PHYSICAL REVIEW E, VOLUME 65, 056706
Optimized Verlet-like algorithms for molecular dynamics simulations
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Explicit velocity- and position-Verlet-like algorithms of the second order are proposed to integrate the
equations of motion in many-body systems. The algorithms are derived on the basis of an extended decom-
position scheme at the presence of a free parameter. The nonzero value for this parameter is obtained by
reducing the influence of truncated terms to a minimum. As a result, the proposed algorithms appear to be more
efficient than the original Verlet versions that correspond to a particular case when the introduced parameter is
equal to zero. Like the original versions, the extended counterparts are symplectic and time reversible, but lead
to an improved accuracy in the generated solutions at the same overall computational costs. The advantages of
the optimized algorithms are demonstrated in molecular dynamics simulations of a Lennard-Jones fluid.
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The method of molecular dynami¢MD) is a powerful dp
tool for the prediction and study of various phenomena in ar L, 1)

physics, chemistry, and biology. In MD simulations we deal
with the necessity to solve numerically the equations of mOywhere p={r, v;} denotes the full seti€1,2,...N) of

tion for a many-body system composed of interacting parphase variables with andv; being the position and velocity,
ticles. The most of traditional algorithms, such as Rungerespectively, of théth particle,L is the Liouville operator,
Kutta and predictor-corrector schemgs,2], are usually

unsuitable for integration of the resulting differential equa- N
tions, because the solutions obtained exhibit a high instabil- L=2
ity on MD scales of timd3]. =1
A variety of alternative algorithms were proposed and
implemented over the yeafd—8]. These include the well-
known velocity-Verlet\VV) integrator] 7]. This second-order

integrator is employed in the great majority of MD simula- has been split in Eq2) into the free-motiorA=v- a/4r and
tions due to its simplicity and exceptional stability. More- potential B=f/m-g/ov parts with v={v,}, r={r,}, and
over, the VV algorithm is symplectic, time reversible, ande v v

able to reach a high level of accuracy with minimal number
of force evaluations per time st¢p,8]. In addition, the VV

AL L IS 2
Vi.é’_ri E&_\hz ] ()

fi= —E}\‘(j#)(p’(rij)l’ij Irj; designates the force acting on the
particles of mass each, due to the interactions described by
the potentialp(r;;), andrjj=r;—r;. The Liouville operator

i .
The formal solution of Eq(1) is

approach can be modified to integrate not only translational p(h)=et"p(0)=eA+B)Pp(0), 3
motion in atomic systems, but also simulate more compli-
cated molecular and spin liquid8-12. whereh denotes the time step. Of course, the exponential

The question of how to improve the efficiency of integra- propagatore'" cannot be evaluated exactly at ahysolu-
tion for atomic systems with long-range interactions has als@ions in quadratures are possible only fde=2 that is not
been considered. As a result, so-called multiple time scaleelevant for our consideration of many-body systems when
integrators have been introducét3,14. In these integra- N>1). However, at small enough values bf the total
tors, the additional slow subdynamics is treated in a specifipropagator allows to be decompodd®—1g as
way using the weakness of the long-range forces. The faster
motion, caused by the interactions at short interparticle dis-
tances, remains to be integrated with the help of usual basic eArBIn= Hl e"%heBPN+ O (hK 1), (4)
algorithms, such as VV integrator, for instance. P

In_the present paper we show_that even vyi_thin the _baSiQ\/here the coefficienta, andb,, are chosen in such a way to
consideration of translational motigwhen additional split- provide the highest possible value fié&1 at a given inte-
f[ing of interaction potentials into mL_JItipIe scale componentsger numberP=1. Then, starting from an initial configura-
IS no '°”gef allowej] the VV algorithm pre_sents, In fact,_ tion p(0), the evolution of the system can be investigated
only a part'|cular case among a whole famlly_of SympleCt'cduring arbitrary times by repeating the single-step propaga-
reversible integrators of the second order. This case appeafs | (1) = (- p(0)=(eA+BMN p(0), i.e
to be not so optimal, and more efficient second-order algo- ~ T
rithms are possible. P

The equations of motion for a classical system consisting p(t)=< H eAaphgBbyh

p=1

of N particles can be cast in the following compact form:

P

|
p(0)=3(1)p(0), ®
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wherel =t/h is the total number of steps and the truncationoptimization with respect to the overall number of force re-

termsO(hX*1), appearing in Eq(4), have been neglected. calculations(the most time-consuming part of MD simula-
The main advantage of decompositi@h is that the ex- tions), which are necessary to perform during a fixed obser-

ponential subpropagatoes'” and e®” are analytically inte- vation time in order to achieve a given precision in solutions.

