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Stochastic resonance for motion of flexible macromolecules in solution
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We consider a dilute or semidilute polymer solution with localized attracting centers near a flat phase
boundary and assume it driven by both stochastic and periodic forces. The attracting inhomogeneities restrict
the free motion of macromolecules and play the role of fixed pinning centers. The flat boundary is modeled by
a bistable potential whose minima attract the movable polymer segments between neighboring pinning points.
We study the motion of these segments. The stochastic forces lead to stochastic oscillations of the polymer
parts between the two potential wells near the phase boundary. Application of a small temporal periodic force
can synchronize these oscillations and leads to the phenomenon of stochastic resonance for a nonvanishing
noise intensity. As an outcome of our theory in agreement with numerical simulations, the resonance is stronger
for wider and/or less deep potentials and observed at smaller values of the noise intensity. Additionally, we
discuss under what conditions doubly stochastic resonance of the macromolecular motion occurs, that is, if
bistability of the potential near the boundary originates in the action of multiplicative noise.

DOI: 10.1103/PhysRevE.65.061101 PACS number~s!: 05.40.Ca, 02.50.Ey, 36.20.Ey, 61.25.Hq
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I. INTRODUCTION

The presence of noise in a nonlinear dynamical system
known to lead to cooperative effects, including stochas
resonance~SR! @1–3# and noise-induced phase transitio
@4–6#. SR is a cooperative phenomenon, in which a respo
of the bistable or threshold stochastic system to a small
riodic signal, as well as the signal-to-noise ratio~SNR! at the
frequency of the fundamental harmonics, can be enhance
tuning the noise intensity to an optimal nonzero value. R
cently, theoretical and experimental studies have been
cused on SR in spatially distributed systems, which are v
interesting for practical application in physics and biology
has been shown in@7–9# that the response~and SNR! of a
single stochastic resonator can be further enhanced, if
embedded in an ensemble of other stochastic resonators
are properly coupled. SR for the one-dimensional~1D! and
two–dimensional~2D! Ising model with Glauber dynamic
in an oscillating magnetic field was studied in@10,11#. Spa-
tiotemporal SR has been observed in excitable media@12,13#
and systems described by the Swift-Hohenberg equa
@14#. The SR of domain-wall motion in 1D and 2D nonun
form magnetic media was studied in@15–18#.

Other examples of the ordering role of noise in noneq
librium situations through its interaction with the nonlinea
ity of the system are the noise-induced phenomena in
tially extended systems~see@19# for a review!. They include
noise-induced patterns@20# and noise-induced phase trans
tions @21#. Noise-sustained phenomena have been found
investigated in noise-supported traveling structures in ex
able media@22#, in noise-sustained convective structur
@23#, and at a noise-induced phase separation@24#. Recently,
SR in a system with a noise-induced nonequilibrium ph
1063-651X/2002/65~6!/061101~10!/$20.00 65 0611
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transition resulting in bistable behavior of the mean field h
been reported@25#. This effect was named doubly stochas
resonance to emphasize that additive noise causes a res
celike behavior in the structure, which in turn is induced
multiplicative noise.

In the present study we intend to consider SR for
motion of macromolecules in a bistable dissipative dilute
semidilute polymer solution with localized attracting cente
The double-well potential describes the effect of a fl
boundary between two phases or solvents where poly
segments are attracted by the interiors of both phases~sol-
vents! and repelled from the boundary. The localized attra
ing centers model motionless~during the considered time
intervals! inhomogeneities, impurities, or long-living inter
chain entanglements. We assume that some polymer
ments can be trapped by the centers and become motion
as well as the centers themselves. All other polymer s
ments keep movement freedom restricted only by the ch
connectivity with the motionless segments. Thus, the po
mer segments form mostly mobile bridges between the fi
pinning points. For a dilute or semidilute solution, ea
‘‘bridge’’ can be considered independently from the othe
i.e., we neglect ‘‘bridge-bridge’’ interactions. If in this sys
tem the potential wells are deep, then, in equilibrium@when
time-dependent fields~signals! and noise are absent#, the
‘‘bridges’’ are curved into the interior of one of the tw
phases~with the minimum total free energy of the system!.
With an applied noise~random forces due to internal fluctua
tions or external random fields!, the polymer segments ar
able to oscillate stochastically@26# between the potentia
wells. It is expected, that, with a weak periodic force~exter-
nal periodic field! applied to the system, SR in the motion
the macromolecules will be observed.
©2002 The American Physical Society01-1
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DIKSHTEIN, KUZNETSOV, AND SCHIMANSKY-GEIER PHYSICAL REVIEW E65 061101
In the present paper, to extract the most interesting
specific features of the macromolecular nature in the stoc
tic resonance environment, we will restrict our considerat
to the basic dynamic polymer model, which is the Rou
model@27,28#. We will discuss some limits, where the lea
ing factors of chain movement are reduced to more-or-
well studied SR phenomena, such as single-particle SR
havior @29#. ~Depending on the system parameters, o
particle SR properties can be applied to a whole polyme
every single-chain segment.!

