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Three-dimensional solutions of the Boltzmann equation: Heat transport at long mean free paths
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A kinetic transport model for arbitrary meshes is presented and the method is applied to heat transfer in a
rare gas between parallel plates at different temperatures. The method uses “propagating” rays for tracking the
transport of particles throughout the phase space in three-dimensional spatial meshes. Two collision operators
are tested with the model, a simple monoenergetic operator and the Bhatnagar-Gros$BG&0kmodel.

Results are generated for several Knudsen numbers in the transition regime. The results of the kinetic simu-
lation, which employ the BGK operator, compare favorably with those of a finite-difference solution of the
Boltzmann equation using the BGK collision opergtér Ohwada, Phys. Fluid8, 2153(1996]. In addition,

the results for both collision models exhibit fair agreement with experimental data of Teagan and Springer
[Phys. Fluids11, 497 (1968].
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[. INTRODUCTION work, there areN,,, rays leaving each initial cell, so the
amount of geometric information that would have to be
In this paper a kinetic neutral particle transport model forstored for use in finding probabilities becoth%Nray.
long mean-free-pattL MFP) environments is discussed. The Avoiding this storage problem is essential in making these
model permits efficient, nonstatisticeto random numbers calculations viable, and is a major focus of this work. We
are usedl iterative calculation of the scattering rate of par- envisage problems whebé, is of the order of 10 andN,,,
ticles in each cell of a phase space mesh. The use of thg typically of order 16.
scattering rate formulation is implied by the Milne version of  The model presented if6] was developed for kinetic
the radiation transport equatidd]. Most implementations modeling of ion implantation. The ion implantation model
have been limited to rather specific applications, where thewas developed to determine the three-dimensi¢R) pro-
have been shown to be very accurate and computationallfle of ions implanted in silicon and was specifically con-
expensive in terms of memory requiremeffs-4]. We have  structed for simple geometries using regular meshes. In the
developed such an approach to examine self-consistent propast[6], we used minimum stored information to construct
lems in long mean-free-path fluid dynamics, where force balthe matrices; in this paper we find the matrix approximately,
ance is achieved by means of momentum conservation duput with essentially no stored information.
ing particle collisions [5,6]. We have focused on  In [7], a similar transport model was implemented on a
implementing the transition probabilities in a form that al- 2D cylindrical mesh for the study of neutral particle transport
lows the mean free path and angular distribution of the scatin a low density electron cyclotron resonance plasma. The
tered particles to vary, both in space and during the simulamodel was extended to be time dependent, and was directly
tion (a variable angular distribution being needed to allowcompared with fluid and Monte Carlo mod¢/g|.
momentum-conserving collisiopsin addition, the model The LMFP transport model is applied in this paper to heat
has been developed for meshes constructed of arbitragyansfer, in a rare gas, between two parallel plates having a
shaped elements. Most importantly, we limit the amount ofsmall temperature difference between them. In the limit as
information stored. The matrix of probabilitie®f going  the radius of the plates approaches infinity, the problem be-
from one cell to anothegiis very large. IfN. is the number of  comes one-dimensional. In 1953, Chang and Uhlentpgtk
spatial cells on the mesh, then even the geometric informaapplied the four-moment method to the problem. Gross and
tion required to find all the probabilities of going from each Ziering [9] have investigated the application of the four- and
initial cell to each final cell involve®Z numbers. eight-moment methods to the issue of heat transfer between
As we explain in later sections, we calculate probabilitiesparallel plates. Bassaniet al. applied the Bhatnagar-Gross-
for particles going from one cell to another, based on theKrook (BGK) [10] method to the problem in 1967.
probabilities of going from a set of finer mesh cells to other In 1968 Teagan and Springer gathered experimental data
fine mesh cell§6]. The use of fine cells is necessitated in on the heat flow between two plates at different temperatures
part because the particles have a variable anisotropic angulfor various Knudsen numbei$,, whereK,=\/d,\ is the
distribution as they leave each cell. The variable angular dismean free path, and is a characteristic lengtfl1]. They
tribution would make a single, one time, calculation of thecompared the data and the analytic models and found from
large-cell to large-cell probability impossible. In the present2% up to 18% variation from experimental data. Teagan
and Springer presented data for both monotonic and diatomic
gases, argon and nitrogen respectively. These data have been
*Electronic address : christli@engin.umich.edu used to verify subsequent analytic and computational
"Electronic address : hitchon@cae.wisc.edu models.
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In 1971, Yen[12] numerically investigated the transport and Springer for small Knudsen numbers and in the limit of
problem by using Nordsieck’s Monte Carlo method for thefree molecular flow. Paet al [18] presented a “molecular
evaluation of the Boltzmann collision integrals. Yen's modelblock” DSMC model, which reduces statistical noise by
included one spatial axis and two velocity axes. Yen dis-grouping large numbers of particles into “blocks” while re-
cussed results for argon at an intermediate Knudsen numb&ining the mean free path of the individual molecules. They
and found that his results compared favorably with those opbtained reasonable results for various different gas flows,
Teagan and Springer. Huang and Hwaig] applied the including high Knudsen number Cpuette flows.
method of discrete ordinates to the BGK model of a rare gas 1he present LMFP model describes steady state transport
with and without internal degrees of freedat972. With ~ Of particles in a complex geometry and with irregular
the exception of one of the intermediate Knudsen numberdneshes. The 6D model uses three spatial variables and two
this approach was in good agreement with the argon and ,\dlr_ectlonal variables and energy to represent velocity space.
data of Teagan and Springer. In order to obtain good agre-is Propagator(Green’s function method allows large
ment at the intermediate Knudson number, Huang andSteps.” which reduce numerical diffusiofi9,20. In addi-
Hwang found it necessary to substantially change the acconiion this method is nonstatistical in nature. Partly because of
modation coefficient of the wall. In 1985, Pazooki and Loy- this, it can handle collisions between particles in the gas
alka [14] applied the Hanson-Morse kinetic model to the Phase with greater precision than statistitad “particle”)
one-dimensional problem of heat flow in a rare polyatomicmeth‘?ds- This is an adyantage for processes that involve in-
gas between parallel plates, and found good agreement wifgractions betwge_n particles—such as force or heat balance
the N, data of Teagan and Springer. Their model differeg@nd transfer within the gas. 'I_'he LMFP model conserves
from previous models in that it included an accommodationMass and energy. Momentum is conserved by the introduc-
coefficient for both internal energy and translational energytion of an angular distribution function described #0]. We
The data of Teagan and Springer only had a bulk accommd?PPly the LMFP model to heat transport between parallel
dation coefficient for . Pazooki and Loyalka determined Plates and compare our results with the argon data of Teagan
the separate accommodation coefficients by trial and errof"d Springer{11] and with numerical results of Ohwada
The accommodation coefficients were determined once anld€]- We employ two different collision operators, a monoen-
used in the generation of all of their,Nesults. In 1993, €rgetic collision operator and the BGK model.

