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Comment on “Deterministic equations of motion and phase ordering dynamics”
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Zheng[Phys. Rev. B51, 153(2000] claims that phase ordering dynamics in the microcanoni¢anodel
displays unusual scaling laws. We show here, performing more careful numerical investigations, that Zheng
only observed transient dynamics mostly due to the corrections to scaling introduced by lattice effects, and that
Ising-like (model A phase ordering actually takes place at late times. Moreover, we argue that energy conser-
vation manifests itself in different corrections to scaling.
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The problem of the dynamical foundations of statisticaland COP valueszycop=2 andzcor=3). Zheng “explains”
mechanics has received renewed attention recently, when, this surprising result by the influence on scaling of “the fixed
the spirit of the famous work of Fermi, Pasta, and Uldy  point corresponding to the minimum energy of random initial
researchers directly studied the evolution of isolated, manystates”(present when considering domain growth
degrees-of-freedom Hamiltonian systems with the aim of re- Here we show that a more careful numerical investigation
lating their microscopic, deterministic, chaotic motion to actually leads to conclude that the microcanonical latitée
their macroscopic statistical propertigg]. In this context, model shows normal, NCOP phase ordering. We argue that
the two-dimensional lattices* model is of special interest energy conservation, but also lattice effects, have subleading
because it is known to exhibit, within the canonical en-influences on scaling. We discuss in particular the effect of
semble, a second-order phase transition in the Ising univethe increase of the “bulk temperature” due to the progressive
sality class. Recent worll,4] aimed, in particular, at study- disappearance of interfaces during the growth transient. We
ing the corresponding behavior in the isolated,attribute the erroneous results of Zheng to the danger of us-
microcanonical case, whose equations of motion can be writng “early-time” methods and naive logarithmic plots in
ten problems with large microscopic times and/or corrections to

scaling.
b=3 (¢)-d)+mid— 3 &

. I. NORMAL SCALING AT LATE TIMES

where the sum is over the four nearest neighbors ofi site
a square lattice. Zheng conducted different numerical experiments which
In the same spirit, Zhenfp] has considered tha priori led to estimates of exponer#s\/z (where\ is the so-called
simpler problem of the phase-ordering process which takebisher-Huse exponeptand §=(2—X\)/z. From all direct
place when the microcanonicap* lattice is suddenly measurements of he concluded thaz=2.6(1).Using this
“gquenched” below the critical point. Universality of domain value, he found an estimate of in agreement with the
growth laws is nowadays a fairly well-established tofg¢. =~ NCOP value[A=1.22(5) whereas\ycop="5/4]. Thus, the
It is well documented, even for less traditional systems suclenly strong departure from the NCOP values is for exponent
as deterministic, possibly chaotic, spatially extended dyz Therefore, in the following, we focus on growth law lof
namical system§7—10]. For a scalar order parameter, two in large systems at late tim¢as opposed to the early-time
main universality classes can be distinguished depending c&pproach favored by Zheng
whether it is locally conserved or not. The Ising model is In order to reach late times satisfactorily, we need a better
prototypical of the nonconserved case, and so should be tie@ntrol of the conservation of energy than with the simple
lattice ¢* model, at least in the usual canonical ensemblesecond-order scheme used by Zheng. The following results
point of view. However, and this was the interesting pointwere obtained with a third-order bilateral symplectic algo-
raised by Zheng, the presence of the energy conservation fithm [12] with a time stepdt=0.025. The conservation of
the microcanonical case might have an influence on the dyinitial energy is better than 10 in relative value in all runs
namical scaling laws associated with phase ordering. In thipresented. To investigate phase ordering, we use the same
sense, the question is whether the phase ordering of modeligitial conditions as Zheng&= =q, where the sign is ran-
[11] is in the same universality class as model A. dom andq calculated to yield the desired energy density
Using numerical simulations in the so-called “early-time” We present results for two sets of parameter values, d)
regime, Zheng confirmed that the usual dynamical scaling=(6,1.8) (set A, used by Zhengand (m?,g)=(2,0.6) (set
laws seem to hold, but with exponents at odds with thosd, used in[3,4]). The initial energy densitye,=27 for set
both the nonconserved order paraméCOP) and the con- A, and ¢,=10.0001 for set B was chosen very close to its
served order parametéCOP class[5]. In particular, he minimum value allowed by the random-sign initial condi-
foundz=2.6(1) (1% is the exponent governing the algebraic tions (e,;,=80/3 for set A, ande.,,=10 for set B. This
growth ofL, the typical size of domainsbetween its NCOP ensures that “thermal” fluctuations are minimized, since the
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FIG. 2. Decay of autocorrelation functiof(t,ty) from single
runs of lattices of 4098 4096 as in Fig. 11;,=5). (a) and(b): Avs

t for parameter sets A and @garithmic scales, dashed lines: slope

FIG. 1. Growth of typical scal&(t). All results presented here
were obtained from single runs of lattices of 8302192 sites with

periodic boundary condition$a) and(b): L vs Vit for parameter set \/z=5/8, insets: local slopes(c) and (d): A vs L (logarithmic

