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Shortest paths on systems with power-law distributed long-range connections
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We discuss shortest-path lengthigr) on periodic rings of sizé&. supplemented with an average jpt
randomly located long-range links whose lengths are distributed accordifg-tb #. Using rescaling argu-
ments and numerical simulation on systems of up tb sies, we show that a characteristic lengtlexists
such that”(r)~r for r<& but/(r)~r %) for r> £ For smallp we find that the shortest-path length satisfies
the scaling relation/(r,u,p)/é=f(w,r/€). Three regions with different asymptotic behaviors are found,
respectively:a@) u>2 wheref,=1, (b) 1<u<2 where < 64(u)<1/2, and(c) u<1 where/(r) behaves
logarithmically, i.e.,ds=0. The characteristic lengthis of the formé~p~" with v=1/(2— ) in region(b),
but depends oL as well in region(c). A directed model of shortest paths is solved and compared with
numerical results.

DOI: 10.1103/PhysReVvE.65.056709 PACS nuni)er05.10—a, 05.40--a, 05.50+q, 02.60-—x

[. INTRODUCTION sense one can say that the addition of LR interactions
changes the “effective dimension” of the system, although in
It has been known for long that slowly decaying long-a way that may depend on the specific model considered.
ranged(LR) interactions can drastically change the critical This idea has been exploited to study the scaling behavior of
behavior of a system. A well studied example is the onecritical systems above their effective upper critical dimen-
dimensional (1D) Ising model with J(r)~r~# [1-10, sion d,, while still working on lattices of low Euclidean
which is relevant for the Kondo prob]e[ﬂl'lz among oth- d?menS?On[7;|. The Connecti(?n between LR interactions and
ers. If u>2 there is no ordered phase at any finite temperadimensionality was also briefly touched upon by Scalettar
ture, the same as if only short-ranged interactions wer&22)- A possible way to define an effective dimension, which
present. Whenu=2 the magnetization undergoes a finite is in general model dependent, is to do so through the hyper-

. . _ _ -1 _
jump atT.>0, while all derivatives of the free energy re- Scﬂ'ng Irtelatlti_n (2a)a_dv, ?s[ltg,lb‘] d%flf_ v f(ER .O‘)t'
main finite(essential singularily Whenu <2 the model dis- . n aternative paradigm for the problem ot interac-
lavs a second-order phase transition witidenendent criti- tions considers systems ondadimensional lattice supple-
Ealyindices which talfe their classicalmor nF:ean-fiéMiF) mented with randomly distributed LR bonds of unit strength,

-~ which are present with probability;; ~r;;*. Notice that in
values forx<1.5. On approach t.=2 from below, the this case the system has disorder: it is the probability for a

correlation-length exponent diverges, signaling the appeargiven bond to be present, and not its strength, that decays

ance of an esse_nltllzal singularity. This dlvergenc_el is of th&ith distance. These two ways to introduce LR interactions,
form v~(2—u) [4] for Ising and (2-u)"" for  gecaying strengtiDS) and decaying probabilityDP), are
n-component models with>1 [but see Ref[13], wherev ot in principle, equivalent: it is well known that disorder
~(2—p)~* ¥n is suggestel A comprehensive account of may change the critical behavior if the specific-heat expo-
what is known for Ising systems with LR interactions hasnent« is positive. In this case, the critical indices of a sta-

been given by Luijten and Blotgs]. tistical model on DS and DP networks with the same value of
For d-dimensionaln-component systems with ferromag- ,, may differ.
netic interactions decaying ag 77, Fisher, Ma, and Nickel The DP paradigm is on the other hand relevant for a num-

[3] propose that the lower critical decay rate is givendoy ber of problems in which connectivity, and not the strength
=d/2, or equivalently that the upper critical dimension is of the interaction, is determinant of the physical behavior.
dy=20. Foro<d/2 the critical indices take their MF values, Examples of problems of this kind are the magng2é] and
for d/2<o<2 they areo dependent, and far>2 they take  conductive[27,28 properties of polymeric chains, where the
their short-range(SR) values. Similar investigations have probability of crosslinks between two monomers decays as a
been conducted for Potf43-14, Heisenberd17-22, and  power law of the chemical distance between them, conduc-
other[23,24] models. tion in insulating matrices with one-dimensional conducting
The following picture is often found: for small enough inclusions[29] whose length distribution is “broad,” neural
decay rateu, MF indices are obtained. Upon increasipnga  networks[30,31], geodesic propagation on spaces with topo-
regime follows where critical indices change continuouslylogical singularities(wormholeg, the spread of fire or dis-
with « until finally SR indices are recovered. In a loose easeg32,33, etc.
Networks built according to the DP paradigm of LR in-
teractions may be characterized entirely in geometrioal
*Corresponding author. topologica) terms, because all bonds have the same strength.
Email address: cristian@mda.cinvestav.mx Thus it appears, for example, possible to define the relation-
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ship between effective dimensiah,;; and decay ratg. of