grable. Indeed, It can be seen readily that the Verlet algorithnis=(2)
require only one P—1) force evaluation per time step
erMp=e" ! r vi={r+7v,v}, whereas the fourth- and higher-order schenfes4) need
(6)  in three or more such evaluations. Let us consider now the
eBrp=&'™ 7N vi={r v+ rf/m}, intermediate casé®=3 that leads to an extended time-

reversible propagation in the form
which represent simple shifts of positions and velocities, re-
spectively(with 7 being equal taayh or byh). In addition, e(ATBIN = gAthgBNZA(1=20)hgBN2eAh 1 CH3+ O(h%)
the generated trajectof®) behaves symplecticallflike ex- (8)
act solutiong because such separate shifts do not change the
volume in phase space. The time reversibilgy—1t)p(t) following from Eq. (4) at a;=a3z=¢, a,=1-2¢&, b;=b,

=p(0) of solutions[following from the propertyS™(t) =1/2, andb;=0. Again, the propagation witA«~ B is also
=S(—t) of evolution operatofscan also be obtained by acceptable(then a;=0, b;=b;=¢&, b,=1-2¢, and a,
imposing additional conditions on the coefficierdts and  =a3;=1/2). Formula(8) represents a whole family of sym-

b,. Namely,a;=0, a,,1=ap_p+1, andb,=bp_,,4, Or  plectic time-reversible integrators of the second order in
ap,=ap_p+1, andb,=bp_, at bp=0. In other words, the which a particular member can be extracted by choosing a
subpropagatorg”” and e should enter symmetrically in value for free parametef. For £=0, Eq.(8) reduces to the
the decompositions. Then the even-order truncation termgV [see Eq.(7)] or PV (at A—B) algorithm. The extended
O(h?%) will disappear automatically in Eq4) at k<K/2.  (when £¢#0) propagation requires already two, instead of
For this reason, the ordé¢ of reversible algorithms may one, force recalculation per time step. For this reason, we can
accept only even numbers. The cancellation of odd-ordecome to an incorrect conclusion that such a propagation has
termsO(h?~1) will be provided by satisfying a set of basic no advantage over the Verlet algorithms.

conditions for a, and b,. For example, the condition In order to prove that the above conclusion is indeed in-
Eszlaszg’:lbpzl is required to cancel the first-order correct, let us analyze in more detail the influence of trunca-
truncation uncertainties. tion errorsCh® on the result. Expanding both the sides of Eq.

The method just highlighted is quite general to build nu-(8) into Taylor’s series with respect tg one finds
merical integrators of arbitrary orders. In particular, the

second-order =2) VV algorithm C=a(H[A[B,A]l+B(&IB,[B,A]]L 9
e(A+B)h_ gBN2gANGBN2 | (5 3) (7 where

is immediately reproduced from Eq¢4) at P=2 and a; 1-6&+6¢2 1-6&

=0, b;=b,=1/2, a,=1. The case when the operatoks ad)=——7 1 BE=— (10

and B are replaced by each otheA{>B) is also possible,
and we come to the so-called position-Vei(ev) algorithm
[13], eATBIN=gANZgBheANZ L (h3) | corresponding to the
choicea;=a,=1/2,b,;=1, andb,=0. Algorithms of higher
orders can also be derived in a similar way. For instance, th
fourth-order K=4) algorithm by Forest and RutfL6] is
obtained from Eq(4) at P=4, whereas sixth-ordeiK(= 6) y(&)=\a?(&)+p*(&). (11
schemes are derivabJ&5] beginning fromP=8. The high- L 3 o
order schemes involve, however, too large number of forcd €N the norm of local uncertaintieSph™ appearing in
recalculations, and appear to be less efficient in most of MPNase trajectory during a single-step propagation given by
applications than second-order algorithms. Eqs.gS) and(8) can be expressed in terms pfandh asg
Despite the fact that the method of construction of time-= Y- During a whole integration over a fixed time interval
reversible integrators using symplectic decompositions is nott_t?e total numbet of such single steps is proportional to
new, some important cases have never been considered afid™ [s€€ EA(5)]. As a result, the local third-order uncertain-
have been completely ignored in the literature. This coniies will accumulate step by §tlep_ leading tath to the
cerns, in particular, the following question. Are the aboveSecond-order global errois=gh™~, i.e.,
Verlet algorithms optimal in view of the time efficiency
among all possible basi6i.e., with single splitting of the [(&h)=y(&)h?. (12)
Liouville operatoj decomposition integrators of the second
order? We can say only that the Verlet algorithms do mini- Extended propagatio(8) can now be optimized with re-
mize the number of force evaluations per time step. Howspect to¢ by minimizing the functiony(&). As can be veri-
ever, as will be shown below, this does not guarantee th&ed readily, the minimum of/(¢§) is achieved at= ¢, where