The paper is organized in seven more sections. In Sec
we present our model of the polymer chain restricted by t
pinning centers and driven by periodic and noisy forces i
double-well shaped potential. The basic dynamic regime
the system are described in Sec. III. Sections IV and V
devoted to numerical and analytical studies of SR in
model. In Sec. V, we deal with both time-independent~sta-
tionary! and time-dependent variational analytical solutio
SR of the motion of a macromolecule with free ends is st
ied in Sec. VI. In Sec. VII, we present the analytical resu
for macromolecular motion driven by multiplicative and a
ditive noise. The conditions for the existence of doubly s
chastic resonance of the macromolecule motion are de
mined. Section VIII concludes with a discussion of the wo

II. THE MODEL

Consider the dynamics of a single linear polymer ch
composed ofN segments (N@1) with a fixed distancel
between the ends. The freedom of the ends is restricted
the motionless pinning pointsx0 (x050,y050,z050) and
xN(xN5 l ,yN50,zN50). Generally speaking, theN segments
between the pinning points can be a part of a longer ma
molecule trapped by pinning centers. We assume a str
pinning, i.e., the pinned segments cannot move during
considered time intervals. As we mentioned in the Introd
tion, the pinning centers can be caused by stable inhom
neities and impurities in the solvent, or long-term entang
ments of the considered polymer chain with oth
macromolecules or other segments of the same chain. A
from the pinning points, we ignore any other bulk intera
tions of the chain with surrounding polymers, assuming t
the chain is placed in a dilute or semidilute polymer solutio
We use the standard Rouse model~ideal phantom Gaussia
chain in an immobile solvent! and treat the solvent as a vis
cous motionless medium in which links~beads! experience
friction when moving.

The Lagrange function for the polymer chain is

L5
m

2 (
n51

N21

ẋn
22U, ~1!

where the first term stands for the kinetic-energy densityxn
is the position of thenth bead~link! at the time moment
t, ẋn[]xn /]t, andm is the link mass. The potential energ
U5Uch1Ub contains the coupling energy due to the cha
connectivity Uch and the potential energyUb of the chain
near the phase boundary. For the Gaussian chain
06110
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Uch5
c

2 (
n50

N21

~xn112xn!2, ~2!

where c53T/a2 with T being the temperature in energ
units anda the average intersegment distance along the ch
contour @27#. We will model the fieldUb as a double-well
shaped potential:

Ub5U0 (
n51

N21 S yn
2

w0
2

21D 2

, ~3!

whereU0 is the height of the potential barrier between t
minima, yn is the 1D position in the direction perpendicul
to the flat phase boundary, and the parameterw0 stands for
the half distance between two wells.

The equation of motion corresponding to the Lagran
function ~1! can be written down as

d

dt

]L

] ẋn

2
]L

]xn
52

]Q

] ẋn

1Fex1FN . ~4!

Here,

Q~ ẋn!5
j

2 (
n51

N21

ẋn
2 ~5!

is the dissipative function withj as the friction coefficient.
Fex5A0 cos(Vt1f) is the external periodic field~signal! ap-
plied to the system in the direction perpendicular to t
phase boundary with frequencyV and random initial phase
f. The valuef is a random variable@29#, uniformly distrib-
uted over the interval@0,2p#. FN5A2Dh(t) is the random
force associated with the noise and thermal fluctuations
the polymer chain. We assume that this noise is a Gaus
white noise with zero mean and ad function as the autocor
relation function:

^h~ t !&50, ^h~ t !h~ t1t!&5d~t!. ~6!

D scales the noise intensity. Both time-dependent perio
and random forces are considered as global~i.e., they do not
depend on the segment positionxn) and weak~they cannot
destroy the Gaussian polymer connectivity and move
pinning centers!. Moreover, the weakness of the period
force means that it does not have a sufficiently large am
tude ~without noise! to move the segments from an equilib
rium stable configuration formed in one potential well to
state in the other well.

For the direction perpendicular to the phase boundaryy
axis! the Lagrangian equation of motion~4! with the dissi-
pative function~5! and the Lagrange density~1! leads to

m
]2yn

]t2
1j

]yn

] t
5c~yn1122yn1yn21!2

]Ub

]yn

1A0 cos~Vt1f!1A2Dh~ t !. ~7!
1-2
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STOCHASTIC RESONANCE FOR MOTION OF FLEXIBLE . . . PHYSICAL REVIEW E 65 061101
For overdamped dynamics, the term, that arises from
kinetic-energy density can be neglected and Eq.~7! simpli-
fies to

j
]yn

]t
5c~yn1122yn1yn21!2

]Ub

]yn

1A0 cos~Vt1f!1A2Dh~ t !. ~8!

The motion of polymer segments in the directions para
to the phase boundary (x andz axes! is not affected by the
potentialUb and the external fieldFex. This motion is de-
scribed only by the friction, chain connectivity, and rando
forces. We assume that this simple parallel motion does
disturb Eq.~8!.

The pinning conditions impose important restrictions
the polymer motion. Assuming that the pinning centers
this chain are localized on the phase boundary~i.e., on the
top of the potential barrier between two minima,y50!, we
can write the conditions as

x050, y050, z050

and xN5 l , yN50, zN50. ~9!