interactions in purely geometric terms for these networks. /’<r)=Z (7l —UlZ 8(rij=r), @
A useful topological characterization of random networks ! !

is thegraph dimension Q, defined as follows: IV(/) is the Where<> means disorder average.

average number of sites that can be reached from a given one

in / steps between connected neighbors, thign)~ /% A. Rescaling

asymptotically. We now let’(r) be the average smallest

number of links needed to join two points separated by an

Euclidean distance (the “shortest-path length; which be-

haves asymptotically as’s, where 6, is the shortest-path

dimension[34]. SinceV(r)~rY, the above relations imply

Consider now dividing thed-dimensional lattice into
blocks” of linear dimensionb, such that &b<L and re-
gard two sited andJ of this new lattice to be connected by
a shortcut ifany pair{i e |,j € J} is connected by a shortcut.

: . We allow for at most one shortcut between rescaled sites

thatdgz_dms’ and we see that_ the asymptotic behavior Ofsince, for the purpose of shortest paths, the only fact that

Z(r) defines the graph dimensiaty . ~ matters is whether two sites are connected or not. If the
In this work we study shortest-paths on DP networks, i.e.qriginal pairsij are connected by a shortcut with probability

d-dimensional lattices with the addition of an averagepof pi . the rescaled probabilifgi;;=1—p,; for blocks| andJ

LR bonds(or shortcuts per site, whose length is distributed 1" % "0 D f S given”by N

according toP,~1"#. We shall concentrate mostly on the

cased=1, where numerical simulations are easiest. DP net- ~

works with power-law distributed LR bonds have been re- qIJ:i

cently considered in one dimension both from the point of

view of random walk propertie§35] and shortest-path hich for large distancel —j|>b can be approximated as
lengths[36], but for small system sizes. We will later discussa”:qp_?d' This can be written a§1(r/b)=[q(r)]b2d and,
Some of the. conclusions {186], which appear to need revi- therefcl)]re,)\(r)=ln q(r) transforms in a simple way under
sion in the light of our results. rescaling,

In Sec. Il several definitions that are relevant for our prob-
lem of shortest-paths on 1D DP networks are given. Simple X(r/b)= b2\ (r) 3
rescaling arguments are used in Sec. Il A to show fhat '
=2d is a critical decay rate, such that for>2d, LR bonds 115
are unimportant on large scales. Fex2d, on the other
hand, whermp is small these arguments predict the existence p(r):(l_e—p/r#) (4)
of a characteristic lengtlf~p~>~#), beyond which LR '
bonds are important. In Sec. Il B a directed model is intro-yetains jts functional form under rescaling, i.e.,
duced for shortest-paths in 1D, which turns out to be exact
for u>2 and still provides a useful upper bound when B(r)z(l—e*;’r“), (5)
<2.In Sec. Ill our extensive numerical results for shortest-
path lengths”(r) in one dimension are described and com-
pared to theoretical predictions. Finally, Sec. IV contains
discussion of our results.

[T @a-pp= II ay, )
el iel, jed

el, ]

with p=b4=#)_The condition that the system contains a
dotal of pLY LR bonds is ensured by imposing

L
P:Sdf p(r)ré=tdr, ©6)
Il. DP NETWORKS AND RESCALING !

We start with an arbitrarg-dimensional lattice made up WhereS; is the surface of al-dimensional hypersphere of
of N=L9 sites, and its corresponding SR bonds. In additiorfadius one. This relationship fixgsas a function op andL.
to these, DP networks are defined to have an averagebf In the limit of smallp, p turns out to be proportional tp.
LR bonds, orshortcuts whose lengths and locations are ran- Notice that, because of the multiplicative rescaling &4, a
dom. This is done in practice by letting one LR bond stemPure power law is not strictly invariant under rescaling. But
from each sitei with probability p. The neighborj at the  the true invariant distribution Eq4) can be very well ap-
other end of each LR bond is randomly chosen with a probProximated by a power law for large distanaesuch that

ability P(jli), that is a decaying function of the Euclidean p/r*<1. Restricting ourselves to the limit of small(or p)
distancer.. = |;__)z_| between sites and;] we can thus work with a power-law distribution of shortcut
ij i j .

