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Time and length scales for diffusion in liquids
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The first six even moments of the displacement of a molecule in water and an atom in liquid argon are found
by molecular dynamics simulations and compared with the moments predicted by diffusion theory. We find a
noticeable difference between the moments higher than the second. The ratio between predicted and calculated
moments approaches unity as$ fidr times larger than 10 ps. Continuous time random walk is used to explain
this slow approach of the moments to their diffusion limit.
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Motion of individual molecules in liquids is a classic ex- D(t)=0.5d(x?(t))/dt=[§dt'(v ,(t")v,(0)), shown in Fig.
ample of the many-body problem. It is well known, however, 1, suggest that diffusion is a proper language for times larger
that at sufficiently large times this motion is well describedthan 2 ps. Similar estimates can be found in the literature,
in terms of ordinary diffusion. Thus, at these times the manysee, for example, p. 192 in Réfl]. It will be shown, how-
body problem reduces to a one-body stochastic problem igver, that these estimates are too optimistic and strong devia-
which all many-body effects are hidden into a single numbertions from the behavior predicted by the diffusion theory
the diffusion constant. The question we analyze in this papePccur at much longer times.
is which times can be considered as sufficiently large to com- To decide whether the motion can be described in terms
fortably use the language of diffusion? This question may b&f diffusion or not, one can compare the exact propagator
of importance for understanding the processes occuring offund by simulations with the propagator predicted by the
picosecond time scales and angstrom length scales. diffusion theory(using the diffusion constant found by simu-

It should be noted that in contrast to gases and crystallinions. Alternatively one can compare the moments of the

solids there is no well established picture of molecular mo displacement. We choose the second way and consider the

tion that underlines self-diffusion in liquid§l—4]. Our
analysis suggests that at intermediate times the molecular 1.0 Adion @) {10
motion can be described in terms of a random walk, which is
due to jumps of the liquid’s configuration from one local
minimum of the multidimensional potential energy surface to
another. The idea that diffusion in liquids occurs as a result
of such jumps was put forward by Zwan4ig]. Rabani, Ge- & ™[ | D(t)
zelter, and Berne recently used the Zwanzig model to calcu- s .
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late the self-diffusion constant of argon and L& regular
and supercooled regimg$]. They found excellent agree-
ment between the self-diffusion constants calculated on the

basis of the Zwanzig hopping model and those calculated via %00 0.5 1.0 15 20
the Einstein relationD=lim ___([r(t)—r(0)]?)/6t, over a tips]
wide range of temperatures and densitites. T water o 1"°
Our analysis is based on particle trajectories calculated by a8 dos
means of molecular dynami¢MD) simulations for two dif- =
ferent model systems: a Lennard-Jones lig(adgon and % o6f 106 g
SPC/E watel{7]. In the case of argon we have simulated 4 oa AN loa =
2048 atoms at a temperatue=94 K and a densityp S [ e D() =3
=1.36 g/cm. In the case of water we considered 256 mol- & oz Jo2 g
ecules, alT=300 K andp=0.998 g/cm [8]. 7 \,\ VACF -
The time dependencies of the velocity autocorrelation o 00
function(v ,(t)v ,(0))m/kgT and of the diffusion coefficient 021 - - - -2
t [ps]
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10 TABLE |. Ratio R,(t) between the moments of the displace-
| ment found from simulation data and predicted by the diffusion
. (a) Argon 25 | theory at timet=2 ps.
R, Rs R, Rs Rs
61 H,O 1.75 3.0 5.6 11.9 27.3
c Ar 1.15 1.4 1.9 2.8 4.4
o
44
water than for argon. The maximum value R§(t) is ap-
2 proximately 220 in water, while in argon it is5. Note that
in water Rg(t) reaches its maximum at times that are very
o similar to the characteristic lifetime of the hydrogen bond
0 5 [10]. Table | gives the ratio at=2 ps when the diffusion
coefficient has reached the plateau valbwg. 1).
As t—o, Ry(t) slowly approaches unity. We found that
240 1 - at times between 10 ps and 80 ps RJ|(t) are well repre-
220 - sented by the dependence
200 . ,
180 i . xN(t b
160 4 - Rn(t)= ) =1+ 1)
I [(2n—21)!1 ](2Dt)" t
140- -
o 1207 0 20 40 60 80 ] with coefficientsh,, given in Table Il. Figure 3 illustrates the
1004 i ! t[ps] . : ) o L
gl o ] quality of this approximation. Atzl'O ps, deviations from
g £ —R, 9 the results predicted by the diffusion theory approximately
a0 g S T R q are 18% and 5% iR,, 40% and 16% iR;, 72% and 33%
1 el e T R ] in R,, 118% and 56% iRs, and 183% and 87% iR for
207 e ] water and argon, respectively. Thus the deviations are well
0 0 1 e 1 pronounced at=10 ps. Note that the long time tail dis-
cussed in the present paper should not be confused with the
t [ps] long time tail in the decay of the velocity autocorrelation
function discovered by Alder and Wainwrigfit1].
FIG. 2. The ratioR,(t) (n=4.5,6), characterizing the nondiffu- |5 order to rationalize the fLbehavior ofR,(t) we use a
sion b_ehavior fo_r(a) argon and(b) water. The inset shows thet1/ continuous time random walkRW) model for molecular
long time behavior. motion. We assume that the random walk is Markovian and