Below, our numerical~Sec. IV! and analytical~Sec. V!
studies are based on Eq.~8! with the conditions~9!. Both
these studies exhibit SR behavior for the polymer motion
lead to results that agree qualitatively.

III. BASIC DYNAMIC REGIMES

In Eqs.~2!, ~7!, and~8! we have assumed a Gaussian ty
of interlink polymer connectivity. However, if the characte
istic size of the link-link connectivity is much shorter than a
other characteristic distances of the considered system,
any particular choice of the polymer model~dealing with
microscopic scales! does not essentially affect the results fo
lowing from Eq.~8!. Thus, in the last case we can apply o
results to macromolecules with any mechanism of ch
flexibility.

We consider phenomenologically and compare poss
regimes of polymer behavior in the model described ab
for two types of macromolecule: Gaussian beads and pe
tent ~wormlike! polymers. The physical properties of line
polymers in bulk are determined by the following paramet
with the dimension of length: the total length of the cha
L5Na, the mean size~for instance, the radius of gyration! of
an unperturbed macromoleculeR05(Na2/6)1/2, the average
distance between neighboring beadsa, and the bead diamete
d for the Gaussian model; and the lengthL, the unperturbed
mean sizeR0, the persistent lengtha, and the macromolecule
width d for the persistent model. To consider long polyme
with N@1 we havea!R0!L. The polymer chain dynamic
depends on the relations between these parameters and
system parameters with the dimension of length: the dista
between pinning pointsl and the effective widthw
;w0AT/U0 of the bistable potential.

The effect of the distancel on the system properties i
important for l;L only, where the chain has to be strong
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stretched along the potential wells and the polymer can
described as a stiff string. Forw, l;L the string can obey
stochastic resonance, as described in our previous paper@30#.

Now we consider a different casel !L, where the effect
of the potential-well widthw is much more important than
the effect ofl. For d!a!R0!L and l !L we can observe
the following dynamic regimes in the system~the corre-
sponding schematic pictures of chain configurations in th
regimes are shown in Fig. 1!.

~a! For very wide potential wells (w.L), the bistable
potential does not essentially affect the polymer chain. T
segments are not able to reach potential wells without
tremely strong stretching and they are placed in the poten
barrier area along the boundary surface@Fig. 1~a!#. SR is
unreachable in this case and therefore to define any spe
properties of our model we need to consider other con
tions.

~b! For relatively wide potential wells (R0!w!L), al-
most all the chain segments~the whole ‘‘bridge’’! have to be
placed in one of the two potential wells. A state with polym
segments present in both potential wells would have a m
higher free energy due to the large fraction of high-ene
segments placed in the potential barrier area~to connect seg-
ments in the different wells!. In the one-well state, only the
segments neighboring~along the chain contour! the pinned

FIG. 1. Sketch of polymers following different dynamic regim
of the considered model:~a! very wide potential wells (w.L), ~b!
relatively wide potential wells (R0!w!L), ~c! narrow potential
wells (d!w!a) for Gaussian chains, and~d! intermediate width
wells (a!w!R0).
1-3
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segment are placed in the potential barrier area; this is in
table and the fraction of such segments~with respect to the
total number of chain segments! is very low. @For case~a!
with w.L, even a one-well state would have only the neig
boring segments placed in the potential barrier area, bec
the total chain lengthL would not be long enough to reac
the potential wells.# Now, under random and periodic force
the ‘‘bridge’’ can move from the first potential well to th
other one mostly as a whole, because an alternative trans
by parts would required a much higher activation ener
Thus, the leading dynamic properties of the considered p
mer chain in the system driven by random and periodic g
bal forces can be described as for a single solid particle
der the same forces@Fig. 1~b!#, that is, a system with a well
studied SR phenomenon~see, for instance,@29#!. This
behavior describes the macromolecule as a whole and, th
fore, it does not depend on the polymer microscopic str
ture, i.e., on the selection of a specific polymer model.

~c! For narrow potential wells (d!w!a), the system be-
havior strongly depends on the microscopic polymer str
ture. Now, for the Gaussian chain, each polymer bead ca
considered as separate~disconnected from others along th
chain contour!. This occurs because the potential-well wid
w is much shorter than the interbead connectivity lengtha
and thus the beads do not experience any restrictions ar
from the connectivity even if the neighboring beads a
placed in two different wells. Therefore, again as in the p
vious point ~b!, the problem is reduced to the motion
separate particles in the system driven by random and p
odic forces@Fig. 1~c!#. The principal difference from the cas
above is that now we deal with the ‘‘separated’’ beads inst
of the separate chains, moving as a single particle. Howe
in the present case this behavior takes place for the Gaus
beads and ceases to be valid for some other models.
instance, the persistent chain has an orientation mem
along the contour distancea, which now is much longer than
the potential widthw. Therefore, the wormlike polymer ca
be described as a ‘‘hose’’ lying along a well and, in som
places, rolling over the barrier between the wells. This
havior is quite different from the dynamics of separate s
ments. Thus, now for the wormlike polymers the connec
ity effects are highly important and the problem cannot
reduced to the separate particles.