For a given realization of shortcuts, the shortest-patHengths' In the following we consider
length/; is defined as the minimum number of connected-
neighbor steps needed to join sifeandj. This quantity is p(r)=C£ @
measured as a function of Euclidean distange and aver- ru’
aged over disordefrealizations of shortcutsAfter disorder
average,/(r) is the average “cost” of joining two points where the normalization consta@tis chosen so as to satisfy
separated by an Euclidean distam¢c@nd is defined as Eq. (6). In the Appendix we show that rescales as
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wherel_t is the average length of a LR bond, which is not

R < o . o« e . - e larger tharr —x,, i.e.,
o, 1 2 3% 4 s 6. 1 8 .
—— TS et t
. . E II:)I r—x
FIG. 1. Full lines are SR bonds, dashed lines are LR bonds. One — =1 t
possible shortest path between 0 and 80isl,1-5,5-4,4-8 and has e IP. (12)
length 4. The naive path uses all rightwards LR bonds available at E P, P
each site, i.e.{0-2,2-3,3-5,5-6,6-B and has length 5 in this ex- =1
ample.
P Thus Eq.(11) reads
P=bYrp, (8) Xy =X¢—1T1+pG(r—xy), (13
_ where
with
n
G(n)= [-1)P,. 14
q for pu=d, (m=2, (I-1)P, (14
Yp )

2d—u for u>d. Within a continuous-time, continuous-space approximation

. . - : we put
Notice that expressions similar to Ed8) and (9) give the

renormalized coupling constant of the one-dimensional LR X(t)=1+pG(r —x(1)), (15
Ising model at low temperaturgs].

It follows that p=0 is a line of fixed points in thec,p
space of parameters. Fpr<2d this fixed line is repulsive,
and becomes attractive far>2d. Thus foru>2d the den-
sity of LR bonds is renormalized to zero under rescaling, an

which shall be solved with boundary conditiomgt=0)

=0 andx(t=/,(r)—1)=r—1 [notice that Egs(10) and
(12) are only defined forx,<r—1]. This can be formally
integrated to give

une=2d is the upper critical decay rate above which LR rodx
[ ior i . a()=1+ | ——————. 16
bonds are irrelevant, and SR behavior is recovered Za(r) fl T+ pGX) (16)
B. Naive paths: An approximate model in one dimension We will analyze this result and compare it with our numeri-
Consider a directed path that startstat0 from x,=0, cal results in the following sections.
proceeds always to the rlght,_ and |s_bU|It by using at each site ;| NUMERICAL RESULTS IN ONE DIMENSION
any LR bond available, provided this bond does not take the
path further to the right than. We call the path so defined In this section, numerical results are presented for peri-

the “naive path” between 0 and. As compared with the odic rings of up to 10 sites. One LR bond stems from each
actual shortest path, this construction neglects the possibilitgite with probabilityp<1. Its random lengtlhis obtained by

of turnbacks, or that certain LR bonds may not be used first generating a real random variabtesuch that &z
Fig. 1). We will later see that under certain circumstances,<(L/2+1) with P(z)~z~#, and then taking its integer part:
the naive-path approximation gives a reasonable estimate for Int(z). Lattice sizes ard ,=10°"%? for k=0,1, ... 8.
shortest-path lengths. But even if this is not the case, th&he density of LR bonds ip=0.001,0.003,0.01,0.033,0.1,
former constitutes an upper bound for the shortest-patland 1.0. Shortest paths are identified by breadth-first-search
length, and thus still provides useful information. The naive-{37,38, and averages are taken ovef 3amples. Altogether
path length/,(r) is the number of time steps it takes to the results presented in this work involve an amount of com-
reachr, and can be estimated in the following way. At titne putational work approximately equivalent to finding of the
the walker sits at sit&, . From this site, with probabilitp a  shortest paths on a single system containintf $@es. Fig-