,(Ad)ar:g B, the dbOtIPTd Illnes_;re _the fltlsegsEuzslt_ed |nfSe£:. (bcatnc:j,, scaleg for parameter sets A and @garithmic scales, dashed lines:
- the same bul in fogarthmic scalashed fines for “expecte slope\ =5/4, the quality of the data is not high enough for local

behaviorz=2). Insets: local slopes calculated by a running averageslopesl
of the derivated signal over a window of fixed size in the corre-
sponding variabldi.e., \t or Ioglo_t here. For (a) and (b) window B. Decay of autocorrelation function
size A(yt) =0.5; for (c) and (d) window sizeA (log;gt) = 0.05.
Following Zheng, we also measured the decay of the au-
afocorrelation functionA(t,to) = (o (t) (o)), but, again, for
rather large systems and late times, choosing, in particular,
initial reference times, larger than the “microscopic” tran-

sient time. In the usual NCOP phase-ordering framework, we

energy density is then as far as possible from the critic
energy densitye, (e,~35 for set A, ande,~21 for set B.

A. Growth of typical domain size expect
The typical domain sizé&. was determined by the mid- Lty N [to\M?
height value ofC(r,t), the normalized two-point correlation A(t,tg)~ T N(T) ,

function calculated for simplicity along the principal axes of
the lattice using the continuous fiedlor the reduced “spin where the Fisher-Huse exponeRt=5/4. Again, plotting

variable UESgn¢: C(k,t):]./ZNE”O'”(O'Hrk J+O'| j+k)' . « AN
(No significant difference was found between the two caselegA vs logt for parameter set A may yield an “effective
and only results using' are shown belowWe first checked eéxponent\/z smaller than its NCOP valu@nd close to the
y resufis using w Vel alue given by Zheng but a closer look reveals a systematic
that dynamical scaling holds_ by obs_ervmg the collapse o ncrease of the instantaneous expor{@ig. 2(a) and insek
C(r,tzzf[rr/]L(té][cu]rves at different times after some tran- However, plottingA vs L, the expected scaling is observed
sient(not shown [19]. : ! N
Fig. . B, th
For both sets of parameters, the expected NCOP law ([ 'g. 20)]. Considering now parameter set B, the expected

. . . scaling laws are observed rather eagiigs. 2b) and 2d)].
;afs,ielz.r?t. izs: sgsng§3CZi?aeagi;ﬁ;e fg:n§2i[;ﬁsa ]r(?i;hz:]éongThis confirms further that for the parameter values chosen by

Zheng, the onset of the asymptotic scaling regime is delayed.
1(b)]. The same data plotted in logarithmic scales is thus 9 ymp greg y

misleading. If the data for set B reach the “normal” scaling
[see Fig. 1d) and its inse}t at late times, the corresponding
plot for parameter set AFig. 1(c)] seems to indicate a value For the sake of completeness, and in order to probe the
of 1/z between: and % (typical of the value estimated by validity of the early-time scaling approach taken by Zheng,

Zheng if one ignores the systematic trend upward of thewe also performed numerical simulations to measure the
local exponenfsee inset of Fig. (t)] [20]. short-time growth of the squared magnetizatdd [M be-

C. Early-time growth of squared magnetization
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(a) (b) and that, for late-enough times, normal scaling is recovered

CTTTTmT T TTTTIm T TTTITI G TTTITT T TTTIT T TTTTIT [8,1()]- It Wa-s also argued that these |0ng translents gradua"y
L 2 ‘] 2 5 disappear in the continuous-space limit which is well defined
10°E M> g . 2[ M > ] in these systemfl3].
2 ] 10 Here, it is easy to observe that, increasipdand m?,
- . since there is only one free parametéhe slowing down of
10 ’ domain growth due to lattice effects diminishes, as suggested
F 1 10%F . by the difference between parameter sets A and B. For pa-
S t ] rameter set B, the transient actually presents faster growth
10 él il Ll Ll g E Lo e L E than asymptOtlca”y COrreCtIonS to Scallng are domlnated by
10" 102 10° 10" 102 10° another phenomenon, stronger than lattice effects.
c d
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FIG. 3. Early-time growth of the squared magnetization for an
ensemble of 500 symmetrid{=0) samples in a lattice of 512 1 d
. . 2 . .
X512 sites.(a) and(b): (M*) yst (logarithmic scalesfor Earam- Einc= 2 > Z (¢i+j _ ¢i)2_
eter sets A and B; dashed lines: slope(d. and (d): (M*) vst i =1

(linear scalesfor parameter sets A and B.
As domain growth proceeds following random initial condi-

tions, the interaction energy decreases with time as a large
part of it is contained in the interfaces separating domains,

=sgné(t)] for samples with zero initial gnagr;/etization. IN" the density of which decreases like/1/ Potential decreases
this case, for NCOP scaling, we expédl <) ~t“*=t. Our 44 kinetic energy increasésig. 4).