Songet al. [15] presented a simple kinetic model for heat !N Sec. Il the experiment of Reff11] is described. In Sec.
transfer by a rare gas in a gap. The model compared well! t_he transport model is described. In Sec. 1V, results and
with experimental data, including that of Teagan angVerification of the transport model are presented.

Springer. Songet al. studied heat transport in a rarefied gas
between rough surfaces and smooth surfaces. The model
compared favorably with their own experimental data. In
1996, Ohwad@16] compared his nonlinear Boltzmann equa- A. Experiment
tion solver to the argon data gathered by Teagan and
Springer. The nonlinear Boltzmann equation solver had mixhe

nor discrepancies with the experimental data worse than cm in diameter. The upper and lower plates were water
other_ computational modg)lseven as ”“? Knudsen number cooled aluminu.m disks with argon between them. The
was increased to the point where nonl!near effects be_com iddle plate consisted of two aluminum plates with a heating
small. The nonlinear Boltzmann equation solver predicte lement placed between them. The “hot” platat 368 K
asymmetries in the density profile, which were not seen irhnd either “cold” plate(at 288 K were 0.13 cm apart for

the experimental data. He also found that the collision OP€r8504t transfer measurements and 2.54 cm apart for the density

t(;r made Ill'tftle dlffer?nce ('jr.‘ﬁthe SOI“EO? unde;ghetcond;u?n rofiles. Density and energy flux measurements were made
of a small temperature difference between the two plales, . \4rjoys Knudsen numbers. The accommodation factor

Oh\_/vada felj[ that th_e accommodatlon_ <_:oeff|C|ent of the eX'(the percentage of particles that undergo a diffuse interaction
periment might be incorrect for conditions other than free

lecular f H ina th dati fwith the surfacgof the aluminum was experimentally deter-
molecuiar Tlow. However, varying the accommodation Coel;,qy for argon at densities near the free molecular flow

ficien_t of the plates did. not have enough of an effect on theregime to be 82.6%.
solution from the nonlinear Boltzmann equation solver to
explain the discrepancy with the experimental data.

More recently, higher-dimensional computational meth-
ods, aimed at predicting flows in microelectromechanical Due to the symmetry of the experiment, the simulation
systemgMEMS), have used the one-dimensional problem ofonly includes the lower cold plate and the hot pletee Fig.
heat transfer between parallel plates as a test bed. In 2001). The accommodation factor was set to the experimental
Boyd and Suri17] presented a new direct simulation Monte value.

Carlo (DSMC) method that incorporates a fluid model to  The current form of the code is 6D, however this problem
preserve global information to reduce statistical noise folis 3D (one position variable and two velocity variables
low flow velocities in a long mean-free-path environment. Therefore on the vertical boundaries of the simulation do-
The model has two spatial dimensions and three velocitynain, the accommodation factor was set to zero so that par-
dimensions. Their results agreed well with those of Teagaticles were spectrally reflected off the side walls. This made

Il. THE PHYSICAL MODEL

The experiment of Teagan and Springéi] is outlined
re. The apparatus consisted of three parallel plates, 25.4

B. Simulation domain
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PO Ty (HOT) = (T, + DT) we introduce assumptions that apply to systems where the
d/2=1.25cm Az i T mean free path is comparable to or greater than the system
- - — e — — —_—— - _——— = 0 .

;d/2 = 1.25cm size. .
PO T (COLD) = (T, - DT) Our approach to the transport problem is to solve the
€ — > steady-state Boltzmann equation

25cm
FIG. 1. The simulati ion. Th late is the hot pl R T L
. 1. The simulation region. The upper plate is the hot plate v~Vrf(r,v)+a~va(r,v)=— (1)

set at a temperature of 368 K and the lower plate is the cold plate
set at a temperature of 288 K.

collision

In solving Eqg.(1) we employ a propagator based method,
the simulation symmetric in they plane and thereby one- which we refer to as the transition probability mat(ix°M)
dimensional. The simulations were carried out on a rectanmethod. This section describes new aspects of the TPM. We
gular domain by using meshes constructed either of triangustart with an overview, then present descriptions of the “bal-
lar elements or rectangular elements. Figure 2 shows alistic operator” and collision operator, and end with a discus-
example of the types of meshes employed in this work. It ission of the numerical approach.
equally easy to run the code on simulation domains con-
structed of triangular and/or rectangular elements. A. Overview

We present a model for the transport of gases when the
lll. LONG MEAN-FREE-PATH TRANSPORT MODEL mean free path of the particles, is of the order of the

In this work we consider rarefied gas flows, although thecharacteristic length of the systelmWe use a 3D arbitrary

basic method applies at any mean free path. In what followsSPatial mesh and a 3D velocity space mesh comprising a
single energy mesh in combination with a 2,©) direc-

y tional mesh. The method employs a momentum-conserving
ZT% Center Line collision operator[6,20]. Energy and particle conservation
are strictly enforced.

AN AN To solve Eq. 1, it is only necessary to compute the colli-
/]\ /A ¥ /\ sion rates of particles because it is possible to compute any
AN /\ other information from the collision rate. For example, the

7 densityn(c) is

B R(c,E)N\(c,E)
7 N(O)=2 T E o

2

? where n(c) is the density in cellc of the spatial mesh,
N R(c,E) is the collision rate of particles in cetl at energy
N E,\(c,E) is the mean free pathy (E)| is the magnitude of
N the velocity, andy(c) is the volume of celk.
To computeR(c,E), the TPM divides particle behavior
(a) into two distinct phases. The first phase addresses ballistic or
collisionless transport of particles. The second involves a
A7 T/ collision operator. These operations can be performed effi-
ciently using one-step transition probability matrices. The
first transition probability matrix is used to compute the
number of particles per second that collide in o=dit energy
E’,

ERNERNERN

R(c,E’)=>, R(c',E')Tpal(c,E':c’,E'), (3)

[ ]

whereR(c,E") is the number rate of particles that collide in
cell c at energye’,R(c’,E") is the number rate of particles
that collided in celic’ and were redistributed with energgy/
in the previous iteration, andl,,(c,E’:c’,E") is the prob-
ability that a particle having started in call at energyE’
(b) will have its next collision in celt, where the sum is over all
mesh cellsc’ at energyE’.
FIG. 2. Examples of the two different types of spatial meshes The second TPM is used to redistribute the particles after
that were used in the simulations. a collision,

[ERNERN
NI ERENERNEN

[ENERN
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R(c,E)=2, R(C,E')Tco(E:E"), (4)
E!

where T, (E:E") is the probability that a particle, having - X / .-
collided in cell ¢ at energyE’ will be redistributed with SV
energyE (in the same spatial cetl). The directional infor-
mation used in the redistribution may either be directly in- - \\
corporated into the TPMT,,(c,E":c’,E’), or may be =
handled by assuming a form for the particle distribution . N
function, f(x,v), in cell ¢ [6,20]. % / \ .
In the following sections we describe how the TPMs are v
set up for irregular meshes without explicitly constructing
large matricesT 4 OfF T - FIG. 3. Depiction of a single propagating ray as it encounters
mesh elements of a regular mesh.

