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Generalized Langevin equation approach to higher-order classical response:
Second-order-response time-resolved Raman experiment in CS2

Joohyun Kim and T. Keyes
Department of Chemistry, Boston University, Boston, Massachusetts 02215

~Received 30 November 2001; published 12 June 2002!

A simple, systematic generalized Langevin equation approach for calculating classical nonlinear response
functions is formulated and discussed. The two-time Poisson brackets appearing at second and higher order are
rendered tractable by a physically motivated approximation. The method is used to calculate the fifth order
~second order response! Raman response of liquid CS2. Agreement with simulation is good, but the simplicity
of the theoretical expression suggests that the path to obtaining qualitatively new information about liquids
with the fifth order experiment is uncertain. Further applications of the basic approach are suggested.
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I. INTRODUCTION

Quantum response functions are averages of nested
mutators of variables at different times@1,2#. The perturbing
Hamiltonian H8 is a product of an interaction dynamic
variable and the external fields. The observable that is ca
lated has the latest time argument, and the interaction v
able appears at each time the external fields act. One rou
the classical limit is replacing the commutators with Poiss
brackets. The linear response is easily reexpressed as a
correlation function, but Poisson brackets of variables at
ferent times cannot be avoided in higher order.

Recently there has been great theoretical@2–10# and ex-
perimental @11–14# effort directed towards the fifth orde
Raman experiment in liquids. The perturbation is the int
action of a pair of pulsed electric fields with the total syste
polarizability tensorP,

H85EaPabEb , ~1!

wherea andb are the polarization directions. ‘‘Fifth order
refers to the four pulses in the two factors ofH8 appearing in
second order response, and the fifth pulse that probes
response, the nonequilibrium refractive index. The pu
pairs act at times zero andt1, the probe att11t2. The refrac-
tive index is also an element ofP and so

R(5)~ t1 ,t2!5^†@Pab~ t11t2!,Pcd~ t1!#,Pe f~0!‡&, ~2!

with directionsa–e determined by the experimental geom
etry. The Poisson bracket for any variablesA andB, in units
such that massm51 and energy is in Kelvin, is

@A,B#5(
i 51

3N S dA

dxi

dB

dv i
2

dB

dxi

dA

dv i
D , ~3!

wherex and v are atomic positions and velocities, and t
index i denotes both atom number and Cartesian direct
The brackets inR(5) require the derivatives ofP at later
times with respect to coordinates at time zero; we useP to
indicate an unspecified element ofP. Little theory exists for
1063-651X/2002/65~6!/061102~7!/$20.00 65 0611
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dealing with such objects, but they must be mastered if
fifth and higher-order experiments are to yield any inform
tion about liquids.

The original motivation for the Tanimura-Mukamel fift
order experiment@3,11# rests upon a normal mode picture.
vibrational intermolecular modes exist in liquids, at least
short to intermediate times, then the third order~linear! re-
sponse functionR(3)(t), a familiar time correlation function
receives contributions from all the modes. This constitu
inhomogeneous broadening, which cannot be distinguis
from mode lifetime effects inR(3)(t). The idea was that in
fifth order the two pulse pairs separated byt1 would select
modes of periodt1, which could then be probed to determin
homogeneous decay only. The signature of well defin
modes is an echo inR(5) at t15t2. Tanimura and Mukame
@3# gave a theory based on the@15# quantum multi mode
Brownian oscillator model, in which the ‘‘system’’ mode
representing vibrational motion coupled to the polarizabili
is coupled to damped bath oscillators. Their approach
some similarities to the classical theory developed her
but there are also some obvious differences; it will be int
esting to work out the relation of the two appoaches.