and[,] denotes the commutator of two operators. The norm
of C with respect to the third-order commutat¢ss,[ B,A]]
gnd[B,[B,A]] is
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1 (2.326+36) 1 where the parametef should take its optimal valug [see
=5- 7 + i Eqg. (13)], andr, ry, v;, andyv,, are the auxiliary quantities
6(2\/5& 36) denoting positions and velocities of all particles in inter-
~0.1931833275037836 (13 Mmediate stages. The algorithms are simple, require only

slight modification with respect to the original Verlet ver-
and consistsy({)~0.00855. On the other hand, the value sions, and can be easily implemented in program codes.
v(0) of y corresponding to the Verlet algorithnfahen & It is worth pointing out that the order of local errors
=0) is equal to y(0)~0.0932, i.e. it increases in O(h®)=Cph3=C{r,v}h® remains three in both position
v(0)/y({)=~11 times. Remembering that the extendedr(t+h) and velocityv(t+h) for both the optimized algo-
propagation requires two force evaluation per time $tepp  rithms (15) and (16) [because the functions(¢) and B(€)
should be performed with double step size\®ith respectto  cannot tend to zero simultaneously at &)y Note also that
that of the Verlet algorithms, in order to provide the samethe minimization of third-order uncertainti€h® in Eq. (8)
number of total force recalculations during the integrationautomatically minimizes the fourth-order truncation terms
over the same time interval. Therefore, the extended Propay(h4) that are connected Witlc by the relationO(h?)
gation will be more efficient if the _follqwing inequality =1[C(A+B)+(A+B)C]h*+0(h%). Further optimization
['(§,2h)<I'(¢=0,h) takes place. Taking into account EQ. 5 giso possible in specific cases. For instance, some MD
(12), such an inequality can be rewritten a€0)/v(£)>4,  gppjications are aimed exclusively at the investigation of
and thus it is fulfilled completely in the optimization regime. gt ,ctural properties of the system. Then the accuracy of de-

In particular, termining particle positions will play a more important role
I(¢.2h) tha}n that of veIocitigs'. In'such a si'tuation, it is quite qatural

— 2" ~0.367, (14) toincrease the precision in evaluationr¢f+ h) by reducing

I'({=0,) the position partCrh3=[a(£)C,+ B(£)C,]rh® of third-

N - . . . order truncation errors to zero, whe@® =[A,[B,A]] and
m@catmg that.the optlmlzeq propagation, being applied everr__[B,[B,A]] [see Eq(9)]. This reduction can be realized,
with double sizes of the time step, will reduce the globalyecaysgas can be shown using the explicit expressiongyfor

errors 'approximately in three times. . , and B) the operatorC, vanishes when acting on position,
In view of Egs.(3), (6), and(8), more explicit expressions i.e., C,r=0, whereasC,r#0 (as well asC;v#0 and C,v

f_or the single-st.ep. propaga'Fiop of posit_ion and yelocity from., 0). The influence ofC,r can be reduced to zero also by
time t to t+ h within the optimized VV-like algorithm are: choosing suché at which a(£)=0. Among the two roots

(17 1//3)/2 of equationa(&) =0, the preference should be
given to the first of them, (% 1/\/3)/2, because it leads to a
1 smaller value fot 3(£)|. Then replacing by (1—1/y/3)/2 in
vi=v(t)+ —=f(r)h/2, Eq. (15), we come to a positionally optimized VV-like algo-
m rithm in which the positions will be generated up to the
fourth-order truncation uncertainti€(h?).
r=r+v(l-28&h, (15 Another useful application of the positionally optimized
algorithm is the case of weakly interacting systems, where
the Liouville operator can be presented in the fotrs A
+€eB with e<1. Then the operatdB,[B,A]]=C,, which
forms the third-order errors in velocity, will be proportional
r(t+h)=r,+v(t+h)éh, to €% and, thus, can be neglected. For the same reason, the
corresponding fourth-order uncertaintiggC,(A+ B)+ (A
whereas the optimized PV-like algoritiwhenA—B in Eq.  +B)C,)]h* will also behave likee?. In such a case, the
(8)] reads positionally optimized algorithm can be considered as a
quasi-fourth-order integrator that, contrary to the usual