~d! The case with intermediate widthw (a!w!R0)
seems to be the most interesting. On the one hand, now
whole chain cannot be easily placed in one potential w
only ~as it was forR0!w!L). It tends to spread over bot
potential wells to decrease the compression energy, whic
proportional to R2/w2. On the other hand, even for th
Gaussian chain the intersegment connectivity plays a cru
role. Unlike the case ofd!w!a, the neighboring bead
cannot be placed into the different wells without a stro
stretching of the interbead distance with an energy pen
proportional tow2/a2. Now the motion between the potenti
wells occurs for strongly correlated beads. This can lead
motion by neighboring chain portions~composed of a few or
many neighboring segments along the chain contour!.

All the basic regimes~a!–~d! are covered by Eq.~8!. In-
deed, for the Gaussian model, in Eqs.~2!, ~7!, and ~8! the
06110
i-

-
se

on
.

y-
-
n-

re-
-

-
be

ng
e
-

ri-

d
er,
ian
or
ry

-
-
-
e

he
ll

is

ial

ty

to

coefficientc53T/a2. Therefore, the first term on the righ
hand sides of Eqs.~7! and~8! is proportional toT/a2. Mean-
while, the second one]Ub /]yn;U0 /w2. The first term can
be neglected~i.e., we have the single-particle problem fo
each separatelike bead! if we follow the condition~c! with
w!a. For the case~b!, whenR;N1/2a!w ~for a long poly-
mer withN@1), the chain connectivity~the first term! domi-
nates over all other contributions unless the macromolec
moves as a whole. For the intermediate case~d! all the con-
tributions in Eq.~8! are equally important. The condition~a!
with w.L corresponds to the leading role of the chain co
nectivity.

In the next section we will analyze numerically the mod
equation~8! with the conditions~9! for all the regimes men-
tioned above.

IV. NUMERICAL TREATMENT

Due to the action of the boundary forceFb5
2]Ub /]yn , the polymer segments tend to move from t
boundary plane (y50) to the potential wells. Random an
periodic forces change the depths of the potential wells
cause ‘‘flip-flop’’ transitions of the segments between tw
stable symmetric states. Our main goal here is to conside
dynamics of these oscillations as a function of the no
force and the effective width of the bistable potential. T
amplitudeA0 of the periodic force is assumed to be suf
ciently small so that the interwell jumps of the segme
would not occur without noise~i.e., the jumps are initiated
by noise!. However, as will be seen below, the periodic for
can synchronize these jumps.

Equation~8! was simulated by a standard Euler algorith
@31# with a time stepDt51023 taking account of the pinning
conditions~9!. A noise in the Stratonovich sense was intr
duced into the algorithm by means of a standard proced
@32#. To ensure the reliability of the program, the conve
gence to a stationary analytic solution for the potentialU was
tested and observed. It was found that the effect of temp
global noise results approximately in a stochastic chang
the polymer elongation.

In the numerical analysis, the stochastic dynamics is
ther reduced to two-state dynamics:11 state when the av
erage location of the polymer is above they50 plane and
21 state when it is below. The response~output! of the
system with respect to the noise and periodic signal can
written as

q~ t !5sgnS (
n51

N21

ynD 561. ~10!

The binary time series, e.g.,

q~ t !5 . . . ,11,11,21,11,21,21,21,11, . . . , ~11!

resulting from simulations of Eq.~8! over 2000 time units
~corresponding to 23106 time steps! were processed by a
Fourier analysis that was carried out by a fast Fourier tra
form ~FFT! algorithm. To minimize the errors arising from
the FFT aliasing problem, a signal frequencyV matching
1-4
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STOCHASTIC RESONANCE FOR MOTION OF FLEXIBLE . . . PHYSICAL REVIEW E 65 061101
one of the frequencies of the resulting discrete Fourier sp
trum was chosen. The FFT used 4096 sampling points
order to get a stationary power spectrum density~PSD!, an
ensemble of 50 spectra was averaged over equally distrib
initial phases.

The resulting PSD, consisting of a peak atV and its mul-
tiples riding on a Lorentzian-like background noise, is ch
acteristic for periodically driven stochastic overdamped n
linear dynamics. To calculate the stochastic resonance
studied thesignal-to-noise ratioof the output. The ratio was
defined as the weight of the first peak atV divided by the
value of the background noise at the peak frequency. W
tuning the noise intensityD, the SNR shows a clear max
mum for two different values of the effective potential wid
~see Fig. 2!. This maximum behavior is calledstochastic
resonance. Increasing the input noise intensity leads to
increased coherence between output and input signals.
reason for this behavior is a change~due to the tuning! in the
stochastic time scale specifying the jumping time of t
polymer.

As can be seen from Fig. 2, the SNR maximum shifts
larger values ofD if the effective potential widthw de-
creases. A way to understand this is given in the next sec
where we present a qualitative theoretical approach usin
picture of an effective potential.

V. THEORETIC APPROACH

The continuous analog of Eq.~8! is

j
]y~ t,s!

]t
53T

]2y~ t,s!

]s2
2

]Ub~y!