LR bond(of random lengtH,) stems rightwards. The walker ures 2, 3, and 4 show average shortest-path lengtn3,
now proceeds along this LR bond, provided it does not gaespectively, for the regions: Qu<1, 1<u<2, and u

further to the right tham. The joint probabilityp, that a bond =2.

is present ak,, and its length is not larger than-x, is It is apparent in these plots th&(r) does not depend on
system size (only onp andu) for w>1. This is consistent
- with the fact that the probabilit?(r) for two sites separated
ptzpzl P. (100 py an Euclidean distanceto be connected by a LR bond
- does not depend ob when u>d. [See Eq.(A6)]. In com-
parison, wheru<d one has thaP(r) decays to zero with
system size at ~(9"#), This scale dependence in the con-

r—X

Thus at timet the walker goes one unit to the right with

probability g;=1—p;, and |, units with probability p;.  nectivity properties is evidenced by the size dependence of
Therefore, in average /Z(r) whenu<1 in Fig. 2.
o A second noticeable feature is that for a2 a charac-
Xi=Xi—1+1+p(l—1), (12)  teristic size& exists with the following property: For<¢,
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FIG. 2. Average shortest-path lengtf{r) vs r. Numerical av- FIG. 3. Same as Fig. 2, fordu<2.
erageg(full lines) over 1¢ samples are shown for systems of size
L,=10*"¥2 with k=0,1, ... ,8. Thedashed line is”(r)=r. The
local densityp of LR bonds isp=10"3, 1072, 10°%, and 1. The
different cases can be told apart by noticing that larger valugs of

Equation(16) now reads

result in lower values of’. Zn(r)=r[1—pd(r)], (18
/(r)=~r, while forr>¢, /(r) grows asymptotically slower Where
thanr; in general as % with #,<1. This characteristic sizé&
is a function ofp and . for 1< <2, but also depends dn 1(r
for u<1. d(r)= m G(x)dx (19
1
. > i
A. The p>2 regime 10° [ 10 o
As seen in Sec. Il, fou>2 the density of LR bonds — 02,000 02400
rescales to zero, i.ep=0 is an attractive fixed line. Thus ;| "7 ot T
one does not expect LR bonds to modify the effective geom-
etry of the lattice in this regime. In fact it is foun(&ig. 4 102 102
that /(r)«r at large distances, and thds;;=d in this re-
gime, although the coefficient of proportionality depends onmo r 100 r
w andp, in general. Our directed modéhaive paths de- 100 102 10t 108 10° 102 10*  10f
scribed in Sec. Il B gives exact results in this regime as we
now show. 108 | 1) 108 | 1(r)
Naive paths wheru>2 1ot u=02.500 o u=03.000
Whenu>2, G(x) in EqQ. (16) grows monotonically from
G(1)=0 to G(x)=1-1. Thus asymptotically /(r) 102 102
=r/[1+p(l—=1)]. In order to obtain the short-distance be- ; ;
. . . . __ 100 100
havior we may approximate, to first order il — 1), 1 12 10t e 100 102 10t 10°
[1+pG(x)] *=~1—pG(x). (17 FIG. 4. Same as Fig. 2, fu=2.
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14

~ 8
121 00 / 71 o
10 2 6
8 5
4
6 3
4 2
2 1
0 0
1 10° 10’ 10° 10° 0 A
N 07 0 0.20.40.6058 1 1.21.41.618 2
1, 0.6 | o - T w
' 0.4 FIG. 6. Numerical estimates for d/(asterisk$ and 6 (pluses,
081 0al / obtained by fitting Eq(22) to our data forL=10" and p=0.001,
0.6 0.2 0.003, and 0.010. The dotted lines are22—u and 1v=1.
g-g = 02500 01 | u=03.000
E r ’ r . -
0 0 2. A single characteristic lengt
10° 10" 10° 10° 10° 10 10° 10° g otre

In this section we test the hypothesis that a single length-
FIG. 5. Foru>2 shortest path length$(r) are well approxi-  scale£(p) dictates the behavior of(r) in the limit of small
our numerical resultgsolid lineg for ®(r)=p~1—/(r)/r] for :p—1/(2—ﬂ)' in accordance with rescaling argumeniy.

small densities of LR bondp=10"3, 3x10°2, and 102. The 8)] and naive-path predictions. We propose that.dor 0
dashed line indicates our analytic result, E410). ®)] ve-paih predictions. prop Her,
A p,p) E=T(u,rlé), (20)

is a p-independent function that convergeslte 1 for large
P P g g whereé~p~7, and

r. Equation(19) can be integratedsee Appendix AR and
the comparison between analytical and numerical results is

done in Fig. 5. The coincidence betweeen the naive-path f(,X)
model and numerical results is very good evep at2. Thus X’ for x>1.
we conclude that in thee=2 regime and whep is small,
shortest paths are essentially naive paths.