A
Y

\

s
(S 127

[

~

7

B. Ballistic operator: Constructing R(c,E") o ) ]
listic step, are placed in the rays of in such a way as to

This section addresses the ballistic transition probability.onseryve momentum, as discussed in the following section.

matrix Ty, and compares the currefig, to earlier versions In the past6], the geometric information needed to cal-
[6]. Some of the approximations we introduceTig,; May  cylate the probabilities “exactly” on a Cartesian mesh was
not be appropriate at short mean free paths. computed and stored in a table. The Cartesian mesh was

The TPM is never .explicitly constructed. .Instead, the referenced by an ordered triple of integers; (k). Due to
TPM employs propagating “rays/f; ;, each having a range the symmetry of the mesh, the geometrical information for
of polar angles, an initial cell ¢’ with other final cells was the same for alll

dd. de. initial cells ¢’, so that it was only stored once fof at the
M= <I>it—',®ji—J ) (5)  origin, i=j=k=0. Geometric information was stored ex-
’ 2 2 plicitly, so that propagation could be possible one ray at a
o ) ) ) time (see Fig. 3. Mesh information was stored, for each ray,
Ballistic transport is carried out on a fixed mesh constructegy55eq on the distance froai. Particles were distributed to
of elementsc’. Propagation is performed by allowing par- the mesh as the cells were encountered along the ray. The

ticles to move along rays from’ encountering other cells of ropapility of a particle having a collision in cedlat energy
the fixed mesh in order of increasing radius. Propagation ig’ \as approximated from Eq7) as

completed when the rays of al have deposited all of their

particles back in the simulation domain. D(c,ri )
The number of particles originating in call at energy Pi(c,E")= ’,J , (8)
E’ that have their next collision in cel atE’ is Ac,E)

providedD(c,r; ;)<\ (c,E"). D(c,r; ;) andf(r; ;) were de-
Ne(c,E":c’,E")=2 > N, f(r;;)Pi;(c,E"), (6) termined by numerical integration.
o The convected schem(€S) [21] finds probabilities accu-

) ) rately and straightforwardly. Moving cell§MCs) are
wherer, ; is a ray frome’,Nc(c,E":c’,E’) is the number of  |aunched from cells, moved along ray-centers for titvte
particles that start at(,E’) and that collide at¢,E"), N;, . and colliding particles put in cells using CS overlap rules;
is the number of particles left in; ; at cellc, f(r;;) is the  another step of the MC taken, etc. At walls, MCs emerge in
fractional overlap of; ; with cell ¢, P; ;(c,E’) is the prob-  continuous sheef®1]. Striking walls, MCs are mapped back
ability that a particle that is im; j, and is crossing celt at  to give proper coverage, especially in corn@g., by divid-
energyE’ will undergo a collision at a distanak the depth  ing the MC into many small cells
of cell c. The sum in Eq(6) is over allr; ; that overlap cell

c. Pij(c,E") is given by 1. The coarse mesh
) If the TPM were directly implemented on an arbitrary
Pij(CE)=(1—e 9ED) (7)  mesh, it would be necessary to construct the propagating

rays for each initial mesh element of the mesh. Storing the
A(c,E’) is the mean free path in calatE’. d=D(c,r;;) is  quantities necessary to construct the TPM would be highly
the average distance a particle travels when passing throughemory intensive. To avoid this, a fine regular mesh under-
c alongr; ;. lying the arbitrary coarse mesh is introdu¢@d], along with
The number of particles in a ray is decreased by thea map between the two meshes. A fine regular mesh element/
amount indicated in Ed6), as those particles are scattered incell is said to overlap a coarse mesh element if the center of
each cell they pass througR(c,E") can now be computed the fine mesh cell lies inside the coarse mesh element. A
by summingN.(c,E’:c’,E") over all cellsc’ of the fixed pointer to the coarse mesh element is stored in every fine
mesh. Particles having scattered in a cellduring the bal- regular mesh element that overlaps it. Each coarse mesh el-
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r Coarse Mes | || L|LLLLLtak] the particles is then performed by looping over all the “cen-
L ST )ﬁ T e T NG ters of gravity” c 4, distributing particles to fine mesh ele-
N RS ments designated by
.?f{ii'~?';iiiii;;'@ff?'ﬁ'i'; o _
: \D4F/ABBEnED S (A annRE 008 Caist= (IcgT 1 jegT 1y KegTK), 9
RN ;: LaBE EEBEARDSE HHE = where (cq,jcg:Kcg) is the ordered triple of the distributing
- T ‘¢ “\';‘I‘I LT v nodec.q and (i,j,k) is the integer offset belonging to The
u Sy 3 generation of the integer offsets is described in the Appendix.
~ Fine Mesh & hCREE i The fractional overlap is approximated as
TTTTTTT] FF
AQy;
FIG. 4. A 2D example of the manner in which arbitrary coarse —d'St, rZQri <3AAfinemesh
mesh elements are redefined in terms of fine regular mesh elements. M !
f(ri;) Q (10
dist 2
. . . —_— r°Q; =3AAsinemesh
ement has a minimum of one fine mesh element in it. The Q, i

coarse mesh is used to cluster fine regular mesh elements H

into cohesive units that share the same characteristics. C'“ﬁIhereQr, _is the solid angle subtended by the my with

tering of fine mesh elements effectively redefines the coarsg b

mesh elements of the arbitrary mesee Fig. 4. After col-

liding in the coarse mesh eleman(that is, in one of the fine : ' ) )

mesh cells ot), particles are redistributele., relaunched ~ @ngle subtended by the faces@fs; projected in the direc-

from the fine regular mesh elemeny, closest to the center fion of ri;, r is the distance betvvzeencq and Cyjst,

of gravity of the cluster of fine cells representing the coarseé®AtinemesniS the area of a face @lyist, 1€, . is the area of

cell c. Note that there is one.q perc, so that the number of rayr;; at cellcgisi, and A A¢inemesniS an overestimate for

distributing nodes is still equal to the number of coarse meskthe area of the three possible exposed facesyQf. “Ex-

elements. posed to the ray” refers to the faces of the cell the particles
Similarly, the boundary is represented by clusters of 2Dentercg;s; through, when traveling along ;. At large dis-

fine regular mesh elements that lie on the boundary; thesinces, the approximation of the fractional overlap is based

fine mesh elements are designatecchy The wall cell clos-  on whether or not the center of;, lies on the interior of a

est to the center of gravity of the cluster of wall cells is given rayr; ;.

