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Generalized Langevin equation approach to higher-order classical response:
Second-order-response time-resolved Raman experiment in GS
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A simple, systematic generalized Langevin equation approach for calculating classical nonlinear response
functions is formulated and discussed. The two-time Poisson brackets appearing at second and higher order are
rendered tractable by a physically motivated approximation. The method is used to calculate the fifth order
(second order responsBaman response of liquid GSAgreement with simulation is good, but the simplicity
of the theoretical expression suggests that the path to obtaining qualitatively new information about liquids
with the fifth order experiment is uncertain. Further applications of the basic approach are suggested.
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I. INTRODUCTION dealing with such objects, but they must be mastered if the
fifth and higher-order experiments are to yield any informa-
Quantum response functions are averages of nested conien about liquids.

mutators of variables at different timgs,2]. The perturbing The original motivation for the Tanimura-Mukamel fifth
HamiltonianH' is a product of an interaction dynamical order experimenit3,11] rests upon a normal mode picture. If
variable and the external fields. The observable that is calcWibrational intermolecular modes exist in liquids, at least at
lated has the latest time argument, and the interaction varkhort to intermediate times, then the third ordimean re-
able appears at each time the external fields act. One route onse functioRG)(t), a familiar time correlation function,
the classical limit is replacing the commutators with PoisSOnecejves contributions from all the modes. This constitutes
brackets. The linear response is easily reexpressed as a ti%omogeneous broadening, which cannot be distinguished
correlat_ion function, but Poisson_brapkets of variables at dify. ) 1\ ode lifetime effects iRC)(1). The idea was that in
ferent times cannot be avoided in higher order. fifth order the two pulse pairs separated thywould select

Recently there has been great theoretj@al10] and ex- : . )
perimentaI)Ell—lq effort diregcted towardt[s the]fifth order modes of period,, which could then be probed to determine
‘homogeneous decay only. The signature of well defined

Raman experiment in liquids. The perturbation is the inter des i ho IR() B . d Muk |
action of a pair of pulsed electric fields with the total systemM0des IS an echo IR™ att;=t,. Tanimura and Mukame

polarizability tensodT [3] gave a theory based on th&5] quantum multi mode
’ Brownian oscillator model, in which the “system” mode,
H'=E,IT*%E, (1) representing vibrational motion coupled to the polarizability,
a )

is coupled to damped bath oscillators. Their approach has

h db th larization directi “Fifth order” S°Me similarities to the classical theory developed herein,
wherea andb are the polarization diréctions. “Fifth oraer= .,  yere are also some obvious differences; it will be inter-

referséo th(;a four pulses in thg m’o iqf?r:orsl-lof a?r?etarmgbm tr%asting to work out the relation of the two appoaches.
Second order response, an e nih puise that probes e A “yiscyssions of modes in liquids naturally suggests

response, the nonequilibrium refractive index. The pU|S‘T16 17] instantaneous normal mod@siM), and an INM cal-
pairs_ act at times zero ang, the probe at, +t,. The refrac- culz,ation ofR®) was given by Saito and (,)hminiSO) [2]. In

tive index is also an element i and so both CS and water they found strong echos in a first ap-
5) ab o of proximation which were washed out in a more complete cal-

R (ty,tp) = ([Tt +1t) 1Tty LII(0)), (2 culation. The problem is thdl is a nonlinear function of the
normal coordinates and can provide enough mode mixing

with directionsa—e determined by the experimental geom- that the experiment doesot pick out modes with a single

etry. The Poisson bracket for any variabkeandB, in units  frequency. Keyes and Fourk@8] gave the first completely

such that masm=1 and energy is in Kelvin, is consistent INM theory and presented a general INM ap-
proach to more complicated dynamical quantities, e.g., non-
3N '4A dB  dB dA linear response functions. Ma and Stfat found that INM
[A,B]:E ————— , 3 did predict an echo in liquid Xe, but a computer simulation
i=1 dXi dUi dXi dUi

