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Stochastic resonance for motion of flexible macromolecules in solution
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We consider a dilute or semidilute polymer solution with localized attracting centers near a flat phase
boundary and assume it driven by both stochastic and periodic forces. The attracting inhomogeneities restrict
the free motion of macromolecules and play the role of fixed pinning centers. The flat boundary is modeled by
a bistable potential whose minima attract the movable polymer segments between neighboring pinning points.
We study the motion of these segments. The stochastic forces lead to stochastic oscillations of the polymer
parts between the two potential wells near the phase boundary. Application of a small temporal periodic force
can synchronize these oscillations and leads to the phenomenon of stochastic resonance for a nonvanishing
noise intensity. As an outcome of our theory in agreement with numerical simulations, the resonance is stronger
for wider and/or less deep potentials and observed at smaller values of the noise intensity. Additionally, we
discuss under what conditions doubly stochastic resonance of the macromolecular motion occurs, that is, if
bistability of the potential near the boundary originates in the action of multiplicative noise.
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[. INTRODUCTION transition resulting in bistable behavior of the mean field has
been reporte@25]. This effect was named doubly stochastic
The presence of noise in a nonlinear dynamical system isesonance to emphasize that additive noise causes a resonan-
known to lead to cooperative effects, including stochastiaelike behavior in the structure, which in turn is induced by
resonanceSR) [1-3] and noise-induced phase transitions multiplicative noise.
[4-6]. SR is a cooperative phenomenon, in which a response In the present study we intend to consider SR for the
of the bistable or threshold stochastic system to a small penotion of macromolecules in a bistable dissipative dilute or
riodic signal, as well as the signal-to-noise rd&NR) at the  semidilute polymer solution with localized attracting centers.
frequency of the fundamental harmonics, can be enhanced byhe double-well potential describes the effect of a flat
tuning the noise intensity to an optimal nonzero value. Reboundary between two phases or solvents where polymer
cently, theoretical and experimental studies have been fesegments are attracted by the interiors of both phésas
cused on SR in spatially distributed systems, which are veryentg and repelled from the boundary. The localized attract-
interesting for practical application in physics and biology. Iting centers model motionlegsluring the considered time
has been shown ifir—9] that the responséand SNR of a  intervalg inhomogeneities, impurities, or long-living inter-
single stochastic resonator can be further enhanced, if it ishain entanglements. We assume that some polymer seg-
embedded in an ensemble of other stochastic resonators thaents can be trapped by the centers and become motionless,
are properly coupled. SR for the one-dimensiofidd) and as well as the centers themselves. All other polymer seg-
two—dimensional2D) Ising model with Glauber dynamics ments keep movement freedom restricted only by the chain
in an oscillating magnetic field was studied[it0,11. Spa-  connectivity with the motionless segments. Thus, the poly-
tiotemporal SR has been observed in excitable mgdidl 3 mer segments form mostly mobile bridges between the fixed
and systems described by the Swift-Hohenberg equatiopinning points. For a dilute or semidilute solution, each
[14]. The SR of domain-wall motion in 1D and 2D nonuni- “bridge” can be considered independently from the others,
form magnetic media was studied [ih5-18§. i.e., we neglect “bridge-bridge” interactions. If in this sys-
Other examples of the ordering role of noise in nonequitem the potential wells are deep, then, in equilibribwinen
librium situations through its interaction with the nonlinear- time-dependent fieldgésignals and noise are absdntthe
ity of the system are the noise-induced phenomena in spédbridges” are curved into the interior of one of the two
tially extended systemsee[19] for a review. They include  phasegwith the minimum total free energy of the system
noise-induced patterrf®0] and noise-induced phase transi- With an applied noisérandom forces due to internal fluctua-
tions[21]. Noise-sustained phenomena have been found antibns or external random fielfisthe polymer segments are
investigated in noise-supported traveling structures in excitable to oscillate stochasticallj26] between the potential
able media[22], in noise-sustained convective structureswells. It is expected, that, with a weak periodic fofester-
[23], and at a noise-induced phase separdi®#h. Recently, nal periodic field applied to the system, SR in the motion of
SR in a system with a noise-induced nonequilibrium phas¢he macromolecules will be observed.
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In the present paper, to extract the most interesting and N-1
specific features of the macromolecular nature in the stochas- Uch:§ > (Xns1—Xp)2 (2
n=0

tic resonance environment, we will restrict our consideration
to the basic dynamic polymer model, which is the Rouse 5 i _
model[27,28. We will discuss some limits, where the lead- Where c=3T/a” with T being the temperature in energy
ing factors of chain movement are reduced to more-or-les¥Nits anda the average intersegment distance along the chain
well studied SR phenomena, such as single-particle SR b&ontour[27]. We will model the fieldU, as a double-well
havior [29]. (Depending on the system parameters, oneShaped potential:
particle SR properties can be applied to a whole polymer or N-1/ 2 5
every single-chain segment. Yn