designated the distributing wall ced],.,. (It will be impor- The average distance a cell extends along a ray is com-

tant to ensure that there is indeed a fine meshogglor cp,,  puted using

with its center close to the actual center of grayity.

e origin'of the ray located at,q, A ;s is the portion of
solid angIeQrij overlapped by celtyisi, Qqist is the solid

The fine regular mesh introduces symmetry into the sys- D(c,r; )= Vist (11)
tem and can be referenced by an ordered triple of integers, RN '
(i,j,k). During the ballistic move we distribute particles zk: Jr, ;(Atinemeskk))

from each coarse element to all other coarse elements—but
scattering from each coarse ele;ment is done from a fine e":r‘/\'/herevdist is the volume of celtgist, Jr. (AsinemeskK)) is
ment, Cq OF Cyeg. The distribution fromc.q to the coarse b
elementsc is done by first distributing particles to each fine .~ "
mesh element. Particles placed in a fine mesh element apérectlon of rayr; ;, a?q t_he ”sum ovek_ represents the sum
never stored in that element, but are placed directly into th&Ver the faces 06‘.““ .V'S'ble _to the distributing nodeccg
coarse mesh elemeathat the fine mesh overlaps. The mean©" beg when looking in the direction of; ;
free path of the particles used in calculating the number of
particles that collide in a fine regular mesh element is the
mean free path (c,E’) of the cluster of fine mesh elements ~ When a propagating ray strikes a cejllon the boundary,
representing celt. the fractional overlap of the ray with the wall cell is com-
puted as above. This fractional overlap is the fraction of
particles in the ray that has a collision with the wall ag]l.
After a ray strikes a wall cell, the area of the ray needs to be
Unlike the ion transport mode[6], the information  adjusted, so that the fractional overlap of the ray with other
needed for the probabilities is not explicitly stored, but rathefinterior cellscy;s; at greater radii tham,, is not underesti-
is Computed as needed. The next cell being distributed t@nated' because the portion of the ray Strikmg's no |0nger
from cell c.q4 is found using an appropriate orgered triple aspropagating particlegsee Fig. 5. For a simply connected
an integer offset. The ordered triple refers dpthe next region, without inclusions, the solid angle of the ray is re-
closest fine regular mesh element to the origin. The fractionafluced by a fractional amouffd(2). It is necessary to store

overlap ofc and the ray, and the average distancextend- ~ the{},, . of each distributing. since the rays from eaah
ing along the ray are approximated once. The propagation adncounter the boundary celts in a different order, hence

the area of the face of theth face ofcy;s; projected in the

3. Overlap of rays with wall cells

2. Overlap of rays with cells
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Boundary of — fer between parallel plates, we only need a simple method of
Wall Cell el (5 adjustingQ), - when a ray strikes a walk(d2) is used to
\ reduceQri - Becausd (dQ2) is a rough approximatior()rij

may not be equal to zero at the end of a stepﬂ,lifj is less

than zero after adjustment kiyfd(Q) (during the step all
remaining particles im; ; are placed in the current wall cell
andQ,i‘j is set to zero. Iﬂri‘j of a ray is greater than zero at
the end of the step, the small number of remaining particles
is simply distributed to the boundary of the simulation do-
®  walceus main, thereby conserving mass during the ballistic operation.

4. Mean free path

*law Overlap
In the current modely(c,E’) can be determined for each
Caist WalzgeliA spatial cell from the cross-section and the local particle dis-
_______ S b tribution. However, we have made the simplifying assump-

Distributing Node tions that the gas is monatomic and has a constant collision
| frequency,r, andX is

lv(E")|
FIG. 5. Depiction of the necessity of reducidf). The speckled NE")= . (12

portion of the ray has the shortest distance to the wall so that this
portion of the ray strikes the wall first. After the speckled portion of vis
the ray has struck the wall, the solid angl@ of the ray is reduced
by the amount of the speckled portion. =

g peciiedP lv(B)| 13

V= =

the O, - for eachceq will require different fractional adjust- N(E)

ments. An overlap rule can be used, see R&f], to find the ~ . ~
fraction of the wall cell that is in the ray or vice versa. The Where E is the average energye=;Kg(Thort Tcola)/2

simplest such rule might be to find the rangefinand® of wherekg is Boltzmann’s constanfl is temperature and the
the ray, from @/©)¥ to (®/O)™ : and similarly subscripts hot and cold refer to the hot and cold plates.

min max: . ~ .
(@/0)%! and @/@)! el and®!  arefound Choosing\(E) to be equal td<,L, whereK, is the Knudsen
from the coordinates of the corners of the facet. The area dlumber and. is the characteristic length, yields
a “rectangle” with these values defining its faces is found (K,L)2T 12
and compared to the actual area of the facet. The area of the - (“— , (14)
rectangle is greater by a ratig,.,. The dimensions if® (Thot+ Tcoia)/2

and® of the cell are temporarily reduced by a factifr,cq,
keeping the central value the same, thus redefirﬁﬁﬂ,max

1l “ s n Il
and O of the face. After “correcting”® {5 max, We

min/max

find which of the minima is greater and which of the maxima
is smaller, to find the range of overlap #. We repeat this
for ®. The solid angle of the overlap is estimated using these
two overlaps.