had no echo and decayed very quickly, over a few hundred
femtoseconds. These authors have recently attempted to add
wherex andv are atomic positions and velocities, and theanharmonicity to the harmonic INM theory to provide the
index i denotes both atom number and Cartesian directionevident damping of the harmonic modes.
The brackets inR®) require the derivatives ofl at later INM calculations ofR® are straightforward because the
times with respect to coordinates at time zero; we lds®®  harmonic oscillator equations yield simple, explicit expres-
indicate an unspecified elementldf Little theory exists for  sions forx(t) anduv(t) in terms ofx(0) andv(0). Thus, a
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Poisson bracket of fornplI(t),IT(0)] presents no special where the propagatd®(t) is the solution to the homoge-
difficulty; I1(t) is expanded as a Taylor series in the normalneous equation, is the random force, and
coordinatesq,(t)==N e(a,i)x(t), x(t) is expressed in _
terms of all{x(0),v(0)}, and the derivatives in E@3) with M(t)=((AA*)S(t)— (1 (t)1*(0)){AA*) "1, (6)
respect tax;(0) andv;(0) are easily evaluated. The polariz-
ability is a function of the instantaneous positions only. InThe equilibrium average§), M and G are matrices, ané
general, however, the time-dependent brackets create amdl are vectors, in the space of the dynamical variables. We
enormous theoretical difficulty. There exists no systematiovill omit the indices where the usage seems evident, and
framework for generating approximations R®). Contrast sums over repeated indices are implicit. Different derivations
this to the situation for time correlation functions with a give different expressons for the random force. In Mori’s
single time argument, where one finds a host of techniques tiormalism [18] it evolves via the projected operator (1
choose from. Perhaps the greatest flexibilggmetimes un- —P)iZ, I(t)=e®~P£(0), where 1- P projects orthogo-
fortunately is provided[18—2Q by the generalized Lange- nal to {A} and its complemenP projects onto{A}; PB
vin equation(GLE). The GLE describes the time evolution =(BA*)(AA*)"1A. In the approacti19,2Q of Oppenheim
of dynamical variables\ obeying Newton’s equations, ex- and co-workerg (t) follows true dynamics an® is defined
pressed formally with the Liouville operatatA/dt=iLA.  with the matrixM. In either case, a crucial property of the
However, the components of time-dependent bracketsotio random force, which indeed expresses in part what is meant
follow Liouvillian  dynamics;  @/dt)(dA(t)/dx(0)) by “random,” is {I(t)A*(0))=0;t=0. It follows that the
=(d/dx(0))i LA(t), and iL£ does not commute with matrix of correlation functionsC(t)=(A(t)A*(0)), obeys
d/dx(0).

The matrixd({x(t),v(t)})/d({x(O),_v(O)}) obeys its own Cup(t) =G, (1)(AAL). (7)
equation governed by the “dynamical matrix,” the insta-
neous Hessian, and this may potentially be used as the start- The most careful, systematic use of the GLE is based on
ing point for a GLE-like theory of correlations involving the the idea that, since the random force is orthogon&((0), it
t-dependent brackets. Denny and Reichiifrhave given a must lack any property poesessed by {l#¢. Oppenheim
calculation of R® in Xe which circumvents the brackets and co-workers have argued accordinfl®,2q that when
altogether, and also gives good agreement with simulatiof A} ={Q}, where{Q} is the set ofall multilinear productsof
In atomic fluids, to leading order in the dipole-induced di- the hydrodynamic conserved variablé§,) must be “fast,”
pole expansionII can be expressed with a product of den-decaying on a molecular time scale, and all explicit slow
sity operators and so the commutators in the quan®ith  time dependence is contained in the first term on the right-
expand to yield four time-ordered quantum correlations ofhand sidgRHS) of Eq. (5). It is also possible to use the GLE
six density operators. Making a Gaussian approximation oo construct correlation functions which, though approxi-
the quantum correlations and expressing the resulting correnate, possess a specified number of terms in the exact short-
lations of two density operators as classical density correlatime expansion. In addition an enormous number of uncon-
tions with a quantum correction, an eminently simple classitrolled, but often useful, theories have been based wgzbn
cal limit is obtained without ever introducing Poisson hocchoices offA} and modeling of the random force corre-
brackets. This approach is very promising, although so far itation.
requires the special form dil in atomic fluids. Since the third-ordeflinear response function reduces to