X for x<1,
(21

This means that alp-dependence of’(r) is contained in

&(p)-
By comparison with our numerical results we find that
B. The 1<u<2 regime f(x) can be well approximated bf(x)=x/[1+Cx{1~%].
Therefore,

In Sec. Il A we saw thap=0 is a repulsive fixed point
for all x<2 in one dimension. Because of the rescaling law

Eq. (8), one expects a lengthscafe-p~ We=p Y24 to /(1) E~ rle 22)
be relevant for the behavior ef(r) asp—0. Forr<¢, the ' 1+C(r/ g0
p=0 fixed point is dominanffor which /(r)=r] while for
r>¢ the effects of LR bonds may become visiljlé(r)  or, equivalently,
shorter tharr].
———1~C[rp"]* %, (23

1. Naive paths when €u<?2 /(r)

For u<2, 1 is not well defined. However the average provide a good approximation to our numerical results. We
Iengthlt of a LR bond not larger than—Xx; is well defined  fit Eq. (23) to our numerical data for.=10" and p
and given by Eq(12). Notice thatG(r) now grows as? *.  =0.001,0.003,0.010 simultaneousfysing »(x), 6<(u),
Equation(16) is still valid for naive paths, and one gets in andC(u) as fitting parametefsand findv and 6, as shown
the limit of larger that /(r)~r#~%, i.e.,, 623"®=u—1. 1t  in Fig. 6. These results are entirely consistent with=1(2
turns out that actual shortest paths are shorter than naive u) for 1<u<2. Larger values op are found not to fol-
paths foru<2, i.e, #13"®= u—1 is only an upper bound for low Eq. (20) satisfactorily, therefore, we must regard this
0 (see Sec. llIB 3 scaling expression as only valid in tipe-0 limit.

Although the naive-path model fails to predict the A plot of /(r)/&(p) vs r/¢ is shown in Fig. 7 forp
asymptotic behavior of (r), it can nevertheless still help us =0.001, 0.003, and 0.010. The fact that all three valugs of
determine the characteristic lengthbeyond which/(r)/r collapse neatly onto one single curve suffices to verify the
—0. Keeping just the fastest-growing term @(y) [Eq.  correctness of our scaling ansatz EBO) for small p. The
(18)] and equating G(¢)~1, one gets~p Y2~# infull  specific form off(x) chosen in Eq.22) should however
accordance with rescaling arguments in Sec. Il A and at thenly be regarded as empiric.
beginning of this section. We show next that this is verified Although for <1 we do not expect Eq23) to hold
numerically. (since ther¢ has an additiondl-dependence not included in
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P i
10° 100 ye
I(r)/e p=01.100 | (e / u=01250
102 w02 7
r/& r/g
10% 10" 10" 10° 10° 10" 10" 10°
1 1 fﬂ—.
.:,/‘//*
o . O 08| o 08 g f/jf
T
10 p e 10 - 0.6 0.6 ;
(/% /. p=01.400 | I(0E © 4=01.600 04 /ij§ p=0.100 | 0.4 ff PO
/ / 0.2 & 0.2 E
102t/ 1072 0 Lkl w 0 bt W
e 1/E 0 05 1 15 2 25 3 0 05 1 15 2 25 3
10% 107 10" 10° 10° 10" 10" 10° FIG. 8. Asymptotic exponen vs decay exponent, obtained
I of howi | ” 1£ with from power-law fit of the large- behavior of /(r), for L of the
FIG. 7. Data collapse of (r), showing plots 0f"/¢ vsr/& wit form L,=10*"¥2 k=0,1, . ..,8, and for thealues of densities of

12— ) _ ;
é&p)=p *, for p=0.001, 0.003, and 0.010. The dashed line | p 1,,n4sp indicated in the respective plots. Lines are guides to the

is our approximate expression E@2). _F(_)r Ia_lrge_r values oft<2 eye. In all four cases, the steepest curves correspond to larger values
and the same values pf the characteristic size is much larger than of L