A discussions of modes in liquids naturally sugge
@16,17# instantaneous normal modes~INM !, and an INM cal-
culation ofR(5) was given by Saito and Ohmine~SO! @2#. In
both CS2 and water they found strong echos in a first a
proximation which were washed out in a more complete c
culation. The problem is thatP is a nonlinear function of the
normal coordinates and can provide enough mode mix
that the experiment doesnot pick out modes with a single
frequency. Keyes and Fourkas@6# gave the first completely
consistent INM theory and presented a general INM
proach to more complicated dynamical quantities, e.g., n
linear response functions. Ma and Stratt@8# found that INM
did predict an echo in liquid Xe, but a computer simulati
had no echo and decayed very quickly, over a few hund
femtoseconds. These authors have recently attempted to
anharmonicity to the harmonic INM theory to provide th
evident damping of the harmonic modes.

INM calculations ofR(5) are straightforward because th
harmonic oscillator equations yield simple, explicit expre
sions forx(t) andv(t) in terms ofx(0) andv(0). Thus, a
©2002 The American Physical Society02-1
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Poisson bracket of form@P(t),P(0)# presents no specia
difficulty; P(t) is expanded as a Taylor series in the norm
coordinatesqa(t)5( i 51

3N e(a,i )xi(t), xi(t) is expressed in
terms of all$x(0),v(0)%, and the derivatives in Eq.~3! with
respect toxi(0) andv i(0) are easily evaluated. The polari
ability is a function of the instantaneous positions only.
general, however, the time-dependent brackets create
enormous theoretical difficulty. There exists no systema
framework for generating approximations toR(5). Contrast
this to the situation for time correlation functions with
single time argument, where one finds a host of technique
choose from. Perhaps the greatest flexibility~sometimes un-
fortunately! is provided@18–20# by the generalized Lange
vin equation~GLE!. The GLE describes the time evolutio
of dynamical variablesA obeying Newton’s equations, ex
pressed formally with the Liouville operatordA/dt5 iLA.
However, the components of time-dependent brackets donot
follow Liouvillian dynamics; (d/dt)„dA(t)/dx(0)…
5„d/dx(0)…iLA(t), and iL does not commute with
d/dx(0).

The matrixd„$x(t),v(t)%…/d„$x(0),v(0)%… obeys its own
equation governed by the ‘‘dynamical matrix,’’ the inst
neous Hessian, and this may potentially be used as the s
ing point for a GLE-like theory of correlations involving th
t-dependent brackets. Denny and Reichman@9# have given a
calculation of R(5) in Xe which circumvents the bracket
altogether, and also gives good agreement with simulat
In atomic fluids, to leading order in the dipole-induced d
pole expansion,P can be expressed with a product of de
sity operators and so the commutators in the quantumR(5)

expand to yield four time-ordered quantum correlations
six density operators. Making a Gaussian approximation
the quantum correlations and expressing the resulting co
lations of two density operators as classical density corr
tions with a quantum correction, an eminently simple clas
cal limit is obtained without ever introducing Poisso
brackets. This approach is very promising, although so fa
requires the special form ofP in atomic fluids.

While some progress has been made, the current the
of R(5) are disjoint. It is not possible to calculateR(n),n>5,
with the same ease and systematic framework afforded
the GLE for familiar two-variable, one-time correlation fun
tions. Thus we now give a theory of classical nonlinear
sponse functions based upon the GLE.

II. GENERALIZED LANGEVIN EQUATION APPROACH
TO NONLINEAR RESPONSE

A. Basic ideas

The GLE for a set of variables$A% is

dAa~ t !

dt
5E

0

t

ds Mab~ t2s!Ab~s!1I a~ t ! ~4!

with the solution

Aa~ t !5Gab~ t !Ab~0!1E
0

t

ds Gab~ t2s!I b~s!, ~5!
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where the propagatorG(t) is the solution to the homoge
neous equation,I is the random force, and

M ~ t !5„^ȦA* &d~ t !2^I ~ t !I * ~0!&…^AA* &21. ~6!