ri=r(t)+v(t)éh,

1
V(t+h):V|+ af(r“)h/Z,

1 fourth-order schemes, will require only twimstead of threg
vi=v(t)+ —f(r(t)éh, force evaluations per time step.
In order to obtain a positionally optimized algorithm
F=r(t)+vh/2, within the PV-like integration(16), it is necessary simply to

replace¢ by the root 1/6 of equatio(£¢) =0. Note that the

1 values 1/6-0.167 and (+1/,/3)/2~0.211 are close enough
vy =Vv,+ —=f(r)(1—2¢)h, (16)  to the optimal solutior§13) that minimizes the total position-

m velocity uncertainties. Nevertheless, the positionally opti-
mized algorithms are not recommended to be used in general
case when both the position and velocity must be evaluated
with a maximal accuracy. In other words, in such partially
optimized algorithms the increased precision in position
evaluation is achieved at the expense of decreasing

r(t+ h):r|+V||h/2,
1
v(t+h)=v,+ Ef(r(t+ h))éh,
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FIG. 1. The total energy fluctuations obtained in the simulations  0.0020 3 0.0003 py...|8
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for different values of free parametérat four reduced time steps,
h* =0.01, 0.005, 0.0025, and 0.001, using the Mvbset(a)] and
PV [subset(b)] -like integration[Egs.(15) and(16), respectively.
The simulation results are presented by circles connected by th¢ 0.0005
solid curves. The functior(¢) [see Eq(11)] is plotted in both the 0.0000

subsets by the dashed curve. 0 5;;’;; 10000 0 5&);: 10000
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accuracy in determining the velocities. Indeeg(0)/ FIG. 2. The total energy fluctuations as functions of the length
¥(1/6)=y(0)/|a(1/6) ~7  and , 7(0)/[(1-113)/2] of the simulations performed using the optimized \@6lid curve
Ey(O)/|,8[(l—l/J§)/2]|~§ that is .Iess than the factor marked as OVYyand PV(dashed curve, OPMalgorithms, as well
¥(0)/y(£)~11 corresponding to optimal valua3). as the original VV(solid curve, V\j and PV (dashed curve, PV
Our theoretical predictions were verified by testing theintegrators. The results corresponding to different values of the time
VV- and PV-like algorithms in MD simulations of a step, namelyh*=0.01 and 0.005, 0.005 and 0.0025, 0.0025 and
Lennard-Joned.J) fluid. We considered a system composed0.00125, as well as 0.001 and 0.0005 are presented in sulsets
of N=256 particles interacting through the LJ potential (b), (c), and(d), respectively.
®(r)=4u[(a/r)¥?—(o/r)®] in a basic cubic box of volume
V=L?2 using periodic boundary conditions. The LJ potentia
was truncated at.= L /2~ 3.360- and shifted to be zero at the

jnormI'(¢,h) of global errorgsee Eq.(12)], and the coeffi-
cient of this proportionality almost does not dependécand
. . . . o . h. In addition, at each step size considered the energy fluc-
truncation point to avoid the force smgule}rltles, |.¢>.(_r) tuations decrease at the minimum more than in ten times
=®(r)=®(ro atr<r;ande(r) =0 otherwise. The Simu- i respect to those at=0, that is in agreement with our
lations were carried out in a microcanonical ensemble at % dicted val 0)/ ~11

duced density afi* — (N/V) o°—0.845 and a reduced tem- ' caicted valuey(0)/y(£)=11. - -
reduced density =(N/V)0°=0.845 and a reduced tem- * g regylt for the total energy fluctuations as functions of
perature ofT* =kgT/u=1.7. The equations of motion were the |ength of the simulations corresponding to the optimized
integrated with the help of Eqg15) and (16) in which the  (at ¢=¢) Vv- and PV-like algorithms is presented in Fig. 2
parameteg, being constant within each run, varied from one at the same set of time steps. These functions are plotted by
run to another. All the runs started from an identical well curves marked as OVV and OPV, respectively. For the pur-
equilibrated initial configuratiop(0), andfurther continued pose of comparison, the functions corresponding to the origi-
[=10000 time steps. The precision of generated solutionsal VV and PV integrators are also drawn themirves
was measured in terms of the relative total energy flucmarked as VV and P)/ Note that for the original integrators,
tuations €= ((E—(E))2)1’2/|<E>|, where E=%E{\‘=1mvi2 the time step within each subset. was chosen tq be always
Note that in microcanonical ensembles the total energy is agg:gﬂlziorf;%isﬂé Eﬁep;%\/r'ndee ;Bge?ﬁ;nt% :l&mrfngv%ce re-
integral of motion,E(t)=E(0), and theabove fluctuations ™ '
should be equal to zero if the equations of motion are solve 0.005, 0.0025, 0.00125, and 0.000ee subset&), (b),