]y

1A0 cos~Vt1f!1A2Dh~ t !, ~12!

where the 1D positionyn(t) of the polymer segmentn
51, . . . ,N at the time momentt was transformed to the
position y(t,s) of the point s (0<s<L5Na) along the
polymer contour,yn(t)→y(t,na)→y(t,s), and the explicit
expressionc53T/a2 was substituted. The pinning cond
tions ~9! for the 1D positiony(t,s) in the continuous limit
can be written as

FIG. 2. Numerically determined SNR versus noise strengthD
for different values of the ratiow/L: 0.241 ~crosses! and 0.227
~circles!. The dashed and solid curves present theoretical est
tions for w/L50.241 andw/L50.227, respectively. The other pa
rameters are V50.301, A050.2, L511, h l52, U053, w0

51, D55.25, Dt51023, andN515.
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y~s50!50, y~s5L !50, ~13!

whereL5Na is the total length of the chain between pinnin
points.

A. Stationary solution

If Fex50 and FN50 ~i.e., A050 and D50), Eq. ~12!
with the pinning conditions~13! possesses the following sta
tionary ~time independent! solutions:~i! the trivial solution

y~s!50, ~14!

corresponding to a polymer chain with segments placed
the phase boundary, and~ii ! solutions of the type

y~s!56bm sn~qs,k!, ~15!

corresponding to the macromolecule curved inside
phases. Here sn is the Jacobian elliptic sine@33#, bm

5w0A2(12q2w2), k5A(qw)2221, w5(w0/2)A3T/U0,
andq is the integration constant.

Using the conditions~13!, the equation for calculation o
the integration constantq takes the form

q5
2M

L
K~k!, ~16!

whereK(k) is the complete elliptic integral of the first kin
@33#, M51,2, . . . .

Stationary polymer configurations for different values
the ratio w/L are shown in Fig. 3. This ratiow/L
;(w0 /L)AT/U0 is a measure of the constraints experienc
by a polymer chain of lengthL due to the bistable boundar
potentialUb : the stronger the constraints~smaller widthw0
and higher barrierU0), the lower is the valuew/L.

For wide and/or shallow potentials withw/L>1/p, the
boundary force caused by the bistable potential is not su
cient to disturb the polymer from the conformation corr
sponding to the solutiony(s)[0, which would occur with-
out any boundary fields~i.e., at U050) or for extremely
wide potential wells (w0→`). As we mentioned in Sec. III,
in this case~where the bistable potential does not affect t
polymer! the SR is unreachable. However, as shown in S
VII, bimodality of the macromolecule configuration can b

a-
FIG. 3. Stationary configurations of a macromolecule forM

51 and the following values of thew/L ratio: 0.167, 0.267, and
0.315.
1-5
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DIKSHTEIN, KUZNETSOV, AND SCHIMANSKY-GEIER PHYSICAL REVIEW E65 061101
induced by multiplicative noise. Therefore, SR of the ma
romolecule motion can exist if the system is simultaneou
driven by multiplicative and additive noise.

For lower valuesw/L<1/p, the solution~15! describes
states with a lower energy than for Eq.~14!. For M.1 the
corresponding dependencyy(s) can have more than one ex
tremum between s50 and s5L at s5mL/(2M )(m
51, . . . ,M ). However, forw/L<1/p the chain configura-
tion with M51 has the minimal energy.

The stationary nonzero solution~15! can be substantially
simplified in the limiting cases of very low and very hig
w/L ratios. ForL@w andM51, we have

y~s!5H 6B tanh@s/~A2w!# for 0,s,L/2,

6B tanh@~L2s!/~A2w!# for L/2,s,L,
~17!

with

B5w0F124 expS 2
L

A2w
D G ~18!

and the other parameters given by

k5128 expS 2
L

A2w
D , ~19!

q5A2wF114 expS 2
L

A2w
D G . ~20!

For L>pMw(M51,2, . . . ), onegets

y~s!56B sin~qs!, ~21!

where

B5A8

3
dw0S 12

25

24
d2D , k5A4

3
dS 12

3

8
d2D ,

~22!

q5
p

L S 11
1

3
d2D , d5A L

pMw
21. ~23!

From the equations above, it follows that the macrom
ecule becomes curved inside the phases forL>pw. For
pw<L<2pw the macromolecule has two stable symmet
configurations. ForpMw<L<p(M11)w the macromol-
ecule has two stable and 2(M21) metastable configurations
It follows from Eqs.~15!, ~17!, and~21! that the chain con-
figuration depends on the ratiow/L of the effective potential
width w to the total chain lengthL: the largerT and the
smallerL and the potential gradientAU0/w0, the less mac-
romolecule dangles into the phase interiors.

B. Variational solution

According to El’sgoltz@34#, the approximate variationa
solution of our problem should be sought in the form o
finite combination of trial functions with unknown coeffi
06110
-
y

l-

cients depending on time. This approximation is more
equate for our case than other methods, for example, the
method. As a first approximation, the ansatz

y~s!5b~ t !sn~qs,k! ~24!

was used. The motivation to search for the solution in
form above is given by the stationary solution of the pro
lem, which is the factor in Eq.~24!. The amplitudeb(t)
represents an elongation. For the stationary case it is equ
6bm . The results of our numerical simulation also sugg
the usage of this ansatz. The benefit of applying this ansa
that our 2D problem is reduced to a 1D one.