The equilibrium averageŝ&, M and G are matrices, andA
andI are vectors, in the space of the dynamical variables.
will omit the indices where the usage seems evident,
sums over repeated indices are implicit. Different derivatio
give different expressons for the random force. In Mor
formalism @18# it evolves via the projected operator (
2P) iL, I (t)5e(12P) iLtI (0), where 12P projects orthogo-
nal to $A% and its complementP projects onto$A%; PB
5^BA* &^AA* &21A. In the approach@19,20# of Oppenheim
and co-workersI (t) follows true dynamics andP is defined
with the matrixM. In either case, a crucial property of th
random force, which indeed expresses in part what is me
by ‘‘random,’’ is ^I (t)A* (0)&50,t>0. It follows that the
matrix of correlation functions,C(t)[^A(t)A* (0)&, obeys

Cab~ t !5Gag~ t !^AgAb* &. ~7!

The most careful, systematic use of the GLE is based
the idea that, since the random force is orthogonal toA(0), it
must lack any property poesessed by the$A%. Oppenheim
and co-workers have argued accordingly@19,20# that when
$A%5$Q%, where$Q% is the set ofall multilinear productsof
the hydrodynamic conserved variables,I (t) must be ‘‘fast,’’
decaying on a molecular time scale, and all explicit slo
time dependence is contained in the first term on the rig
hand side~RHS! of Eq. ~5!. It is also possible to use the GLE
to construct correlation functions which, though appro
mate, possess a specified number of terms in the exact s
time expansion. In addition an enormous number of unc
trolled, but often useful, theories have been based uponad
hoc choices of$A% and modeling of the random force corre
lation.

Since the third-order~linear! response function reduces t
an ordinary correlation function, the GLE may be used wi
out difficulty to predict and interpret conventional spect
Indeed, it is a cornerstone of such research. The situatio
far less clear, however, for more complicated dynami
quantities. Consider a correlation of three variables with~by
time translation invariance! two time arguments,C(t2 ,t1)
[^A(t11t2)A(t1)A* (0)&, which is far simpler than the av-
erage of nested time-dependent brackets in Eq.~2!. One
might begin by expressing the two time-dependent variab
with the solution of the GLE, Eq.~5!. A sum of terms con-
taining zero, one, and two random forces results. When se
ing the long time behavior ofC(t2 ,t1) one is tempted to
simply discard the random forces as fast variables. Thi
valid for the one-force terms. However, Schramm and O
penheim showed@20# that a productI (s)I (s8) behaved as a
hydrodynamic slow variablefor s;s8. In evaluating
C(t2 ,t1) with the GLE both random forces are integrat
over the interval (0,t1), and an important slow contribution
arises fromt1>s;s8>0.

Given the power of the GLE, it is compelling to apply
to R(5). Substituting Eq.~5! into Eq. ~2!, a desirable result
2-2
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GENERALIZED LANGEVIN EQUATION APPROACH TO . . . PHYSICAL REVIEW E65 061102
immediately emerges; the first term on the RHS of Eq.~5!
expresses the time-dependent variables in terms of their z
time values, allowing evaluation of the Poisson bracke
However, brackets also appear now of random forces at
ferent times. The work of Schramm and Oppenheim@20# on
the simpler two-time correlation indicates that these brack
cannot be neglected. Perhaps an extension of their work
be formulated for the problem at hand. However, we w
now take another tack, to rewriteR(5) such that the random
forcescan, to a good approximation, be ignored. The intra
table contributions arise from a product of random forc
which have similar time arguments; so, keep the forces w
separated in time. Time-translational invariance is ea
demonstrated for the quantum Heisenberg representatio
R(5). Subtractingt1 from the time argument of each variab
and then taking the classical limit

R(5)~ t1 ,t2!5^†@Pab~ t2!,Pcd~0!#,Pe f~2t1!‡&. ~8!

We will now use the GLE to propagatePab forward from
zero to t2 and Pe f backward from zero to2t1, and their
random forces cannot overlap except fors;s8;0. Conse-
quently, the random force contribution to Eq.~8! should be
negligible at long time; this argument, applied to two-tim
correlations, is due to van Zon and Schofield@21#. For a
good short time theory we will construct a GLE with rando
forces that vanish at short time, effectively eliminating t
remaining ‘‘overlap.’’