In a domain with inclusions, interiors of rays may strike In this section, a discussion of the collision operakgg,
the boundary before the edge of the rays strike the boundarig given. T, redistributes particles on the mesh and along
thus making the ray a complicated structure. Subdividing théhe boundary in energy while conserving momentum in
ray into subrays can handle complicated ray structures, butarticle-particle collisions. Application of .., to R(c,E")
this is memory intensive. An alternative to subdividing the(constructed during the ballistic movegives R(c,E). We
ray is to subdivide the simulation region into simply con- now give an overview of .., followed by the implementa-
nected regions without inclusions, known as convex hullstion of energy conservation for particles, momentum conser-
The boundaries between convex hulls would be transparentation for particles on the interior of the mesh, and finally,
walls. Phase space information about particles striking thémplementation of the boundary conditions.
boundaries between convex hulls would be stored until the In this work the collisions have been described using two
completion of the current simulation step. At the start of thedifferent models. In the first, particles that undergo a colli-
next step, these particles would be relaunched into the nexion in cellc are put back on the phase space mesh at the
convex hull. Subdividing into convex hulls eliminates the average energy of the particles that collided in the cell during
necessity for complicated ray subdivision routines and onlythe current simulation step. Particles that strike the wall and
requires a minimal design upgrade to the propagating struaindergo a diffuse interaction are placed back on the phase
ture presented here. For the current simulation of heat transpace mesh at the energy of the wall. Momentum is con-

whereT is the “temperature” of the species colliding in cell
C.

In the next section we discuss the collision operators and
implementation of boundary conditions.

C. Collision operator: Constructing R(c,E)
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served using the angular distributié(6). The angular dis-

tribution f(®) provides the correct weighting for particles Z Nc(E)E;
that undergo a diffuse interaction with the wall. Ep=—, (20)
In the second collision operator the model used for the S NJ(E)
- Cc 1
|

interior of the simulation domain is the BGK model, which is

Sf - -
al =wn(c)fo(E)F(0)— vf(r,0),

collision

(19

which is computed befor&;. Because the average energy
computed usind,, = =;F,E; may not equaE,, , we check

and the distribution of particles coming off the wall is given that E,, equalsE,, and adjusf;, if necessary.

by

flywan=alVEf(E)f(®)+(1—a)f(r,v),  (16)

where fo(E) is the Maxwellian distribution functiong of
Eqg. (16) is the bulk wall accommodation factor, addis a
normalization factorf(#) andf(®) carry directional infor-
mation as described below. The additional factor& in

Conservation of momentum is achieved by choosing an
angular distribution for the particles that collided in cell
which yields the same mean velocity that they had before
they collided. Since details of the differential collision cross
section are usually not known, we choose a simple angular
distribution. The elastic collision operator developed20]
is employed here, with adjustments, to ensure momentum
conservation. Particles are relaunched with an angular distri-

Eq. (16), is to account for the fact that the flux of particles pytion

coming off the wall at energ¥ should be the same as if
there were an infinite volume behind the wall with a Max-

wellian distribution of density—the flux at enerdyis that
density weighted with velocity/2E/m f(0).
Both the monoenergeti€., and theT., defined using

Eq. (15 conserve energy and momentum, locally on aver
age, i.e., the average of the energy and momentum of t
particles in mesh celt after redistribution by collisions is

f(6)=(1+a,cosh), (22)

whered is measured from the direction of the mean velocity
Hand wherew, is chosen to obtain the required velocity. Ref-

erence[20] provides details, including how large values of

forced to equal the average energy and momentum of thi'€ mean velocity are handled. Other angular distributions
particles which collide in celt before they are redistributed. c0uld be employed instead, for instance, to allow for an ac-

We find the energy and momentum for celln four steps:
(1) Determine the average enerfy, of the particles that

collide in cellc; (2) determine the average momentum of the
particles that collide in celt; (3) redistribute the particles in
energy, within cellc, based orE,,; (4) assign an angular

distribution to the particles of each energy big,, of the

mesh, so that the momentum is conserved for particles th
collide in the cellc. For particles that collide with a bound-
ary, the particles either spectrally reflect or undergo a diffus

interaction with the boundary.

curate differential cross section.

Boundary conditions are imposed in a straightforward
manner. For example, if a given surface has a porosity of
X%, x% of the particles striking a given, are subtracted
from the total number of particles strikirgg . However, very
little is known about how particles interact with a surface.

Reflecting particles are believed to undergo diffuse or spec-

tral reflection. Particles having a diffuse reflection off a sur-

dace come away from the surface isotropically and accli-

mated to the temperature of the wall. The angular

The redistribution of particles in energy, on the interior of distribution function that leads to uniform density for par-

the mesh, is done according to
F

Se

Fi= 17

whereF; is the fraction of particles placed in energy tn
andF; is given for the monoenergetit., by

0, |v|>AE;
Fi={ (Ei+1—Ea), [v|<AE; and v<AE; (18
(Exw—Ei_1), |v|<AE; and v>AE;,
wherev=(E;—E,,). For the BGKT,,, F; is
Fi=VEe B/faAE;, (19

whereE; is the center of the energy biR,, is as above, and
AE; is the width of the energy bii; . E,, is given by

ticles coming off a surface is

f(®)=cos0O, (22

where® is the angle between the outgoing particle’s direc-
tion and the normal to the surfaf22]. In addition, particles
undergoing a diffuse interaction with the wall are redistrib-
uted in energy according to EGL7), whereE,, in Eq. (18)

or (19) is the mean energy of the particles at the temperature
of the wall. When Eq(19) is used for the wall, an additional
factor of E; must be included to make it consistent with Eq.
(16). Spectrally reflected particles are perfectly reflected, i.e.,
the angle of incidence equals the angle of reflection. Particles
that are spectrally reflected do not undergo a change in en-
ergy after a collision with a surface. Spectrally reflected par-
ticles are placed in the outgoing ray associated with the angle
of reflection and are binned with the same energy the par-
ticles had prior to collision with the surface.
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D. Simulation accuracy and speed redistribution €.4) will be reduced if the maximum radius of

In the current implementation of this kinetic method,the_l_‘;]oafrsslv?e” is geguged.l i " | ¢ of oh
speed, accuracy, and memory usage are somewhat indepen- N IS a simulation with an element of phase

dent. In this section we give a qualitative discussion of the>Pace represented by the ordered 361,¢,E,2,0). As dis-

. : cussed earlier, the heat transport problem of Sec. Il is used in
numerical aspects of this method.

Memory usage is primarily tied to storage of particles Inthe verification of the TPM. In the results presented in the
der t y gt I P d I)':h distrib t'g f pt' j hfollowing section, the coarse mesh iX7X21, i.e., there
order to accurately model the distribution function, each, g gq\ e subdivisions, seven subdivisions, and 2z sub-

coarse mesh element of physical space must have a set §{jigjons, n addition there are[2x 7+2(7x 21)] distrib-
energy bins, and each energy bin must have a set of dirégging wall bins. For each coarse distributing bin there are 21

tional (®,®) ray bins. In addition, a full set of energy bins energy bins and 19 bins and 240 bins, bringing the total
as well as a partial set off(,®) bins is necessary for the umber of bins to

walls. Storing this information leads to the majority of the
storage overhead associated with the current form of theNp,s=(7X7X21)(21X 14X 24)+{2[7X7+2(7X21)]}
method.