The paper is organized in seven more sections. In Sec. Il, Ub:Uozl (V?_l) ' )
we present our model of the polymer chain restricted by two 0
pinning centers and driven by periodic and noisy forces in
double-well shaped potential. The basic dynamic regimes g
the system are described in Sec. Ill. Sections IV and V arg,
devoted to numerical and analytical studies of SR in ou
model. In Sec. V, we deal with both time-independésia-
tionary) and time-dependent variational analytical solutions.fu
SR of the motion of a macromolecule with free ends is stud-
ied in Sec. VI. In Sec. VII, we present the analytical results
for macromolecular motion driven by multiplicative and ad- i ﬁ _ﬂ __ £+ F +F (4)
ditive noise. The conditions for the existence of doubly sto- dt gx, % ax, o
chastic resonance of the macromolecule motion are deter-
mined. Section VIII concludes with a discussion of the work. Here,

hereU, is the height of the potential barrier between the
inima, y, is the 1D position in the direction perpendicular
! the flat phase boundary, and the parameigistands for
the half distance between two wells.

The equation of motion corresponding to the Lagrange
nction (1) can be written down as

Il. THE MODEL

N | o

N—1
Q=35 > X5 (5)
Consider the dynamics of a single linear polymer chain n=1
composed ofN segments NI>1) with a fixed distancd .
between the ends. The freedom of the ends is restricted
the motionless pinning points, (Xo=0)y,=0,2=0) and
Xn(Xn=1,yn=0,zy=0). Generally speaking, tHé segments

the dissipative function witl§ as the friction coefficient.
o= Ap cost+ @) is the external periodic fiel@signa) ap-
plied to the system in the direction perpendicular to the
between the pinning points can be a part of a longer macrd2hase boundary with frequenéy and random initial phase

molecule trapped by pinning centers. We assume a stronj: 1€ value is a random variablg29], uniformly distrib-
pinning, i.e., the pinned segments cannot move during theted over the intervdl0,2m]. Fy= 2D 7(t) is the random
considered time intervals. As we mentioned in the Introducforce associated with the noise and thermal fluctuations of

tion, the pinning centers can be caused by stable inhomogd?€ pPolymer chain. We assume that this noise is a Gaussian
neities and impurities in the solvent, or long-term entangleWhite noise with zero mean andéfunction as the autocor-
ments of the considered polymer chain with other'elation function:

macromolecules or other segments of the same chain. Apart

from the pinning points, we ignore any other bulk interac- (n(1))=0, (n()n(t+7))=35(7). (6)
tions of the chain with surrounding polymers, assuming that o _ _ o
the chain is placed in a dilute or semidilute polymer solution.D scales the noise intensity. Both time-dependent periodic
We use the standard Rouse modekal phantom Gaussian and random forces are considered as glgbel, they do not
chain in an immobile solveptand treat the solvent as a vis- depend on the segment positigg) and weak(they cannot

cous motionless medium in which linksead$ experience ~ destroy the Gaussian polymer connectivity and move the
friction when moving. pinning centers Moreover, the weakness of the periodic

The Lagrange function for the p0|ymer chain is force means that it does not have a SUfﬁCiently Iarge ampli-
tude (without noisg to move the segments from an equilib-
N-1 rium stable configuration formed in one potential well to a
L= m > x2-u, (1)  state in the other well.
2 7=1 For the direction perpendicular to the phase boundgry (
axis) the Lagrangian equation of motigd) with the dissi-
where the first term stands for the kinetic-energy densjty, Pative function(5) and the Lagrange density) leads to
is the position of thenth bead(link) at the time moment

t, X,=0dx,/dt, andmis the link mass. The potential energy 7Y WYn Uy
U=U+ U, contains the coupling energy due to the chain ijLgﬁ_ C(Yn+17=2YnTYn-1)~ ay,
connectivity U, and the potential energy,, of the chain

near the phase boundary. For the Gaussian chain +Agcod Qt+ )+ \/ﬁn(t). (7
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For overdamped dynamics, the term, that arises from the X
kinetic-energy density can be neglected and &g.simpli-
fies to

Yn 0Ub —_—

§7=C(yn+1—2yn+yn—1)—a—yn ______

+ A, Cog O+ )+ 2D 7(t). (8) @)

—-d_

T-====="T7=--
15
:e\j

The motion of polymer segments in the directions parallel
to the phase boundark (and z axes is not affected by the (b)
potentialU,, and the external field,. This motion is de-
scribed only by the friction, chain connectivity, and random
forces. We assume that this simple parallel motion does not ~ =====-
disturb Eq.(8).
The pinning conditions impose important restrictions on
the polymer motion. Assuming that the pinning centers for
this chain are localized on the phase boundas:, on the
top of the potential barrier between two minimas0), we
can write the conditions as

R (RN V3 I 1 7 S

Xo:O, yo:O, ZOZO (C)
and xy=I, yN=0, zy=0. (9)