While some progress has been made, the current theori@® ordinary correlation function, the GLE may be used with-
of R®) are disjoint. It is not possible to calcula®™,n=5, out difficulty to predict and interpret conventional spectra.
with the same ease and systematic framework afforded bindeed, it is a cornerstone of such research. The situation is
the GLE for familiar two-variable, one-time correlation func- far less clear, however, for more complicated dynamical
tions. Thus we now give a theory of classical nonlinear re-quantities. Consider a correlation of three variables With
sponse functions based upon the GLE. time translation invariangetwo time argumentsC(t,,t;)
=(A(t,+1t,)A(t1)A*(0)), which isfar simplerthan the av-
erage of nested time-dependent brackets in @§. One
might begin by expressing the two time-dependent variables
with the solution of the GLE, Eq5). A sum of terms con-

Il. GENERALIZED LANGEVIN EQUATION APPROACH
TO NONLINEAR RESPONSE

A. Basic ideas taining zero, one, and two random forces results. When seek-
The GLE for a set of variabl is ing the I_ong time behavior o€(t,,t;) one is tempted to
o8 simply discard the random forces as fast variables. This is
dA(t) [t valid for the one-force terms. However, Schramm and Op-
= [ ds Myg(t—=s)Ag(s) +1,4(1) (4)  penheim showe{20] that a product(s)I(s’) behaved as a
dt 0

hydrodynamic slow variablefor s~s’. In evaluating

C(t,,t1) with the GLE both random forces are integrated

over the interval (Q;), and an important slow contribution

. arises fromt;=s~s'=0.

Aa(t)ZGag(t)Ag(O)Jrf ds Gu(t—9)l4(s), (5 G(is\{)en the power of the (_BLE, it is compelling to apply it
0 to R'™). Substituting Eq(5) into Eqg. (2), a desirable result

with the solution
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immediately emerges; the first term on the RHS of E5).  order in combined powers ¢f andt,. Note that calculating
expresses the time-dependent variables in terms of their zera- conventional time correlation function with this basis set
time values, allowing evaluation of the Poisson bracketsreproduces the time expansion out to the)t& power.
However, brackets also appear now of random forces at dif- The tensorial nature dfl causes a further complication. A
ferent times. The work of Schramm and Oppenhf2®] on  GLE representation ofI2°(t) based on our idea should in-
the simpler two-time correlation indicates that these bracketslude all the irreducible tensorial componentdB°(t) and
cannot be neglected. Perhaps an extension of their work cdts derivatives. For, e.glI?4t) that means both the trace
be formulated for the problem at hand. However, we will (isotropig and second-ranKanisotropi¢ parts enter sepa-
now take another tack, to rewriR® such that the random rately, and in thenth approximation{A} contains 20+1)
forcescan to a good approximation, be ignored. The intrac-variables. In this paper for simplicity we will tredl?"(t)
table contributions arise from a product of random forcesand its derivatives as single variables. The anisotropic polar-
which have similar time arguments; so, keep the forces welizability is much larger than the isotropic polarizability in the
separated in time. Time-translational invariance is easilynodel to be used in our calculations on C8e[22] point
demonstrated for the quantum Heisenberg representation atomic polarizability approximation including first-order in-
R®). Subtracting; from the time argument of each variable termolecular dipole-induced dipole terms. Using the smaller
and then taking the classical limit basis set will make little difference for polarizations where
bothI12°(t,) andII®f(—t,) are dominated by the larger sec-

RO(ty,tp) =([[T1*(t2), [1°%0)L,II* (= t)]). (8  ond rank part. This includes “fully polarized?zzzzzand
“depolarized” xzxzxzbut definitely notzzzzmm as the
“magic angle” polarization is explicitly chosen to enhance
the contribution of the isotropic polarizability.

