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Lattice Boltzmann method for viscoelastic fluids
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A lattice Boltzmann model for viscoelastic flow simulation is proposed. Elastic effects are taken into account
within the framework of a Maxwell model. To test the approach, we estimate the transverse velocity autocor-
relation function for a freely evolving system, and find clear manifestations of shear at large frequencies. We
then characterize boundary-driven shear waves, and the resonant enhancement of shear oscillations in a peri-
odically driven fluid confined within a capillary. The measured shear-wave dispersion relation is compared to
that obtained from the Navier-Stokes equation with a Maxwell viscoelastic term, and good agreement is
obtained.
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Although only slightly more than a decade old, the latticewhere p=3°_,f;, and L]Ezf:lfiéi are the equilibrium
Boltzmann method1-4] has already gained the status of a
versatile simulation tool for homogeneous and heteroge
neous flows in various, often very complex, geometries. |

;[/ri"sigglges;ic\xe gaerliﬁlzgr;[her;ne(;[rr:odothézﬁLu?:xtr;ﬁ i(ejfsfecézro quations give rise to the Navier-Stokes equation with the
Y, broperty P ' correct convective term.

example, many polymeric fluids are viscous on long-time The Maxwell model for viscoelastic medjd] links the

scales, but elastic on short-time scales. The characteristiq : | S
. ; . elastic part of the stress tenddf;' to the rate of strain via a
time, or the spectrum of such times, separating these twi J

regimes is determined by intramolecular interactions in th \hear equation  with  exponentially  decaying  elastic

density and velocity at each lattice site, respectively, én,d
i=1---6 are the lattice unit vectors. Performing the
hapman-Enskog expansion, one can slidw] that these

fluid. If the molecules do not have time to “get out of the memory

way” on the time scale of a process, they react rigidly, like a aIre! o v

solid. Viscoelasticity on physically relevant time scales is —4 :_Hie'l_l—/"“(_l 1, 3
common to fluids made up of complex molecules. Hence, its Jt : aXj  9X;

inclusion makes the range of application of the lattice Bolt-Where is an elastic coefficient andis a memory time. As
zmann method wider. A modification of the standard lattice K y i

Bhatnagar-Gross-KrookBGK) model [3,5] has been sug- the .six-velocity BGK modgl adequatgly reprodugei the
gested in Ref[6], which permits shear wave propagation, anNawer—Stokes_equatl_on for |ncompreSS|t_>Ie flu(de_., _V-v
intrinsic feature of viscoelastic fluids. However, it does not=0), we consider this case. Then the viscoelasticity of the
include memory of accumulated shear strain, which is a necluid can be taken into account by adding the Maxwell elastic
essary and natural feature of viscoelasticity. To address thistress as a body forde,(r,t),

we propose a more general approach, based on a physically
transparent Maxwell model of viscoelasticity], which ex-
hibits viscoelastic properties and accounts for accumulated
stress via an exponentially decaying memory function.

For simplicity, consider a standard six-velocity BGK within the Navier-Stokes equation. In terms of the Chapman-
model on a two-dimensional hexagonal lattice. GeneralizaEnskog expansio[8,4] this elastic term is of the same order
tions to more sophisticated lattice Boltzmann schemes ares the standard viscous term. Hence, to reproduce the elastic
straightforward. The evolution equations for gh channel term of Eg. (4) in the corresponding continuous Navier-
(corresponding to one of the six directions for velogity-  Stokes equation, we must add its lattice equivalent to the
volve the occupation numbéy [3] relaxation term in the lattice Boltzmann equations Eg.

> - t ’ - >
Fel(r,t)=§f_ dt’ e~ Ty (F ¢y, 4)

f(F+G 1) =f(FO+ MR- 40N (D) R+ Gt D =D FA(EY

- 1. -
. | . —fPr D} +5[Fa(f)-Cl. (6
where\ is a relaxation parameter related to viscogity-4],

and the equilibrium occupation numbeis' are . ) ) ) ) )
Here,F, is calculated as in Ed4), but with discretized time

fEQ=g{1+2éi.O+4[(éi-0)2—§ 21, 2) lfel(F,t+1)=ﬁel(F,t)[l—1/r]+AO(F,t)§, (6)
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FIG. 1. Sketch of the Fourier transform of the average of the FIG. 2. Sketch of the Fourier transform of the transverse veloc-
transverse velocity autocorrelation functi®y(k, ,w) showing the ity autocorrelation functionS;(k, ,w) with no viscoelasticity. Note
effect of viscoelasticity. Note the two branches corresponding tadhe absence of shear waves.
shear waves.