Below, our numericalSec. IV) and analytical(Sec. V)
studies are based on E(B) with the conditions(9). Both
these studies exhibit SR behavior for the polymer motion and
lead to results that agree qualitatively.

| [ S o
e R e Bl B, Rl

FIG. 1. Sketch of polymers following different dynamic regimes
IIl. BASIC DYNAMIC REGIMES of thg consiFiered mode(la) very wide potential wellsW>L), (b)
relatively wide potential wells Ry<w<L), (c) narrow potential

In Egs.(2), (7), and(8) we have assumed a Gaussian typewells (d<w<a) for Gaussian chains, and) intermediate width
of interlink polymer connectivity. However, if the character- wells (a<w<Ry).
istic size of the link-link connectivity is much shorter than all
other characteristic distances of the considered system, thejretched along the potential wells and the polymer can be
any particular choice of the polymer modelealing with  described as a stiff string. Fov<<|~L the string can obey
microscopic scalggloes not essentially affect the results fol- stochastic resonance, as described in our previous paler
lowing from Eq.(8). Thus, in the last case we can apply our  Now we consider a different case<L, where the effect
results to macromolecules with any mechanism of chairof the potential-well widthw is much more important than
flexibility. the effect ofl. For d<a<R,<L and|<L we can observe

We consider phenomenologically and compare possiblgne following dynamic regimes in the systefthe corre-
regimes of polymer behavior in the model described abovgponding schematic pictures of chain configurations in these
for two types of macromolecule: Gaussian beads and persigegimes are shown in Fig).1
tent (wormlike) polymers. The physical properties of linear  (a) For very wide potential wellsvg>L), the bistable
polymers in bulk are determined by the following parameterspotential does not essentially affect the polymer chain. The
with the dimension of length: the total length of the chainsegments are not able to reach potential wells without ex-
L=Na, the mean sizé€for instance, the radius of gyratipof  tremely strong stretching and they are placed in the potential
an unperturbed macromolecuRy=(Na’/6)'/% the average barrier area along the boundary surfdéég. 1(a)]. SR is
distance between neighboring beadand the bead diameter unreachable in this case and therefore to define any specific
d for the Gaussian model; and the lengththe unperturbed properties of our model we need to consider other condi-
mean sizeR,, the persistent length, and the macromolecule tions.
width d for the persistent model. To consider long polymers  (b) For relatively wide potential wellsR,<w<L), al-
with N>1 we havea<Ry<L. The polymer chain dynamics most all the chain segmentthe whole “bridge”) have to be
depends on the relations between these parameters and otpgiced in one of the two potential wells. A state with polymer
system parameters with the dimension of length: the distanceéegments present in both potential wells would have a much
between pinning pointsl and the effective widthw  higher free energy due to the large fraction of high-energy
~wWgo\T/U, of the bistable potential. segments placed in the potential barrier gteaconnect seg-

The effect of the distanck on the system properties is ments in the different wel)s In the one-well state, only the
important forl ~L only, where the chain has to be strongly segments neighborin@long the chain contouthe pinned
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segment are placed in the potential barrier area; this is inevieoefficientc=3T/a2. Therefore, the first term on the right
table and the fraction of such segmefisth respect to the hand sides of Eq$7) and(8) is proportional toT/a?. Mean-
total number of chain segmentis very low. [For case(@)  Wwhile, the second onéU,/dy,~Ugy/w?. The first term can
with w>L, even a one-well state would have only the neigh-be neglectedi.e., we have the single-particle problem for
boring segments placed in the potential barrier area, becaug@ch separatelike bead we follow the condition(c) with
the total chain lengti. would not be long enough to reach W<a. For the caséb), whenR~N"?a<w (for a long poly-

the potential well§.Now, under random and periodic forces, mer withN>1), the chain connectivitgthe first term domi-

the “bridge” can move from the first potential well to the nates over all other contributions unless the macromolecule
other one mostly as a whole, because an alternative transitidRoves as a whole. For the intermediate cabeall the con-

by parts would required a much higher activation energylributions in Eq.(8) are equally important. The conditida)
Thus, the leading dynamic properties of the considered polywith w>L corresponds to the leading role of the chain con-
mer chain in the system driven by random and periodic glonectivity.

bal forces can be described as for a single solid particle un- In the next section we will analyze numerically the model
der the same forcd§ig. 1(b)], that is, a system with a well- €equation(8) with the conditiong9) for all the regimes men-
studied SR phenomenorsee, for instance[29]). This tioned above.