the probability density for the waiting time between succes-
ratio of the momenix®"(t)) found by simulations to the sive steps is exponential, i.e5(t) =k exp(—kf), wherek ~*
same moment predicted by the diffusion thed?"(t))q is the average waiting time. The second characteristic of the
=[(2n—1)!11](2Dt)". This ratio, R,(t)=(x?"(t))/  random walk is the probability density for the step displace-
(x®"(t))q, tends to unity as— since the motion becomes ment(sd), p(x), which is assumed to be a symmetric func-
diffusion at large times. At small times, when the motion istion of x, i.e., p(x) = p(—x). Consequently all odd moments
ballistic, (x2"(t))t?" andR,(t) vanishes as—0. The ratio  of the displacement are zero while even moments are finite,
R,(t) is closely related to the non-Gaussian parametgr
introduced by Rahmaf®] and often used in studies of su- o
percooled liquids and glasses. <X2n(t)>sd:f x2"p(x)dx. 2

Since a precise determination of higher moments of dis- o
placement is a delicate statistical problem, we have extended ) o .
our MD calculations to rather long times. In the case ofFor th|s2 random walk the diffusion constant is found to be
argon the length of the trajectory was 100 ns, whereas in thB = K(x)sd/2. For larget, kt>1, we find
case of water it was 30 ns. In order to avoid statistical arti-
facts in the displacement calculation we chooseiadow
method where only after time intervals &t=10 ps a new
displacement vector is filled for further analysis.

The dependencieR,(t) are nonmonotonic as shown in
Fig. 2. The ratio grows rapidly at smajlreaches its maximal
value, and then decreases slowly to unity. The largemthe H,0 1.8(0.1) 40(0.1) 7.2(0.2 11.85(1.0 18.3(2.9
the greater is the maximal value &,(t). The deviations Ar 045(0.02 1.54(0.09 3.2(0.1) 5.7(0.) 8.9(0.)
from what diffusion theory predicts are much stronger for

TABLE II. Coefficientsb, from Eq. (1). Errors(shown in pa-
rentheseswere estimated by fitting th&,(t) over different time
intervals.

b, bs b, bs be
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2.0 TABLE lII. Ratio of coefficientsb, [c.f. Eqg. (1)] predicted by
g the random walk model and found from simulations for water and
18l argon. Error estimates are given in parentheses.
b, /b, b, /bs bs /b, be /b
16
RW 3 2 1.66 1.5
o al H,O 2.19(0.) 1.8(0.1) 1.64(0.15 1.56(0.27)
' Ar 3402 21(0.14 1.74(0.09 1.58(0.04
12}
) the hydrodynamic one based on the diffusion equation, there
T i T S T T R S is an intermediate region where the motion is described in
ofe Qe Lot g O8O0 terms of a random walk.
1t [ps ] To get an idea of the parameters of the random walk we
g5l . assume that all steps have the same lehgtid all directions
3'0 [ Water s for the step are equally probable, i.e., we consider Pearson’s
Sl T 71 random walk[12]. In this case(x*)sa/(x?)2,=1.8 and the
26l |—R II ] expr_ession in Eq4) takes the f(_)rnbn=0.3n(n— 1)/k. This
2l | T Rs ] relation can be used to estimate the average thné
N Rs II e =10b,/[3n(n—1)]. Using b, given in Table Il we obtain
c 22 LT i k~1=2 ps for water ank *=1 ps for liquid Wi
X 20f II Yo ] = psilor water and”*=1 ps for liquid argon. We
1EE fﬂ B use thes&™ * and the dlszusmn constants foung in our simu-
ik et ] lations, D};,0=0.256 A%/ps andD ,=0.253 A?/ps, to es-
14 . timate the step length by the formula 6Dk * (here we
1.2 (b) - have used the fact that for Pearson’s random wafq
pole® 4 . L . L =12/3). This leads td, o0=1.7 A andl,=1.3 A.
0.00 0.02 0.04 0.06 0.08 0.10 .2 : .
T [ps'1] The length and times associated with the random walk are

