but a necessary consequence of the neutrality conditiowherev is the molecularity of the process with respect to the
Even though the response law is linear, the underlying nonspeciesA. We assume that the rate of the procgss) obeys
linearity of the process may influence its structure: in generaihe mass-action law, that is,
nonlinear evolution equations lead to response laws, which
are time and space variant. R=K[pa(r)]"-, (A2)

We have shown that our theory can be applied to at least
two different classes of systems. For certain problems ofvherep,(r) is the concentration of speci@sand the ellipsis
chemistry, biochemistry, and physicochemical hydrodynamin Eq. (A2) represent multiplicative terms depending on the
ics, for which the scientists have control on the processesoncentrations of the other speciB<L, . . ., present in the
studied, it is possible to use transient or frequency responssystem. We assume that the spedesxists in two forms,
experiments for the evaluation of the susceptibility functionsunlabeled(A) and labeled A*) and that the kinetic isotope
from the linear response law. We have derived the basieffect is missing, that is, the rate coefficient in E42) is the
equations necessary for the interpretation of these two typesame for both species,andA* . Since Eq(A2) is generally

APPENDIX A
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nonlinear, involving thevth power of the concentration _ d . _
pa(r), a naive approach would suggest that if both spegies c(alu;r,t) St du(r O+ pu(@rt)| o+ —— c(alu;r,t)
and A* are present, then the rate of transformation corre-
sponding to the labeled species is =—dy(r,t)c(alu;r,t){u(a)+ sulp(r;t)]}
R* =[XA*(r)]VR[pA*(F)+pA(r)] + fr’[ﬁu(r/,t)C(a|U;r’,t)W[p(r’;t);r,—>r]
pax(r) ] — 9 (r.uc@lu;r, OWp(r;t);r—r'1ldr’ (B2
e — R «(r)+ r , A3 ults by plr,t),
[pA*(r)+pA(r) [pA ( ) pA( )] ( )
where Xax (r)=pax(r)/[pax(r) +pa(r)] is the fraction of and
labeled compound at positian However, a careful analysis
of the problem shows that EGA3) is incorrect and that the
rate of transformatioiR* corresponding to the labeled spe- Fy(r,t)c(a=0|u;r,t)
cies is a linear function of the fractiog(r) of the labeled .
compound at position, that is, =3 Eyry i Ma ) dy(r,te(a’|u’;r,hda’. (B3)
u!
¥ =Xax (NR{pax (1) +palr)]
pax(r) By integrating Eqs(B2) over age froma=0 to a=% and
= WR[PA*(YHPA(Y)]- (Ad)  using Eqs(B3) we get the following evolution equations for
A A the partial population densities:
In order to prove Eq(A4) we note that, if, bottA and A*,
are present then there are actuallgeactiongAl) involving 9 o
m labeled specieanA*, and (v—m) unlabeled speciesy( Eﬁu(r,t)=2 su,uﬂu,(r,t)f N@')c(a'|u’;r,t)da’
—m)A with m=1,...v. These reactions can be repre- u’ 0
sented as o
—ﬁu(r,t)[f c(alu;r,t)[ x’(a)
0
mA* +(v—m)A---=products, m=1, ... », (A5)

+5M[z<r;t>]]da]+fr,[ﬁu(r',t>

Since we have assumed that the kinetic isotope effect is
missing, all reaction§A5) are characterized by the same rate

coefficientk. It follows that the rate of transformation of the XWp(r'st)r'—r]
labeled specieR* is given by — D, (r, )W p(r;t);r—r']]dr’. (B4)
” (v—1)! - . . .
R* = E M——————K[ pax (1] pa(r)]*~™x:-- Now we take into account that, after a transient regime of
m=1 mi(y—m)! a few centuries, the age profile tends towards the stable
e Lotka form (60) and thus
=Kppr (1) pae (1) +pa(1)]7 - (60
pax(r)
= «(r)+
o (D) +pa(r) LPax 1)+ 1) pu@ir~Cy(@) (1), c(aluir,)~cy(a). (BS)
=Xpx (N R[pax(r)+pa(r)]. (AB)

We insert Eqs(B5) into Eq.(B4) and we evaluate the aver-
APPENDIX B age vital functions which enter these equations. We get the

In order to eliminate the age structure from the evolution'®!lOWing expression for the average natality function:
equations(65) and (66) we introduce the conditional age

profile ~
<)\(a’)>=f A@')e(a'|u’;r,t)da’
gart)  Efar °
c(alu;r,t)= =S (B1) .
fdagu(a,r,t) o ~fo A(a')cg(a’)da’
We insert Eq{(B1) into Egs.(65) and(66), resulting in =1/Z(»). (B6)
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The evaluation of the average mortality function is a bit

more complicated. We obtain

<u(a)>=f:c(alu;r,t)[uO(aH5M[p(r;t)]]da

~cht(a)[ﬂo(a)+ Sulp(r;t)]]da

0

= fowcst(a)ﬂo(a)daﬂL oulp(rit)]. (B7)

PHYSICAL REVIEW E 65061110

oc 0 1 (= d
J Csi(a) (a)da=mfo exy:[—/ea]£

0
_ _ a (VYN ’
exr{ joﬂ (a")da ]da
| g
Jl) [ﬁexq—/za]]

X[—I(a)]da

X

_ . 1—
- Z()

1
/4

~Z0) (B8)

The last integral in Eq(B7) can be evaluated in a number of By collecting these results and inserting them into E§4)

steps. We get

we come to Eqs(67) and (68).
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