behavior describes the macromolecule as a whole and, there-

fore, it does not depend on the polymer microscopic struc- IV. NUMERICAL TREATMENT
ture, i.e., on the selection of a specific polymer model. )
(c) For narrow potential wellsd<w<a), the system be- ~ Dué to the action of the boundary forcé,=

havior strongly depends on the microscopic polymer struc= 9Us/dYn, the polymer segments tend to move from the
ture. Now, for the Gaussian chain, each polymer bead can geoundary planey=0) to the potential wells. Random and
considered as separatgisconnected from others along the Periodic forces change the depths of the potential wells and
chain contour. This occurs because the potential-well width cause “flip-flop” transitions of the segments between two
w is much shorter than the interbead connectivity length stable symmetric states.'Ou_r main goal herg is to conS|der'the
and thus the beads do not experience any restrictions arisirf{;}’namlcs of these QSCIllatlons as a funct|on of the noise
from the connectivity even if the neighboring beads areforce. and the effective .WI(.jth of thg bistable potential. The
placed in two different wells. Therefore, again as in the pre2MmplitudeA, of the periodic force is assumed to be suffi-
vious point (b), the problem is reduced to the motion of ciently small so that the interwell jumps of the segments
separate particles in the system driven by random and perould not occur without noisé.e., the jumps are initiated
odic forcegFig. 1(c)]. The principal difference from the case by noise. However, as will be seen below, the periodic force
above is that now we deal with the “separated” beads instea§@n synchronize these jumps. _
of the separate chains, moving as a single particle. However, Equation(8) was simulated by a standard Euler algorithm
in the present case this behavior takes place for the Gaussikdl] with a time stepAt=10"° taking account of the pinning
beads and ceases to be valid for some other models. E6PNditions(9). A noise in the Stratonovich sense was intro-
instance, the persistent chain has an orientation memorguced into the algorithm by means of a standard procedure
along the contour distan@e which now is much longer than [32]- To ensure the reliability of the program, the conver-
the potential widthw. Therefore, the wormlike polymer can 9ence to a stationary analytic solution for the potentiavas
be described as a “hose” lying along a well and, in sometested and observed. It was found that the effect of temporal
places, rolling over the barrier between the wells. This beglobal noise results approximately in a stochastic change of
havior is quite different from the dynamics of separate segthe polymer elongation. _ o
ments. Thus, now for the wormlike polymers the connectiv- N the numerical analysis, the stochastic dynamics is fur-
ity effects are highly important and the problem cannot bether reduced to two-state dynamicsi state when the av-
reduced to the separate particles. erage location of the polymer is above the 0 plane and
(d) The case with intermediate widttv (a<w<R,) —1 state when it is below. The respongeutpuy of the
seems to be the most interesting. On the one hand, now tH/stem with respect to the noise and periodic signal can be
whole chain cannot be easily placed in one potential welWwritten as
only (as it was forRy<w<L). It tends to spread over both No1
potential wells to decrease the compression energy, which is B _
proportional toR?/w?. On the other hand, even for the q(t)—sgr‘( 21 y”) ==L (10
Gaussian chain the intersegment connectivity plays a crucial
role. Unlike the case ofl<w<a, the neighboring beads The binary time series, e.g.,
cannot be placed into the different wells without a strong
stretching of the interbead distance with an energy penalty q(t)=...,+1,+1,-1+1—-1-1-1,+1,..., (11
proportional tow?/a2. Now the motion between the potential
wells occurs for strongly correlated beads. This can lead toesulting from simulations of Eq.8) over 2000 time units
motion by neighboring chain portiorisomposed of a few or  (corresponding to 2 1 time step$ were processed by a
many neighboring segments along the chain contour Fourier analysis that was carried out by a fast Fourier trans-
All the basic regimega)—(d) are covered by Eq8). In-  form (FFT) algorithm. To minimize the errors arising from
deed, for the Gaussian model, in E¢8), (7), and(8) the the FFT aliasing problem, a signal frequenQy matching
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FIG. 2. Numerically determined SNR versus noise strerigjth

for different values of the ratiav/L: 0.241 (crosses and 0.227 FIG. 3. Stationary configurations of a macromolecule Kbr
(circles. The dashed and solid curves present theoretical estima=1 and the following values of thes/L ratio: 0.167, 0.267, and
tions forw/L=0.241 andw/L=0.227, respectively. The other pa- (0.315.

rameters are (1=0.301, Ap=0.2, L=11, =2, Uyg=3, w,
— — — —3 —
=1, A75.25, At=10 , andN=15. y(SIO):O, y(S:L):O, (13)

one of the frequencies of the resulting discrete Fourier spegyherel. =Na is the total length of the chain between pinning
trum was chosen. The FFT used 4096 sampling points. IRoints.

order to get a stationary power spectrum denéi$D), an

ensemble of 50 spectra was averaged over equally distributed

initial phases. .
The resulting PSD, consisting of a peakhiand its mul- ~ If Fex=0 andFy=0 (i.e., Ap=0 andD=0), Eq. (12)

tiples riding on a Lorentzian-like background noise, is char-With the pinning condition$13) possesses the following sta-

acteristic for periodically driven stochastic overdamped nontionary (time independentsolutions:(i) the trivial solution

linear dynamics. To calculate the stochastic resonance, we _

studied thesignal-to-noise ratiocof the output. The ratio was y(s)=0, (14

defined as the weight of the first peak@tdivided by the

value of the background noise at the peak frequency. Whil

tuning the noise intensit, the SNR shows a clear maxi-

mum for two different values of the effective potential width y(s)=+b,snqsk), (15)