Substituting the ansatz~24! into the energy~1! and dissi-
pative functionQ ~5!, and integrating them overs, we get the
functionalsU@b(t)# andQ@b(t)#. Furthermore, we will con-
sider only small deviations of the macromolecule from t
y50 plane, that is, small elongationsb(t). After carrying out
the integration overs, we obtain expansions ofU@b(t)# and
Q@b(t)# as power series inb(t) up to fourth order:

U@b~ t !#5UeffS b2

bm
2

21D 2

, ~25!

Q@b~ t !#5
1

2
jLS ]b

]t D
2

, ~26!

where

Ueff5
4

3

U0L

11k2 F21k2

11k2
2

4

qL
E~k!G ,

bm5w0A 2k2

11k2
, L5

L

k2 F12
2

qL
E~k!G , ~27!

with E(k) being the complete elliptic function of the secon
kind @33#.

In the overdamped limit the reduced equation of moti
for the dynamics of the elongation

dQ~]b/]t !

d~]b/]t !
52

dU@b#

db
1A0eff cos~Vt1f!

1A2Deffj~ t ! ~28!

takes the form

j
]b~ t !

]t
5

4U0r

bm
S b~ t !

bm
2

b3~ t !

bm
3 D 1A0r cos~Vt1f!

1A2Drj~ t ! ~29!

with

A0eff5
A0

qk
ln

11k

12k
, Deff5

D

q2k2
ln2

11k

12k
, ~30!

and
1-6
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U0r5
Ueff

L
, A0r5

A0eff

L
, Dr5

Deff

L2
. ~31!

Equation~29! describes nothing but the stochastic motion
a Brownian particle driven by a periodic signal with the re
caled signal amplitudeA0r and a noise with rescaled inten
sity Dr . The particle is placed in a double-well potenti
with the distance between two wellsbm and the potential
barrier height between wellsU0r . This is one of the bes
studied systems in the theory of SR and we are able to a
the earlier results by rescaling the parameters accordin
our problem. In particular, we use the McNamara and W
senfeld theory@29#, where the dynamics is further reduced
a periodically driven two-state random walk in the limit
small amplitudes. This theory, like the linear response the
for the dynamics between two wells@2#, is in sufficiently
good agreement with the numerical treatment in Sec. IV.

Two discrete states of elongationsb(t)56bm will be
considered below. Denoting the probabilities of finding t
macromolecule in the right and left wells of the bistable p
tential ~stable states! at time t by n1(t) and n2(t), respec-
tively, the master equation reads

dn6

dt
52@W1~ t !1W2~ t !#n61W7~ t !, ~32!

whereW1(t) andW2(t) are the transition probability den
sities corresponding to the jumps (1)→(2) and (1)←
(2), respectively,n2(t)512n1(t). Following @29#, the
modified Kramers rate can be used for the transition pr
ability densities:

W6~ t !5r K expF6
jbmA0r

Dr
cos~Vt1f!G , ~33!

with r K5(2A2/p)@U0r /(jbm
2 )#exp(2jU0r /Dr) being the

Kramers rate forA050 ~see@35#!. The expression~33! holds
true only in the adiabatic approach, where the signal is s
ficiently slow in comparison with all relevant time scales
the system. This means that the temporal change of the a
batic potential~25! has to be slow in comparison with th
intrawell relaxation.

Using the Kramers rate for the stochastic process~33!, the
two-state theory@29# can be directly applied. Since in th
limit of small amplitudes@A0r!Dr /(jbm)# the power aris-
ing from the signal is much smaller than the power of t
whole spectrum, the two-state output can be easily ca
lated. To make the analysis independent of the initial s
and, hence, to transform the problem into a stationary p
cess, the resulting expressions were averaged over a ran
initial phase~assuming that it is equally distributed! of the
periodic output. The resulting power spectrum of the tw
state theory,
06110
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S~v!5
1

2pE0

2p

S~v,u!du

5SN~v!1
p

2 S jbmA0r

Dr
D 2 4r K

2 bm
2

4r K
2 1v2

3@d~v2V!1d~v1V!#, ~34!

consists of weightedd functions, due to the periodic driving
and a continuous Lorentzian-like noise background@29,2#

SN~v!5F12
1

2 S jbmA0r

Dr
D 2 4r K

2

4r K
2 1V2G 4r Kbm

2

4r K
2 1v2

. ~35!

Therefore, within the described limitations, the SNR~the
ratio of the weight of thed function and the noise back
ground atV) can be written as

RSNR'A2
jU0rA0r

2

DDr
2

expS 2
jU0r

Dr
D , ~36!

with D being the width of a frequency bin in Hz~see@36#!.
The above analytical dependencies of the SNR on the n
intensity D are presented in Fig. 4 for different values
w/L. They exhibit the well-known bell-shaped curves. Th
agree qualitatively with the SNR of the numerical treatme
and have maxima with the values

RSNRmax
5

4A2

e2

A0
2

DmaxD
~37!

located at

D5Dmax5
8

3

jU0

11k2

K~k!2E~k!