The indicated procedure immediately yields

R(5)~ t1 ,t2!5Gpa~ t2!Gpb~2t1!^†@Aa ,P#,Ab‡&

5S 21

T DGpa~ t2!Gpb~2t1!^@Aa ,P#Ȧb&,

~9!

where the second equality is obtained with partial integrat
and the properties of the equilibrium distribution function;
is understood thatPab is on the left andPe f on the right, and
energy is in Kelvin. We will use the second equality f
actual calculations, defining the coupling coefficientscab

(5) as

cab
(5)5^@Aa ,P#Ȧb&. ~10!

Equation ~9! represents an extraordinary simplificatio
with time-dependent brackets eliminated altogether. Sim
results are easily obtained for higher-order response fu
tions. To complete the approach we choose as a basis sP
and its time derivatives up to thenth derivative, for thenth
approximation to the theory. When the time derivatives
included in the basis set they appear explicitly in the fir
systematic term on the RHS of the solution of the GLE, E
~5!, and this term will express the exact time expansion
to thenth power. So long as that truncation of the expans
is accurate the random force must be zero. By increasinn
we can increase the interval around zero of vanishing r
dom force and satisfy the condition of no overlap better a
better. For the same reason thenth approximation, denoted
Rn

(5) , reproduces the exact@6# time expansion to thenth
06110
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order in combined powers oft1 andt2. Note that calculating
a conventional time correlation function with this basis s
reproduces the time expansion out to the (2n)th power.

The tensorial nature ofP causes a further complication. A
GLE representation ofPab(t) based on our idea should in
clude all the irreducible tensorial components ofPab(t) and
its derivatives. For, e.g.,Pzz(t) that means both the trac
~isotropic! and second-rank~anisotropic! parts enter sepa
rately, and in thenth approximation$A% contains 2(n11)
variables. In this paper for simplicity we will treatPab(t)
and its derivatives as single variables. The anisotropic po
izability is much larger than the isotropic polarizability in th
model to be used in our calculations on CS2, the @22# point
atomic polarizability approximation including first-order in
termolecular dipole-induced dipole terms. Using the sma
basis set will make little difference for polarizations whe
bothPab(t2) andPe f(2t1) are dominated by the larger se
ond rank part. This includes ‘‘fully polarized’’zzzzzzand
‘‘depolarized’’ xzxzxzbut definitely not zzzzmm, as the
‘‘magic angle’’ polarization is explicitly chosen to enhanc
the contribution of the isotropic polarizability.

B. Zero, first, and second order approximations

There is no zero order theory; withP as the only variable
the coupling coefficientcpp

(5) contains@P,P#50 and R0
(5)

50. In general,cpb
(5)50. The first approximation correspond

to the basis set$P,Ṗ%. The theory is sensitive to polarizatio
throughcab

(5) and through the different propagators which re
resent different components ofP in the GLE; the fifth-order
signal has@4,5,10,11,13# a strong polarization dependenc
Consider now some properties ofcab

(5) . A quantity must be
even in the velocities to have a nonzero average. The op
tions d/dt and @ ,# in cab

(5) each reverse the velocity parity
which thus remains identical to that of the productAaAb .
The polarizabilityP is even~function of positions only! and
each successive derivative reverses the parity. It follows
~also usingcpa

(5)50) the first approximation has one contr
bution

R1
(5)~ t2 ,t1!5S 21

T D cṗṗ
(5)Gpṗ~ t2!Gpṗ~2t1!. ~11!