too small to describe jumps of an individual molecule. We
believe that the random walk is due to jumps of the liquid’s
configuration from one local minimum of the multidimen-
sional potential energy surfageell) to another as was sug-
gested by Zwanzi@5]. From an individual particle point of
view, jumps among cells lead to rearrangements of its equi-
librium position. After such a jump the particle starts relax-
ation to a new equilibrium. Effectively this can be described
in terms of random walk with a waiting time that corre-
(3)  sponds to the time required for the liquid configuration to
change. It is not surprising that such random walk has a short
This leads toR,(t) of the form given in Eq(1) with waiting time and small step length. We believe that this pic-
ture is quite generic and random walk due to jumps among
n(n—1)(x%q the energy minima underlies self-diffusion not only in water
>3 ) (4)  and liquid argon.
6K(X)sq Finally we discuss the relation between our work and
) ) . o Cao’s analysis of diffusionl3] with the diffusion coefficient
Accordlng to Eq.(4) the ratio between coefficients is simply hat randomly jumps between two values. In this problem an
given by exact propagator reduces to an ordinary diffusive propagator
with an effective diffusion constant &s-~. However, when
bnia _ (n+1) (5) t is not large enough there is a difference between the exact

FIG. 3. The ratioR,(t) (n=4,5,6) vs inverse time, demonstrat-
ing the 1t behavior for(a) argon andb) water. Dotted lines repre-
sent Eq.(1) with coefficientsb, taken from Table II. Error bars are
shown exemplary for selected points.

n(n_ l)<x4>sd

1+
6(x?)2 kt

O (1))rw=[(2n—1)!1](2D)"

bn| RW—

b, (n—1) and the effective diffusive propagators. It is interesting that
both exact and effective propagators predict the same mean
independent of the parameters of the random walk. To tegquare displacement at all times. But there is a difference in
this prediction we calculated the ratio,, ,/b, using b, higher moments that vanishes &s>oc. Cao analyzed the
from Table II. The results, given in Table IIl, show that the difference in the fourth moments. He showed that the differ-
random walk model not only correctly predicts the long timeence approaches zero as ifthe probability density for the
behavior of R,(t) in Eqg. (1), but it also reasonably well waiting time for jumps between different values of the dif-
predicts the ratio of the coefficients,, /b, . fusion coefficient is exponential. Thus, Cao found the same
Thus, the simulations suggest that between the exadt/t relaxation to diffusive behavior in a related, but quite
many-body description of motion of molecules in liquids anddifferent problem.
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In summary, in order to establish the range of applicabil-interesting to study whether the behavior we found is univer-
ity of diffusion for describing motion of molecules in liquids, sal for a broader class of liquids and a wider range of ther-
the higher moments (412) of the displacement were found Modynamic state points. From our present investigation we
by MD computer simulations and compared with the mo-conclude that one has to be careful when using the language
ments predicted by the diffusion theory. The comparisonOf diffusion to describe motion of molecules on times of the
showed that the difference slowly decreases with time acorder of tens picoseconds and lengths of the order of 5 A In
cording to a 1if law. This 1t behavior can be explained if our opinion it is better to describe molecular/atomic motion

- in this time and length regime in terms of random walk.
one assumes the existence of a random walk that after sufﬁ- S 9 gime ! W

ciently many steps leads to diffusion. In this paper we ana- A.M.B. is thankful to A. Szabo and R. Zwanzig for nu-
lyzed water and argon at some specific conditions. It will bemerous and very useful discussions.
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