@ ln~11k!2 ln~12k!#2

3F21k2

11k2
K~k!22E~k!G . ~38!

Strictly speaking, SR is not a resonance in the sense of
creased response when a driving frequency is tuned to

FIG. 4. The analytical dependence of RSNRmax
~curve 1!, Dmax

~curve 2!, and r K max ~curve 3! versusw/L. For parameters, se
caption to Fig. 2.
1-7
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intrinsic frequency of the system. However, there is a use
analogy with resonance since the SNR~the ‘‘response’’! is
maximized when an input signal is tuned near a certain va
Dmax.

It follows from Fig. 4 that the SNR maximum increas
and shifts to a lower value ofD with the growth ofw/L,
qualitatively as in our numerical analysis. Let us consid
now the dependence of the SNR on the ratiow/L in more
detail. Since the coefficientsUeff andA0eff contain the param-
eter 1/(qL)}w/L, the effective potential~25! will change on
varying these parameters. As the parameterw/L increases,
the effective potential~25! is smoothed, the macromolecu
contracts toward they50 plane, and less noise is needed
bring the macromolecule to the other side of the poten
barrier. That explains the growth of the SNR maximum a
its shift to lower values ofD with increasingw/L. With the
estimations~18!–~20! and~23! given above, we can evaluat
the corresponding limiting values of the SNR. It follow
from Eqs. ~37! and ~38! that in the long-chain limit (L
→pw) the maximal value of the SNR and the correspond
noise intensity behave asRSNRmax

}@A0
2/(DjU0)#k24

}@A0
2/(DjU0)#@L/(pw)21#22 and Dmax}jU0k4

}jU0@L/(pw)21#2. For relatively short macromolecule
(w/L→0), RSNRmax

and Dmax approach constants; in pa

ticular, we have foundRSNRmax
54A2A0

2/(e2DjU0), Dmax

5jU0/2. The results of calculations ofRSNRmax
~curve 1! and

Dmax ~curve 2! versus the ratiow/L are depicted in Fig. 4
In Fig. 4 is also shown the behavior of the Kramers r

r K max[r K(D5Dmax)5A8U0r /(pe2jbm
2 ) versus w/L

~curve 3!. In the limit L→pw, the maximal rater K max tends
to zero „r K}@U0 /(jw0

2)#k2
…. For w/L→0, the rate ap-

proaches a constant@r K5A8U0 /(pe2jw0
2)#.

VI. STOCHASTIC RESONANCE OF MOTION
OF A MACROMOLECULE WITH FREE ENDS

Next, the dynamics of a single macromolecule with fr
ends located in the double-well shaped potential~3! is stud-
ied. In this case the stationary solutions of Eq.~12! satisfying
the conditions

]y

]s
50 ~39!

at the free endss50 ands5L can be written as

y~s!56w0 ~40!

and

y~s!56bm sn@qs1K~k!,k# ~41!

with q5(2M /L)K(k) being the integration constant.
The solution~40! has the minimal energy. Therefore, th

dynamics of only a chain completely located in one of t
potential wells has to be further considered in this secti
06110
l

e

r

l
d

g

e

.

Thus, the equations for the power spectrum,RSNR, RSNRmax
,

and Dmax of the two-state theory have the same forms
shown in Eqs.~34!–~38!, respectively, with the replacemen
of bm by w0. The indexr for U0 , A0, andD in Eqs.~34!–
~38! must be omitted. From Eqs.~34!–~38!, it follows that
for a macromolecule with free ends the magnitudes
RSNR, RSNRmax

, andDmax do not depend on the ratiow/L.

VII. DOUBLY STOCHASTIC RESONANCE
OF THE MACROMOLECULE MOTION

Finally, in this section the doubly SR of the macromo
ecule motion driven by multiplicative and additive noise a
the periodic signal will be studied. The following set o
Langevin equations describes the system considered:

j
]yn

]t
5c~yn1122yn1yn21!2

]Ub

]yn
1A2Dzzn~ t !yn

1A0 cos~Vt1f!1A2Dh~ t !. ~42!

The noisy termsz(t)yn andh(t) represent mutually uncor
related Gaussian noise, with zero mean and correlat
given by

^zn~ t !zm~ t1t!&5dn,md~t! ~43!

and Eq.~6!.
Next we consider the case of a wide and/or shallow

tential with w/L>1/p. In this case the boundary forc
caused by the bistable potential is not sufficient to disturb
polymer with pinned ends from the conformation corr
sponding to the solutiony(s)[0 for zn(t)50. Therefore,
the change in bimodality of the macromolecule configurat
induced by the multiplicative noise will be our initial con
cern. If A0 , D, andc vanish, the time evolution of the firs
moment of a single segment is given simply by the drift p
in the corresponding Fokker-Planck equation~Stratonovich
case!:

j
]^y&
]t

52
]Ub~^y&!

]^y&
1Dz^y&. ~44!

As was argued in@37#, the mechanism of the noise
induced phase transitions in coupled systems can be
plained by means of a short-time-evolution approximatio
This means that we start with an initial Diracd function and
follow it only for a short time, such that fluctuations a
small and the probability density is well approximated
Gaussian. Suppression of fluctuations performed by coup
along the polymer chain makes this approximation appro
ate in our case@38#. The equation for the maximum of th
probability, which is also the average value in the appro
mation ỹ5^y&, takes the following form:

j
] ỹ

]t
52

]Ub~ ỹ!