We will now use the GLE to propagaid?® forward from
zero tot, and I1¢" backward from zero to-t;, and their
random forces cannot overlap except fors’'~0. Conse-
quently, the random force contribution to E®) should be
negligible at long time; this argument, applied to two-time
correlations, is due to van Zon and Schofi¢kl]. For a There is no zero order theory; witlh as the only variable
good short time theory we will construct a GLE with random the coupling coefficienc(®) contains[II,I1]=0 and R{"’
forces that vanish at short time, ef‘fectively eIiminating theZO_ In generau)fﬁ):o_ The first approximation Corresponds
remaining “overtap.” . . _ to the basis sdfll,IT}. The theory is sensitive to polarization
The indicated procedure immediately yields throughcgsg and through the different propagators which rep-
5 _ _ resent different components bF in the GLE; the fifth-order
RO(ty.t2) = Gra(t2) Gl —ta){([[ A 11 AL signal has[4,5,10,11,13 a strong polarization dependence.
-1 . Consider now some properties of’g. A guantity must be
= (T)Gm(tZ)Gwﬁ(_tl)<[Aa AT]Ag), even in the velocities to have a honzero average. The opera-
tions d/dt and[,] in c{) each reverse the velocity parity,
©) which thus remains identical to that of the proddctA.

where the second equality is obtained with partial integratior;r he polarlzab!lltyH 1S ev_en(functlon of positions onlyand
and the properties of the equilibrium distribution function: it each successive derivative reverses the parity. It follows that

is understood thaii 2" is on the left and ¢ on the right, and (also usingchZ:O) the first approximation has one contri-

energy is in Kelvin. We will use the second equality for PUtion
actual calculations, defining the coupling coefﬁciecffg as

B. Zero, first, and second order approximations

5 ARG
Rt t) = | | 602G (1) s~ t)).  (11)
= ([A, T11A). (10

The averages required foﬁfﬁ) may be expressed straight-

Equation (9) represents an extraordinary simplification, ; ; . . ;
with time-dependent brackets eliminated altogether. SimiIaForwardly’ albeit tediously in some cases, with t?g techniques

results are easily obtained for higher-order response fund€scribed in Refl6]. There is no difficulty withc:”,
tions. To complete the approach we choose as a baslg set () R e

and its time derivatives up to theth derivative, for thenth Core= TCIII I + (I I L)), (12)
approximation to the theory. When the time derivatives are

included in the basis set they appear explicitly in the firstwherell; can denote either the derivative with respect to the
systematic term on the RHS of the solution of the GLE, Eq.th atomic or molecular position or thig¢h INM normal co-

(5), and this term will express the exact time expansion oubrdinate. Our approach will be to express the propagators in
to thenth power. So long as that truncation of the expansiorterms of the computationally convenient correlation func-
is accurate the random force must be zero. By increasing tions C,4(t) with Eqg. (7). We will not attempt a GLE ap-
we can increase the interval around zero of vanishing ranproximation toC,4(t) but take the viewpoint that, if we used
dom force and satisfy the condition of no overlap better andhe exactM matrix we would obtain the exact correlation
better. For the same reason thih approximation, denoted function. The GLE is employed to expreBS® in terms of
Rﬁs), reproduces the exa¢6] time expansion to thexth  conventional correlation functions, not to calculate them. At
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first approximation the relation betwe& and C is simple
since the matriX AA*) is diagonal,

G (1) =Cn(/((I1)?). (13)
Combining these results and noting th@af,..(t) is an odd
function oft,

R( Ntp,ty)= (I I T ) + (T T I )

C, - (t5)C_.(t
 Srnl12) Caalty) . 2( D (14)
((ID)%)
The remarkable aspect of Ed.4) is that, since the third-
order respons®®)(t) is (1/T)C_.(t), we have the result

R®)(t,,t1) = RO (1) RO)(ty). (15)

Equation(15) is a remarkably good approximation, in much
better agreement with simulation than INM fft0,7] CS,
and[8] Xe. The peak irR®)(t) provides a good estimate for
the distance from the origin of the peak R®)(t,,t;). In a
recent simulation paper S[20] write “the peak maxima of
Ry22222 Ryzzzy2 @Nd R, ;mmz.are all located at 0.1 ps,
~0.1 ps), which is slightly shifted from the peak maximum
position, ~0.14 ps, of the third order response functions

..” Our theory shows the fundamental underpinning of
this observation. AIthougR(f‘) is not the whole story by far,
we doroughly expect thaR®) will relax on the time scale of
R®) (somewhat faster in G$. Unfortunately, the implica-
tions are negative for the utility of the fifth order experiment.
It is necessary11,13 to remove the strong “cascade” from
the experimental signal to isolaf®). The cascade is ex-
pressed as a product of tviR§®), and nowR®) itself is seen
to be, approximately, a product of tviRi®).