(see Fig. 2 This maximum behavior is calledtochastic

resonance Increasing the input noise intensity leads to ancorresponding to the macromolecule curved inside the

increased coherence between output and input signals. Thases. Here sn is the Jacobian elliptic s{i#8], by,

reason for this behavior is a chang@kie to the tuninginthe ;51 =g%w?), k=\(qw) 2—1, w=(W/2)y3T/U,,

stochastic time scale specifying the jumping time of theandq is the integration constant.

polymer. , _ , Using the conditiong13), the equation for calculation of
As can be seen from Fig. 2, the SNR maximum shifts toy,q integration constarg takes the form

larger values ofD if the effective potential widthw de-

creases. A way to understand this is given in the next section 2

where we present a qualitative theoretical approach using a q=——K(k), (16)

picture of an effective potential.

A. Stationary solution

corresponding to a polymer chain with segments placed on
fhe phase boundary, aril) solutions of the type

whereK (k) is the complete elliptic integral of the first kind
V. THEORETIC APPROACH [33, M=1,2,....
Stationary polymer configurations for different values of
the ratio w/L are shown in Fig. 3. This ratiow/L
~(Wo/L)yT/Uy is a measure of the constraints experienced

The continuous analog of E) is

fay(t,s) _aT 5y(1,9) ~ dUp(y) by a polymer chain of length due to the bistable boundary
at 952 ay potentialUy, : the stronger the constraingsmaller widthw,
and higher barrietd), the lower is the valuev/L.
+Ag cog Qt+ ¢) + 2D (1), (12 For wide and/or shallow potentials with/L =1/, the

boundary force caused by the bistable potential is not suffi-
where the 1D positiony,(t) of the polymer segmenh cient to disturb the polymer from the conformation corre-
=1,... N at the time moment was transformed to the sponding to the solutiog(s)=0, which would occur with-
position y(t,s) of the points (O<s<L=Na) along the out any boundary fieldsi.e., atUy=0) or for extremely
polymer contoury,(t)—y(t,na)—y(t,s), and the explicit wide potential wells {,—>). As we mentioned in Sec. Il
expressionc=3T/a® was substituted. The pinning condi- in this casewhere the bistable potential does not affect the
tions (9) for the 1D positiony(t,s) in the continuous limit polyme) the SR is unreachable. However, as shown in Sec.
can be written as VII, bimodality of the macromolecule configuration can be
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induced by multiplicative noise. Therefore, SR of the mac-cients depending on time. This approximation is more ad-
romolecule motion can exist if the system is simultaneouslyequate for our case than other methods, for example, the Ritz

driven by multiplicative and additive noise.
For lower valuesw/L<1/m, the solution(15) describes
states with a lower energy than for Ed4). For M>1 the

corresponding dependengys) can have more than one ex-

tremum betweens=0 and s=L at s=mL/(2M)(m
=1,... M). However, forw/L=<1/7 the chain configura-
tion with M =1 has the minimal energy.

The stationary nonzero solutid5) can be substantially

simplified in the limiting cases of very low and very high

w/L ratios. ForL>w andM =1, we have

method. As a first approximation, the ansatz
y(s)=b(t)sn(gsk)

was used. The motivation to search for the solution in the
form above is given by the stationary solution of the prob-
lem, which is the factor in Eq(24). The amplitudeb(t)
represents an elongation. For the stationary case it is equal to
*b,,. The results of our numerical simulation also suggest
the usage of this ansatz. The benefit of applying this ansatz is
that our 2D problem is reduced to a 1D one.

(29)

Substituting the ansai24) into the energy1) and dissi-
*Bt /(2 for 0<s<L/2, ; . ¢ .
y(s)=| antis (\/_W)] or S (17 pative functionQ (5), and integrating them ovey we get the
+Btan(L—s)/(y2w)] for L/2<s<L, functionalsU[b(t)] andQ[b(t)]. Furthermore, we will con-
, sider only small deviations of the macromolecule from the
with y=0 plane, that is, small elongatiobh$t). After carrying out
the integration oves, we obtain expansions &f[b(t)] and
B=w,| 1—4 exg — L (18) Q[ b(t)] as power series ib(t) up to fourth order:
b2
and the other parameters given by U[b(t)]= Ueff<b_2_l> : (25)
m
k=1-8 = (19 1 db\2
=1-8exg ——=|,
V2w Q[b(t)]=§§/\(ﬁ) : (26)
L where
q=+2w| 1+4 ex ~ ow) | (20)
2w 4 UL (24K 4
ForL=xMw(M=1,2,...), onegets 3 1+Kk2[1+Kk2 dL ).
y(s)=*=Bsin(gs), (21 K2 L >
bh=w ——, A=—|1-—E()|, 2
where m=Wo '\ 1 2 kz[ aL (k) (27)
) \/Z 3, with E(K) being the complete elliptic function of the second
B= 35\N0 1- ﬁﬁ ’ k= §5 1- 55 y kind [33] o . -
(22) In the overdamped limit the reduced equation of motion
for the dynamics of the elongation
T 1 L
T 1+-52), S 1. (23 5Q(ablaty  sU[b]
a=ritTs MW @3 Sabiay = op *AeerCOS QL+ )
From the equations above, it follows that the macromol-
ecule becomes curved inside the phaseslfermw. For + V2D (1) (28
mws<L=<2mw the macromolecule has two stable symmetriCisxes the form
configurations. FormMw=<L<#(M+1)w the macromol-
ecule has two stable and(— 1) metastable configurations. db(t)  4Ug, [b(t) b3(t)
It follows from Egs.(15), (17), and(21) that the chain con- b d R +Ag cog Ot + o)
figuration depends on the rati@/L of the effective potential m m b
width w to the total chain length.: the largerT and the e
smallerL and the potential gradienfU,/w,, the less mac- +V2Dre(t) (29
romolecule dangles into the phase interiors. with
B. Variational solution Ay 1+k D 1+k
. , . - Agei=—IN——, Dgg=——In>—, (30)
According to El'sgoltz[34], the approximate variational gk 1-k g’k?  1-k