The averages required forcab
(5) may be expressed straigh

forwardly, albeit tediously in some cases, with the techniq
described in Ref.@6#. There is no difficulty withcṗṗ

(5) ,

cṗṗ
(5)

5T~^P i j9 P i8P j8&1^P i8P i j9 P j8&!, ~12!

whereP i8 can denote either the derivative with respect to
i th atomic or molecular position or thei th INM normal co-
ordinate. Our approach will be to express the propagator
terms of the computationally convenient correlation fun
tions Cab(t) with Eq. ~7!. We will not attempt a GLE ap-
proximation toCab(t) but take the viewpoint that, if we use
the exactM matrix we would obtain the exact correlatio
function. The GLE is employed to expressR(5) in terms of
conventional correlation functions, not to calculate them.
2-3
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JOOHYUN KIM AND T. KEYES PHYSICAL REVIEW E65 061102
first approximation the relation betweenG and C is simple
since the matrix̂ AA* & is diagonal,

Gpṗ~ t !5Cpṗ~ t !/^~Ṗ !2&. ~13!

Combining these results and noting thatGpṗ(t) is an odd
function of t,

R1
(5)~ t2 ,t1!5~^P i j9 P i8P j8&1^P i8P i j9 P j8&!

3
Cpṗ~ t2!Cpṗ~ t1!

^~Ṗ !2&2
. ~14!

The remarkable aspect of Eq.~14! is that, since the third-
order responseR(3)(t) is (1/T)Cpṗ(t), we have the result

R1
(5)~ t2 ,t1!}R(3)~ t2!R(3)~ t1!. ~15!

Equation~15! is a remarkably good approximation, in muc
better agreement with simulation than INM for@10,7# CS2
and@8# Xe. The peak inR(3)(t) provides a good estimate fo
the distance from the origin of the peak inR(5)(t2 ,t1). In a
recent simulation paper SO@10# write ‘‘the peak maxima of
Rzzzzzz, Ryzzzyz, and Rzzmmzzare all located at (;0.1 ps,
;0.1 ps), which is slightly shifted from the peak maximu
position, ;0.14 ps, of the third order response functio
. . . .’’ Our theory shows the fundamental underpinning
this observation. AlthoughR1

(5) is not the whole story by far
we doroughlyexpect thatR(5) will relax on the time scale of
R(3) ~somewhat faster in CS2). Unfortunately, the implica-
tions are negative for the utility of the fifth order experime
It is necessary@11,13# to remove the strong ‘‘cascade’’ from
the experimental signal to isolateR(5). The cascade is ex
pressed as a product of twoR(3), and nowR(5) itself is seen
to be, approximately, a product of twoR(3).

In Xe @8# R(3) peaks at a little over 0.20 ps andRzzzzzz
(5)

near~0, 0.30!, that is, strongly skewed towards thet2 axis.
There is a fundamentalt1 ,t2 asymmetry inR(5) which is
missed in the symmetricR1

(5) . At t250 @Eq. ~8!# R(5) con-
tains a same-time@P,P#50 and vanishes on thet1 axis;
however, it need not vanish away from the origin on thet2
axis. Our first approximation cannot describe, beyond get
a rough estimate of the distance of the peak from the ori
a system where the asymmetry is pronounced. On the o
hand, in CS2 Rzzzzzz

(5) is @10# sufficiently symmetric thatR1
(5)

is a reasonable description. Of course we must include
asymmetry, an essential feature, and this can be found in

second approximation with the basis set$P,Ṗ,P̈%. When
used to calculate the correlation function alone@26# this basis
produces a rich description, with the capability of describ
either rotational diffusion or the solidlike librations plu
large reorientational jumps found in supercooled liquids.

The nonzero couplings arecṗṗ
(5) @Eq. ~12!#, cp̈p

(5) , andcp̈p̈
(5) ,

cp̈p
(5)

522T^P i j9 P i8P j8&, ~16!
06110
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(5)

56T2~^P i jk- P j8P ik9 &1^P i j9 P jk9 P ik9 &!