exactly. So that in approximate MD integration, smaller val-©) and(d), respectively. Note also that within the original
. ; . Verlet algorithms, the third- and higher-orders truncation un-
ues of & will correspond to a more precise evaluation of

h . certainties become too big at step siz&s>0.005. In par-
phase trajectory. . . . . . ticular, then the ratio of the total energy fluctuations to the
The total energy fluctuations obtained in the simulations, ey ations in potential energithe standard ratio for esti-
at the end of the runs for fo&ﬁxgdl)/glthm each rundimen-  maiing the precision of the calculatiorsppears to be more
sionless time step#* =h(u/mo)~*=0.01, 0.005, 0.0025, than a few percent. For this reason, such large step sizes
and 0.001, are shown in Fig. 1 as depending on free param=nnot be used in precise MD simulations and, thus, are not
eter§. The subsetta) and(b) of this figure correspond to the considered in the present study.
VV- and PV-like integration, respectively. As can be seen, all  As we see from Fig. 2, both the origin&V and PV) and
the dependencieS(&,h) have one minimum that locates at optimized(OVV and OPVj algorithms exhibit very good sta-
the same point~0.19 independently on the sizeof the  bility properties (the excellent stability can be explained
time step. This point coincides completely with the minimum([3,8] by the symplecticity and time reversibility of the pro-
at{ [Eq. (13)] of function y(£) [Eq. (11)] that is included in  duced solutions No systematic deviations in the total en-
Fig. 1 as well(dashed curves in the subset§loreover, the ergy fluctuations can be observed for all the integrators. In-
energy fluctuation€(£,h) appear to be proportional to the stead, in each of the cases the amplitude of these deviations
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tends to its own value that does not increase with furthesame overall computational efforts. As has been demon-
increasing the length of the simulations. However, this valuestrated in a particular case of microcanonical MD simula-
appears to be significantly larger for the original versions VVVtions of a LJ fluid, the proposed algorithms allow one to
and PV. On the other hand, using the optimized OVV andeduce in several times the unphysical fluctuations of the
OPV algorithms even with double sizes of the time step altotal energy.
lows us to decrease the unphysical energy fluctuations ap- It has been shown rigorously within a consequent theoret-
proximately in factor of 3. This is in an excellent accord with ical approach that the proposed algorithms with respect to
our theoretical predictiol4). Note also that the OPV algo- their time efficiency should be considered as optimal among
rithm is slightly better in energy conservation than its OVV all decomposition second-order integrators at single splitting
version(whereas the VV integrator is better with respect toof the Liouville operator. The optimized algorithms can be
the PV counterpart Furthermore, in view of the structure of adapted to multiple scale integratiat the presence of long-
Egs. (15 and (16), the OPV algorithm is more convenient range interactions when the potential part of the Liouville
when averaging macroscopic quantities. In particular, themperator is decomposed additionalgnd extended to many-
the interparticle potentials can be calculated at the end ofomponent systems with orientational degrees of freedom.
time steps simultaneously with the interparticle forces withinMoreover, the presented decompositi@n of noncommuta-
the same loop, increasing the time efficiency of the computive operators is applicable for quantum Monte Carlo simu-
tations. lations[18] (because all the time coefficients at the exponen-
In conclusion, we point out that advanced second-ordetial propagators remain positive in the optimized regime
velocity- and position-Verlet-like algorithms have been pro-These and other questions will be considered in further in-
posed to improve the efficiency in MD simulations of clas- vestigations.
sical systems. The algorithms are expli¢i¢., do not require
any iteration, simple in implementation, and produce stable Part of this work was supported by the Fonds zur
solutions that(like exact phase trajectorieare symplectic Forderung der wissenschaftlichen Forschung under Project
and time reversible. The main advantage of the introducetlo. P15247-TPH. I.M. and I.O. thank the Fundamental Re-
algorithms with respect to the widely used Verlet integratorssearches State Fund of the Ministry of Education and Sci-
is the possibility to generate more precise trajectories at thence of Ukraine for support under Project No. 02.07/00303.
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