solution of our problem should be sought in the form of a
finite combination of trial functions with unknown coeffi- and
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D
D,=—2 (31)
A

Equation(29) describes nothing but the stochastic motion of

a Brownian particle driven by a periodic signal with the res-

caled signal amplitudé,, and a noise with rescaled inten-

sity D,. The particle is placed in a double-well potential

with the distance between two wells, and the potential ‘

barrier height between welld, . This is one of the best 0.1 0.2 0.3

studied systems in the theory of SR and we are able to apply w/L

the earlier results by rescaling the parameters according to )

our problem. In particular, we use the McNamara and Wie- FIG- 4. The analytical dependence o0&, (curve 3, Do

senfeld theory29], where the dynamics is further reduced to (CUrve 2, andr may (curve 3 versusw/L. For parameters, see

a periodically driven two-state random walk in the limit of caption to Fig. 2.

small amplitudes. This theory, like the linear response theory

for the dynamics between two well2], is in sufficiently

good agreement with the numerical treatment in Sec. IV.
Two discrete states of elongatiomgt) = +b,, will be

1 27
S(w)= Zfo S(w,0)d6

considered below. Denoting the probabilities of finding the 7 EbpAgr |2 4rgb?
macromolecule in the right and left wells of the bistable po- =Sy(w) + AN A2+ o2
tential (stable statgsat timet by n, (t) andn_(t), respec- ' K
tively, the master equation reads X[8(w—Q)+ 8(w+Q)], (34)
consists of weighted functions, due to the periodic driving,
an. and a continuous Lorentzian-like noise backgro{2@,2]
G- W OFW_OIn+We(t), (32
1/ ébpAg \2 4ri | 4rgb?
Su(w)= 1—5< = r) ——|—=—5 (39
Dr | 4ri+Q2|4ri+ o

whereW (1) andW_(t) are the transition probability den-

sities corresponding to the jumpstj—(—) and (+)« Therefore, within the described limitations, the SKiRe
(=), respectively,n_(t)=1—n,(t). Following [29], the ratio of the weight of thes function and the noise back-
modified Kramers rate can be used for the transition probground at()) can be written as

ability densities:

EUo A2 U
RSNR%\/E or 20r exp{ _ & Or), (36)
gb AOr ADr DI’
W, (t)=rg exp{im—cos(QH )|, (33 _ _ _ o

Dy with A being the width of a frequency bin in Hzee[36]).

The above analytical dependencies of the SNR on the noise
_ 5 ) intensity D are presented in Fig. 4 for different values of
with 1= (22/m)[Uq /(£b7) Jexp(-&Uq /D;) being the /L. They exhibit the well-known bell-shaped curves. They

Kramers rate foA,=0 (see[35]). The expressio(B3) holds  agree qualitatively with the SNR of the numerical treatment
true only in the adiabatic approach, where the signal is sufand have maxima with the values

ficiently slow in comparison with all relevant time scales of
the system. This means that the temporal change of the adia- 4.2 Aﬁ
batic potential(25) has to be slow in comparison with the RSNR = "2 DA (37)
intrawell relaxation. e m
Using the Kramers rate for the stochastic prod&ss, the
two-state theory{29] can be directly applied. Since in the
!imit of small a_mplitl,_ldes[AOr< D, /(&by)] the power aris- 8 U, K(K)—E(K)
ing from the signal is much smaller than the power of the D=Dna—==
whole spectrum, the two-state output can be easily calcu- 3 1+Kk? [In(1+k) —In(1—k)]?
lated. To make the analysis independent of the initial state
and, hence, to transform the problem into a stationary pro-
cess, the resulting expressions were averaged over a random
initial phase(assuming that it is equally distributedf the
periodic output. The resulting power spectrum of the two-Strictly speaking, SR is not a resonance in the sense of in-
state theory, creased response when a driving frequency is tuned to an

located at

k2

K(k)—2E(K) |. (39)