22TK P i j9 P j8Pk8
dFk

dri
L , ~17!

whereFk is the force on coordinatek. The coefficients grow
in complexity according to the total number of time deriv
tives in the subscripts. Bothcṗṗ

(5) and cp̈p
(5) have two deriva-

tives and similar expressions, proportional to averages
three factors ofP containing a total of four position deriva
tives. Such averages determine the contribution to the IN
theory that SO@2# namedR(5,1). Accordingly, let the sum of
all contributions toR2

(5) with 2m time derivatives in the co-
efficients be denotedR2,m

(5) . ThenR2
(5)5R2,1

(5)1R2,2
(5) and R2,1

(5)

is related toR(5,1). More spatial derivatives enterR2,2
(5) and,

throughdFk /dri , the first sign@6,8# of what would be an-
harmonicity in an INM picture. Of course, unlike INM, th
exact correlation functions we use to expressR2

(5) are fully
anharmonic.

Expressing the propagators in terms of the correlat
functions now requires a small amount of algebra; the ma

^AA* & is no longer diagonal sincêPP̈&Þ0. The result is

R2,1
(5)~ t2 ,t1!

5F ~^P i j9 P i8P j8&1^P i8P i j9 P j8&!
Cpṗ~ t2!Cpṗ~ t1!

^~Ṗ !2&2 G
1F 2^P i j9 P i8P j8&

@12~v1
2/v2

2!#2
S v1

2Cpp~ t2!2Cṗṗ~ t2!

^P̈2&

3

Cpp~ t1!2
1

v2
2

Cṗṗ~ t1!

^P2&
D G , ~18!

R2,2
(5)~ t2 ,t1!5

2cp̈p̈
(5)

T@12~v1
2/v2

2!#2

3S v1
2Cpp~ t2!2Cṗṗ~ t2!

^P̈2&

3
v1

2Cpp~ t1!2Cṗṗ~ t1!

^P̈2&
D , ~19!

wherev1
25^Ṗ2&/^P2& and v2

25^P̈2&/^Ṗ2&. In the remain-
der of the paper we will discussR2,1

(5) , which SO@2# found to
be dominant in INM theory. For that reason, and for others
be explained below,R2,1

(5) is a plausible approximation. Ther
is actually some@4# evidence thatR2,2

(5) is significant. Its
evaluation requires some averages which, while nothing
a time-dependent Poisson bracket, are computationally d
2-4
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GENERALIZED LANGEVIN EQUATION APPROACH TO . . . PHYSICAL REVIEW E65 061102
cult and will be presented in future work. The aim here is
demonstrate our theory with the simplest full-featured
proximation.

The first square bracket on the RHS of Eq.~18! is just
R1

(5) , symmetric in (t1 ,t2) as described previously. To this
added the second square bracket, from the (p,p̈) coupling,
which is quite different. It is easy to verify that the corre
exact time expansion ofR(5) to second order results. Thet2
dependence of the second bracket, viaGpp̈(t2), is a combi-
nation ofCpp(t2) andGṗṗ(t2) which vanishes att250; the
quadratic and higher terms in the time expansion remain.
the other hand, thet1 dependence, viaGpp(t1), is a combi-
nation in which thet1

2 terms cancel, leaving thet150 value
and the quadratic and higher terms in the expansion nonz
Thus we obtain the essential asymmetry;R2,1

(5) is zero on the
t1 axis but nonzero on thet2 axis, and

R2,1
(5)~ t2,0!5

2^P i j9 P i8P j8&

12~v1
2/v2

2!

v1
2Cpp~ t2!2Cṗṗ~ t2!

^P̈2&
. ~20!

Varying the polarizations changes the relative values
averageŝP i j9 P i8P j8& and^P i8P i j9 P j8&, and thus polarization
dependence arises from different admixtures of the two
tinctly different time dependences. Different polarizatio
also introduce different time correlations. ForRzzzzzz

(5) and
Rxzxzxz

(5) , which we expect are well described by the smal
basis set~lacking separate irreducible components!, the cor-
relations are all the same, the averages are identical, an
shape of the response function may be written down with
evaluating them,

R2,1
(5)~ t2 ,t1!}

Cpṗ~ t2!Cpṗ~ t1!

^~ Iİ !2&2
1

1

@12~v1
2/v2

2!#2

3S v1
2Cpp~ t2!2Cṗṗ~ t2!