10'.

these expressions, see Sec. 1l @ fit of the data gives at u.=2 for all p in the thermodynamic limit, as predicted
~1 indigating tha,t thep dependence of the char?icteristic by rescaling a_rgumen(§ec. | A)- and the nz_ilve-path mode_l
P 1. ; ) L . (Sec. 11 B. This appears to be in partial disagreement with
size ¢ is of the formp = in this region. This is again con- ecent work of Sen and Chakraba(8C) [36], where the
S|ste.nt W'th Eq.(9). We wil d!SCUSS the reg'm‘ﬂﬂ in “regular lattice behavior”[/(L)~L] is claimed to extend
detail later in Sec. Il C. Whepis sma_lll andu is close to 2, below =2 for small values of. SC explain what they call
¢ grows too large. Consequently neithenor 6 can be cor- e |ack of small-world behavior in lattice polymers as being
rectly estimated fop.>1.6. Consider for exé':\mplpz 107°. 4 consequence of the small number of LR connectisnsll
One then hag~10° for =16, buté~10", well beyond ) “Based on the analysis of(L) on relatively small [
our present reach, fqu=_1.8. Thus the estimates f& and =10% systems, SC conclude that there ispalependent
1/v in Fig. 6 are to be disregarded fpr>1.6. phase boundary..(p)<2, and show that several lattice
polymer models lay marginally on the regular lattjcé(L)
3. Asymptotic exponends L] side of this boundary. Our extensive numerical results
Whenr> ¢, we find that/(r) grows asymptotically as and analytic considerations however show that2 is the
r%. The shortest-path dimensial depends o only, goes critical decay rate below whicki(r) <r, for anydensityp of -
to zero asu—1"* and jumps discontinuously t6,=1 atx R bonds. Thep-dependent boundary that SC observe is just
—2~. We estimated, by two different methods. A simple & logarithmically slow finite-size effect. At sufficiently low

power-law fit of the large- behavior of/(r,u,p) gives the ]

estimates shown in Fig. 8 fdr ranging from 18 to 10’ and
several values op. Strong finite-size corrections affect the 08 6 . +
smaller values op, for which &L whenu—2. However, 06 |
for largeL all these estimates are seen to converge to similar '
values within numerical accuracy. 04|
The second method chosen to estim@feonsists in fit- 02 | e
ting our numerical data using Edq23) but with »=1/(2 At '
—u) instead of takingv as a fitting parameter as in Fig. 6. 01 1'2 1'4 116 118 o
Fits of our data for.=10" and p=0.001,0.003,0.010 pro- ’ ) ) )
duce the values of)g shown in Fig. 9. Again the results v

obtained foru>1.6 are to be disregarded sinées much FIG. 9. Numerical estimates for the asymptotic exponent
larger thanlL for these values of. A naive interpretation of  (piuses in Eq. (22), resulting from fits of our data for =107 and

the results in Fig. 8, for any fixed value bf could lead one  p=0.001, 0.003, and 0.010 with=p~ Y@~ #). The rightmost two

to believe that the transition between linear behayiofr) points, for u larger than 1.6, suffer from strong finite-size effects
«r] and sublinear behavigr'(r)/r—0 for r—«] happens and should be disregarded. The dotted line sketches what we be-
at a p-dependent boundary..(p) [36]. However, a more lieve is the true value ofy(x). The discontinuity aj.=2 is sug-
careful numerical analysis shows that this transition happengested by the behavior of the=1.0 results in Fig. 8.
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values ofp, and foru close to but lower than two, the char-
acteristic lengthé(u,p) is larger thanL and thus/’(L)oL.

0 0
Equatingé=p~Y(>"# =L, one obtains an apparent bound- 10 / 1w
ary u* (p)=2—In(1/p)/In(L) that converges logarithmically  yr, / It /
slowly to u.=2. Replacing. = 10", this last expression fol- / w=00.000 / n=00500
lows closely the boundary reported by SC in Fig. 3 of Ref. 102 / 102t /
[36]. // rre / rir.