In Xe [8] R® peaks at a little over 0.20 ps am{3),,,
near (0, 0.30, that is, strongly skewed towards the axis.
There is a fundamental ,t, asymmetry inR® which is
missed in the symmetrie{®> . At t,=0 [Eq. (8)] R® con-
tains a same-tim¢II,I1]=0 and vanishes on thg axis;
however, it need not vanish away from the origin on the

axis. Our first approximation cannot describe, beyond getting
a rough estimate of the distance of the peak from the origin,
a system Where the asymmetry is pronounced. On the other

hand, in C$ R, .is [10] sufficiently symmetric thaR{>

is a reasonable description. Of course we must include the
asymmetry, an essential feature, and this can be found in the

second approximation with the basis s{ﬁ,l"[,f[}. When
used to calculate the correlation function al¢2é] this basis

produces a rich description, with the capability of describing

either rotational diffusion or the solidlike librations plus
large reorientational jumps found in supercooled liquids.

The nonzero couplings a[éS) [Eq.(12)], c®  andc®

T’ T’

) = —2T(IT T/ 1)), (16)

PHYSICAL REVIEW E65 061102

n

ct®) = 6T2((I1}}, IT| TT}}) + (I} 1T

i),

whereF, is the force on coordinatie The coefficients grow
in complexity according to the total number of time deriva-
tives in the subscripts. Bottngf’q-)T and 057571 have two deriva-
tives and similar expressions, proportional to averages of
three factors ofl containing a total of four position deriva-
tives. Such averages determine the contribution to the INM
theory that S 2] namedR®Y. Accordingly, let the sum of
all contributions toR(S) with 2m time derivatives in the co-
efficients be denoteR(s) ThenR$ =R+ R and RS
is related toR(), More spatial derivatives enteR( and,
throughdF, /dr;, the first sign[6,8] of what would be an-
harmonicity in an INM picture. Of course, unlike INM, the
exact correlation functions we use to exprEézé’ are fully
anharmonic.

Expressing the propagators in terms of the correlation
functions now requires a small amount of algebra; the matrix

(AA*) is no longer diagonal sincdIIT)#0. The result is

1))

dFy

I 1 T —— i (17)

RNt 1)

11'1'7(t2)c7'r7'r(t1)

HHH HH”H -
(T T )+ D=

2T | iC,a(t) —Chra(ty)
[1-(w3lw3)]? (112)
C7T7T(tl) - _2C71'7'r(tl)
2 18)
(%) ’ (
RO

RE)(t, t)= — 7

S T

®2C (1) = Cialty)
(112)

wicﬂ'ﬂ'(tl) -C
X -
(11%)

an(te) ) | 19

where w2=(I12)/(I1?) and w2=(I1%)/(I1?). In the remain-
der of the paper we will discus®’] , which SO[2] found to

be dominant in INM theory. For that reason, and for others to
be explained be|OV\R(5) is a plausible apprOX|mat|on There
is actually some[4] evidence thatR(‘ is significant. Its
evaluation requires some averages which, while nothing like
a time-dependent Poisson bracket, are computationally diffi-
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cult and will be presented in future work. The aim here is toand a density of 1.26 g/cincorresponding to room tem-
demonstrate our theory with the simplest full-featured apperature, andP=1 atm. The length of a trajectory is 1.2 ns.
proximation. Our molecular model foICS, is [23] a three-site flexible
The first square bracket on the RHS of E#8) is just  potential, and the velocity-Verlet versiof23,24 of the
R(ls), symmetric in €, ,t,) as described previously. To this is multiple-time step algorithm is used at constant NVE.
added the second square bracket, from ther) coupling, The total system polarizabilityl is calculated 22] with
which is quite different. It is easy to verify that the correct, (€ point atomic polarizability approximation. Each C or S
exact time expansion &®® to second order results. The ~ &t0m has a point polarizability chosen to give the correct gas
dependence of the second bracket, ia: (t,), is a combi- ghasle |solated—nt1)lolecqlar polarlzabmFy. The_d|pole—|nduced
nation ofC._(t,) andG. . (t,) which vanishes at,=0: the ipole (DID) problem is solved keeping all intramolecular