Navier-Stokes equation with Maxwell elastic term for trans-
where A is the discrete Laplace operator for the hexagonaverse velocity of incompressible fluid is
lattice 5 t
, s a—'t’=vv2v+§f dve Iy, (9
AG(F,t)=§_§) U(r+C,,H—-U0(r,b]. 7)
- Letting v (Xx,t) =vexp(—iwt)expkx), and discarding expo-
nentially decaying terms, gives
Equations(5)—(7) formally define our model. Thus, to

include the Maxwell viscoelastic effects into the standard ) i+wT

lattice Boltzmann method, one need only add a local vector K :“’m- (10)
field Eq. (6) to the standard BGK relaxation term E(),

which is updated each time step for every lattice Eite On separating the real and imaginary partkoRe(k) and

To demonstrate viscoelasticity in the model, we first esti-Im(k), we have
mate the Fourier transform of the transverse velocity auto-
correlation functionSTE<|ny(kX,w)|2), where the angular K= \/ ®
brackets denote an average, and B 2[(p+ )2+ (vor)?]

X{\/,u,w7'+ \/(er)2+[v(1+ 0’7+ u)?

L/2 L T
y(kx,an——T 2 2 2 Uylxy e et
y=1t=1

(8) +i\/—,uw7'+ \/(,LL(OT)2+[V(1+(1)2’7'2)+,U,]2}.

(11
Note thatk,=2zn/L, n=—L/2,... L/2, ando=27m/T,
wherem=1, ... T. Here the sum o corresponds to aver- We will consider propagating shear waves with small dis-

agingU,(k,, ) over they coordinate. We use the following SiPation, so that the ratio
parameters in our simulation: relaxation parameket - — P
—1.5 [which corresponds to kinematic viscosity=1/4 Re(k) _ MoTt V(o) +[r(1+ 0’ +pu] (12)
(—1/\—1/2)~0.042], elastic coefficienjx=0.3, memory Im(k) 1+ (wr)?]+pu
time 7=10, lattice of 256256 sites, maximum timer
=256, and random initial occupation numbers correspondingan be appreciable. Note that Rg{(Im(k) is the dimension-
to average density per sige=1. The simulation results, av- less length of the elastic wave envelope. Naively, one can set
eraged over 100 initial configurations, are presented in Figsvw?7<pu, and choose a sufficiently large value @f to
1 and 2 for the lattice Boltzmann models with and withoutmake Rek)/Im(k) as large as desired. However, systems
elastic effects, respectively. Two symmetric branches with too small a viscosity and too large an elastic coefficient
=w(|k,|), clearly noticeable in Fig. 1 at large frequencies,can be numerically unstable. For random initial conditions,
correspond to propagating shear waves. These indicate that for small drive, we numerically determined that the do-
our model indeed exhibits viscoelasticity. main of stability was roughly delimited by=0.04 andu

For more quantitative insight concerning the elasticity, we=<10v. For these conditions on viscosity and the elastic co-
derive dispersion relations for the continuous shear wavesfficient, the largest dimensionless length of the elastic wave
within the framework of the Maxwell model. The linearized envelope is approximately three, which occurs &or~3
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FIG. 3. Plots of thex component of the average velocity — FIG. 4. Amplitude of the first Fourier harmonig,, as a func-
(Ux(Y,tn))xn measured at the timég=nT, n=1, ..., vs thedis-  tjon of time for different driving frequenciesy=9, w=20, and
tance form the driving waly for »=0.042 andu=0.3. Simulation  »=()/2. Resonance is clearly apparent for ().
results forT=2000, =920 andT=4000, 7= 1840 are shown by
circles and squares, respectively. Solid lines correspond to theoret-

~ 2 (L L X
ical results in the forr{U,)=A exd —Im(k)y]cogRek)y]. vy ()= TJ dxf ydysin( 7-,L_) vy(X,Y,1), (13
xtyJ O 0 X

This gives the cpmensmnless maximum in terms of fre- where the integration ovedy corresponds to averaging
quency, with which the relevance to an experimental Systerﬁlong the length of the capillary. In the presence of a volume

can be determined. _ force F,(t), a linearized Navier-Stokes equation yields
To verify that our model reproduces this, we performed

the following simulation. We considered a lattice of size AF 1
100x 100, with periodic boundary conditions in tiedirec- Zly:_o
tion, and reflecting boundary conditions in tledirection. 9L« 92
The reflection from theg=0 wall is periodically modulated.