The number of ray bins associated with the mesh does not X(21x14x24),
have much effect on the speed of the method. The overlap of

all the offset fine mesh elements with the propagating rays igvhich is 1.2~x 10" bins. If this computation was done
computed once at the beginning of the step and is used fatithout the rays, this number would be reduced to around
distribution from allc.4 andcy,q4 to the fine mesh elements 30000 bins. There are about 10000 fine mesh elements in
in order of closeness. The time associated with each step the current simulation. The simulation was carried out on a
primarily due to the number of fine and coarse mesh ele400 MHz Pentium Il, processor with 512 MB of RAan-
ments, because each coarse element will usually “hit” eacldom access memoryThe number ofz,E, ®, and® bins

fine element once, regardless of the number of rays enrepresents a lower limit to remove any mesh dependencies
ployed. In addition, the time it takes to compute the overlapvhen Eqs(15) and(16) were used as the collision operator.

is very small compared to the time it takes to loop over and The simulation is considered converged when the sum
distribute to all of the fine mesh elements from the coars@ver the mesh of the difference in the density of two con-
mesh elements. If the number of fine mesh elements goes fgcutive steps was less than 0.1%. The monoenergetic case
by a factor of 10, the time it takes per step also goes up b§xh|b|ted fast_er convergence than its BG_K counterpart. The
approximately a factor of 10. Increasing the number ofmonoenergetic model took around 2 min per step and the

coarse mesh elements has the same effect. long mean-free-path case converged in about eight steps,

Errors are introduced into the computation through thewhereas the short mean-free-path case converged in about 40

approximation to the fractional overlap in Ed.0). In addi- steps. _In the BGK model, a step of_the s_lmulatlon was
. . . . . ..~4 min and the long mean-free-path simulations converged
tion, errors are introduced with the assumptions that particles g : ;

. - . . . in about 30 steps while the short mean-free-path simulations
are uniformly distributed in a given ray, and that particles

having collided in a given coarse cell can be redistributecgj ok upwards of 80 steps to converge. To converge to 1%
g Y ccuracy took far less time, however.

from c.q of the coarse ceII.. Since the time it takes tq co.mpgte Both simulations are started by placing the particles uni-
the overlap of the offset fine mesh element to a distributing,my on the mesh. The particles are assumed isotropic and
ray is very small compared with the time it takes to distribute, e distributed according to E@17), with E,, set to the
particles, one effective way to improve the accuracy of theyyerage energy of the particles at the temperature of the cold
method is to generate better approximations than(EQ.  plate. This is a poor guess at the final distribution of the
Also, if one can assume a constant collision frequency oparticles. The long time to converge can be partially attrib-
mean free path, one can eliminate the propagating rays froited to the poor initial condition. The additional time re-
the method by using Eq21) to determine the number of quired for the BGK model to converge is related to the time
particles that should collide in a given fine mesh elemenit takes to heat the significant number of cold particles,
instead of using Eq(21) to determine the number of par- which are colder than the cold platadded everywhere to
ticles in each ray. However, in the event that the differentiathe simulation domain by the use of Ed.7) in initializing
cross section is well understood, propagating rays can offethe simulation.

an advantage over Eq21), in that we can exactly specify In all results presented, the density profiles of the TPM
the angular distribution of particles. The error in approxima-exhibited peaking in the corners of the simulation domain.
tion of the distribution fromc.y may be reduced either by Peaking can be reduced by increasing the number of wall
increasing the number of coarse mesh elements or by detetells, which decreases the error introduced by using an “on
mining an analytic model to compensate for the error in thehe fly” approximate overlap rule for the rays with the wall
offset. Increasing the number of coarse mesh cells, by dezells. Since the geometry is the same as seen by each ray that
creasing the maximum radius of a coarse cell, will increaséravels in the same direction, it is computationally feasible to
the accuracy by reducing the possible displacement a particlealculate overlaps accurately for each such ray. That infor-
undergoes when relaunched after a collision, i.e., the distanaeation is used a very large number of times, so the cost of
between where the particle actually collided and the point otomputing it is small compared to the computational load of
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the overall task. Such accurate calculations are done by di- Density vs Position
viding each surface of a cell into a large number of smaller \
surfaces. This subdivision of the facets increases the accu- iR 0‘\- Kn=0.0658

Kn=0.1359
Kn=0.1942

racy. However, as the radius of the ray increases, the error in
computing the fractional overlap, in E¢LO), decreases like

1/r2. At some point the increase in accuracy is not warranted,
since the errors obtained using small facets at small radii
have already limited the overall accuracy of the method.

—_

(=3

=}
T

Density, n/n,
g

When this point is reached, one can revert to using the entire 102

face in computing the fractional overlaps. The increased ac- 100l B - ‘

curacy greatly reduces peaking in the corners, froBm0% T 04 03 02 o1 0.0

to less than=1.0%. More accurate overlap rules are dis- Position, z/d, along z axis

cussed in5,6], but even this rule works quite well in the ) .

examples given here. FIG. 6. Density vs position for both the BGK and monoener-

Finite-difference-type approximations tend to under_ghetic coIIisionboperator. hDensity Iis normali;gd gsing thelldecr;sity at

specify some details of physical problems—and the specifiEhe centerno, between the two plates. Position is normalized using

cation of the surface we employ is an example of this. In the:]I e distance between the plates. The BGK model is represented by
. - ashed lines, while the monoenergetic model is represented with

corners, not only are adjacent source points closer togeth%”d lines.

than points on a flat surface, but there is some ambiguity

about the shape of the surface in the corner between thfer the heat flow between two parallel plates at various

points. If we imagine the corner between the source points agnudsen numbers. The first four sets of simulations of the

being filled with a single facet at 45° to the adjacent facesyerification process addressed the issue of the uniformity of

then the angular distribution leaving the corner would bethe density profile of neutral particles generated by the TPM

directed significantly more away from the corner than if weunder the following conditions:

use two facets at 90°. To allow for a more realistic corner (1) The temperature of the simulation domain is a single

shape, for the given resolution provided by the source pointsjalue, particles undergo isotropic collisions, and the Knud-

we have considered tilting the normals of the facets adjacerden number of the simulation region is assumed small.

to the corner slightly away from the corner. We chose a value (2) As in (1) except that the Knudsen number of the simu-

of 22.5° as a physically based average value. This “correclation region is assumed large.