: 4 . : : . terms and intermolecular interactions to first order. It is not

?huad;ﬁnc ﬁnddhl?hherc}ermsdm the t"?‘; exi)an§|on remeg_n. Oﬂ)o difficult to treat the entire DID problem exactly, but the
€ other hand, elz ependence, vi W_T( 1), is a combi- first-order approximation should be adequate for our pur-

nation in which thet] terms cancel, leaving thig=0 value pose.

and the quadratic and higher terms in the expansion nonzero. gy polarizability model greatly overestimates the sensi-

Thus we obtain the essential asymme®R{’] is zero on the tivity of II to the symmetric stretch, superimposing spurious

t, axis but nonzero on the axis, and fast oscillations on the slower intermolecular decay of
C,..(t). This defect can be correctef24] with the
2<1‘[i”jni’nj’> wicm(tz)_cﬁ(tz) Applequist-Quicksal[25] model, but here we use a simpler

RPN(t5,00=

. (20 procedure. The orientation of the molecule is obtained from
the MD simulation, and the polarizability is calculated for a

) o ] system of equilibrium-geometry molecules in the indicated
Varying the polarizations changes the relative values ofyjentations. Figure 1 shows the third order response func-
averageg I IT{ I1j) and(I1/IIj{I1{), and thus polarization tjon C__(t) obtained with this scheme; no oscillations are
dependence arises from different admixtures of the two disyisiple.
tinctly different time dependences. Different polarizations Figure 2 presents our prediction for the 2D Raraazzzz
also introduce different time correlations. F@g)zzzzand Spectrum’ in the second approximatiagj)- and using Eq
R{)2xz Which we expect are well described by the smaller(21). Some features are seen more clearly in a contour plot,
basis setlacking separate irreducible componeéntbe cor-  Fig. 3. The result is in reasonable agreement with the simu-
relations are all the same, the averages are identical, and thgion of SO[10]. Although R(251) vanishes along the, axis
shape of the response function may be written down withoupyt not thet, axis the contours are still fairly symmetric, all
evaluating them, as found by SO[10]. The peak position is (0.13,0.19),
roughly on the time scale of the peak R¢®) at 0.13 ps and
C (1) C - (ty) 1 somewhat longer than that of §@0] (0.1,0.1). S 10] and
<(|'| )2)2 [1- (wf/w%)]z Kauffmanet al.[14] (for a different polarizationfind a node
along thet, axis and we do not. Considering that we have
made several approximations to our general theory for the
simplest reasonable first calculation Rf) the results must

1— (w3 w2) (112)

RSNty ty)

2 . . ;
w1Crr(t2) — Cralty) be considered very encouraging. They are far better [fBhn
(ii%) INM and, it must be stressed, thei® currently no other
theory for molecular liquids.
1
Crn(ty) ——Crn(ty) IV. DISCUSSION AND FUTURE DIRECTIONS
w3
2 (21) We have proposed a method for reducing higher-order
(1) response functions containing time-dependent Poisson brack-
0.0
Ill. CALCULATIONS AND COMPARISON WITH ' ' ' '
SIMULATION AND EXPERIMENT
Here we evaluate E¢21) as an approximation t&%),.,, 0.04 T
The various same-time averages and correlation functions N
may all be obtained from the ordinarli** correlation, &
C..-(1). The other correlation functions needé&l, . (t) and T 0.02 -
C..(t), are obtained by numerically differentiatir@y,.(t).
The equilibrium averagéll?) is just the zero-time polariz-
ability correlation, and the other constaid?) and (I12) 0 ' ' ' '
: : : . 0 02 04 06 08 A
are calculated by nonlinear fits to the short time expansion of X
Cra(t).

MD simulations are performed on 108 molecules at 293 K FIG. 1. Third order responge{®), (arbitrary unit$ vst (ps).