+k?
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intrinsic frequency of the system. However, there is a usefulrhus, the equations for the power spectriRgyr, RsnR
H H “ H ax
anal_og_y with resonance since the SNRe responsej_ IS nd Do Of the two-state theory have the same forms as
maximized when an input signal is tuned near a certain valugp,,\vn in Eqs(34)—(38), respectively, with the replacement
Dmax . . . of b, by wy. The indexr for Uy, Ap, andD in Egs.(34)—
It follows from Fig. 4 that the SNR maximum increases (38) must be omitted. From Eq€34)—(38), it follows that

and shifts to a lower value dD with the growth ofw/L, ;" 3 macromolecule with free ends the magnitudes of
qualitatively as in our numerical analysis. Let us consider,

now the dependence of the SNR on the ratih. in more Renr: Rong,,, 8NdDimax do not depend on the rati/L.

detail. Since the coefficientd.4 and Ay contain the param-

eter 1/gL)«w/L, the effective potential25) will change on VIl. DOUBLY STOCHASTIC RESONANCE

varying these parameters. As the parametér increases, OF THE MACROMOLECULE MOTION

the effective potentia(25) is smoothed, the macromolecule

contracts toward thg=0 plane, and less noise is needed to

bring the macromolecule to the other side of the potentia

barrier. That explains the growth of the SNR maximum and

its shift to lower values oD with increasingw/L. With the

estimationg18)—(20) and(23) given above, we can evaluate g

the corresponding limiting values of the SNR. It follows gﬁ

from Egs. (37) and (38) that in the long-chain limit I ot

— arw) the maximal value of the SNR and the corresponding

noise intensity behave asRSNRnaxoc[Ag/(Aguo)]k*"'

<[ AS/(AEUQ)I[L/(mrw) —1] 2 and  Dpac€Uok®  The noisy termg/(t)y, and 7(t) represent mutually uncor-

x€Ug[L/(mw)—1]?. For relatively short macromolecules rejated Gaussian noise, with zero mean and correlations

(W/L—=0), Rsng,, and Dmay approach constants; in par- given by

ticular, we have foundRsyg _ =42A5/(€°A¢Ug), Dpa

= £U/2. The results of calculations &fsyg _ (curve 3 and (LD Em(t+ 7)) =6, md(7) (43

D max (curve 2 versus the ratiav/L are depicted in Fig. 4.
In Fig. 4 is also shown the behavior of the Kramers rat

Mk max=Tk(D=Dmad=8Uq /(me?¢b%)  versus wiL

(curve 3. In the limit L— 7rw, the maximal rate& g ., tends

to zero (rex[Uy/(éw3)]k?). For w/L—0, the rate ap-

proaches a constafity = \/8U,/(me?éw3)].

Finally, in this section the doubly SR of the macromol-
cule motion driven by multiplicative and additive noise and
he periodic signal will be studied. The following set of
Langevin equations describes the system considered:

Uy
:C(yn+l_2yn+yn—1)_W+ \/2D§§n(t)yn
n

+Agcog Qt+ @)+ 2D 5(t). (42)

eand Eq.(6).

Next we consider the case of a wide and/or shallow po-
tential with w/L=1/7. In this case the boundary force
caused by the bistable potential is not sufficient to disturb the
polymer with pinned ends from the conformation corre-
sponding to the solutiory(s)=0 for {,(t)=0. Therefore,
the change in bimodality of the macromolecule configuration
VI. STOCHASTIC RESONANCE OF MOTION induced by the multiplicative noise will be our initial con-
OF A MACROMOLECULE WITH FREE ENDS cern. If Ay, D, andc vanish, the time evolution of the first
moment of a single segment is given simply by the drift part

Next, the dynamics of a single macromolecule with freejn the corresponding Fokker-Planck equati@tratonovich
ends located in the double-well shaped poter(@alis stud- g4

ied. In this case the stationary solutions of E®) satisfying

the conditions ay) - _07Ub(<Y>) . »
5 ot - (9<y> §<y> ( )
—y=0 (39
s As was argued in37], the mechanism of the noise-
induced phase transitions in coupled systems can be ex-
at the free ends=0 ands=L can be written as plained by means of a short-time-evolution approximation.
This means that we start with an initial Dir@cfunction and
y(s)=twg (40  follow it only for a short time, such that fluctuations are

small and the probability density is well approximated by
Gaussian. Suppression of fluctuations performed by coupling
along the polymer chain makes this approximation appropri-
ate in our cas¢38]. The equation for the maximum of the
y(s)==bysiqs+K(k),k] (4D probability, which is also the average value in the approxi-

mationy=(y), takes the following form:

and

with g=(2M/L)K(k) being the integration constant.