tion” does reduce peaking in the corners, but it does not

appear to eliminate it. Deensity ws Position

The distributing node, of the coarse mesh needs to be 1.09 —— Kn=0.7582
close to the actual center of gravity of the coarse mesh ele- 1.07 ——— Kn=0.2994
ment. After a collision, particles are relaunched fragy. SIS s ] Kn=0.1942
For the uniform mesh described above, an offsetig, e U N Kn=0.1559
from the center of gravity, results in a preferred direction of g — Kn=0.0658
motion, i.e., particles that collide in a given coarse cell will g Lo1p
have an additional offset in their location corresponding to 2 099}
the offset inc.y. This additional offset resembles an im- 097}
posed drift velocity. This drift may result in particle distribu- ;

. : . o) 0.95L, . ; .
tions being skewed in the direction of the offset. On a truly 04 02 0.0 02 0.4
arbitrary mesh, constructed of triangular elements, offsets of (a) Position, z/d, along z axis
this nature will cancel each other out. Temperature vs Position
L8 B :
IV. RESULTS AND VERIFICATION 106
o 1.041-

In this section we discuss the results and verification of S 1.02
the TPM. We begin with an overview of the simulations that § 6. 3
were run for the verification process. Next, the results of the g ol Kn=0.7552
heat transport problem are presented and additional verifica- 2 ——— Hn-aogen
tion of the TPM is provided by a comparison of the current 3 09 o Eﬁ:g‘ggg
results with the existing experimental data and previous nu- 0,94z St Kne0.0658
merical work. 092zt

0.4 0.2 0.0 0.2 0.4

(b) Position, z/d, along z axis

A. Verification . -
FIG. 7. Density and temperature vs position for all Knudsen

Verification of the TPM consisted of five simulations, numbers using the BGK collision operat¢a) Density profile and
with the fifth being the comparison between the model andb) temperature vs position. In both plots, thexis value is nor-
the experimental data gathered by Teagan and Spr{ddér malized using the value at the midpoint between the plates.
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Density vs Position

N\,
1.04 % Kn=0,7582 N Kn=0.2994
\,\v\ 1.06 [
(=3 SN (=) \,\\
£1.03 £ © v§1\
52 o - 1.04 2R
£1.02 & O NN
3 V- TPM 8 - TPM 8
A 1.01 [{—- BGK-(nonlinear) A 1.02 === BGK-(nonlinear)
== Boltzmann == Boltzmann
1.00 O Exp. Data Ol 1.00 O Exp. Data ; Ol
-04 -03 -02 -0.1 0.0 -04 -03 -02 -0.1 0.0
( )Position, z/d, along z axis Position, z/d, along z axis
a
FIG. 8. Density vs position using
the BGK collision operator. Density is
1.08 [ normalized using the density at the cen-
N =():104?2 :| 1 nQ k- 2 X N120K
QV\\‘V\ LRl L 1.08 §) BETHSTY ter, ng, between the two plates. Position
=1.06 \ ;°1 06 \v}, is normalized using the distance be-
E: ov\ Eﬁ ) tween the plates. In addition, this figure
%‘1 04 _§1.04 includes the experimental data of
5 TN N g o Teagan and Springer as well as the nu-
A A1.02

.
o
s}

—= BGK-(nonlincar) —- BGK-(nonlinear) merical solutions generated by Ohwada

‘6‘ g°1l‘ga:‘“ Rv\_ O- Boltzmann \ for the nonlinear Boltzmann equation
OX: 32)3 TRy OJO 1.00 =(’)-w‘5—4p Dat:)3 = i O solver and the nonlinear BGK model.
-04 -03 -0.2 -0. ; -04 -03 -02 -0.1 0.0 (@ K,=0.7194, (b) K,=0.2994, (c)
Position, z/d, along z axis Position, z/d, along z axis n- - : n—* '

(c) y (d) = K,=0.1942, (d) K,=0.1395, and(e)

K,=0.0658.

o
=
S

N
<

N
1.10 &\\\'

Kn=0:0658

(=]
£1.08 o
#*1.06 R
2 .
51.04 s
() N
o I
Lo ool
1.00 (@) Exg. Data 93

-04 -03 -0.2 -0.1 0.0
( )Position, z/d, along z axis
e

(3) As in (2) with the additional requirement that particles achieved using the momentum-conserving collision operator.
are started at a cold temperature compared to the temperaturen the four cases presented above, the TPM generated the
of the walls. _ o expected solutions. The TPM was next applied to the heat

(4) As in (3) but the simulation includes momentum con- yransport problem discussed in Sec. II. The results are pre-

servation. _ S sented in the following section.
All of the tests were started with a point distribution of

particles, that is, all particles of the simulation were placed in
a single initial cell. The verification was performed on a
mesh similar to those of Fig. 2. In this section we discuss the results of the TPM, applied
The tests of uniformity that were done first provide ato the heat transport problem, and compare these results to
rather stringent test of this type of simulation. If the particlesexperiments and other simulation results. Figures 6—9 show
are not launched isotropically, or various other problems octhe TPM results. In addition, Fig. 8 includes the experimental
cur, the density of particles will not be uniform. The density results of Teagan and Springer and the simulation results of
was found to be uniform to quite a high accuracy, given theOhwada generated with the nonlinear Boltzmann equation
rather coarse mesh that was employed. solver and with the nonlinear BGK model. The nonlinear
In a second type of test, the thermalization of particlesBoltzmann equation solver solutions were generated using a
was examined by starting the particles at 160 K with thelarge integration table in combination with standard finite-
walls at 260 K. Within four steps the distribution was within difference methods in order to determine the solution to the
5% of the wall temperature. mixed integro-differential equation. The nonlinear BGK so-
The final preliminary test looked into the use of the lutions employed finite-difference methods to solve the BGK
momentum-conserving collision operator. Isotropy was agairmodel. Figure 9 includes the experimental results of Teagan

B. Results

056708-10



THREE-DIMENSIONAL SOLUTIONS OF THE . .. PHYSICAL REVIEW E 65 056708

and Springer and the results generated with the nonlinear Heat Flow vs Inverse Knudsen Number