data on logarithmic scales barely reaches the expected be- Starting from “ordered” initial conditiongall sites in the

havior att=10° [Figs. 3a) and 3b)]. Note that the correc- same phase, e.gv, i ¢(0)>0], the three components of the

t_ions have a different sign for the two parameter sets. OR) energy are almost constant, except for a sligoasi-
linear scales, however, our data reveals the expected Propqfgarithmic in time increase of interaction energy and de-

ing defined as the spatial average of eitlgg(t) or o(t)

tionality of (M?) andt [Figs. 3c) and 3d)]. crease of potential energy due to the nucleation of “thermal”

droplets and to relaxation further into potential wells. This

Il. CORRECTIONS TO SCALING: ENERGY effect is indeed larger for parameter set A for which the
CONSERVATION AND LATTICE EFFECTS minimal possible energy density,, is further away from

the critical energy density, leading to stronger thermal fluc-

The above results show that domain growth in the micro _
tuations than for parameter set B.

canonical¢* model eventually falls into the NCOP univer-
sality class £=2, A =5/4) after some possibly long transient _ _
behavior. In this section, we suggest that there are two main C. Corrections to effective temperature

factors at the origin of these corrections to scaling: space Kinetic energy can be interpreted as a temperature in the
discretization and energy conservation. microcanonical contexf3]. We can thus see the observed
increase of kinetic energy as an increase of the temperature
of the system. For thécanonical Ising model, it is well
known [14] that the prefactor of the growth law af(t)

For the sets of parameters studied by Zhémgfably pa-  decreases to zero as the temperature approaches its critical
rameter set A domain growth initially appears to be slower value. We suggest to see the growth law observed here for
than the expected NCOP lafthe effective value of mea-  the ¢* model as including a “temperature-dependent” pref-
sured at short times is larger than two actor:

This is similar to earlier observations on coupled map
lattices, both for the NCOP and COP cases. First measure- L(t)=K(Eyn) N (D)
ments of domain growth seemed to indicate slower growth in
those discrete-space, discrete-time chaotic made®, but  Quantitatively(Fig. 4), the kinetic energy seems to reach its
it was shown later that this nontrivial scaling is only transientasymptotic value like

A. Lattice effects
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Equation (4) provides excellent fits to our data for the
growth of L(t). We findK,=0.2, K;=2.0, andK,=—-3.5
for parameter set Awith x2=7.8 and correlation coefficient
0.99996 , andK,.=2.1, K;=—5.6, andK,=5.7 (with x?
=10° and correlation coefficient 0.999%r parameter set B.
The corrective terms have opposite signs in both cases:

this indicates that Eq4) is only relevant for parameter set
B, because, in analogy with the Ising model, only negative
values ofK; are allowed(the prefactor of the growth law
decreases with increasing temperatufefirst conclusion is
thus that the main corrections to scaling for parameter set A
(typical of those used by Zhepgre due to lattice effects and
are not consequences of the conservation of global energy.
We note that, similarly, a fit of domain growth in coupled
map lattices also yields positive valueskof, indicating that
this sign is a signature of lattice effedi8].

On the other hand, the above framework does provide the
relevant explanation for the corrections to scaling observed
for parameter set B, which can thus be traced back to the
fluxes between the various components of the energy in-
duced by the decrease of interfaces between domains as
phase-ordering proceeds.
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FIG. 4. Corrections to scaling due to energy conservation. Re- |n this Comment, we have shown that Zheng reached er-
sults for parameter set B, for which these corrections are dominarfpneous conclusions when studying phase ordering in the
(see text (a) The three components of the total energy during phasgnijcrocanonical lattices* model. This system, like other cha-
ordering.(b) Same but from ordered initial conditiong) Decay on otic, deterministic, dynamical systems presenting phase or-
the number of interfacial site@efined as sites with a least one dering, does display the expected domain growth scaling
nearest neighbor of opposite sjgithe number of interfacial sites laws, i.e., those of the nonconserved order-parameter case
measu_red during the evolution from an initially homogeneous Con'(model A,z=2, A=5/4). We have shown further that the
flgurgtlon has been substractedﬂ)_ Convergence of t_he total main influence of the conservation of energy is to introduce
k'net'c'er?ergy(temperatur.btowards its asymptotic value: Ay corrections to scaling, but that the long transients which
vs \t during phase ordering. plagued Zheng's approach are due to lattice effects.

Zheng offered, as an explanation for his nhonconventional
results, that the system considered falls into the class of
model C, where a conserved density is coupled to the order
parameter[11]. Studies of phase ordering in model C
©) [16,17,19 show that model B-like, but also model A-like,

behavior can be observed. In this context, the microcanonical
whereK., is the asymptotict(—«) prefactor of the domain ¢* lattice can be considered as a model C system quenched
growth law. Injecting Eqs(2) and(3) into Eq.(1), we finally  into its “bistable region”(wherez=2 is observed18,15).
expect the following Ansatz to hold for the domain growth
law: ACKNOWLEDGMENTS

AEjn=Ejin(t) = Eygn() ~t 12 2
Assuming its analyticity, we can write the prefactyr

K(Ekin): Koo+ KiAEkin+ Ké(AEkin)z—i— ceey
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