^IÏ 2&

3

Cpp~ t1!2
1

v2
2

Cṗṗ~ t1!

^P2&
D . ~21!

III. CALCULATIONS AND COMPARISON WITH
SIMULATION AND EXPERIMENT

Here we evaluate Eq.~21! as an approximation toRzzzzzz
(5) .

The various same-time averages and correlation funct
may all be obtained from the ordinaryPzz correlation,
Cpp(t). The other correlation functions needed,Cpṗ(t) and
Cṗṗ(t), are obtained by numerically differentiatingCpp(t).
The equilibrium averagêP2& is just the zero-time polariz

ability correlation, and the other constants^Ṗ2& and ^P̈2&
are calculated by nonlinear fits to the short time expansio
Cpp(t).

MD simulations are performed on 108 molecules at 293
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and a density of 1.26 g/cm3, corresponding to room tem
perature, andP51 atm. The length of a trajectory is 1.2 n
Our molecular model forCS2 is @23# a three-site flexible
potential, and the velocity-Verlet version@23,24# of the
multiple-time step algorithm is used at constant NVE.

The total system polarizabilityP is calculated@22# with
the point atomic polarizability approximation. Each C or
atom has a point polarizability chosen to give the correct
phase isolated-molecular polarizability. The dipole-induc
dipole ~DID! problem is solved keeping all intramolecula
terms and intermolecular interactions to first order. It is n
too difficult to treat the entire DID problem exactly, but th
first-order approximation should be adequate for our p
pose.

Our polarizability model greatly overestimates the sen
tivity of P to the symmetric stretch, superimposing spurio
fast oscillations on the slower intermolecular decay
Cpp(t). This defect can be corrected@24# with the
Applequist-Quicksall@25# model, but here we use a simple
procedure. The orientation of the molecule is obtained fr
the MD simulation, and the polarizability is calculated for
system of equilibrium-geometry molecules in the indicat
orientations. Figure 1 shows the third order response fu
tion Cpṗ(t) obtained with this scheme; no oscillations a
visible.

Figure 2 presents our prediction for the 2D Ramanzzzzzz
spectrum, in the second approximationR2,1

(5) and using Eq.
~21!. Some features are seen more clearly in a contour p
Fig. 3. The result is in reasonable agreement with the sim
lation of SO@10#. Although R2,1

(5) vanishes along thet1 axis
but not thet2 axis the contours are still fairly symmetric, a
as found by SO@10#. The peak position is (0.13,0.19)
roughly on the time scale of the peak inR(3) at 0.13 ps and
somewhat longer than that of SO@10# (0.1,0.1). SO@10# and
Kauffmanet al. @14# ~for a different polarization! find a node
along thet2 axis and we do not. Considering that we ha
made several approximations to our general theory for
simplest reasonable first calculation ofR(5) the results must
be considered very encouraging. They are far better than@2#
INM and, it must be stressed, thereis currently no other
theory for molecular liquids.

IV. DISCUSSION AND FUTURE DIRECTIONS

We have proposed a method for reducing higher-or
response functions containing time-dependent Poisson br

FIG. 1. Third order responseRzzzz
(3) ~arbitrary units! vs t ~ps!.
2-5
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ets to sums of ordinary correlation functions. Since lit
theory exists for brackets@A(t),B(0)#, and since they are
also computationally challenging, this is a major simplific
tion. Good agreement between simulation and the sim
second order theory for liquid CS2 supports our ideas. We
believe that the fourth order theory@27#, with the exact time
expansion out tot4 @6# and, as all versions of this theor
well behaved at long times, will be quite accurate. Since
peak is at short times it must be largely formed by positivet2

and negativet4 terms, and a theory which has these exac
cannot be too far off. Of course we first want to evalua
R2,2

(5) , which contains the exactt1
2t2

2 quartic coefficient, and to
treat the different irreducible tensorial components. The
ter are essential for magic angle polarizations. In sum, w
the theory easily reproducing the correct time scale of
response, further refinements should fill in the details.