There is a second aspect of REB6] with which our 3 107 10" 108
findings seem to be in disagreement. According to SC, there
are only two phases regarding the asymptotic behavior of
/(r). A logarithmic phase; (L) xIn(L), for u<u*(p)=~2, o 0
and a linear phase foz>u* (p). Our numerical evidence  '° 10
however suggests a more complex scenario. Fau¥?2 r r
we find that/(r)«=r% with 6, small but nonzerdFig. 9), ¢ / u=00.750 ¢ / n=00.850
and only foru<1 / becomes logarithmi¢see Sec. Il ¢ 102l / w02t/

C. The O=p<1 regime

The data in Fig. 2 clearly show that(r) depends on
system size if 0<u<<1. In the specific casg =0, each of

the L29/2 possible LR bonds is present with the same prob- 1¢° - 109
ability pL~9. This corresponds to a-dimensional lattice

supplemented witpLY LR bonds whose ends are randomly '

/ [+
chosen, and goes under the name of small-w@M/) net- > / = 00950 2 / w=01.000
work [32,39—417. In particular it was recently founi82,44 10 J/ 0= /
that on SW networksg=0) there is still a single character- / e / dr
istic lengthr . dictating the behavior of (r), but it depends 10° 10" 100 10° 10® 107 10" 10®

both onL andp, and diverges ak—, in any dimensiord.
Analytic calculationd32] confirmed by numerical measure-
ment[44,47 show that, ind dimensions,

FIG. 10. Shown is /Z/r, vs rlre, with r,
=p~LIn(4(pPL)* #)/n(4). The density of LR bonds ip=0.001,
0.003, and 0.01. System sizksare of the formL,=10°>"¥? with

r for r<r, k=0,1,...,8. Theproposed expression for. has only been justi-
/(r)= (24) fied theoretically foru=0 [32,44], and is purely empirical for O
ro for r>rg, <u<l.

wherer~p~ Y In(KpLY% with K a constant.

In the particular cased=1 one hasr.(u=0.L,p)
~p tIn(4pL). So thex=0 case is relatively simple, with
/Z(r)=r for r<In(4pL)/p and 7 (r) =In(4pL)/p for larger.

By inspection of Fig. 2 one concludes thatdepends on ;
L as well as orp,u« in the whole Gs u<1 range. Whenu /gﬂzl)(r):1+f
=1 however, the characteristic length dictating the behavior 1
of /(r) is é=p~1, and no longet. dependent, as shown in
Sec. Il B. Guided by these observations, we now propose awherer .=p~*In(L). Thus naive paths are determined, in the
empirica| expression forc in terms ofL'p”u in the whole ,u,—)l ||m|t, by a |OgarithmicallyL-dependent characteristic
O0=<u=<1 range. This expression has to resultgrp*  sizer. and a logarithmic behavior'(r)~In(r) abover..
whenu—1, andr.~p~*In(pL) when »—0. It is easy to  Given that actual shortest-paths must be shorter than naive
verify that paths, we conclude that(r) is logarithmic for allu<<1.

(see the beginning of Sec. JIP,=In[(I+1)1}/In(L), from
which G(x)~x/In(L). Thus Eq.(16) can be written approxi-
mately as

1+x/rg’ (26)

re(p,p,L)=p tIn[4(pL)M]/In(4) (25) IV. CONCLUSIONS

satisfies both requirements. We find that this empirical ex- We considered shortest paths dimensional lattices of
pression gives acceptable results for snpalln Fig. 10 we L? sites supplemented witpL® long-range connections
show /(r)/r. r/r. with r. given by Eq.(25), for all values Whose lengths are random variables with power-law distri-
of L ranging from 18 to 10’ and p=0.001, 0.003, and bution P(I)~1"#. We call these networks, since it is the
0.010. The acceptable collapse of all data supports the validrobability to have a LR bond of length and not its
ity of Eq. (25) reasonably well. strength, what decays with distance. The limit-0 is the
We find that/(L) grows asymptotically as Ihf for 0 “small-world” network of Watts and Strogatf39]. Under a
< u=<1. The naive-path model already predicts a logarithmic'escaling transformation with scale parameien d dimen-
behavior atu=1 as the following shows. Fe=1 one has sions, a small local density of LR bonds transforms ag
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=p?d"#p. In the (u,p) plane,p=0 is a repulsive fixed line pdLd—# g pdln

for u<2d and an attractive fixed line fgz>2d. Thus res- d—p d-gu -1 for p>1,

caling arguments predigi,=2d to be a critical decay rate p=Vy o (A2)
above which LR bonds are irrelevant. Particularizingdto pd(L""#—1) for  p<1