] ỹ
1Dzỹ, ~45!
1-8
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which is valid if Ub(^y&)@^dy2&Ub9(^y&). For this dynamics
an effective potentialUb

eff(y) can be derived, which has th
form

Ub
eff~y!5Ub~y!1Ub

noise~y!5Ub~y!2
Dz

2
y2

[2DUb1Ũ0S y2

w̃0
2

21D 2

, ~46!

where

DUb5
Dzw0

2

2 S 11
Dzw0

2

8U0
D ,

Ũ05U0S 11
Dzw0

2

4U0
D 2

, w̃05w0A11
Dzw0

2

4U0
, ~47!

with Ũ0 and w̃0 being the height of the potential barrie
between the minima and the half distance between two w
renormalized by multiplicative noise. It follows from Eq
~47! that the magnitudes ofŨ0 andw̃0 grow with an increase
in the multiplicative noise intensityDz .

The stationary macromolecule configurationsy(s) have
the same forms as shown in Eqs.~14! and~15!, respectively,
with the replacement ofU0 and w0 by Ũ0 and w̃0. In this

case, the ratio w/L5@w̃0/(2L)#AT/Ũ0[@w0/(2L)#@1
1(Dzw0

2)/(4U0)#21/2, which is a measure of the polyme
chain stiffness, decreases with increasing multiplicat
noise intensityDz . For w/L<1/p, the pinned macromol-
ecule driven by a multiplicative noise becomes curved.

Now, if a global external periodic force and additive noi
are additionally applied to the system conventional SR
be observed. Then the equations for the power spectr
RSNR, RSNRmax

, and Dmax of the two-state theory are de
scribed by Eqs.~34!–~38!, respectively, with the replacemen
of U0 and w0 by Ũ0 and w̃0. A decrease in the effective
stiffness of the pinned polymer chainw/L with the growth of
multiplicative noise intensityDz leads to a decrease of th
SNR maximum and its shift to higher values ofD.

In conclusion, in this section we report the twofold effe
of noise on the polymer dynamics. An additive noise a
periodic signal causes SR of the macromolecule motion
the potential, which in its turn is induced by multiplicativ
noise. Following@25#, this effect could be classed as doub
SR of the macromolecule motion.

VIII. CONCLUSIONS

We have demonstrated that noise can enhance the per
component in the stochastic motion of a macromolecu
This study generalizes our previous results@30# for stochas-
tic motion of stretched strings up to looped polymer chai
We studied SR for the motion of macromolecules in
06110
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bistable dissipative dilute or semidilute polymer soluti
with localized attracting centers. The double-well potent
describes the effect of a flat boundary between two phase
solvents where polymer segments are attracted by the in
ors of both phases~solvents! and repelled from the boundary
The localized attracting centers model motionless~during the
considered time intervals! inhomogeneities, impurities, o
long-living interchain entanglements. Some polymer s
ments can be trapped by the centers and become motio
as well as the centers themselves. All other polymer s
ments keep a freedom movement restricted only by the ch
connectivity with the motionless segments. If in this syste
the potential wells are deep, then in equilibrium@when time-
dependent fields~signals! and noise are absent# the polymer
chains are curved into the interior of one of the two pha
~with minimum total free energy of the system!. With an
applied additive noise~random forces due to internal fluctua
tions or external random fields!, the polymer segments ar
able to oscillate stochastically@26# between the potentia
wells. With a weak periodic force~external periodic field!
additionally applied to the system, the SNR of the outp
versus input noise intensity shows a maximum, which
called stochastic resonance. The SNR maximum (RSNRmax

)

and its position (Dmax) depend significantly on the paramet
w/L, which is a measure of the constraints experienced b
polymer chain of the lengthL due to the bistable potentia
The position of the maximum shifts toward smaller noi
values if the ratiow/L increases. This is due to the fact th
the barrier of the effective bistable potential~25! gets
smaller. Our polymer system represents an example ofarray-
enhanced SR. This case of array-enhanced SR has a shift
the optimal noise to small values of its intensity with resp
to the one discussed in@9#. If a multiplicative noise is ap-
plied additionally to the system the effective stiffness of t
macromolecule decreases andRSNRmax

shifts towards larger

additive noise values. For a stiff macromolecule (w/L
>1/p), we demonstrate the existence of doubly SR of
macromolecule motion, which results from twofold influen
of noise. It is a combined effect that consists of nois
induced bimodality of macromolecule conformations a
conventional SR.

The motion of flexible macromolecules in solution is
special case of the motion of a 1D system subject to de
ministic and noisy forces in bistable, dissipative media
higher dimension. Therefore, the results above are rele
for the understanding of the SR of dislocation motion
solids @39#, domain and domain-wall dynamics in thin ma
netic and ferroelastic films@40#, and the motion of a front~a
wave of transition between two states dividing two phases
a narrow moving interface! in reaction-diffusion systems
@41#.
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