Therefore, thex components of the velocities after reflection

were set proportional to caos(). Simulations were per- Whereq=/L, is the wave vector of the first harmonic.
formed forn=—1.5 (v~0.042), elastic coefficient=0.3;  Resonance is achieved when the absolute value of this ex-

memory timer=46 and the period of oscillatiofi corre- pression has the maximum, i.e., when the second bracket in

sponded to the theoretical maximum of Rp(m(K). denominator vanishes

The simulation results are presented in Fig. 3. This shows 1
the x component of velocitxux(y,tn»x,q, measured at the w=0="\Jg?ur—1. (15)
timest,=nT, for integern, after averaging andn. Results T
are shown forT=2000 and =920 (circles, and for T )
— 4000 andr=1840 (squares These are compared to the Furthermore, at resonance there should be no phase shift
theoretical resul{U,)=A exd —Im(k)y]cogRe()y], with between the driving force and the induced oscillation, so that

X ; ! the ratio between the force and the oscillation amplitudes is

Im(k) and Rek) as calculated according to E¢l1). The

; I.
agreement is excellent for both valuesof rea .
Finally, consider periodically driven fluid in a capillary. To check whether our model behaves as predicted, we

This permits a further quantitative test of our approach. wePerformed a simulation using the following parameteus:
consider a system of sizex128, with stick boundary con- — 0-3: A=—1.5, 7=250, andF,=0.001. The frequency of
ditions for the long walls, and periodic boundary conditionsthe drive® was equal td2~0.011,0/2, and 2). The mea-
for the short walls. A uniform time-periodic volume force sured values of the,, are presented in Fig. 4. After a short
F,=Fcos(t), directed along the longer walls, is applied to transient period the system approaches the steady-state. As
the fluid in the capillary. In the update scheme, ). is  anticipated, for resonant driveo(= (1) the steady state am-
implemented by adding the driving forég(t) to the elastic plitude of oscillation51y~0.16; while for off-resonance
force F,, in the relaxation term on the right-hand side of thedrive, w=Q/2 andw=2Q, the amplitudesﬂ1y are at least
lattice equation. twice smaller. To investigate any possible phase shift be-
For a fluid with shear elasticity, there should be a resotween the drive and induced oscillations, we also plotted the
nance when the driving frequeney coincides with the in-  driving force for the resonant frequen&t) ~cos{2t). One
trinsic oscillation frequency) of elastic media in the capil- can observe that there is no visible phase shift between driv-
lary. To characterize this resonance, we consider driveiing and induced oscillation. This confirms that the shear elas-
oscillations of the first Fourier harmonic of velocity in the tic resonance frequency of our model is well reproduced by
direction of the applied force the continuous expression E(L5). We also observe that

, (19

v+ +iw

1+ w?7? 1+ w?r?

q’ur }
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when the drive frequency is below or above the resonance described by the continuous Navier-Stokes equations with
frequency(, the induced oscillations are phase delayed andlaxwell viscoelastic term. Hence, we conclude that our
phase advanced, respectively, which again follows from Egmodel indeed reproduces the Maxwell viscoelasticity for the
(14). incompressible fluid flow. Generalization to more sophisti-
To conclude, we have proposed a simple yet versatile arpated_ schemes,. mclqdmg three dimensions and higher-
proach for incorporating viscoelastic effects into lattice Bolt-VeloCity models is straightforward.
zmann simulations for a six-velocity two-dimensional BGK This work was supported by the Natural Sciences and
model. Through simulation and analysis for a variety ofEngineering Research Council of Canada, and le Fonds pour
physical systems, the behavior of the proposed viscoelastia Formation de Chercheurs et I'Aide la Recherche du
lattice Boltzmann model is qualitatively and quantitatively Quebec.

[1] G. R. McNamara and G. Zanetti, Phys. Rev. Létt, 2332 Bhatnagar, E. P. Gross, and M. Krook, Phys. Re4. 511
(1988. (1954.

[2] F. J. Higuera and J. Jimendes, Europhys. [%t663(1989. [6] Y. H. Qian and Y. F. Deng, Phys. Rev. LeR9, 2742(1997.

[3] H. D. Chen, S. Y. Chen, and W. Mattheus, Phys. Revi5A [7] M. J. Crochet, A. R. Davies, and K. Waltéddumerical Simu-
R5339(1992. lation of Non-Newtonian FlowElsevier Science Publishers,

[4] S. Chen and G. D. Doolen, Annu. Rev. Fluid Med®, 329 Amsterdam, 1984 R. B. Bird, R. C. Armstrong, and O.
(1998. HassagerDynamics of Polymeric Liquigsvol. 1, Fluid Me-

[5] The single-relaxation-time collision BGK kernel is due to P. L. chanics, 2nd edWiley, New York, 1987.

056704-4