The solution(40) has the minimal energy. Therefore, the Py JU(Y
dynamics of only a chain completely located in one of the _y: _L(y)jL D,y (45)
potential wells has to be further considered in this section. ot ay o
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which is valid if Uy ((y))>{8y?)U;({y)). For this dynamics  bistable dissipative dilute or semidilute polymer solution
an effective potentiaUE“(y) can be derived, which has the With localized attracting centers. The double-well potential
form describes the effect of a flat boundary between two phases or
solvents where polymer segments are attracted by the interi-
off nois D, , ors of both phasesolvents and repelled from the boundary.
UR'(y)=Up(y)+UpTy) =Up(y -3 The localized attracting centers model motionl@ising the
considered time intervalsinhomogeneities, impurities, or
- [y? )2 long-living interchain entanglements. Some polymer seg-
=—-AUp+Up| =5 -1/,
Wo

(46) ments can be trapped by the centers and become motionless
as well as the centers themselves. All other polymer seg-
ments keep a freedom movement restricted only by the chain
connectivity with the motionless segments. If in this system

Dgwé) the potential wells are deep, then in equilibrifwhen time-

where

dependent field¢signalg and noise are absgrthe polymer
chains are curved into the interior of one of the two phases
(with minimum total free energy of the systemWith an
47) applied additive noiserandom forces due to internal fluctua-
tions or external random fielgsthe polymer segments are
_ _ able to oscillate stochasticallj26] between the potential
with Uy and wy being the height of the potential barrier wells. With a weak periodic forcéexternal periodic fiely
between the minima and the half distance between two welladditionally applied to the system, the SNR of the output
renormalized by multiplicative noise. It follows from Eq. versus input noise intensity shows a maximum, which is
(47) that the magnitudes &, andw, grow with an increase  called stochastic resonance. The SNR maximiRguk )
in the multiplicative noise intensit, . and its position D 5,0 depend significantly on the parameter
The stationary macromolecule configuration) have  w/L, which is a measure of the constraints experienced by a
the same forms as shown in E¢$4) and(15), respectively, polymer chain of the length due to the bistable potential.
with the replacement o), andw, by U, andw,. In this ~ The position of the maximum shifts toward smaller noise

case, the ratio W/L=[Wo/(2L)]NT/Uo=[wo/(2L)T[1 values if_the ratiov/L incre_ases._This is due to the fact that
+(DwW2)/(4Ug) ]~ M2 WhiC[h ios(a E‘r]1easurg, o[f t?u(e p)o]IE/mer the barrier of the effective bistable potenti5) gets
& 0 ’ smaller. Our polymer system represents an exampéeras-

chain stiffness, decreases with increasing multiplicative . .
noise intensityD, . For w/L=<1/m, the pinned macromol- enhanced SRThis case of array-enhanced SR has a shift of

ecule driven by a multiplicative noise becomes curved. the optimal noise to small values of its intensity with respect

Now, if a global external periodic force and additive noise©. the one discussed #0]. If a multiplicative noise is ap-
are additionally applied to the system conventional SR Car;,')hed additionally to the system the effe_ctlve stiffness of the
be observed. Then the equations for the power spectrurmactr_omolec.ule decreases aRgNRngx shifts towards larger
Rsnr: Rsng, . and Dy, OF the two-state theory are de- additive noise values. For a stiff macromolecula/I(

ax

: _ . . =1/7), we demonstrate the existence of doubly SR of the
scribed by Eqs(34)~ (38), rgspectwely, with t.he replacem.ent macromolecule motion, which results from twofold influence
of Uy, andwgy by Uy and wy. A decrease in the effective

. ! ) ) of noise. It is a combined effect that consists of noise-
stifiness of the pinned polymer chawfL with the growth of i, q,ced bimodality of macromolecule conformations and
multiplicative noise intensityD, leads to a decrease of the .,nventional SR.

SNR maximum and its shift to higher values Df The motion of flexible macromolecules in solution is a
In conclusion, in this section we report the twofold effect gpacia) case of the motion of a 1D system subject to deter-
of noise on the polymer dynamics. An additive noise andynistic and noisy forces in bistable, dissipative media of
periodic signal causes SR of the macromolecule motion ifyigher dimension. Therefore, the results above are relevant
the potential, which in its turn is induced by multiplicative ¢, ihe understanding of the SR of dislocation motion in
noise. Following25], this effect could be classed as doubly solids[39], domain and domain-wall dynamics in thin mag-

UOZUO( 1+

SR of the macromolecule motion. netic and ferroelastic filmgt0], and the motion of a fronta
wave of transition between two states dividing two phases by
VIll. CONCLUSIONS a narrow moving interfagein reaction-diffusion systems

We have demonstrated that noise can enhance the periodfél]'
component in the stochastic motion of a macromolecule.
This study generalizes our previous res(i8§] for stochas-
tic motion of stretched strings up to looped polymer chains. This work was supported in part by the Russian Founda-
We studied SR for the motion of macromolecules in ation for Basic ResearctGrant No. 99-02-17404
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