=1, a directed model that gives an upper bound for shortest d—u p==

paths can be analytically solveg@ec. Il B and has three

regions in theu axis: (@ /(r)«r for u>2, (b) /(r)  Whenu<d and ifp remains finite in thé.— <o limit one has
or#~ 1 for 1<u<2, and(c) /(r) logarithmic foru<1.In  that

accordance with rescaling arguments, we find numerically

that in one dimensiom=2 is a critical point separating a _ d__ML,(d,M) (A3)
“short-range phase” >2) where shortest-path lengths are p=p Sy '

linear, /(r)x=r, from a “long-range phase” £<2) where

shortest-path lengths are sublineai(r)=r’ with ,<1.  This goes to zero for largk, which justifies the power-law
Our finding thatu.=2 for all p is consistent with previous approximation Eq.7). For u>d on the other hand, and
work of Jespersen and Blumé§85s], but is in disagreement assumingp small,

with recent claims of Sen and Chakrabdi®g] who suggest

the existence of @-dependent boundamy™ (p). We showed _ pn—d
that this apparent boundary is a finite-size effect, due to the p=p SR
fast growth of a correlation lengthas u—2".

For smallp and 1=su<2, a characteristic sizé=p~"  so that the power-law approximation holds for any fingte
with v=1/(1— ) dictates the shortest path properties. Forwhenu<d but only forp small whenu>d. The power-law
r<é&one has’(r)~r while forr>¢, /(r)~r(u) isfound.  distribution is properly normalized when
This divergence in the correlation length exponenas u

(A4)

— 2" is of the same kind as reported for spin models previ- Lo (mw—d)L+d
ously[4,8,13. 1=Cf1 r kdr—C= m, (A5)
For u<1 the characteristic size behaves @s' but is d
also L dep_endent an_d we find that E@5) provides a good therefore, in the limit of large.,
empirical fit of both itsp andL dependence.
The asymptotic exponem is found numerically to attain (u—d)
its short-range valu@;=1 for u>2. It is discontinuous at K P for w>d,
u=2, where it probably takes a value near 1/2, and then S¢ e
goes to zero smoothly gs—1". For u<1 we find loga- p(r)= d— (AB)
rithmic (or mean-field behavior: ;=0 and /(r)~In(r) (d-n) L for w<d,
asymptotically. Fou— 0 //(r) saturates at large distances to SyLd™# r#
a value that depends logarithmically on system size
[32,44,47. gives the probability for two sites separated by an Euclidean
distancer to be connected by a LR bond.
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(A3) and (A4) betweenp andp it is immediate to conclude

that
APPENDIX: SHORTCUT DISTRIBUTION ~
p=bwp, (A7)
1. Normalization
The scale-invariant shortcut distributiqeir) Eqg. (4) can with
be approximated byp(r)=1 for r<r.,=p* and p(r) _
~plr* for r>r.. Thus the normalization condition E¢p) yo— d for  p<d, (A8)
can be written as P l2d—pu for u>d.
e L
f rdfldr-l-pf rd=1=#dr for r.>1, 3. Naive paths whenu>2
1 r
p=Sq . ‘ For u>1 andL>1 we have thaP;=11"#—(1+ 1)~
pf rd-1-nqgy for r.<1, Using this expression, Eq(14) gives G(x)==]_,(l
1 —D[IF A=+ #] =HX+1u—1)—1—(x+1)*

(Al) 4 (x+1)"® D, where H(x,&)=3}_,11% are called har-
monic numbersH(x,a) can be approximateéwithin 1%
so that if V4= S;/d is the volume of a unit radius sphere, erron for all e=1 andx=2 by
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37 %+x" N X -3
2 1-

H(X,a)~1+2" %+ (A9)

Within this approximation one obtainsl 1)=H(%,u
—1)—1=2"#+ (31" #)2+ (32 #)/(u—2), which is
found to be very accurate for gll=2. Using this approxi-
mate expression, Eq19) can be integrated to give

PHYSICAL REVIEW@S 056709
(I-1)(r—=1) Z(r,3—p) .\ 3Z(r,2— )
r r(u—2) 2r

Z(r,\1—w)
B r

(r)=

) (A10)

whereZ(x,a)=[(x+1)*—2%/a.
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