77z
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RO Equation (22) introduces some unusual time correlation
functions, but they are still computationally convenient con-
ventional quantities with one time argument and are not

0.012

0.008 m"g% comparable in difficulty with time-dependent brackets. We
0.004 'm%"ﬂ”’%%" will [27] evaluate Eq.(22) by simulating these new, or
0 fi - t,-dependent functions.
_ 6.6 It was originally hoped that the fifth order experiment
0 would provide information about liquids unavailable from
t the many, well understood third order experimentsR{?)
4 can be represented with correlations of the polarizability and

its time derivatives, plus equilibrium averages of same-time
Poisson brackets, that hope cannot be realized. In fact, the
time correlations arising in our theory can all be expressed as
ets to sums of ordinary correlation functions. Since littletime derivatives of the garden-varidil correlation function,
theory exists for bracketgA(t),B(0)], and since they are hardly exciting new data. Is there any possibility of finding
also computationally challenging, this is a major simplifica-something novel? Perhaps. Very recent simulat{df$ and

tion. Good agreement between simulation and the simplexperimentd14] on CS, show nodal lines for some polar-
second order theory for liquid GSsupports our ideas. We izations. These are not reproduced by the current theory and
believe that the fourth order theof27], with the exact time  may represent new phenomenon, although we will certainly
expansion out td* [6] and, as all versions of this theory, try to explain them in future versions.

We” behaved at |Ong timeS, will be quite accurate. Since the We have been Somewhat Cava"er W|th the random force.
peak is at shart times it must be largely formed by positive oyr basis set is not the multilinear hydrodynamic b€l

and negative™ terms, and a theory which has these exactly[19 >q, but one selected for short to intermediate time po-
cannot be too far off. Of course we first want to evaluatelarizability dynamics. Thus we may have discarded some

(5) . . 2 . . . . .
RE?), which contains the exatft] quartic coefficient, and to interesting slow behavior of the brackets of the random

treat the different irreducible tensorial components. The latTorces visible in thdong time behavior ofR®). It appears
ter are essential for magic angle polarizations. In sum, with . x(5) mostly decays in a few hundred fs, so a long-time

the theory easily reproducing the correct time sca_le of themeasurement will be difficult, but may be essential for the
response, further refinements should fill in the details. viability of the technique !

Other developments of the basic theme are possible. The The slow behavior ofR® may be obtained with the

essential step is using the GLE to handle the time-dependemethod[lg'Zq of Oppenheim and co-workers So long as the

Poisson bracket. We have expressed bhift;) and II {Q} are included (t) will be fast, its time-dependent brackets

(—1y) with the GLE, but it is possible to use it only once to should follow the behavior deduced by Scramm and Oppen-

obtain_ an expression Whi_ch is in that sense less apprqximatﬁeim[zo] for a product of random forces, and E§) should
Equation(8) may be rewritten two ways so that there is ON€ contain the slow optical response. One possibility is to sim-

t-dependent bracket dil(0) and eitherlI(t,) or II(—ty). | : . o .
e . combine the with the II-derivative basis set. To
Skl)JbStltutlng the systematic part of E¢) for the latter we Et?: ctly focus on It?g time, one may projellt onto the{Q}
obtain ,

[20],

FIG. 2. Fifth orderzzzzzzesponseRY) (arbitrary unit$ vs t
(ps). Function vanishes oty axis.

ROty ty)= —)Gm(—to (D) =M, Q () +1(1), (23

) 1.. whereQ¢(t) is an¢th order hydrodynamic product variable
X < H(tz)( [H,Aa]—THAa>> and the indexX also serves as shorthand for variable identity

and all the wave vectors. Calculations Rf®) so far have
. used the total polarizability but most generally the three fac-

7| Crel)[ACIII(-t)). (22 tors arelT§’, 1%} 1%} . Wave vector must also be con-
sidered when coupling to hydrodynamics so let the wave
vectors be considered implicit, as with tensor indices. The
arguments that led to E¢9) then yield

ROty ty) = ?)MweMﬂ'Gen(tz)Ge'm(_tl)
X([Q"I11Q™). 24
0 02 04 06 ([Q™I11Q™) (24)
t All that is required to evaluate Eq24), given what is
1

already known19,2(Q about multilinear hydrodynamics, is
FIG. 3. Contour plot of fifth ordezzzzzzesponse?(f{. Func- M _,. The linear coupling to the momentum density is well
tion vanishes o, axis. understood 28]. Evaluation of the nonlinear coupling&9]
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will allow a determination of the long time behavior Bf®)
[27], and an answer to the question of whether qualitatively

new information can be obtained from the fifth order Raman,
effect in liquids.
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