Boltzmann equation solver but does not include the nonlin-
ear BGK solutions, because the results of the nonlinear BGK 1.0 3 i;i}[Data
model did not significantly differ from those of the nonlinear OE - Discrete Ordinate-BGK
Boltzmann equation solver. However, Fig. 9 does include the S 08| ~0- Boltzmann
results of Huang and Hwang, generated using the method of < 0.6l
discrete ordinates applied to the BGK model. o
The plots of density vs positiofFigs. 6 and Bessentially ET: 0.4}
demonstrate that the simulations we have chosen to compare .
all agree with experiment and with each other at the lowest T 0.2f
Knudsen numbers. This is to be expected, since the differ- 0 2 4 6 8 1'0 1'2 1'4 1'6
ences in collision operators become less significant when the Inverse Knudsen Number, 1 /Kn

collisions are very frequent—all the models give rise to a
Maxwellian distribution. As the Knudsen number increases, F|G. 9. Heat flux vs inverse Knudsen number using the BGK
there is some divergence between models and experimerollision operator. Heat flux has been normalized using the free
The models continue to agree with each other well, providednolecular flow valueQry, . Also included are the experimental
they employ the same collision operator. A collision operatordata of Teagan and Springer, the numerical solutions generated by
that results in a full Maxwellian distribution for the scattered Ohwada for the nonlinear Boltzmann equation solver, and the nu-
particles actually does less well in reproducing experimenf’?erical solu_tion of Hua_ng and Hwang generated by the method of
than some other forms of the collision operator. This is trugliScréte ordinates applied to the BGK transport model.

both for the two versions of the TPM shown hécemparing
Figs. 6 and 8as well as for different simulation schemes. It

is interesting to note that the TPM using the monoenergetic The transport model presented has extended the transition
collision operator encompasses the solutions generated usipgobability matrix methodmethod of propagatoygo arbi-

the BGK model, underscoring the sensitivity of the solutiontrary meshes in three spatial dimensions, allowing
to the collision operator employed. We emphasize that thenomentum-conserving collisions and keeping memory re-
present simulation is fully 3D in space and velocity, whereagjuirements modest. The simulation was successfully applied
those we compare to are 1D in space. to the problem of heat transfer between two parallel plates at

Figure 7 shows density and temperature versus positiorflifferent temperatures with a rare gas between them. The
for different Knudsen numbers. The temperature does ndisults of the kinetic model were in good agreement with the
reach that of the plates, as we go to a long mean-free-pat§Xxperimental data of Teagan and Sprinft]. Issues sur-
This is to be expected—at infinite mean-free-path the temrounding generalizing the method as well as reducing the
perature would not vary with position. The density variationmemory needs were discussed. Future work will involve the
shows the inverse trengh & nkgT holds to reasonable accu- development of a convective scheme propagator for comput-
racy), so the density varies |eSS, with position, at |Ong meanjng prObab”itieS, the introduction of convex hU"S, more ac-
free_path_ In addition, F|g(a) shows an asymmetry in the curate methods for determining the fractional 0ver|ap of fine
density profile that was not seen in the experiment but hagesh elements with propagating rays, and an investigation of
been observed in the solutions generated using the nonlinele advantages and tradeoffs of using a rayless method. In
Boltzmann equation solver. These asymmetries are larger iddition, the application of this method to heat transfer and
the solutions generated with the TPM than those observed BYows in MEMS will be investigated. In summary, the
Ohwada. The increase may be due to the particular collisiofethod performed very well in describing the behavior of a
operator (and its implementation Ohwada went to some rare gas between two parallel plates.
lengths to resolve discrepancies between the experimental
data and the theoretical solutions, and being unable to do so, ACKNOWLEDGMENT
he argued that the experimental results may be incoriégt

Figure 9 shows the heat flux, normalized to the infinite The authors would like to express our sincere thanks to
mean-free-path value, and also expressed normalized to tfiofessor lain Boyd of the Aerospace Department at the Uni-
density of particles. While this point is not stated clearly inVversity of Michigan for his input regarding high Knudsen
the various papers, some plot the total heat flux and someumber Couette flows and for pointing out existing experi-
plot the heat flux per particle. The normalization to themental data in this area.
infinite-\ case makes the comparison less clear, but the
agreement is gene_rally gooo_i. An imprqved collision operator APPENDIX: RADIAL COUNTING ALGORITHM
might rectify the discrepancies that arise.

Overall, the TPM appears to perform well in this simple  An efficient radial counting algorithm has been developed
test case, giving support to the contention that it will befor the determination of the integer offsets, in order of in-
appropriate in complex 3D geometries. A more accurate colereasing radius. Since the ordered tripigj k) lies on the
lision operator would appear to be the remedy for the modestame radius as¥i,*j,*k), we only need to generate the
discrepancies that are observed. ordered triples in the first quadrant. A further simplifying

V. CONCLUDING REMARKS
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Letn=(i',j’,0), wherei’,j"€{1,2,3 ...} andi'>j".
On the first iteration, sdt=(0,0,0).
Q) If I=m,
(@ m=(i+1,0,0).
(b) Appendm to L.
2) If I=n,
@ n=(i',j’+1,0).
(b) Appendn to L.
(3) Incrementl using one of the following rules.
(@ If i=j=k, thenl=(i+1,j, k).
(b) If i>j=k, thenl=(i, j+1,k).

Y (c) If i>j>k, thenl=(i, j, k+1).
(4) Determineo of L.
FIG. 10. A 2D visualization of the slice of the first quadrant for ~ (5) If [I|=|o|, then
which the counting algorithm generates ordered triples in order of (a) Determine ifl L.
increasing radiusié&j=0) for 2D. (b) If  eL, then removd from L.
(6) If [I|>]o], then
observation is that the ordered triples given by (a) Determine ifl e L.
A (b) If I notinL, then placd in L.
(|,],k)€)(:{(|,],k)| IBJZKEO} (Al) (C) Let |=o0.

. ) .~ A At the end of an iteration of the counting algorithimis
are unique and permutations af,{,k) generate the ordered the next smallest integer offset of the setConsider the two
triples of the first quadrant. Therefore, generation of the oryrgered triples (7,1,0) and (5,5,0) with the same radius
dered triples by increasing the radius can be_ reduced to the J50. Although the counting algorithm will not store these
problem of generating the elements of the gah order of 1o elements inL at the same time, they demonstrate the
increasing radius. _ potential of having more than one element in the ygetith

The algorithm that generates the ordered triples ofyset the same radius. If there is more than one elementivith
by increasing the radius can be describedea2D visualiza-  the same radius, they are stored consecutivelly so that

tion can be seen in Fig. 1@ollows. they may be accessed as a group. After the next element/
Let L be a set of ordered tripldnitially empty), L={}.  elements of the se has been determined, the unique per-
Let o be an ordered triple such that mutations of the element/elements are generated. These per-
o=min, {p| peL and r =|P_|}_- mutations are all ordered triples in the first quadrant with the
Let | be an ordered tripld,= (i, j,k), where same radius. Next, the ordered triples for the remaining
I,) ,k€j0,172 co b _ seven quadrants are generated, giving a complete list of the
Let m=(i,0,0), wherei €{1,2,3 .. .}. ordered triples at the next largest radius.
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