Other developments of the basic theme are possible.
essential step is using the GLE to handle the time-depen
Poisson bracket. We have expressed bothP(t2) and P
(2t1) with the GLE, but it is possible to use it only once
obtain an expression which is in that sense less approxim
Equation~8! may be rewritten two ways so that there is o
t-dependent bracket ofP(0) and eitherP(t2) or P(2t1).
Substituting the systematic part of Eq.~5! for the latter we
obtain

R(5)~ t1 ,t2!5S 21

T DGpa~2t1!

3 K P~ t2!S @P,Ȧa#2
1

T
ṖȦaD L

5S 21

T DGpa~ t2!^@Aa ,P#Ṗ~2t1!&. ~22!

FIG. 2. Fifth orderzzzzzzresponseR2,1
(5) ~arbitrary units! vs t

~ps!. Function vanishes ont1 axis.

FIG. 3. Contour plot of fifth orderzzzzzzresponseR2,1
(5) . Func-

tion vanishes ont1 axis.
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Equation ~22! introduces some unusual time correlatio
functions, but they are still computationally convenient co
ventional quantities with one time argument and are
comparable in difficulty with time-dependent brackets. W
will @27# evaluate Eq.~22! by simulating these newt2 or
t1-dependent functions.

It was originally hoped that the fifth order experime
would provide information about liquids unavailable fro
the many, well understood third order experiments. IfR(5)

can be represented with correlations of the polarizability a
its time derivatives, plus equilibrium averages of same-ti
Poisson brackets, that hope cannot be realized. In fact,
time correlations arising in our theory can all be expressed
time derivatives of the garden-varietyP correlation function,
hardly exciting new data. Is there any possibility of findin
something novel? Perhaps. Very recent simulations@10# and
experiments@14# on CS2 show nodal lines for some polar
izations. These are not reproduced by the current theory
may represent new phenomenon, although we will certa
try to explain them in future versions.

We have been somewhat cavalier with the random for
Our basis set is not the multilinear hydrodynamic basis$Q%
@19,20#, but one selected for short to intermediate time p
larizability dynamics. Thus we may have discarded so
interesting slow behavior of the brackets of the rand
forces, visible in thelong timebehavior ofR(5). It appears
that R(5) mostly decays in a few hundred fs, so a long-tim
measurement will be difficult, but may be essential for t
viability of the technique.

The slow behavior ofR(5) may be obtained with the
method@19,20# of Oppenheim and co-workers So long as t
$Q% are includedI (t) will be fast, its time-dependent bracke
should follow the behavior deduced by Scramm and Opp
heim @20# for a product of random forces, and Eq.~9! should
contain the slow optical response. One possibility is to s
ply combine the$Q% with the P-derivative basis set. To
strictly focus on long time, one may projectP onto the$Q%
@20#,

P~ t !5Mp,Q,~ t !1I p~ t !, ~23!

whereQ,(t) is an,th order hydrodynamic product variabl
and the index, also serves as shorthand for variable ident
and all the wave vectors. Calculations ofR(5) so far have
used the total polarizability but most generally the three f
tors arePk11k2

ab P2k1

cd P2k2

e f . Wave vector must also be con

sidered when coupling to hydrodynamics so let the wa
vectors be considered implicit, as with tensor indices. T
arguments that led to Eq.~9! then yield

R(5)~ t1 ,t2!5S 21

T D Mp,Mp,8G,n~ t2!G,8m~2t1!

3^@Qn,P#Q̇m&. ~24!

All that is required to evaluate Eq.~24!, given what is
already known@19,20# about multilinear hydrodynamics, i
Mp, . The linear coupling to the momentum density is w
understood@28#. Evaluation of the nonlinear couplings@29#
2-6
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will allow a determination of the long time behavior ofR(5)

@27#, and an answer to the question of whether qualitativ
new information can be obtained from the fifth order Ram
effect in liquids.
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